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Abstract Models struggle to accurately simulate observed sea ice thickness changes, which could be
partially due to inadequate representation of thermodynamic processes. We analyzed co-located winter
observations of the Arctic sea ice from the Multidisciplinary Drifting Observatory for the Study of the Arctic
Climate for evaluating and improving thermodynamic processes in sea ice models, aiming to enable more
accurate predictions of the warming climate system. We model the sea ice and snow heat conduction for
observed transects forced by realistic boundary conditions to understand the impact of the non-resolved meter-
scale snow and sea ice thickness heterogeneity on horizontal heat conduction. Neglecting horizontal processes
causes underestimating the conductive heat flux of 10% or more. Furthermore, comparing model results to
independent temperature observations reveals a ~5 K surface temperature overestimation over ice thinner than
1 m, attributed to shortcomings in parameterizing surface turbulent and radiative fluxes rather than the
conduction. Assessing the model deficiencies and parameterizing these unresolved processes is required for
improved sea ice representation.

Plain Language Summary Numerical sea ice models rely on conceptual simplifications of the sea
ice and snow conditions observed in the Arctic and Southern Ocean. In particular, we cannot account for the
variations in sea ice thickness and snow depth at the meter scale because we have limited computing capabilities
and lack a detailed understanding of the processes defining how the sea ice system evolves. Furthermore, when
designing sea ice models, we assume that the heat can flow only vertically, while in reality, this exchange is also
horizontal and depends on the local topography. Thanks to observations collected during the Multidisciplinary
Drifting Observatory for the Study of Arctic Climate expedition, we can better quantify model errors when
using thermodynamic approximations. Our findings suggest that slightly more heat flows through the sea ice
system than we can simulate with a simplified sea ice model and that the surface temperature of the model is too
warm for thin ice and snow conditions. Learning the nature of these errors is useful because we could formulate
corrections for our models, investigate the occurrence of climate feedback mechanisms, and possibly provide
more reliable predictions about the current state of the sea ice and its future evolution, which is currently heavily
impacted by global warming.

1. Introduction

The sea ice is a complex system that exhibits substantial heterogeneity in terms of its composition, which includes
ice, precipitated snow, and pockets of brine and air within the ice (Weeks & Assur, 1967). Consequently, the
material and thermodynamic properties of the system are also heterogeneous, with substantial spatiotemporal
density and thermal conductivity variations (Jutila et al., 2022; Timco & Frederking, 1996). Small-scale het-
erogeneity is manifested also in terms of the sea ice thickness, with the coexistence of thin level ice and thick
pressure ridges at the scale of tens of meters (Thorndike et al., 1975; von Albedyll et al., 2021). Ridges cover
25%—45% of the total sea ice area (Martensson et al., 2012), and they favor preferential snow accumulation in their
vicinity (Macfarlane, Schneebeli, et al., 2023), thus inducing snow heterogeneity. During winter, the temperature
difference between the ocean and the atmosphere typically favors upward heat conduction through the sea ice and
snow. While often conceptualized as vertical and thus one-dimensional, this thermodynamic process is in reality
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three-dimensional. The exact pathway of the heat dissipation through sea ice and snow is set by the system's
small-scale geometry and thermal conductivity. In this context, the role of snow on sea ice is of particular
importance because this material is a strong thermal insulator with a thermal conductivity approximately one
order of magnitude smaller than that of sea ice (Schwerdtfecer, 1963; Sturm et al., 1997). Therefore, the spatial
distribution of the snow over sea ice and its depth variations could have first-order implications for winter heat
conduction.

Sea ice models run at resolutions as fine as a few kilometers, which is insufficient for explicitly capturing the
observed topographic heterogeneity manifested at the meter scale. Several models now feature a prognostic sub-
grid discretization in multiple ice thickness classes, which provide a coarse statistical description of the sea ice
thickness heterogeneity and, to a certain extent, of the snow precipitating on it (Holland et al., 2006; Lips-
comb, 2001; Massonnet et al., 2019; Thorndike et al., 1975). We call this model formulation the Ice Thickness
Distribution (ITD). While the snow is also discretized prognostically at the subgrid scale following the ITD,
complex snow processes such as snow redistribution and metamorphism are not considered in thermodynamics
computations (Clemens-Sewall et al., 2022). The consequence of omitting these processes is that the model
representation of ice and snow lacks topographic heterogeneity (Fichefet & Maqueda, 1997) and, typically, the
heat conduction can be solely represented as a vertical process, thus neglecting its horizontal components. To our
knowledge, only a few studies tried to quantify this model deficiency. Petrich et al. (2007) discuss how lateral ice
growth impacts the healing of ice cracks at very fine spatial scale. Sturm, Perovich, and Holmgren (2002)
indicated a 40% underestimation of the heat conduction based on a single 60 m transect measured during the
Surface Heat Budget of the Arctic Ocean (SHEBA) observational campaign (D. K. Perovich et al., 1999; Sturm,
Holmgren, & Perovich, 2002). He suggests increasing the model snow conductivity k, from the observed bulk
value of 0.14 W m™" K" to an effective value of 0.2 W m~' K™' to compensate for the unresolved horizontal
conduction. In addition, they argue that k; should be increased to higher values when considering buoyancy-
driven air convection within snow. Note that the quality needle probe k; measurement technique used by
Sturm, Perovich, and Holmgren (2002) has been questioned by Riche and Schneebeli (2013). Popovié
et al. (2020) found no imprint of the small-scale snow heterogeneity on the horizontal heat conduction when
considering the sea ice thickness to be constant, an assumption appropriate for level ice but not adequate for the
deformed parts of the domain.

Localized measurements of snow thermal conductivity span a considerable range due to their dependency on the
physical properties of the snow (e.g., temperature, grain characteristics, and bonding) and differences in
measuring techniques. Consequently, observed values for k, are from about 0.03 to 0.65 W m~' K~' (Sturm
et al., 1997). During the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAIC)
expedition (Nicolaus et al., 2022; Shupe et al., 2022), the observed k, range was typically lower when considering
vertical averages over accumulated snow layers (e.g., from 0.2 to 0.3 W m~' K™ in Macfarlane, Lowe,
etal. (2023)). Indirect MOSAIC k, estimates based on Snow and Ice Mass Balance Array (SIMBA hereafter) buoy
data suggest higher values for this parameter (k, = 0.41 W m~! K™!; D. Perovich et al., 2023). Snow density
changes cause k; to increase in winter until March, and decrease afterward (Macfarlane, Lowe, et al., 2023).
Despite the observed &, range, we still typically assume the snow thermal conductivity to be a constant in large-
scale sea ice models, and only Lecomte et al. (2013) attempted to develop a wind-driven parameterization for this
parameter. Moreover, the snow thermal conductivity is often used as a tuning knob to enhance or suppress the
winter sea ice growth (Urrego-Blanco et al., 2016; Zampieri et al., 2021). This tuning approach is effective in
obtaining the wanted result, which is improved sea ice simulations in terms of the pan-Arctic sea ice extent and
volume. Whether such tuning is appropriate also in terms of small-scale thermodynamic processes and
compatible with the available sea ice observations remains an open question. Setting better physical boundaries
for thermodynamic tuning could help to obtain more accurate Arctic and Antarctic sea ice projections, given the
expected relevance of snow processes in a warming climate (Landrum & Holland, 2022).

Here, we revisit and expand the result of Sturm, Perovich, and Holmgren (2002) in the context of sea ice and snow
observations collected during the MOSAIC expedition in the winter of 2019-2020 and in light of the advances
made by the sea ice modeling community in the last two decades. The scientific questions we address in this study
are the following:

1. In sea ice models, what is the effect of the unresolved snow and ice thickness heterogeneity on the conductive
heat flux?
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2. What is the effect of modeling the conduction as a two-dimensional process?

3. How do these effects vary across diverse sea ice types with different thicknesses?

4. Can an equilibrium thermodynamic model of sea ice reproduce the MOSAIC temperature observations?

5. Is tuning the snow thermal conductivity compatible with small-scale thermodynamic-oriented diagnostics?

2. Methods
2.1. Observations

To answer the previous questions, this study employs several winter observations of sea ice, snow, and near-
surface atmosphere collected during the MOSAIC expedition. Direct sea ice measurements include repeated
transect surveys that characterized separately the sea ice and snow thickness (respectively /; and /) for multiple
in-line locations at the MOSAIC central observatory (Itkin et al., 2023). The spatial resolution of the transect
measurements is approximately 1 m. The snow thickness measurements conducted with a depth probe are local
and quite precise (uncertainty is <1 cm), while the indirect sea ice thickness measurements rely on a broadband
electromagnetic induction sensor and have a larger footprint of up to a few meters, and therefore higher un-
certainties (Itkin et al., 2023). During MOSAIC, the ice and snow internal temperatures have been measured with
thermistor strings from SIMBA buoys (Lei et al., 2022). Data from buoys 2019T64 and 2019T68 are featured in
this study. These measurements provide a high-resolution (2 cm) vertical temperature profile at fixed locations,
different from the transects.

Airborne observations were collected during multiple helicopter surveys and provide a two-dimensional (2D)
characterization of the snow surface temperature through infrared (IR) camera images (Thielke et al., 2022b) and
of the surface elevation through an airborne laser scanner (ALS; Hutter, Hendricks, Jutila, Ricker, et al., 2023).
Both products cover a relatively large domain spanning distances of 5-10 km from the MOSAIC central ob-
servatory. The surface temperature measurements are derived from broadband infrared brightness temperatures
assuming a constant surface emissivity of 0.996. The spatial resolution of the temperature product is approxi-
mately 1 m. Temperature measurements are affected by uncertainties that can be larger than 1-2 K. The un-
certainty is spatially dependent due to surface emissivity and camera angle variations (Dozier & Warren, 1982).
The surface elevation features a resolution of 0.5 m and is converted to snow freeboard based on sea surface
height measurements of open leads. Continuous meteorological observations were collected in three distinct
locations on the sea ice with a 1-min temporal resolution or less. These include longwave broadband up- and
down-welling radiation, downward shortwave radiation, temperature, and wind speed measurements at multiple
heights (C. J. Cox, Gallagher, Shupe, Persson, Solomon, et al., 2023). Thielke et al. (2024) includes a validation of
the airborne IR temperatures against the ground-based meteorological observations.

Since the airborne and transect observations were collected at different times and processed by multiple providers,
a co-location procedure is needed to use them together and ensure that the correct conclusions are drawn from the
data. In particular, the ALS freeboard measurements serve as a bridge product to co-locate the helicopter IR
surface temperature and the transects. First, we co-locate the IR temperature on top of the ALS snow freeboard by
matching thermal and elevation signals of refrozen leads and ridges. Second, we drift-correct the transects based
on the ice movement to match the ALS freeboard in time and space and consequently, also the surface tem-
perature. The readers should note that the reference coordinates and times adopted in the paper refer to the
airborne survey and not to the matched drift-corrected transect. Dates in the manuscript follow the YYYY.MM.
DD convention. To ensure high-quality observations, we consider only transects measured within 2 days from the
helicopter flights to avoid position errors due to sea ice deformation. Furthermore, transects in proximity to major
snowfall and high-wind events are discarded since these could change the surface topography and decrease their
agreement with airborne surveys.

2.2. Model Configuration

To study the impact of the small-scale heterogeneity and horizontal heat conduction on the conductive heat flux
computations, we solve the 2D heat equation for multiple MOSAIC transects using a finite element (FE)
framework similar to Clemens-Sewall et al. (2024). This approach leads to estimating the equilibrium temperature
within sea ice and snow (more details in Text S1 in Supporting Information S1). Each transect undergoes an
unstructured-mesh tessellation so that the domain is numerically discretized with an approximate spatial reso-
lution of 10 cm, with local mesh resolution refinements to tessellate regions with snow depth lower than 10 cm.
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Except for the FE formulation, our model follows all the assumptions made in the standard configuration of the
Icepack sea ice single-column model (Hunke, Allard, Bailey, Blain, Craig, Dupont, & Winton, 2022), the
thermodynamic component of CICE (Hunke, Allard, Bailey, Blain, Craig, Dupont, & Worthen, 2022), widely
used both for sea ice forecasting and climate modeling (Roberts et al., 2018). The thermal conductivity of sea ice
(k)issetto 2.1 Wm™' K™, and k, to 0.3 W m™! K™!, with the latter perturbed in certain sensitivity experiments.
In reality, k; is temperature and salinity dependent, an aspect that can lead to deviations from the assumed value
particularly for newly formed ice close to the ice-ocean interface. The atmospheric heat fluxes used as model
boundary conditions (BCs) are directly prescribed from observations in the case of the downward longwave and
shortwave radiation fluxes. In the case of the sensible and latent heat fluxes, BCs are derived from the surface
temperature, atmospheric 2 m temperature, and 2 m relative humidity following the Monin-Obukhov similarity
theory. A broadband albedo of 0.85 is prescribed for the snow (relevant only for two spring flights). The surface
emissivity is set to 0.996 for consistency with the retrieval of the airborne surface temperature. Finally, the ocean-
sea ice interface temperature is set to the sea ice melting temperature via Dirichlet BC to simplify the problem, but
we acknowledge the availability of oceanic MOSAIC observations (Schulz et al., 2023). The partial differential
equation is solved with the DOLFINx Python package, the problem-solving environment of the FEniCSx
computing platform (Scroggs, Baratta, et al., 2022; Scroggs, Dokken, et al., 2022).

3. Results
3.1. Impact of Unresolved Thickness Heterogeneity and Horizontal Heat Conduction

Figure la displays the snow and sea ice thickness for a transect measured within 48 hr from 16 January 2020
(Nloop in Itkin et al. (2023)). The sea ice appears highly deformed, with multiple ridges up to 8 m thick. The snow
also shows substantial heterogeneity, mostly driven by the wind redistribution onto the heterogeneous ice surface.
Here, we depict the sea ice-snow interface (IS) as a flat line, but in reality, its elevation varies following the
hydrostatic balance of the system. Figure 1b depicts the same transect but discretized based on the standard ITD
classes of the CICE model. Comparing these two plots reveals that most of the original small-scale heterogeneity
is lost by the numerical discretization.

Figures Ic and 1d show the temperature solution of the FE thermodynamic model respectively for the 1D
(vertical) and the 2D (vertical and horizontal) heat conduction at different locations within or at the boundaries of
the sea ice and snow. The surface equilibrium temperature s, shows only small fluctuations and it is within the
uncertainty range of the helicopter observations T, ;.- Most of the temperature variations along the transect can
be seen at the IS interface and it is driven by both the sea ice and snow thickness variations. Specifically, the
following three mechanisms can explain, to a certain extent, IS temperature variations:

1. When thick and therefore insulating snow is found on relatively thin ice, the heat dissipation at the surface is
inhibited and heat from the ocean is conducted effectively to the IS interface.

2. In the case of thick sea ice, the IS interface is effectively insulated by the ice below and reaches a cooler
equilibrium temperature. The insulating effect of the snow layer is less relevant in this situation.

3. Regions of thin snow surrounded by thick snow are characterized by strong heat conduction and lead to a
cooler T;g and warmer T'gy.

Overall, we find it remarkable that up to 20 K horizontal temperature fluctuations occur within the simulated
system over distances less than 100 m. At the same time, the surface and bottom interface temperatures remain
mostly constant because they are heavily influenced by the atmospheric and oceanic state. Compared to the 1D
conduction case, the 2D solution shows more spatial variability at the snow-air interface, because thin snow
regions can collect heat also from the surrounding ice and dissipate it through surface hot spots. On the contrary,
the interior of the ice and snow becomes more uniform in the 2D case because the horizontal heat redistribution
tends to homogenize thickness-driven temperature differences. The length scale of horizontal fluxes is variable
but typically small, at most a few meters within the ice.

Figure 2a shows the conductive heat flux difference between the 1D vertical thermodynamic solution that re-
solves the small-scale thickness heterogeneity and the average ITD discretized solution (1D-1D,;,; y-axis), as a
function of the conductive heat flux average ITD discretized solution (x-axis). Results from all the available
transect simulations collected during MOSAIC and following the criteria exposed in Section 2.1 are combined in
Figure 2 and indicated with different colors. These transects include but are not limited to the NLoop in Figure 1.
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Figure 1. (a): Representation of the sea ice and snow thickness for the Nloop transect co-located onto the 16 January 2020 helicopter flight. The snow thickness is
magnified by a 10X factor to improve readability. The ice thickness is negative to depict a more realistic configuration with snow above the sea ice. Panel (b) same as
panel (a), but discredited into 5 Ice Thickness Distribution classes following the model formulation. Note that Class 1 is absent because the ice is not thin enough in this
example. (c, d) Transect temperature profiles at different vertical levels for the 1D vertical and 2D model setups. SA = snow-atmosphere interface, IS = ice-snow

interface.

In Figure 2, different symbols refer to the five ITD classes. The result indicates that solving the sea ice and snow
thermodynamic without taking into account the small-scale heterogeneity leads to an underestimation of winter
heat conduction of up to 10% given the prescribed snow and sea ice conductivity values (k; =2.1 W m~' K™ and
k,=0.3 Wm™' K™"). The underestimation is proportional to the conductive heat flux itself and therefore marked
for ITD classes 1 and 2 (AF,,, ~ —1.6 W m™2) and small for ITD classes 3 to 5 (AF¢,,; & —0.5 W m™).

When solving the heat equation by taking into account horizontal heat conduction in addition to the small-scale
heterogeneity (Figure 2b; 2D-1D, ), we observe an overall increase of the heat conduction underestimation for
high-fraction sea ice classes (larger markers) because the thin snow part of the domain can now dissipate heat
from the surrounding ice. We performed a linear fit to the data weighted by the accumulated number of points
considered in each estimate, and the increase of the linear fit slope (LFS) from 2.7 X 1072 to 6.5 x 1072
quantitatively confirms this behavior. Nevertheless, the signal of low-fraction sea ice classes (smaller markers) is
noisier and, in certain instances, even points to an overestimation of the heat conduction by the ITD model in the
2D case.

The importance of horizontal heat conduction grows for more insulating snow, assuming an identical sea ice
thermal conductivity. This behavior is reasonable: the more we insulate the surface vertically, the more horizontal
dissipation pathways are preferred, and ultimately hot spots associated with thin snow can collect heat from
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Figure 2. (a) Conductive heat flux difference between the 1D vertical thermodynamic solution fully resolving the ice and snow thickness heterogeneity and the 1D
solution for the CICE Ice Thickness Distribution (ITD) discretization as a function of the heat flux of the ITD discretization. Panel (b) is similar to panel (a), but with
both vertical and horizontal heat conduction (2D) are considered. Panel (c) is similar to panel (b), but for a lower snow thermal conductivity (k,). Panel (d) is similar to
panel (b), but the thermodynamic thickness of ridges has been reduced in the 2D solution for representing non-consolidated deformed ice. The size of the markers scales
with the accumulated number of points considered in each estimate. LFS = Linear Fit Slope (not computed for d).

portions of the domain further away. This is evident from Figure 2c, where decreasing &, to k, = 0.1 W m ' K™!
diminishes the magnitude of the heat conduction compared to Figure 2b while simultaneously increasing the
underestimation of conduction by a factor of two (LES = 1.4 x 10™'). We would like to point out that
k,=0.1 Wm™" K" is chosen for performing a sensitivity test in line with Sturm, Perovich, and Holmgren (2002),
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but that such a low value is outside the MOSAIC observational range for this column integrated parameter
(Macfarlane, Lowe, et al., 2023).

Previously, we followed the typical model assumptions and represented deformed ice as fully consolidated. In
reality, the bottom portion of sea ice ridges features water-filled voids (Leppéranta et al., 1995; Salganik
et al., 2023). Hence, no heat conduction occurs within nonconsolidated deformed ice but only in the fully frozen
part, which exhibits a thickness ratio to the surrounding level ice of 1.4-1.8 (Hgyland, 2002). For more realistic
results, we have reduced the thermodynamic thickness of ridges following a simple approach described in Text S2
and Figure S1 in Supporting Information S1 and repeated our simulations. Specifically, we assume a spatially
constant ridged-to-level ice ratio of 1.5 for all the deformed ice in the transects. The outcome is displayed in
Figure 2d. Compared to Figure 2b, deformed ice (ITD classes 4 and 5) becomes much more conducive, while the
conduction of class-3 ice, which typically surrounds ridges, is slightly reduced. Ice in classes 1 and 2 show no
noticeable change. Overall, the ITD solution in Figure 2d underestimates the conductive heat flux for most of the
sea ice in the transects.

Finally, we briefly discuss whether the horizontal heat conduction is stronger within the sea ice or snow. Figure S2
in Supporting Information S1 shows that the horizontal component of the flux is larger in the sea ice, which is
reasonable given its higher thermal conductivity. Interestingly, the same plot suggests there is not a strong
dependence of the horizontal flux on the thickness of ice and snow, but it rather appears that the horizontal fluxes
are just slightly stronger over the thinner part of the domain. Similar results hold for the case with reduced ridges
(Figure S2d in Supporting Information S1).

3.2. Testing Snow Conductivity Tuning Under Process-Oriented Diagnostics

In the previous paragraphs, we showed a reasonable agreement between the simulated and observed surface
temperature for the transect under consideration (Figure 1c; 16 January 2020 simulation). However, this holds
only for the thick ice cover, while a positive temperature bias emerges for thin ice and snow, meaning that the
simulated surface temperature is warmer than the observations. For example, the transect measured on first-year
ice on 7 January 2020 (Dark FYI in Itkin et al. (2023)) had a considerable amount of thin ice (Figure 3c) and
comparisons of the simulated surface temperature to observations (Figure 3a) show large discrepancies in these
regions. Different mechanisms could explain this positive temperature bias: (a) An overestimation of the thermal
conductivity of sea ice and snow would cause excessive conduction through the sea ice system, or (b) An
erroneous computation of the turbulent and radiative energy fluxes at the surface. Here we test the first hypothesis
by reducing the simulated snow thermal conductivity, which should mitigate the positive surface bias. Specif-
ically, we repeat the simulation by decreasing the snow conductivity from a value of 0.3 W m~' K™ (Figures 3a)
t0 0.1 Wm™' K™! (Figure 3b), and we observe a substantial reduction from 2.55 to 1.14 K of the surface tem-
perature bias. Note that a residual error is inevitable and thus expected given the time difference of up to 2 days
between the flights and the transect survey, during which ice growth, deformation, and more importantly snow
redistribution compaction could occur. Admittedly, a k, value of 0.1 W m~" K~ is physically plausible but not
compatible with the direct observations of this parameter during MOSAiIC (Macfarlane, Lowe, et al., 2023).
Nonetheless, performing such sensitivity simulation is informative for the modeling community, which routinely
uses k, as a tuning parameter as explained in Section 1. In the next paragraph, we will investigate whether this bias
reduction linked to the tuning of &, holds when tested in the context of thermodynamic-oriented diagnostics.

Tuning the snow conductivity has strong implications also for the temperature within sea ice and snow. Given that
the simulated snow becomes a stronger insulator, less heat is fluxed from the ice through the snow and so more
heat is retained within the sea ice, leading to a warming of approximately 7 K at the interface of the ice and snow.
We tested whether this new temperature structure, which leads to a surface bias reduction, is also reasonable when
compared to observations of the sea ice and snow interior. Figure 3d exhibits the sea ice temperature gradient at
half of the sea ice thickness as a function of the effective thermodynamic thickness #,, a quantity often used by sea
ice modelers defined as h, = h; + hS,]:—i. For both the conductivity values, we observe that the temperature gradient

decreases as the thickness increases. This behavior agrees well with our understanding of the system, as thicker
sea ice provides more thermal insulation and tends to host, on average, thicker snow. However, a comparison with
independent measurements from the SIMBA buoys reveals that the sea ice thermal structure emerging from the
simulation with a snow thermal conductivity of 0.3 W m™' K™™' (cyan markers) agrees better with the SIMBA
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(a) 2D Thermodynamic Solution - 2020.01.07
ks=0.3 W m~1K?

(b) 2D Thermodynamic Solution - 2020.01.07
ks=0.1 W m~K?
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Figure 3. (a, b) Transect temperature profiles at different vertical levels for two different snow thermal conductivity values. (c) Representation of the sea ice and snow
thickness for the Dark FYI transect co-located onto the 7 January 2020 helicopter flight. The snow thickness is magnified by a factor 10X to improve readability. The ice
thickness is negative to depict a more realistic configuration with snow above the sea ice. (d): Simulated temperature gradient at half of the sea ice thickness for two
different snow conductivity values compared to two SIMBA measurements as a function of the effective thermodynamic ice thickness /,. SA = snow-atmosphere

interface, IS = ice-snow interface.

observations. Based on this, attributing the surface temperature bias solely to an erroneous representation of the
conduction appears problematic, meaning that the surface flux computation likely plays a major role.

4. Discussion and Conclusions

Our results reveal that a model formulation that does not take into account the meter-scale sea ice and snow
thickness heterogeneity and the horizontal heat conduction processes tends to underestimate the winter heat
conduction by approximately 10% for the standard set of thermodynamic parameters in a well-used sea ice model.
In this respect, our result agrees with the findings of Sturm, Perovich, and Holmgren (2002), although they
simulate a much larger impact with an underestimation of 40%. This difference can be in part explained if
considering that the snow thermal conductivity used in Sturm, Perovich, and Holmgren (2002) was
0.14 W m™" K™', approximately half of that of our simulations. As we mentioned above, the importance of
horizontal heat conduction processes tends to grow as the snow becomes more insulating. Another reason for this
discrepancy might be related to the substantially higher amount of observations available for MOSAIC, and thus
considered in our study. MOSAIC transects span both level and deformed ice covered by a very heterogeneous
snow layer, while the 40 m Seattle transect of Sturm, Perovich, and Holmgren (2002) is limited to refrozen ponded
ice covered by thick snow and ice hummocks with little snow.
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Assessing whether these unresolved processes ultimately matter for the sea ice mass balance and have relevance
for the polar climate requires their parameterization in climate models, which goes beyond the scope of this study
and will be conducted in future work. While accurately modeling the conduction within the sea ice system is
important both for level and deformed sea ice, our study also reveals that the chosen parameterization of the
radiative and turbulent surface fluxes presents shortcomings that lead to substantial surface temperature biases.
This aspect should also be addressed when developing sea ice models, as the benefit of improved conduction will
diminish if the surface processes are incorrectly represented. In fact, simpler surface heat budget parameteriza-
tions (Maykut, 1986) appear to perform better in the context of MOSAIC observations (Shupe et al., 2022).
Moreover, the heat conduction model underestimation for ridges evidenced by our work calls for additional
efforts for describing deformed sea ice processes not only mechanically (Hutter et al., 2019; Roberts et al., 2018)
but also thermodynamically (Leppiranta et al., 1995; Salganik et al., 2021).

Our analyses focus primarily on process-oriented diagnostics rather than large-scale metrics for assessing the
quality of simulations. Considering that the insulating role of snow on sea ice is often overlooked or extremely
simplified in modeling (Arduini et al., 2022; Batrak & Miiller, 2019; Zampieri et al., 2023), we believe a process-
oriented approach to be the key to stepping forward in the sea ice model development field, and we call for
applying this protocol in future model development initiatives. Not only do we want models that simulate a
convincing large-scale sea ice state, but we also want the processes and feedback mechanisms to be as correct as
possible. Only under these conditions model predictions and projections can be trusted and meaningful adaptation
strategies can be designed. Furthermore, this study demonstrates the importance of an in-depth model evaluation
based on observations from multiple sources. In this respect, the use of the observational data set generated from
MOSAIC in its entirety has great potential to guide the sea ice model development efforts in the upcoming years in
the context of a fast-changing Arctic sea ice cover. By addressing these challenges and refining our models, we
can aim to provide more accurate predictions about the current state and future evolution of sea ice, especially in
the context of ongoing global warming. Improved representations of thermodynamic processes in sea ice models
will contribute to a better understanding of the Arctic climate system and its response to environmental changes.

Data Availability Statement

The datasets used in this study are all freely accessible, referenced in Section 2.1, and distributed in the following
repositories. The IR temperature data can be found in Thielke et al. (2022a). The ALS freeboard data can be found
in Hutter, Hendricks, Jutila, Birnbaum, et al. (2023). The transects data can be found in Itkin et al. (2021) and
Hendricks et al. (2022). The atmospheric measurements can be found in C. J. Cox, Gallagher, Shupe, Persson,
Blomgquist, et al. (2023). The Python code used to run the model simulations and reproduce the plots is available
on Zenodo (Zampieri, 2023).
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