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Abstract

The conductive heat flux through the snow and ice is a critical component of the mass and energy
budgets in the Arctic sea ice system. We use high horizontal resolution (3–15 cm) measurements
of snow topography to explore the impacts of sub-meter-scale snow surface roughness on heat
flux as simulated by the Finite Element method. Simulating horizontal heat flux in a variable
snow cover modestly increases the total simulated heat flux. With horizontal heat flux, as opposed
to simple 1D-vertical heat flux modeling, the simulated heat flux is 10% greater than that for uni-
form snow with the same mean snow thickness for a 31.5 × 21 m region of sea ice (the largest
region we studied). Vertical-only (1D) heat flux simulates just a 6% increase for the same region.
However, this is highly dependent on observation resolution. Had we measured the snow cover at
1 m horizontal spacing or greater, simulating horizontal heat flux would not have changed the net
heat flux from that simulated with vertical-only heat flux. These findings suggest that measuring
and modeling snow roughness at sub-meter horizontal scales may be necessary to accurately
represent horizontal heat flux on level Arctic sea ice.

1. Motivation and introduction

The decline of Arctic sea ice is a dramatic consequence of and contributor to climate change
(e.g., Screen and Simmonds, 2010). However, the observed decline is not fully captured by cli-
mate models (Notz and SIMIP Community, 2020). Of the many uncertainties in the sea ice
component of climate models, our lack of understanding of how much heat flows through
snow and sea ice in winter is one of the greatest uncertainties impacting the amount of
Arctic sea ice that models simulate (Urrego-Blanco and others, 2016). The spatial distribution
of snow on sea ice is a factor governing this heat flow.

Wind-driven snow redistribution produces a snow cover on Arctic sea ice in which the spa-
tial variability in snow depth is a substantial fraction of the mean, even on level ice. Mallett and
others (2022) analyzed 499 snow depth transects (each at least 500 m long) on multi-year ice
collected from 1955–1991 and found that the average coefficient of variation, the ratio of the
standard deviation to the mean, was 0.417. We tabulated this metric for an additional 24 sites
of level, first-year ice (Iacozza and Barber, 1999; Sturm and others, 2002a; Petrich and others,
2012; Webster and others, 2015; Moon and others, 2019) and found an average coefficient of
variation of 0.42. Individual sites varied from 0.23 to 0.94. The mean snow depth across these
sites was 20.0 cm and the mean standard deviation was 8.5 cm.

Due to fundamental thermodynamics (Fourier, 1822; Sturm and others, 2002b), small-scale
(i.e., centimeters to 100 s of meters) spatial variability in snow depth on Arctic sea ice enhances
the total amount of conductive heat flux through the snow and ice covers compared to what
the conductive heat flux would be for a uniform snow cover with the same mean snow thick-
ness. Conceptually, we can divide this heat flux enhancement into two components based on
how we approximate heat flux in models: that which occurs in a ‘vertical-only’ 1D heat flux
simulation and that which is simulated with the full 3D heat fluxes–which we term ‘including
horizontal’ heat flux. Vertical-only simulation is well known and has been implemented in
models (e.g., Abraham and others, 2015). In contrast, just two published works (Sturm and
others, 2002b; Popović and others, 2020) have explored including horizontal heat flux simu-
lation on Arctic sea ice, with potentially contradictory findings (discussed below). However, to
our knowledge there are no published assessments of the relevant spatial resolution for hori-
zontal heat flux simulation. We address this gap through heat flux simulations using 3–15 cm
horizontal resolution measurements of snow surface topography.

Snow is ∼10 times more thermally insulating than sea ice (Sturm and others, 2002b). The
reason horizontal heat flux is potentially important is that it can reduce the net thermal resist-
ivity of the snow-ice system by transporting heat laterally through the relatively conductive ice
to areas of thinner snow (at the cost of a longer transport path length in the ice). Consider a
thought experiment: you are at the base of a uniform, 1-m-thick sheet of ice with 20 cm of
snow directly above you. You have to choose between heat transport pathways that go directly
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vertically above you and diagonally through the ice and then
through a thinner snow cover. How much thinner does the
snow on the diagonal pathway have to be for the diagonal path
to be preferable (lower total thermal resistivity) to the vertical
pathway? At small horizontal distances, the diagonal distance
through the ice is barely greater than the vertical distance. So
even small reductions in snow thickness would result in a prefer-
able heat transport pathway. However, as the horizontal distance
increases beyond the ice thickness (1 m in this case), the increase
in the diagonal distance approaches the increase in the horizontal
distance because the cosine of the angle between the diagonal and
horizontal approaches one. Thus, much thinner snow, relative to
the vertical or shorter diagonal pathways, would be necessary to
make longer diagonal pathways preferable. Albeit highly simpli-
fied, this thought experiment provides intuition that
sub-meter-scale variability in snow depth is likely to be the
most important spatial scale of snow depth variability for hori-
zontal heat flux enhancement. Indeed, this thought experiment
was the inspiration for the more technical analysis herein.

Anecdotal experience with snow on Arctic sea indicates that
there is considerable depth variability on sub-meter length scales,
although there is limited published evidence. From semivario-
grams (Isaaks and Srivastava, 1989) of snow depth (Iacozza and
Barber, 1999; Sturm and others, 2002a; Liston and others,
2018), we estimate that the combination of sub-meter-scale
snow depth variability and measurement uncertainty has a stand-
ard deviation of 2.5–5 cm. Semivariogram analysis of these data
cannot distinguish measurement uncertainty from spatial vari-
ability at this scale. Combining the potential for sub-meter-scale
snow depth variability with the thought experiment above leads
to our hypothesis that it may be important to include
sub-meter-scale variability and horizontal heat fluxes when simu-
lating the impacts of snow spatial variability on net conductive
heat flux for level, Arctic sea ice.

In this work, we focus solely on the impacts of spatial variability
of snow depth. Thus, we will consider only steady-state heat con-
duction with constant values of thermal conductivity in the snow
and ice, and no sources or sinks of heat inside the snow-ice system.
These simplifications are commonly made (e.g., Abraham and
others, 2015; Popović and others, 2020). The impacts of non-
conductive heat transport mechanisms such as vapor diffusion
(Calonne and others, 2014), convection (Sturm and Johnson,
1991; Colbeck, 1997), and brine drainage (Niedrauer and Martin,
1979) are beyond the scope of this study but may merit further
investigation. For brevity, “conductive heat flux” is shortened to
“heat flux” throughout this manuscript. With these simplifications,
the temperature distribution in the snow and ice is mathematically
represented by the solution to Laplace’s Equation (Eqn. (1);
Laplace, 1822) and the heat flux at any location within the snow
and ice is given by Fourier’s Law (Eqn. (2); Fourier, 1822):

∇ · k(x, y, z)∇T(x, y, z)
( )

= 0 (1)

q⃗(x, y, z) = −k(x, y, z)∇T(x, y, z) (2)

where T is the temperature; κ is the thermal conductivity; and q⃗ is
the heat flux. If the heat flux were only vertical, then the steady state
conductive heat flux (which we denote qv) would simplify to (Eqn.
(3): Semtner, 1976):

qv(x, y) =
To − Ta

(hs(x, y)/ks)+ (hi(x, y)/ki)
(3)

where To and Ta are the temperatures at the ocean-ice and snow-air
interfaces respectively; hs and hi are the snow depth and ice

thickness respectively; and κs and κi are the snow and ice thermal
conductivities respectively. Equation (3) assumes that the snow-air
interface temperature is spatially uniform. In theory, spatial vari-
ability in conductive heat flux should produce spatial variability
in surface temperature that would be balanced by variability in out-
going longwave radiation. However, spatially-resolved measure-
ments of skin temperatures on level ice on the MOSAiC
Expedition from a helicopter-borne thermal infrared camera
(Thielke and others, 2021) showed minimal spatial variability in
skin temperature due to snow depth variability. In this work we
will assume the snow-air interface temperature is spatially uniform.
Note that if the snow and ice thicknesses were uniform, then all net
heat flux would be vertical and uniform.

Vertical-only heat flux simulations are a convenient way to
estimate the additional heat flux due to snow spatial variability
for two reasons. First, it can be calculated from a collection of
independent point measurements of snow and ice thickness
(e.g., a transect or stake array). For logistical reasons, most mea-
surements of snow depth and ice thickness come from transects
or stake arrays with (sometimes non-uniform) measurements spa-
cing of 1–10 meters (e.g., Hanson, 1965, 1980; Radionov and
others, 1997; Sturm and others, 2002a; Perovich and others,
2003; Sturm and others, 2006; Iacozza and Barber, 2010;
Petrich and others, 2012; Webster and others, 2015; Liston and
others, 2018; Rösel and others, 2018; Moon and others, 2019).
However, including the impacts of horizontal heat fluxes in net
heat flux estimates would require measuring snow depths and
ice thicknesses in a manner that retains their spatial relationships
on a dense sampling grid. In fact, we are unaware of any measure-
ment campaigns that have done so at sub-meter horizontal spa-
cing and it may not be possible without disturbing the surface.
Second, vertical-only heat flux simulation (Eqn. (3)) can be com-
puted with a single line of Python (Rossum and Drake, 2010)
code and trivial computational expense. Estimating three-
dimensional heat fluxes (Eqns. (1) and (2)) is much more compli-
cated and computationally expensive.

Finally, two prior studies have explicitly considered horizon-
tal heat flux in Arctic sea ice. Sturm and others (2002b) simu-
lated two-dimensional heat flux in a 40 m long transect of
multi-year ice containing ice hummocks and refrozen melt
ponds. They found that the spatially variable snow and ice
cover resulted in a heat flux 40% greater than uniform snow
and ice covers. However, they did not distinguish the impacts
of snow spatial variability from ice spatial variability. Popović
and others (2020) developed a mathematical model of the
snow topography on level, first-year ice based upon the random
placement of Gaussian mounds with a fixed aspect ratio. Based
on this model, they derived functions relating the mean, vari-
ance, and semivariogram range to estimated heat flux for
vertical-only and including horizontal cases. For three cases of
level, first-year ice near Utqiaġvik, AK, they estimated that simu-
lating vertical-only heat flux for a spatially variable snow cover
increased net heat flux by 4–11% compared with a uniform
snow cover. However, they estimated that including horizontal
heat flux did not result in an increased net heat flux relative
to vertical-only heat flux (<1% increase). Because of the smooth-
ness of the Gaussian mounds, it is unclear that their model
accurately represents the small-scale surface roughness of snow
on sea ice.

We measured the snow surface topography on level, landfast,
first-year ice in Elson Lagoon near Utqiaġvik, AK at horizontal
resolutions of 3–15 cm. We use this topography to simulate con-
ductive heat flux through snow and ice and estimate the impacts
of snow spatial variability on the net heat flux by simulating
vertical-only and including horizontal fluxes. For simulated
1-m-thick ice, we find that simulating vertical-only heat flux
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increases the net heat flux in the largest region we studied
(Fig. 1c and Table 1) by 6% compared to a uniform snow
cover with the same mean depth. Including horizontal fluxes
increases the net flux by 10% (compared to uniform snow) for
this region. However, if we had increased our horizontal meas-
urement spacing to 1 m or greater, then including horizontal
fluxes has almost no impact compared to the vertical-only simu-
lations (Fig. 2)–supporting our hypothesis that sub-meter-scale
spatial variability is important for horizontal heat flux. We dis-
cuss the implications of these results and make recommenda-
tions for future investigations of heat flux on Arctic sea ice in
the Discussion.

2. Materials and methods

2.1 Data collection and processing

We used a Riegl VZ1000 Terrestrial Laser Scanner (TLS) to meas-
ure the snow surface topography on an untrodden 200x50 m area
of level, landfast, first-year ice in Elson Lagoon, AK (71.349◦N,
156.526◦W) on 17 April 2022 as part of the Snow ALbedo
eVOlution (SALVO) project. TLS, an application of Light
Detection and Ranging (LiDaR), is a standard technique for
measuring snow topography (Deems and others, 2013) wherein
a tripod-mounted laser scanner maps the surface using a
line-of-sight laser emitter and detector. To measure the entire
area, we collected TLS data from five scan positions arrayed
around the outside of the 200 × 50 m area. We co-located the
scan positions with one another within an uncertainty of 3 mm
using Riegl 10 cm reflectors mounted on posts frozen into the
ice and a plane-matching algorithm in RiSCAN (Riegl’s software
for TLS acquisition and processing). The ranging precision of the
VZ1000 is 5 mm and the beam divergence is 0.3 mrad.

We selected four nested regions in the center of the untrodden
measurement area near the central scan position (where our
measurement resolution was highest) to simulate heat flux
(Fig. 1c and Table 1). For each region, we converted the TLS
pointcloud data to gridded data by first constructing a triangu-
lated surface from the pointcloud (Kazhdan and others, 2006)
and then sampling this surface at the desired resolution. For the
higher resolution regions, the sizes of the regions were limited
by our desire to keep the percentage of grid cells without TLS
measurement points in them at less than 5% (admittedly an arbi-
trary cutoff). The size of the largest region was motivated by a
desire to exceed the typical structural length scale of 20 m (the
distance beyond which the snow depths become uncorrelated;
Sturm and others, 2002a; Itkin and others, 2023). Simulating
3D heat flux on domains larger than our largest region was com-
putationally infeasible with our available resources.

2.2 Heat flux simulation

Since our interest is the impact of the snow variability, we will
assume that the ice is uniformly 1 m thick with level ocean-ice
and ice-snow interfaces (Popović and others, 2020, makes the
same assumptions, so these choices facilitate comparing our
results). Because ice in Elson Lagoon is first year ice that is pro-
tected from substantial ice dynamics, the assumptions of level
interfaces is reasonable (e.g., Webster and others, 2014, note
also the generally level character of the ice extending to the hori-
zon in Figure 1). We set the same vertical position of the snow-ice
interface for all of the regions (as is sensible since they are over-
lapping) such that all snow depths are greater than 1 cm–consist-
ent with our observation that all ice was snow covered. With these
assumptions, the coefficients of variation of snow depth (Table 1)
in the larger regions fall within the range typically observed for
snow on level, first-year ice.

For each region, we convert the snow and ice volume into a
three-dimensional tetrahedral mesh using Gmsh (Geuzaine and
Remacle, 2009). We assume constant ocean-ice and snow-air
interface temperatures (Dirichlet boundary conditions) and that
there is no horizontal heat flux at the lateral borders of the
domains (Neumann boundary conditions). We set the snow ther-
mal conductivity at 0.14W m−1 K−1 and ice thermal conductivity
at 2.0W m−1 K−1 (same values used by Popović and others,
2020). For each region, we numerically solve Eqns. (1) and
2 via the Finite Element Method using second-order Lagrange ele-
ments (using FEniCS: Kirby, 2004; Kirby and Logg, 2006; Kirby,
2012; Logg and Wells, 2010; Logg and others, 2012a, 2012b,
2012c; Ølgaard and Wells, 2010; Alnaes and others, 2014;

Figure 1. Study area in Elson Lagoon, AK on 17 April 2022: (a) photograph, (b) 3D
rendering of TLS data (c) assumed snow depth map from TLS data. 3D rendering
(b) is from approximately the same viewpoint as the photograph (a)–marked by cam-
era glyph in (c). Camera lens distortion is not modeled. Lighting for 3D scene (b) is
from the same elevation and azimuth as sun position in photograph (a) so that sha-
dows generally correspond. The same colormap is used in (b) and (c). The nested
regions used in the heat flux analysis are marked in (c). Photo credit for (a): Serina
Wesen.
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Alnæs and others, 2015; Scroggs and others, 2022) assuming a 20
K temperature difference between the ocean-ice and snow-air
interfaces. Note that this is a simplified version of Eqns. (1) and
(2) where κ(x, y, z) is either κs or κi in the snow and ice respect-
ively. We numerically integrated the vertical heat flux at the
ocean-ice interface to estimate the net mean heat flux. For each
region, we also estimated the vertical-only heat flux (for the
assumed spatially variable snow cover) and the heat flux assuming
uniform snow thickness with Eqn. (3). Finally, to investigate the
impacts of the measurement resolution on the results, we down-
sampled the gridded snow topographies by factors of 2–20 and
computed the heat fluxes.

3. Results

Including horizontal heat flux simulated more total heat flux than
that simulated with vertical-only heat flux and the heat flux assum-
ing uniform snow depth (Table 1 and Fig. 2). Increasing the hori-
zontal measurement spacing (i.e., degrading the resolution) does
not affect the ratio between the simulated vertical-only heat fluxes
and that simulated with a uniform snow cover (the dashed lines are
roughly constant in Fig. 2). However, increasing the measurement
spacing reduces the impact of including horizontal fluxes in the
simulation (the solid lines decrease to the right in Fig. 2). When

the horizontal measurement spacing is 1 m or greater, we do not
find that including horizontal heat fluxes resulted in a net heat
flux greater than the vertical-only simulations. We also examined
the sensitivity of our results to ice thickness by simulating region
iii with an ice thickness of 2 m (not shown). The overall magnitude
of the heat flux decreased, as expected for thicker ice, but the rela-
tive effect of including horizontal heat flux was similar.
Additionally, we explored the sensitivity of our results to increasing
the snow thermal conductivity to 0.3Wm−1 K−1 (Supplemental
Material: Table S1 and Fig. S1). This does not change the relative
effect of including horizontal heat flux, but does decrease the
impact of snow depth variability on heat flux. For example, for
region iv at 15 cm resolution, including horizontal heat flux results
in 6% greater heat flux than a uniform snow cover, whereas
vertical-only heat flux is 3% greater than a uniform snow cover.
For comparison, with snow thermal conductivity of 0.14Wm−1

K−1, for region iv at the 15 cm horizontal resolution, including
horizontal heat flux results in 10% greater heat flux than a uniform
snow cover, whereas vertical-only heat flux is only 6% greater than
a uniform snow cover.

4. Discussion and conclusion

The simulation results generally confirm the intuition from the
thought experiment in the Motivation: sub-meter-scale snow
depth variability increases the net heat flux when our simulations
include horizontal fluxes. Furthermore, in this case, the additional
net simulated heat fluxes when including horizontal fluxes relative
to vertical-only simulations were a similar magnitude, albeit smal-
ler, to the impacts of simulating vertical-only fluxes in a spatially
variable snow cover compared to a uniform snow cover. This con-
tradicts the results of Popović and others (2020), although we
made the same assumptions about ice thickness and snow and
ice thermal conductivities. Popović and others (2020) reported
that simulating horizontal fluxes had no impact on the net heat
flux beyond vertical-only simulation. We suspect that their
model, which represents snow dunes as smooth Gaussian
mounds, is not accurately representing sub-meter-scale snow vari-
ability. When we downsample our data to horizontal measure-
ment spacings of 1 m or greater, including horizontal heat
fluxes no longer simulates additional net heat flux compared to
vertical-only simulations (i.e., the same result as Popović and
others, 2020). The modeling approaches are also different,
Popović and others (2020) derived analytical mathematical rela-
tionships between summary statistics (mean, variance, and semi-
variogram range) and heat flux whereas we conducted finite
element simulations with a specific, measured snow topography.

The impacts of degrading the horizontal resolution were quali-
tatively similar for all four nested regions: degrading the reso-
lution reduced the heat flux simulated when including
horizontal fluxes but did not impact the vertical-only simulations.
The smaller regions (i and ii) were included to assess whether any
novel behavior occurred at extremely high (<10 cm) sampling
resolution (e.g., a dramatic increase in the heat flux simulated
when including horizontal fluxes), and because technical

Table 1. Summary statistics and simulated heat fluxes for each region in Figure 1c.

Region
Resolution

(cm) Size (m)
Point density

(# m−2)
Mean snow
depth (cm)

Standard deviation
snow depth (cm)

Coefficient of
variation

Heat flux
incl. horizontal

(W m−2)

Heat flux
vertical-only
(W m−2)

Heat flux
uniform snow

(W m−2)

i 3 6.3 × 4.2 5.6 × 103 10 2 0.21 16.42 16.30 16.05
ii 6 12.6 × 8.4 3.5 × 103 13 4 0.29 14.51 14.26 13.77
iii 10 21 × 14 2.0 × 103 15 6 0.41 14.41 14.00 12.94
iv 15 31.5 × 21 1.2 × 103 15 5 0.34 13.69 13.21 12.46

Figure 2. Comparison of how increasing the horizontal measurement spacing (i.e.,
degrading the resolution) impacts simulated heat flux ratios relative to a uniform
snow cover for simulations of vertical-only heat flux and including horizontal fluxes
on each region in Figure 1c. Increasing measurement spacing does not impact the
vertical-only heat flux ratios (dashed lines), but does reduce the horizontal heat
flux ratios (solid).
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limitations prevented us from measuring such high resolution
topography on larger domains. However, using such small
domains introduces quantitative differences in simulated heat
fluxes between the regions that are due to the domain size.
Most importantly, the variance of snow depth in small regions
(e.g., i and ii) tends to be less than that in larger regions (e.g.,
iii and iv), because snow depth is spatially auto-correlated at dis-
tances less than the semivariogram range (typically around 20 m).
When snow depth variance is lower (small regions), the impacts
of depth variability are smaller (i.e., uniformity is a better approxi-
mation). Consider the limiting behavior. If our entire domain
were a column of snow and ice with infinitessimal horizontal
extent, then all three types of simulated heat flux would be iden-
tical. For regions i and ii, sampling resolutions of less than 15 cm
(the resolution of region iv) caused insignificant differences in the
simulated heat flux (<0.05Wm−2). Thus we conclude that the
sampling resolution of the larger regions (iii and iv) was sufficient
to observe these effects. Since the larger regions are less affected
by autocorrelation, we expect them to be more representative of
large-scale effects although further work with more computa-
tional resources could help extend this analysis to larger domains.

Quantitatively assessing the representativeness of the
sub-meter-scale snow roughness on this particular region of
level, first-year Arctic sea ice is beyond the scope of this study
(and likely requires more data collection of high resolution surface
topography). However, the assumed mean, standard deviation,
and coefficient of variation of snow depths for our two larger
regions (iii and iv) are within the range of typical values on
level, first-year Arctic sea ice (Iacozza and Barber, 1999; Sturm
and others, 2002a; Petrich and others, 2012; Webster and others,
2015; Moon and others, 2019, the mean and standard deviation
are at approximately the 25 percentile, the coefficient of variation
is near the median).

Assessing the importance of horizontal heat flux enhancement
on large spatial or temporal scales is challenging because there are
almost no measurements of sub-meter-scale snow thickness vari-
ability. This includes this study, we could only measure snow top-
ography and infer depth based on level-ice assumptions.
Collecting TLS scans prior to the first snowfall (as is sometimes
done in terrestrial environments: e.g., Hartzell and others, 2015)
could address this data gap, although this is logistically challen-
ging on sea ice. Another approach would be targeted studies to
see if the fractal-scaling behavior observed in super-meter-scale
snow depth (Deems and others, 2006; Trujillo and others, 2007,
2009; Moon and others, 2019) extends to sub-meter-scales on
Arctic sea ice. If so, information about sub-meter-scale variability
could be inferred from super-meter-scale measurements.
Regarding models of the snow and ice cover, our results suggest
that if they seek to simulate the impact of horizontal heat fluxes,
they should represent sub-meter-scale snow depth variability.
How exactly, to simulate or parameterize this variability will
require more measurements and process studies of sub-meter-
scale variability. Finally, although we consider a single field site
and assumed uniform ocean-ice and ice-snow interfaces, the
order of magnitude of the heat flux enhancements we simulate
may be of use to other researchers. For our largest region (iv),
the simulated heat flux is 10% greater including horizontal heat
flux than that for uniform snow with the same mean snow thick-
ness. Whereas, simulating vertical-only fluxes increased the net
simulated heat flux by 6%.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.105

Data. TLS data used in this work are available at Clemens-Sewall (2023b). A
Python package for processing and manipulating TLS data is available at
Clemens-Sewall (2023a) and described in Clemens-Sewall and others (2024).
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