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Dispersal changes soil bacterial interactions with fungal wood

decomposition
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Although microbes are the major agent of wood decomposition - a key component of the carbon cycle - the degree to which

microbial community dynamics affect this process is unclear. One key knowledge gap is the extent to which stochastic variation in
community assembly, e.g. due to historical contingency, can substantively affect decomposition rates. To close this knowledge gap,
we manipulated the pool of microbes dispersing into laboratory microcosms using rainwater sampled across a transition zone

between two vegetation types with distinct microbial communities. Because the laboratory microcosms were initially identical this
allowed us to isolate the effect of changing microbial dispersal directly on community structure, biogeochemical cycles and wood
decomposition. Dispersal significantly affected soil fungal and bacterial community composition and diversity, resulting in distinct
patterns of soil nitrogen reduction and wood mass loss. Correlation analysis showed that the relationship among soil fungal and
bacterial community, soil nitrogen reduction and wood mass loss were tightly connected. These results give empirical support to
the notion that dispersal can structure the soil microbial community and through it ecosystem functions. Future biogeochemical
models including the links between soil microbial community and wood decomposition may improve their precision in predicting

wood decomposition.

ISME Communications; https://doi.org/10.1038/s43705-023-00253-5

INTRODUCTION

Dead wood holds about 20% of the carbon (C) (~72 Pg C) in forest
vegetation [1], a proportion that may increase as intense climate
extremes and disturbances exacerbate tree mortality [2-4]. The
decay of wood releases nutrients and C, influencing plant growth
and our planet’'s C cycle [5 6]. Understanding the factors
determining wood decomposition rates are thus essential for
building accurate ecosystem and climate models. Previous studies
have quantified the effects of climate factors and wood traits on
wood decomposition [7]. However, though our understanding of
the major role played by microbes in wood decomposition is
growing [8-10], the extent to which fine-scale differences in
microbial community assembly should translate to patterns in
wood decomposition remains unclear.

Although microbes are key agents of decomposition in general,
variation in their activity rates has historically been considered
largely a proxy of climate factors since microbial activity can be
constrained by temperature and moisture [11]. However, for dead
wood, wood nitrogen (N) content and debris diameter are both
better predictors than climate factors at a global scale [7], factors
which may interact with microbial communities at a finer spatial
scale. Indeed, fungal colonization is itself a superior predictor of
wood decomposition than climate factors at regional scales [12].
Unlike climate or wood diameter, local availability of nitrogen is
itself determined by the microbial community and must be

imported by wood-decay fungi from underlying soil to subsidize
their decomposition activity [13-15]. These results suggest that it
is important to identify local-scale controls on microbial commu-
nity composition for precise estimate of wood decomposition [16].

Specifically, arrival order and priority effects appear to massively
influence community development and wood decomposition.
Despite this, few studies investigate how natural, landscape-scale
variation in dispersal and community assembly of wood-decay
fungi might constrain this important ecosystem process [16]. It is
also not yet clear how such patterns might interact with spatial
turnover in soil microbial communities, which are themselves also
potentially shaped by dispersal limitation [17-20].

Additionally, current opinion on microbial wood decomposition
is that fungi are the major players while total contribution of
bacteria to wood decomposition appears to be minor [21]. For
example, Hu, Yesilonis [22] investigated fungal and bacterial
composition during wood decomposition in six temperate upland
forests, and found that only fungal community composition
significantly correlated with wood mass loss. However, dead wood
is very nitrogen-scarce, and wood inhabiting bacteria have been
shown to promote fungal wood decomposition through N fixation
[23, 24]. Moreover, fungi in wood mine soil nutrients through
hyphae to support their growth and activity [13-15]. Therefore,
soil bacteria may indirectly participate in wood decomposition
through their key roles in soil nitrogen cycling [25]. On the
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Fig. 1 Soil microbial community and ecosystem functions across the distance gradient from the forest edge. A, B Soil fungal Shannon

diversity but not richness decreased as distance increased from the forest edge. C Visualization of soil fungal community composition across
the distance gradient. D, E Soil bacterial alpha diversity decreased as distance increased from the forest edge. F Visualization of soil bacterial
community composition across the distance gradient. G, H Both wood mass loss and soil WSTN reduction decreased with increased distance
from the forest edge. | Relationships between percent wood mass loss and percent soil WSTN reduction. n = 142 for all analysis. *P < 0.05,

**P <0.01, ***P <0.001.

contrary, substrate release and fungal biomass formation during
wood decay may affect soil bacterial community through
substrate acidification, fungal metabolites or degradable C source,
etc. [26-28]. However, there is little documentation on the
interactions between soil bacterial community and wood decom-
position [29].

Here, we investigate how dispersal-driven patterns in soil
microbial community assembly affect soil biogeochemical cycling
and wood decomposition. We used a distance gradient consisting
of seventeen sites, ranging from near to far from the edge of pine
forests at Point Reyes National Seashore in California, United
States (Supplementary Fig. S1). Aerially dispersed microbial
propagules sourced from the forest occur at high concentrations
near the edge, but decrease in abundance as distance increases
[30]. Rain water containing propagules at each site was collected
every 48 days [16], and was used to inoculate wood-soil
microcosms incubated under controlled laboratory conditions.
This allowed us to disentangle the effects of microbial community
assembly on ecosystem function from those of abiotic environ-
mental variation. After a year of incubation, we measured soil
microbial community characteristics (fungal and bacterial diversity
and community composition) and ecosystem functioning (wood
decomposition and shifts of soil carbon and nitrogen) across the
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distance gradient. We hypothesized that the soil microbial
community would show significant turnover across the distance
gradient, as previously seen with fungal communities in wood
blocks [16]. We anticipated, moreover, that microbial community
turnover would give rise to variation in soil biogeochemical
cycling and wood decomposition, in which soil bacteria would
also participate in wood decomposition like fungi by affecting the
nutrient supply of fungi.

RESULTS
Soil fungal and bacterial community characteristics across the
distance gradient
Soil fungal community composition significantly changed (envfit
analysis: R” = 0.486, P < 0.001) accompanying by decrease in fungal
Shannon diversity as distance increased from the forest edge
(Fig. 1B, ). The dominant fungal phyla were Ascomycota and
Basidiomycota, and the top fungal classes were Sordariomycetes,
Eurotiomycetes, Agaricomycetes, Dothideomycetes, Leotiomycetes
and Tremellomycetes (Fig. 2A and Supplementary Fig. S2A).
Bacterial richness and Shannon diversity both decreased as
distance increased from the forest edge (P < 0.05, Fig. 1D, E), and
bacterial community composition also changed significantly
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Fig. 2 The relative abundance of soil fungi and bacteria across the distance gradient (Distance from the pine forest edge). A, B The
relative abundance of top fungal classes and genera. C, D The relative abundance of top bacterial classes and families.

across the distance gradient (envfit analysis: R* = 0.591, P < 0.001,
Fig. 1F). The dominant bacterial phyla were Proteobacteria,
Bacteroidetes, Actinobacteria, Acidobacteria, Gemmatimonadetes
and Planctomycetes (Supplementary Fig. S2B).

Ecosystem functions across the distance gradient

Microbial inoculation decreased soil total C, total N, water-soluble
organic C (WSOC), and water-soluble total N (WSTN) compared to
controls treated only with ddH,O (Supplementary Fig. S4). As the
easily accessible form of organic matter to microbes, shift of soil
WSOC and WSTN (avg: 52% and 19%, respectively) were larger
than shift of soil total C and N (avg: 10% and 5%, respectively).
However, only percent WSTN reduction showed a strong spatial
pattern (p=—0.18, P<0.05, Fig. 1G, Supplementary Fig. S5)
similar to that of percent mass loss of wood (p = —0.36, P < 0.001,
Fig. 1H, Supplementary Fig. S5). Accordingly, soil WSTN reduction
and wood mass loss were significantly correlated (p=0.61,
P <0.001, Fig. 11, Supplementary Fig. S5).

Relationships between soil microbial community
characteristics and WSTN and wood mass loss
Soil fungal community richness and Shannon diversity were
not correlated with wood mass loss or soil WSTN reduction
(Fig. 3C). As for specific soil fungal taxa, the phylum Ascomycota
negatively correlated with wood mass loss and soil WSTN
reduction, while the phylum Basidiomycota positively correlated
with them (Fig. 3C). Redundancy analysis (RDA) showed that
soil fungal community composition at genus level significantly
correlated with wood mass loss and soil WSTN reduction
(R>=0.022, P=0.002 and R*=0.013, P=0.001, respectively,
Fig. 3A, Supplementary Fig. S6A), and RDA further showed
that genera of Ascomycota mainly negative correlated with
wood mass loss and soil WSTN reduction while genera of
Basidiomycota mainly positively correlated with them (Fig. 3A,
Supplementary Fig. S6A).

The soil bacterial community also had multiple links with wood
mass loss and soil WSTN loss. Bacterial taxonomic richness and
Shannon diversity positively correlated with wood mass loss
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(Fig. 3C). RDA showed that soil bacterial community composition
at family level significantly correlated with wood mass loss and
soil  WSTN reduction (R*=0.041, P=0.001 and R*>=0.016,
P =0.001, respectively, Fig. 3B, Supplementary Fig. S6B). In detail,
Chitinophagaceae, Burkholderiaceae, Acidobacteriaceae, Rhodano-
bacteraceae, Acetobacteraceae, and Cytophagaceae positively
correlated with wood mass loss or soil WSTN reduction while
Caulobacteraceae, Sphingomonadaceae, Isosphaeraceae, Solirubro-
bacteraceae, Microscillaceae, Reyranellaceae negatively correlated
with them (Fig. 3B, Supplementary Fig. S6B).

The relative abundance of Agaricomycetes was significantly
correlated with wood mass loss (Fig. 3C), and RDA showed that
the top fungal genera significantly correlating with wood mass
loss belonged to Agaricomycetes (Fig. 3A). However, not all
samples contained Agaricomycetes (Fig. 2A). To analyze the
effects of Agaricomycetes, we grouped samples by with and
without Agaricomycetes, and further analyzed the relationships
between soil microbes and wood mass loss, soil WSTN reduction.
The results showed that the correlations between soil bacteria and
wood mass loss, soil WSTN reduction were stronger in samples
with Agaricomycetes (Fig. 4B).

DISCUSSION

Prior work shows that microbial community turnover influences
decomposition rate [31, 32], but identifying the functional impact
of natural, in situ variation in microbial communities remains
challenging. Recreating a natural microbial dispersal gradient
under controlled laboratory settings, we observed distinct spatial
patterns in community assembly (Figs. 1 and 2). These dispersal-
driven patterns affected soil WSTN reduction and wood decom-
position (Fig. 1). We thus find a role for natural dispersal limitation
of both fungi and bacteria in shaping these important ecosystem
processes. The role of dispersal limitation in fungal community
assembly is widely recognized, while its role in structuring
bacterial community is still inconclusive [33, 34]. Bell [35] excluded
environmental cofounding factors by using a reciprocal transplant
experiment, through which Bell measured bacterial dispersal in a
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Fig. 3 Relationships between soil microbial community characteristics, wood mass loss percent and soil WSTN reduction percent.
A Redundancy analysis (RDA) ordination biplot of the relative abundance of top fungal genera and wood mass loss, soil WSTN reduction,
fungal Shannon diversity across the distance gradient from the edge of forest. B RDA ordination biplot of the relative abundance of top
bacterial family and wood mass loss, soil WSTN reduction, bacterial Shannon diversity across the distance gradient from the edge of forest.
C Correlations among soil microbial alpha diversity, relative abundance, wood mass loss and soil WSTN reduction across the distance gradient
from the edge of forest. D Correlations between top fungal genera and top bacterial family. WSTN water-soluble total nitrogen. n = 142 for all

analysis. *P < 0.05, **P < 0.01, ***P < 0.001.

woodland, and found that the role of dispersal limitation is minor.
This result is in contrast with the distinct bacterial spatial pattern
in our study (Fig. 1F). The inconsistency may be attributed to
different environment and range of distance and time. Bell’s study
within a woodland measured bacterial dispersal at a 0-500 m
distance gradient in 28 days, while our study identified bacterial
dispersal across a half year at a 0-5000 m distance gradient from
the edge of forest.

As expected, we observed multiple links between soil fungal
communities and wood decomposition. As in prior work [16], the
relative abundance of Agaricomycetes (Phanerochaete, Phlebia,
etc.) was positively correlated with wood mass loss (Fig. 3A, Q).
This is reasonable, as the Agaricomycetes contains many well-
known wood-decay fungi [36], and species in underlying soil may
be physically linked to mycelia that are actively decomposing
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woody debris above [37, 38]. Indeed, the shared fungal ASVs
(@amplicon sequence variants) accounted for ca. 60% of wood
fungal ASVs and 55% of soil fungal ASVs (Supplementary Fig. S3),
which is in accordance with a previous study in field situation [38].
Furthermore, at the phylum level, the phylum Ascomycota had a
negative relationship with wood mass loss while the phylum
Basidiomycota had a positive relationship with wood mass loss
(Fig. 3Q). This result can be supported by previous finding that
Basidiomycota hold genes for lignin degradation while Ascomy-
cota hold genes for cellulose degradation in the context of wood
[24]. However, though previous studies found that fungal richness
in woody debris was negatively correlated with mass loss [31], the
connections between taxonomic richness or diversity of soil fungi
and wood decomposition were insignificant (Fig. 3C). This is likely
because negative diversity-function relationships in wood-decay
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Fig. 4 Effect of the presence and absence of Agaricomycetes on the relationships among soil microbes, wood mass loss percent and soil
WSTN reduction percent. A Relationships between top fungal genera and wood mass loss, soil WSTN reduction, fungal Shannon diversity
across the distance gradient from the edge of forest. B Relationships between top bacterial families and wood mass loss, soil WSTN reduction,
bacterial Shannon diversity across the distance gradient from the edge of forest. With Agaricomycetes: n= 31, without Agaricomycetes:
n=111, WSTN: soil water-soluble total N. *P < 0.05, **P < 0.01, ***P < 0.001.

fungi are driven by competition for space in the actual dead wood
substrate [39], and such dynamics may not translate to the
underlying soil community. We thus find that some, but not all,
patterns linking fungal communities to wood decomposition are
symmetrical across woody debris and underlying soil.

As anticipated, soil bacteria community was also correlated with
wood mass loss. The connections between bacteria community
and wood mass loss can be attributed to two pathways. One of the
pathways is that soil bacteria affect woody decomposition through
modifying soil nutrients for fungal activity, as deadwood is very
nitrogen-scarce and fungi on wood translocate nitrogen and
nutrient from soil to support their decomposition [13-15]. Indeed,
wood mass loss was tightly correlated with soil WSTN reduction in
our study (Fig. 1G). Furthermore, some bacterial taxa with N-fixing
ability were significantly correlated with soil WSTN reduction and
wood mass loss (Fig. 3B, Supplementary Fig. S6B). Isosphaeraceae,
Microscillaceae, Sphingomonadaceae, Burkholderiaceae and Rhizo-
biaceae have N-fixing genes [24, 40, 41]. Interestingly, among these
N-fixing taxa, Burkholderiaceae showed significant positive correla-
tions with wood mass loss and fungal genera of Agaricomycetes
(Phanerochaete, Phlebia and Mpycoacia, Fig. 3A, D), which is
consistent with previous report that Burkholderiaceae was perva-
sively coupled with wood decay fungi [42]. In contrast, Isophaer-
aceae and Microscillaceae were negatively correlated with soil
WSTN reduction and wood mass loss (Fig. 3B, Supplementary
Fig. S6B). The negative correlations between these N-fixing taxa
and wood mass loss are in contrast with previous report that the
presence of N-fixing bacteria facilitate fungal wood decomposition
[23, 24]. Such negative correlations may be driven by dispersal or
changes in microhabitat with wood decay.
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Another pathway linking soil bacteria and wood mass is that
substrate release and fungal activity may affect soil bacteria during
wood decomposition. Previous studies found that substrate
acidification, decrease in C: N ratio, release of fungal metabolites
and formation of fungal biomass with advanced wood decomposi-
tion can drive succession of wood inhabiting bacteria [26, 27]. In our
study, several acidophilic bacterial taxa, i.e., Micropepsaceae [43],
Acidobacteriaceae and Acetobacteraceae [44], were positively
correlated wood mass loss (Fig. 3B, Supplementary Fig. S6B).
Chitinophagaceae, a chitinolytic taxon [45], was also positively
correlated with wood mass loss (Fig. 3B, Supplementary Fig. S6B).
Shifts of these taxa is likely correlated with substrate acidification
and fungal biomass accumulation during wood decomposition,
indicating that microhabitat changes due to wood decay may
also affect soil bacteria. However, in contrast to the decrease in C: N
ratio of wood part [26, 27], soil N content reduced and soil C: N ratio
increased during wood decomposition (Fig. 3C, Supplementary
Fig. S5). This is a different change between wood part and soil part
during wood decomposition, and such difference may also occur in
other nutrients due to fungi translocate them from soil to wood [38].
Such distinct changes between wood and soil part may cause
different shifts of soil bacteria community of these two parts, which
deserve further investigation. In this study, decrease in soil C: N ratio
seems to mainly affect Xanthobacteraceae, Solibacteraceae, Rhizo-
biaceae and Solirubrobacteraceae (Supplementary Fig. S5). However,
there is little know about whether the different shift of C: N ratio
between wood and soil during wood decomposition would cause
divergent bacteria community.

Correlations between soil bacteria and wood mass loss,
soil WSTN reduction were strengthened by the presence of
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Agaricomycetes (Fig. 4B). This can be attributed to more advanced
wood decay in samples with Agaricomycetes (Fig. 11). Previous
study in situ found that nutrients translocation between soil and
wood inhabiting fungi were more active during late decay stage
than that in early decay stage [38]. The more intensive interactions
between soil and wood inhabiting fungi may therefore tighten
correlations between soil bacteria and wood mass loss, soil WSTN
reduction.

Summary

As we hypothesized, results of this study showed that dispersal
limitation could affect fungal and bacterial community assembly,
and then affect ecosystem functions. This constitutes a valuable
quantitative empirical example, supporting the fundamental
ecological notion that dispersal can shape local microbial
community assembly and through it ecosystem functions.
Furthermore, another novelty aspect of our study is that results
of this study demonstrated quantitative correlations between
aboveground wood decomposition and belowground soil micro-
bial community and ecosystem function. Such connections should
be pervasive in the field and may exert large effects on ecosystem
functions, as about half of deadwood is in contact with soil in situ
[46, 47] and on these deadwood fungi actively translocate
nutrients from soil [38]. Future study untangling relationships
among wood inhabiting microbes, soil microbes, wood decom-
position and soil ecosystem processes could be help for more
precise predictions of wood decomposition in a changing climate.

MATERIALS AND METHODS

Study site

Our study was conducted at Point Reyes National Seashore, located in
Marin County, California (38°04’N, 122°50'W). This study area has typical
Mediterranean climate with cool, wet winters and hot, dry summers. The
mean annual rainfall is about 43 cm, with most of the rainfall distribution in
the winter months (November to February). The mean annual temperature
of this area is 11 °C, and the average temperate in January and September
is 10°C and 13.5°C, respectively. The vegetation at Point Reyes National
Seashore is a heterogenous mosaic of forest, grass, and scrub land
(Supplementary Fig. S1). Mono-dominant coastal forests here are
composed of Pinus muricata D. Don, and the grass and scrub land mainly
cover with Baccharis pilularis, Toxicodendron diversiloba and Rubus ursinus.

Experiment design

To evaluate the effect of dispersal on soil microbial community and
ecosystem functions, we collected rainwater along a distance gradient
from the forest edge, then used this rainwater to inoculate laboratory
wood-soil microcosms. The distance gradient had seventeen sites ranging
in distance from P. muricata forests from directly adjacent (0.25m) to
~5.5km away (Supplementary Fig. S1; [16, 48]). Movement through
airborne spores and other propagules is a major means of fungal and
bacterial dispersal, and rainfall can create large amounts of bioparticles
with high diversity of fungi and bacteria [49]. With our laboratory
approach, we control environmental factors and ensure that variation in
microbial community composition and ecosystem functions in the
microcosms are driven by dispersal.

Rainwater was collected at each site by using a spore trap constructed
out of a sealed sterile 946 ml mason jar with a funnel inserted in the lid,
following [30]. Rainwater gathered by spore traps was collected four times
over the winter, at ~50-day intervals (mean=48 days) starting in
November. Four collections of spore traps over the course of the entire
rainy season can make us collect more fungal and bacterial taxa, as
different fungi produce spores at different times [30], and the interval
between each collection ensured that sufficient rainwater had been
collected in the spore traps. Before inoculating, rainwater was mixed well
and filtered through sterile cheesecloth to remove debris.

The wood-soil microcosm consisted of 473 ml volume mason jars,
each containing 60 g of locally collected soil (Tomales Bay, Point Reyes
National Seashore, United States) and a wood block. Wood blocks were
cut from Pinus radiata, the sister species of P. muricata, with uniform
square 5cm x5 cm blocks, avoiding knots and irregularities (Pine Cone
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Lumber, Sunnyvale, CA, USA). Methods for wood block preparation were
adapted from Fukami, Dickie [31]. In brief, blocks were oven dried for
48 h at 40 °C, weighed individually, soaked in deionized water for 48 h
and then placed into the mason jars on top of soil. Microcosms were
then autoclaved twice at 121 °C for 45 min, with a time gap of at least
24 h, as in Fukami, Dickie [31].

After preparation of rainwater and wood-soil microcosms, 3 ml rainwater
of each site was randomly inoculated on woodblock in microcosms, with
10 replicates for each of the 17 sites. Ten control microcosms were
inoculated with 3 ml sterile distilled water instead, for a total of 180
microcosms. Three subsequent inoculations were performed at ~48-day
intervals, for a total of four inoculations. Microcosms were arranged in a
randomized blocked design and incubated in the dark for one year in
laboratory cabinets (mean ambient temperature of 21.8 °C; mean ambient
humidity of 38.6%). The microcosms were sealed with jar lids. The jar lid
had a hole with a filter in order to gas exchange without spores or conidia
escaping. The location of experimental blocks in the laboratory was rotated
monthly.

At the end of one-year incubation, each wood block was individually
weighed field moist. Then, an ethanol-flamed drill bit was used to drill
three holes lengthwise along each wood block in order to collect sawdust
for DNA analysis, which was immediately frozen at —80 °C. After sawdust
extraction, wood blocks were weighed, oven dried to a constant mass at
40°C following Fukami, Dickie [31], and weighed again. We thereby
determined field moisture levels and back-calculated the full dry weight of
each wood block, allowing us to quantify total mass loss. Soil from each
microcosm was divided into two parts, with one part frozen at —80 °C for
DNA analysis, and another part used to measure soil carbon and nitrogen
after lyophilization.

In field situation, soil is likely to be the major source of wood inhabiting
fungi [37], and only a small fraction of airborne spores may succeed in
colonization [50]. But this does not mean that our laboratory study system,
only including airborne microbes in rainwaters, is completely different
from in situ field situation. Actually, dispersal potential of bacteria and
wood decay fungi is high [51, 52] and soil is also one of the major sources
for airborne microbes [53], wood in our study system therefore can also
capture some same microbes as field situation though the finer
composition may be different. Thus, quantitative results of our study
system can be helpful to understand in situ deadwood decomposition.

Soil carbon and nitrogen

Soil total carbon and nitrogen were measured by a TOC analyzer
(Shimadzu TOC-L). Soil water-soluble organic carbon and total nitrogen
were extracted with deionized water (soil: water =1: 10) by shaking for
30 min on a reciprocal shaker at 150 rpm. Supernatant was then filtered
through a 0.45 pm polyether sulfone filter. Total organic carbon and total
nitrogen in the filters were measured with a TOC analyzer (TOC-5000
Shimadzu), and were considered WSOC and WSTN, respectively. Water
extractable organic matter is the most labile and mobile form of soil
organic matter [54, 55], and is easily accessible to microorganisms, and
therefore is sensitive to microbial activity. Percents of reduction of soil C
and N were the shifts relative to the soil C and N of Control microcosms.

Molecular methods and bioinformatics

Soil DNA was extracted by Qiagen DNeasy PowerSoil kit (Cat. No. 47014),
according to manufacturer instructions. The fungal internal transcribed
spacer (ITS) region was amplified with pair primers ITS1F-KYO1 (5'-
CTHGGTCATTTAGAGGAASTAA-3')  and  ITS2-KYO2  (5-TAGAGGAAG-
TAAAAGTCGTAA-3') [56], and the bacterial 16S rRNA gene was amplified
with updated 515f (5-GTGYCAGCMGCCGCGGTAA-3') and 806R (5-
GGACTACNVGGGTWTCTAAT-3') pair primers [57]. After amplifying and
library preparation (Supporting Information), we submitted the library for
2 %300 lllumina MiSeq sequencing to the Stanford Functional Genomics
Facility.

We received a total of 11,216,759 demultiplexed reads for ITS amplicon
and 9,589,246 demultiplexed reads for 16S rRNA gene amplicon across
170 samples, excluding experimental negative controls. We then used a
DADA2 (1.12) workflow [58] to quality filter (ITS: maxN = 0, maxEE = c(2, 2),
truncQ =9, minLen = 50; 16S: truncLen = ¢(180,160), maxN = 0, maxEE =
¢(2,2), truncQ = 2), denoise, merge forward and reverse reads and remove
chimeric sequences, leaving us with 7,555,208 reads for ITS amplicon and
6,877,195 reads for 16S rRNA gene amplicon. assignTaxonomy function of
dada2 package (1.12) was used to taxonomic assignment. Fungal
taxonomic assignment was done with the UNITE database [59], and
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bacterial taxonomic assignment was done with the Silva reference
database [60, 61]. Before statistical analyses, we rarefied to 5000 reads
per sample for fungal community analyses, and rarefied to 4500 reads per
sample for bacterial community analyses, balancing sample retention and
read depth. As for the ten controls samples, only two of the ten controls
detected few fungal taxa, and bacterial community composition of these
control samples were simple and were different from that of treatment
samples (Supplementary Fig. S7).

Statistical analysis

All analyses were performed using R statistical programming language
version 4.0.3 [62]. Metabarcoding data were processed and analyzed using
R package phyloseq [63]. Some blocks gained mass over the course of the
experiment, presumably due to prolific fungal growth subsidized by
nutrients and carbon from the underlying soil. These replicates were
excluded from the primary analysis. Excluding these samples did not
influence the statistical results much (Supplementary Table S1). In total, we
retained 142 replicates for downstream analysis. Before statistical analysis,
distance from forest edge was log10-transformed as in prior work at this
study site [16, 30, 48, 64].

Kruskal-Walli's test was used to compare soil C and N between treatment
microcosms and control microcosms. Spearman’s Rank correlation
coefficient was used to analyze the relationships among distance, fungal
and bacterial alpha diversity and relative abundance, soil C and N, and
wood mass loss. Fungal and bacterial community composition were
visualized by plotting axis from non-metric multidimensional scaling
(NMDS) analysis using metaMDS function of vegan package [65], with an
envfit analysis from envfit function of vegan package [65] to analyze the
relationship between distance and fungal and bacterial community
composition.

To investigate the correlation between soil WSTN reduction, wood mass
loss and microbial community at finer taxonomical level, redundancy
analysis (RDA) of vegan package [65] was used to analyze the relationship
between top 25 fungal genera or top 25 bacterial family and soil WSTN
reduction and wood mass loss. We analyzed bacteria at the family level as
there were a large part of unassigned bacterial genera. Fungal or bacterial
Shannon diversity index was also included in the RDA to detect which
phyla correlated with shifts of fungal or bacterial Shannon diversity.

DATA AVAILABILITY

Raw sequences are available from the United States National Center for
Biotechnology Information Sequence Read Archive (BioProject PRINA952829). Data
and scripts used are deposited in the figshare (https://doi.org/10.6084/
m9.figshare.22561042).
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