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ABSTRACT

A fast and accurate simulation methodology enabled by a physics-informed learning method, using proper orthogonal
decomposition (POD) and Galerkin projection, is demonstrated for photonic crystals and periodic quantum nanostructure.
POD is a projection-based method with its basis functions trained by solution data collected from direct numerical
simulations (DNSs) of the wave equation, which offers the best least squares fit to the solution data. The Galerkin
projection of the wave equation onto POD basis functions is then performed to close the model. This projection also
incorporates physical principles during POD-Galerkin simulation guided by the wave equation, which thus enables the
extrapolation capability beyond the training conditions. Such a capability is difficult to achieve using neural-network-
based methods for physics simulation, where no physical principle is enforced during simulation. Applications of the POD-
Galerkin methodology to a 2D photonic lattice and a 2D periodic quantum nanostructure demonstrate a computing speedup
near 2 orders of magnitude with high accuracy, compared to DNS, if the wave solution and band structure are both needed.
If only the band structure is of interest, a 4-order improvement in computational efficiency can be achieved.

Keywords: Physics-informed leaning, photonic crystals, electronic superlattices, POD, Galerkin projection, electronic
band structure, optical band structure

1. INTRODUCTION

A wide range of science and engineering applications for materials, devices and systems utilizing electronic and optical
properties resulting from periodic quantum nanostructures and photonic crystals, respectively [1-7]. Design and analysis
of periodic electronic nanostructures or photonic crystals for various applications in general require solutions of eigenvalue
problems involving the Schrddinger equation and/or electromagnetic wave equation. For simple periodic structures, wave
solutions may be obtained from analytical, transmission-line, scattering-matrix and/or transfer-matrix methods [8-13]. If
one desires high accuracy in simulations of electronic or optical superlattices involving complex multi-dimensional
structures, computationally intensive direct numerical simulations (DNSs) with fine spatial resolution are always needed.

Another popular method for periodic structures involves a projection-based approach using the Fourier plane-wave
expansion due to the periodic nature of the Fourier basis. It has been shown in previous work that the assumed Fourier
plane-wave method converges slowly for a complex periodic structure [14]. The current work investigates an effective
simulation methodology enabled by a learning algorithm based on proper orthogonal decomposition (POD) [15], together
with Galerkin projection [14-19]. POD is also a projection-based method with its basis functions (hereafter named POD
modes) optimized by a training process via solution data. To generate optimal modes, training data are collected from
DNSs subjected to parametric variations for the problem of interest, instead of adopting an assumed basis set, such as
Fourier, Legendre, Bessel, Wannier and Airy functions. Each set of these assumed basis functions is valid only for a
specific type of problems. To close the POD data-learning simulation model, Galerkin projection of the wave equation
onto each of the trained POD modes is carried out. Such a rigorous procedure for deriving the POD-Galerkin model ensures
that (i) the generated modes are optimized and tailored to the parametric variations in the system of interest with a best
least squares (LS) fit to information embedded in the training data and (ii) physical principles guided by the wave equation
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are appropriately accounted for in the developed model. This is very different from some deep learning methods using
physics-informed neural networks (PINNs) where physical principles are enforced only during the training process [20-
22]. On the contrary, the POD-Galerkin method imposes physical principles for every single calculation during the
prediction/simulation enabled by the Galerkin projection of the governing equation. As a result, the POD-Galerkin
simulation methodology offers not only accurate and efficient solution of the problem but also a remarkable extrapolation
and learning abilities [14, 16, 19]. These abilities will be presented in this work for wave solutions and band structures in
photonic crystals and periodic quantum nanostructures.

2. POD-GALERKIN FOR WAVE EQUATION IN PERIODIC STRUCTURES

Wave solution in a periodic lattice structure can be represented by a Bloch function, described by a periodic function uy (r)
modulated by a plane wave,

wi (1) = ey (r), D

where uy () has the same periodicity as the lattice and K is the wave vector. Applying the wave equation for wy () to the
Bloch function in (1), a wave equation for u,(r) can be derived, which is briefly presented below for periodic
nanostructures and photonic crystals.

Periodic quantum nanostructures

In electronic superlattices, the electron wave function (WF) Y, () is described by the Schrodinger equation,

hZ
V- [—mvwk] + UMYy = Exy, @

where h is the reduced plank constant, m* the effective mass, U(r) the potential energy, and & the eigenstate energy of
the electron with momentum of k. Using (1) for iy in (2), the effective Schrodinger equation for the k-state WF u, (1)
can be derived as,

2 ' hZ hzuk thZ
-V m V'U.k —ik- ﬁVuk +V m + om Uk + U'U.k = Skuk. (3)
For a free electron in a periodic structure, (3) is reduced to
hZ
[Zmo (—lv + k)Z + U] Uk = Skuk, (4)

where m,, the free electron mass.

Photonic crystals

Considering the TE mode for 2D photonic crystals, electric field E,y perpendicular to the 2D surface is described by the
Helmholtz Equation,

V2Ez,k = (%)2 ErEz,k: (5)

where wy is the harmonic angular frequency, c is the speed of light and €, is the relative permittivity. Using the Bloch
function for E, in (1), the wave equation for the periodic function uy(r) can be derived from (5),

V+ iky? Wi\ 2
=—(— ) 6
( Je. ) Uk ( c ) Uk (6)
To construct a POD-Galerkin simulation model, one can collect solution data of w (r) from DNSs of the wave equation
given in (4) or (6) for a quantum nanostructure or photonic crystal, respectively. With generated POD modes from the
data, the Galerkin projection of the wave equation onto the generated modes is then performed to close the model. The
mode training and Galerkin projection are presented below.
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2.1 Fundamentals of POD

Using the projection-based approach for a periodic structure, solution of 1, (r) can be expressed by a linear combination
of a finite set of basic functions 0y (7),

M

() = ) aaien(®), @

n=1

where M is the selected number of basis functions (modes) or the degrees of freedom (DoF) to represent the solution, and
ay n is the weighting coefficient for 7y ,,. The selection of the basis is not unique; however, it is of best interest to utilize
the basis functions that offer the best fit to the solution.

POD trains an optimal set of modes to acquire essential information embedded in the collected data to offer the best LS fit
to the solution using the smallest number of modes. This is achieved by maximizing the mean square of the solution
projection in the entire simulation domain onto each of the modes 1, (¥) over multiple samples of solution data for the
problem of interest. That is,

(- miel?)
— ®
Nk |75l
where the brackets () denote the average over multiple samples of solution data with the inner product given as
i = [ w3, ©)
Q

and the L2 norm of 7, expressed as

Il = / fﬂ (D) [2dQ. (10)

The solution data are collected from DNSs of the governing equation for the problem, accounting for parametric variations
of the system, including boundary conditions (BCs). This process ensures that the modes 1, (r) contain the maximum LS
information of the system embedded in the collected training data. Using variational calculus, (8) leads to an eigenvalue
problem for the spatial autocorrelation function R(r, r") of the training data,

f Rt )i (r)d = Ay 7 (0), an
Q/

where 4y is the POD eigenvalue and Ry (r, ") is given by
Ry (r,r") = (uy(r) & uy(r')). (12)
A represents the mean squared solution captured by each mode over the entire domain at each k.

To efficiently solve the large-scale eigenvalue problem for a multi-dimensional domain, the method of snapshots [23, 24]
is applied. Using the snapshot method, the eigenvalue problem in (11) in a discrete spatial domain with a dimension of N,
X N, is converted to a sampling domain with a dimension of N, x Ny, where N, and N, are the numbers of spatial grid points
and data samples (or snapshots), respectively, and in general Ny << N,. When using equal spatial divisions in DNSs to
collect training data, the method of snapshots can be simply applied via the singular decomposition (SVD). However, with
unequal divisions, unequal weightings for individual meshes needed to be accounted for through integrals of the data,
which is detailed in [24]. Instead of the N, eigenvalues given in (11), the snapshot method solves only the first Ny POD
eigenvalues and modes. The number of data samples thus needs to be large enough to ensure that Ny > M, where M is the
number of modes used to represent the solution, and Ay, should be many orders smaller than Ay ; to minimize the
numerical error resulting from the POD prediction.
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2.2 Galerkin projection

Formulations for Galerkin projections of (3) and (6) for u, (r) in periodic quantum nanostructure and photonic crystals,
respectively, are presented below.

Periodic quantum nanostructures
To close the POD-Galerkin model for solving u, in (7) for the electron WF u, (1), (3) is projected onto the generated POD
modes based on Galerkin projection and can be shown as,
) A2y h? h
K fm(m — dﬂ+fvnkm-2 Vi dQ — ik - fm(m Vuk+hv—)dﬂ
h2
- f nl*(m—Vuk -dS + f Miem Ut dQ = & f Miem Uk A0 (13)
r o 2m a a

Using (7), a matrix eigenvalue equation in the POD space for ay ,,, can be derived,

Z(Tm,n + Upn + Bmn) Qien = ExQiems form=1toM (14)

n=1

where Hamiltonian in the POD space includes interior kinetic (T, ,,), potential (U, ,,) and boundary kinetic (B,, ,,) energy,
and they are defined as follows,

, h k? . h? ] . h nkn
= fﬂ Mem 5 Men + Vilkm - ank,n — ihK - Ny (2 - Vikn ) dq, (15)
Um,n = fr]l*(,mUnk,ndQ: (16)
Q
hZ
Brun f T s Vi S, (17)

Photonic crystals

Similarly to the quantum problem, to solve the weighting coefficients of POD modes for u, in (7) for photonic crystals,
the Galerkin projection of (6) onto the POD space is performed,

* * * W 2
P guda + [ V" vuda - [ By ds = (%) [ ind. a9)
a €r a 6 a €r ¢’ Jo

Using (7), (18) become a matrix eigenvalue equation,

k2 n]*(,m

()% 2
Z(Tm’" + Bm,n) Agn = (T) Ag.m» form=1toM (19)
where
Ton = f (kz Do Ve gy i Tem vnk_n> da, (20)
q € € €
Dem - dS. 1)

Once POD modes are generated from the collected solution data for uy (), the matrix elements given in (15)-(17) for
periodic quantum nanostructures or (20) and (21) for photonic crystals can be evaluated for @ = [a,, a,, ..., @y, ..., ay]T.
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3. VALIDATION OF POD-GALERKIN SIMULATION METHODOLOGY

The proposed POD-Galerkin methodology is validated in several electronic and optical structures in this work. To
construct a POD-Galerkin model, POD modes need to be generated via training data accounting for variations of system
parameters. For the electronic nanostructure, POD modes are trained by data of the k-state WF uy, in (3) collected from
DNSs subjected to variation of applied electric field in x and periodic BCs in y. For photonic crystals, modes are trained
by electric field data of u, in (6) via DSN's subjected to periodic BCs and variation of refractive indices of the materials.
For either electronic or optical structure, the training is first presented below, followed by a demonstration of the POD-
Galerkin methodology. The learning ability of the methodology is also demonstrated in situations within and beyond the
training bounds.

3.1 Demonstrations in a 2D periodic quantum nanostructure

A 2D quantum dot (QD) structure is constructed by periodic GaAs/InAs given in Fig. 1(a) with periods of 7 nm and 6.3
nm in the x and y directions, respectively. The band offset is AE = 0.544eV and effective masses are mg 4, = 0.067m,
and mj, 45 = 0.023m,. Training data for uy(r) are collected from DNSs of (3) for the QD structure, and the method of
snapshots [23, 24] is applied to generate POD modes. In DNSs, a periodic BC is implemented in y, and 10 electric fields
evenly spaced from O to 30kV/cm are applied in x with homogeneous BCs on both ends. The DNSs collect the data for
Uy (r) in each k state for the first 8 quantum states. There are thus 80 sets of solution data to generate one set of POD
modes for each k point in the Brillouin zone, accounting for field variation in x. The model parameters given by (15)-(17)
are then evaluated using the generated modes for the matrix eigenvalue equation in (14). The electronic band structure for
the periodic QD structure is thus determined in the Brillouin zone once a and & are solved from (14) and post processing
via (7) can be used to calculate uy (r).
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Figure 1. (a) 2D periodic GaAs/AlAs QD structure. (b) POD eigenvalues in descending order at the I' point and k =
m/2aand w/a.
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Figure 2. Relative LSE for the first 8 quantum states with respect to the DNS results at k = /2a.
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The POD eigenvalue spectrums for several k points in the Brillouin zone are illustrated in Fig. 1(b). The fast-declining
eigenvalue implies that an accurate prediction can be achieved by POD-Galerkin using a small number of modes if the
quality of training data is sufficient. For the first validation, electric field at 20kV/cm different from any field used in the
training is applied in x to the QD structure. As shown in Fig. 2 at k = w/2a, the LSE of the periodic WF compared to the
DNS solution in each quantum state resulting from POD-Galerkin varies significantly. All WFs at k = m/2a reach an LSE
lower than 1.43% with 7 or 8 modes except for State 8§ whose LSE is near 10.5% with 8 modes but reduces to 0.96% and
0.2% with 9 or 10 modes, respectively. States 1, 2, 6 and 7 also achieve an LSE near or below 1% when using 7 or 8
modes. The profiles of |u(r)|? along the field direction through the maximum value of |u(r)|? is illustrated in Fig. 3
for several quantum states using one to 7 or 8 modes and they appear to nearly overlap with those from DNSs. Fig. 4(a)
also illustrates that POD-Galerkin and DNS agree very well with each other for the prediction of the electronic band
structure and their results are nearly identical. The larger errors shown in Fig. 4(b) appearing atk = + g are near 1.5 meV

and 1.35 meV in States 7 and 8, respectively. In all other states, the error is all below 1.1 meV.
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Figure 3. Profile of |u|? along x through its maximum in each of quantum states 1, 2, 4 and 7 in the QD structure at k =
n/2a. POD-Galerkin predictions are compared to DNS results denoted by black lines (behind the green dashed lines).
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Figure 4. (a) Electronic band structure calculated from POD-Galerkin and DNSs. (b) Error of the band structure predicted by
POD-Galerkin with respect to DNSs.

To examine the learning ability of POD-Galerkin beyond training, the demonstration is extended outside the training range
below. Electric field at 35kV/cm is applied in simulations of the QD structure using the POD-Galerkin model trained by
data generated by electric fields between 0 and 30 kV/cm in DNSs, as described above. As displayed in Fig. 5, all the WFs
at k = m/2a trained by the electric fields up to 30 kV/cm predicted by POD-Galerkin at 35kV/cm reach an LSE lower
than 1.66% with 7 or 8 modes except for State 8 whose LSE is near 30% with 8 modes but reduces to 4.5%, 0.51% and
0.22 with 9, 10 or 11 modes, respectively. Similar to the interpolation case, WFs in States 1, 2, 6 and 7 predicted by POD-
Galerkin are able to achieve an LSE near or below 1%. Even with a test field higher than the maximum training field,
similar accuracy can be reached for State 1-7. For State 8 subjected to electric field beyond the training bounds, use of one
more mode (10 modes instead of 9) than that for the State-8 WF in the interpolation case could reach similar accuracy (see
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Fig. 2 compared to Fig. 5). Electronic ban structure calculated from POD-Galerkin and DNS are matched quite well for
States 1 to 8 in the Brillouin zone, as shown in Fig. 6(a). The maximum error is near 1.45 meV observed in State 7, as

shown in Fig. 6(b), and the next highest error is as small as 1.1 meV in State 6 at k = + g even though the applied field is

beyond the maximum training field. Such a learning ability for physics simulations beyond training is very difficult to
achieve when using learning methods based on neural networks whose predictions beyond training are often unphysical.
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Figure 5. Relative LSE of POD-Galerkin with respect to the DNS results at k = 7 /2a in the Brillouin zone at electric field
of 35 kV/em.
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Figure 6. (a) Electronic band structure calculated from POD-Galerkin and DNSs. (b) Error of the band structure predicted by
POD-Galerkin. Note that applied electrical field equals 35 kV/cm outside the range of training fields.

As discussed above, the complete solution of POD-Galerkin involves 2 steps. The matrix eigenvalue equation in (14) needs
to be solved first in POD space for the eigenvector a and eigenenergy &, which provides band structure (i.e., & vs. K)
and takes little time. The second step however requires more time-consuming post processing in (7) using eigenvectors in
POD space to find periodic spatial wave solution. For some applications that only require the electronic band structure,
the computational speedup for POD-Galerkin in this demonstration is over 14,000 times compared to DNSs. When the

WFs in space are also of interest, POD-Galerkin would enjoy an efficiency improvement of 150, 103 and 82 times for 5,
8 and 10 modes, respectively, over the DNSs.
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3.2 Demonstrations in a 2D photonic crystal

The 2D photonic crystal structure is constructed by periodically repeated squares each of which consists of 4 discs with
diagonally symmetrical refractive indices in the background with the refractive index n = 1, as shown in Fig. 7(a). DNSs
of the structure are applied to solve the TE-mode wave equation given in (6) for u, () to collect the training data. In DNSs,
periodic BCs are enforced in both directions, and 20 samples of refractive indices randomly generated between 2 and 4
with diagonal symmetry are implemented to collect training data. In each sample, the training data for the first 10 harmonic
states are collected. There are thus 200 sets of data applied to generate one set of POD modes and eigenvalues for each k
point in the 2D Brillouin zone. The first 65 eigenvalues in descending order are given in Fig. 7(b). The first 10 eigenvalues
decline slowly and drop rapidly beyond 10th mode. The model parameters given by (20) and (21) are evaluated using the
generated modes for the matrix eigenvalue equation in (19). With a solved from POD-Galerkin simulation of (19) in POD
space for each k point, the optical band structure for the optical superlattice is evaluated in the Brillouin zone and post
processing using (7) is performed to find periodic electric field wy (T).
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Figure 7. (a) 2D photonic crystal. (b) POD eigenvalues in descending order at the I', M and X points in the Brillouin zone.
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Figure 8. Relative LSE for the first 8 harmonics with respect to the DNS results at the M point.

For the first demonstration, the diagonal refractive indices of 2 and 3.2, as given in Fig. 7(a), are implemented in POD-
Galerkin and DNSs of the 2D photonic crystal. As illustrated in Fig. 8 for the LSE derived from POD-Galerkin at the M
point of the Brillouin zone, the periodic wave solutions u (r) in all harmonic states derived from POD-Galerkin achieve
reach an LSE below 3%, 1.9% or 1.32% with just 5, 6 or 7 modes, respectively, except for State 7. The LSE for State 7
isnear 11%, 4.46% or 3.83% with 5, 6 or 7 modes, respectively. The LSE of the POD-Galerkin prediction for electric field
waves in many states (such as 1,2, 3, 5 and 6) is below 1% with just 5 modes. When using 8 or more modes, they all drop
near or below 1%. The profiles of |uy|? at the M point in both x and y directions through the maximum |u,|? are also
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included in Fig. 9 for Harmonic States 1, 4, 7 and 8. The |uy|? profiles between POD-Galerkin and DNSs agree very well
using just 5 modes for States 1, 4 and 8 and 8 modes for State 7. Fig. 10 also illustrates an excellent agreement between
the optical band structure predicted by POD-Galerkin and DNS. Their results overlap nearly perfectly with larger
deviations near the M point. Errors at the M point for all 8§ harmonic frequencies included in Fig. 10 are all below 0.048%.
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Figure 9. (a) Profiles of |u|? in Harmonic States 1, 4, 7 and 8 in x and y directions through the peaks. Results predicted by
POD-Galerkin are compared to those from DNSs denoted by black solid lines.
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Figure 10. Electromagnetic band structure calculated from POD-Galerkin and DNSs. The table includes the 8 harmonic
frequencies and their errors at the M point predicted by POD-Galerkin.

The second demonstration in the photonic crystal includes a refractive index outside the training bounds. The index n =

3.2 for the 2 diagonal discs in the photonic crystal given in Fig. 7(a) is replaced by n = 5 that is beyond the maximum
refractive index of 4 used in training data collection. For the other 2 discs, the index remains unchanged. As illustrated in
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Fig. 11, the LSE induced by POD-Galerkin at the M point for electric field wave solutions in all harmonic states is only
slightly larger except for higher States 7 and 8. However, more modes can be included to offer a prediction with similar
accuracy for States 7 and 8. For example, an LSE below 1.2% can be achieved for States 1-6 when using 6 modes.
However, 15 or 11 modes are needed for States 7 or 8 to reach an LSE near 1.18% or 1.05%, respectively in this
extrapolation case while only 8 modes are needed in the interpolation case. Fig. 12 also includes the optical band structure
predicted by POD-Galerkin that matches DNS results nearly perfectly even in this extrapolation case. The errors at the M
point for all 8 harmonic frequencies are all below 0.043%, as given in Fig. 12.
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Figure 11. Relative LSE for the first 8 harmonic states resulting from POD-Galerkin at the M point in the Brillouin zone. Note
that the refractive index in two of the diagonal discs is outside the training bounds.
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Figure 12. Electromagnetic band structure calculated from POD-Galerkin and DNSs. The table includes the 8 harmonic

frequencies and their errors in percentage at the M point predicted by POD-Galerkin. Note that the refractive index in two of
the diagonal discs is outside the training bounds.

Similar to the periodic nanostructure, the computation time for the eigen solution from (19) in POD space for the 2D
photonic crystal is considerably shorter than post processing in (7) to evaluate the spatial wave solution. If one only needs
the band structure, POD-Galerkin offers a reduction in computational time by 15,000 times compared to DNSs. When the
electric field wave solution is also needed via post processing in (7), computing efficiency for POD-Galerkin over DNSs
would be improved by 200 and 110 times for 5 and 8, respectively.
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4. CONCLUSIONS

An effective and accurate physics-informed learning methodology has been presented and applied to predict wave
solutions and band structures in electronic and optical periodic structures. The simulation methodology is derived from
POD with the Galerkin projection of the wave equation to close the system. The POD generates basis functions (or POD
modes) via solution data collected from DNSs subjected to parametric variations of the system including the BCs. The
generated modes are optimized and tailored to the parametric variations of the system. The Galerkin projection then
implements physical principles during simulation to further enhance the accuracy and efficiency of the approach. The
physical principles enforced by the Galerkin projection offer a remarkable learning ability for POD-Galerkin to efficiently
predict wave solutions and band structures outside the training bounds with very good accuracy. It has been demonstrated
that the POD-Galerkin simulation methodology performs accurate simulations of 2D periodic quantum nanostructure and
photonic crystals and renders a reduction in DoF by nearly 4 orders of magnitude, compared to DNSs. As a result, a
computing speedup near 15,000 times over the DNSs can be achieved with extremely high accuracy for both electronic
and optical periodic structures if only band structure calculations are of interested without the wave solution. If both wave
function solution and band structure are required, a reduction in computational time near 2 orders of magnitude can be
achieved with an LSE near 1%. In situations where the training was incomplete or the eigenstates are slightly beyond the
training bounds, high accuracy with an LSE near 1%-2% can still be achieved if more POD modes are included.
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