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We study systems of two and three electrons confined to circular rings. The electrons are con-
sidered spinless and we assume that one electron occupies a single ring. We use the framework
of such a model to calculate the linear entropy and, thus, the spatial entanglement between the
confined electrons. The geometry of the problem for the case of two electrons incorporates situa-
tions in which the planes of the two rings form an arbitrary angle with each other. The resulting
Schrödinger’s equation is solved numerically with very high accuracy by means of the exact diag-
onalization method. We compute the ground state energy and entanglement for all configurations
under consideration. We also study the case of three electrons confined to identical, parallel and
concentric rings which are located in three different equidistant planes. The vertically separated
system of rings is allowed to gradually merge into a single ring geometry which would represent the
equivalent system of a ring with three electrons. It is observed that the system of three electrons
gives rise to a richer structure as the three rings merge into a single one.
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I. INTRODUCTION

Understanding correlation effects continues to be one
of the most central problems in theoretical quantum
chemistry and condensed matter physics. As a matter of
fact, this has been the main goal of the majority of the-
ories and models introduced in this research area [1, 2].
In particular, the behavior of electrons in low dimensions
such as the two-dimensional (2D) electron gas [3] or 2D
semiconductor systems [4–8] has been intensively studied
during the past years. The interplay between confine-
ment, quantum spin, delocalization effects and Coulomb
repulsion between electrons under the dictate of quan-
tum rules leads to many interesting physical phenomena
and unanticipated patterns [9–11]. A system where con-
siderable effort has been devoted in the past decade is
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the study of GaAs/AlGaAs concentric double quantum
rings [12–16]. A double quantum ring system can be used
to study the electronic transport and optical properties of
various semiconducting materials [12–16]. For instance,
the electronic transport in the system can be studied and
controlled by means of external metallic electrodes that
can be attached. Similarly, one can manipulate the elec-
tronic and optical properties of a double quantum ring by
applying a laser field. By tuning the laser field one can
create new degenerate energy levels and, thus, affect the
optical properties of the system. Overall, a double quan-
tum ring system has many possible technological appli-
cations with research topics ranging from opto-electronic
properties to spin transport and/or quantum computa-
tion. The fabrication of such quantum rings was made
possible by the invention of precise droplet-epitaxial tech-
niques [17]. These nanosystems are extremely useful
in order to gauge subtle quantum phenomena such as
the Aharonov-Bohm effect [18] and the influence of the
Coulomb interaction on the magnetic properties of small
quantum systems of electrons [19].

In this study, we consider a concise model consisting of
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mass of the electrons, k is Coulomb’s electric con-
stant, e is the charge of the electron and d(φ1, φ2) ≡
d(φ1, φ2;R1, R2, α,H) is the separation distance between
the pair of electrons. The square of such distance is given
by:

d2(φ1, φ2;R1, R2, α,H) = [R2 cosφ2 −R1 cosφ1]
2+

[R2 cosα−R2 +R2 cosα sinφ2

−R1 sinφ1]
2+

[R2 sinα(1 + sinφ2) +H]2 . (2)

No other subtler effects coming from electron’s effective
mass in a semiconductor host and/or from presence of a
magnetic field are taken into account [26, 27].
The scenario with added tilting allows one to tune the

quantum properties of the system of electrons by incor-
porating drastically different limiting cases that range
from coplanar concentric double rings to vertically sepa-
rated double rings with an arbitrary tilting. Therefore,
the mere change of the geometric parameters may lead
to fundamentally different quantum behavior of the sys-
tem in a controllable fashion. Any effort in simplify-
ing the quantity in Eq.(2) will not lead to a useful ex-
pression for our endeavor. Therefore, our main objec-
tive becomes the numerical solution of the resulting sta-
tionary Schrödinger’s equation. Atomic units are used
in which distances are measured in units of the Bohr
radius, aB while the energy is measured in the atomic
unit of k e2/aB (a Hartree), which is a commonly used in
quantum atomic physics. At a formal level, one simply
sets ~ = me = k = e = 1. For this choice of units, the
stationary Schrödinger’s equation reads:

− 1

2R2
1

∂2

∂φ2
1

Ψ(φ1, φ2)−
1

2R2
2

∂2

∂φ2
2

Ψ(φ1, φ2)

+
1

d(φ1, φ2)
Ψ(φ1, φ2) = EΨ(φ1, φ2) , (3)

where Ψ(φ1, φ2) is the wave function for the system of
two electrons, E is the energy eigenvalue and 0 ≤ φi < 0
for i = 1 and 2. Note that the wave function for non-
interacting particles is that of a particle confined in a cir-
cular ring with infinite potential wells outside the ring.
The solution of the quantum problem is obviously peri-
odic, Ψ(0, φ2) = Ψ(2π, φ2) and Ψ(φ1, 0) = Ψ(φ1, 2π).
We use the following normalization condition:

R1 R2

∫ 2π

0

∫ 2π

0

dφ1 dφ2 |Ψ(φ1, φ2)|2 = 1 . (4)

The case α = 0 is quasi-exactly solvable by using the dis-
tance between particles as a new variable. Although this
analytic approach does not apply here, we can use such
results to gauge the accuracy of our numerical computa-
tions.

B. Three electrons

The model of three electrons is a variation of the geom-
etry of Fig. 1. For the setup of three electrons, we will

have three vertically separated, parallel and concentric
rings with the same radius, R1 = R2 = R3 = R = 1 situ-
ated on three different equidistant parallel planes. Each
ring will contain one single electron. For example, one
ring is situated below the x − y plane by a vertical dis-
tance, H (ring 1), a second ring is above such plane at a
distance, H (ring 2) while the third ring is on the x− y
plane (ring 3). We believe that the reader can easily vi-
sualize the geometry of such a ring setup without need
to draw a schematic presentation. The quantum Hamil-
tonian for the system of three electrons can be easily
generalized from Eq.(1). The extension of the stationary
Schrödinger’s equation for such a case is straightforward
(in atomic units):

3
∑

i=1

− 1

2R2

∂2

∂φ2
i

Ψ(φ1, φ2, φ3)

+
1

d(φ1, φ2)
Ψ(φ1, φ2, φ3)

+
1

d(φ1, φ3)
Ψ(φ1, φ2, φ3)

+
1

d(φ2, φ3)
Ψ(φ1, φ2, φ3) = EΨ(φ1, φ2, φ3) , (5)

where Ψ(φ1, φ2, φ3) is the wave function for three
electrons, E is the corresponding energy eigenvalue
of the system and, in this scenario, d(φi, φj) ≡
d(φi, φj ;R,R, α = 0, H) are the separation distances be-
tween pairs of electrons written in short-hand notation.
Obviously, the same periodicity properties are imposed
on the wave function.

III. THEORY AND METHOD

A. Spatial entanglement

A natural question that emerges is what happens to the
quantum system under consideration when the geometry
of the Hamiltonian changes. One quantum information-
based measure of the spatial entanglement (mixedness)
in quantum states is the so-called linear entropy defined
as:

E = 1 − Tr[ρ 2
r ] , (6)

where Tr is the trace operation and ρr is the single-
particle reduced density matrix [28] of the state:

ρr =

∫

dφ2 Ψ(φ1, φ2)Ψ
∗(φ ′

1 , φ2) . (7)

One can check that:

Tr[ρ 2
r ]=

∫

dφ1 dφ
′
1 dφ2 dφ

′
2 Ψ(φ1, φ2)Ψ

∗(φ ′
1 , φ2)

Ψ∗(φ1, φ
′
2 )Ψ(φ ′

1 , φ
′
2 ) . (8)
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Note that the calculation of the linear entropy is a rather
involved mathematical process. The linear entropy de-
fined in Eq.(6) is quite popular for the analysis of entan-
glement in two-particle systems and has been pursued at
length in the literature [29–34].
Our objective in this work is to obtain the entangle-

ment measure, E defined in Eq.(6) for various combina-
tions of the geometry of the system. To be more specific,
we will consider the following four cases:

• α = 0, H = 0 which reduces to the case of two co-
planar concentric rings studied in [35]. The special
case, R1 = R2 implies two electrons in the same
ring.

• α = 0 and H 6= 0 reduces to the case of two elec-
trons in vertically coupled parallel rings studied in
[36].

• α = 0, H = 0 and R1 ≈ R2 where both radii
increase, but they differ slightly from each other.

• α 6= 0 and R1 ≈ R2 which corresponds to two rings
that almost share a point of contact since α is tilted
and R1 6= R2 (since they differ slightly).

All these cases are studied numerically by solving the
the stationary Schrödinger’s equation via the exact diag-
onalization method.

B. Numerical method

Let us illustrate the exact numerical diagonalization
approach for the system of two electrons. One easy way
of preserving the periodicity of the solution is to span
the (unknown) wave function, Ψ(φ1, φ2) in the basis of
the eigenstates for two non-interacting electrons each one
in its respective ring and then truncate the expansion to
N + 1 terms where N even. That is:

Ψ(φ1, φ2) =

N

2
∑

m=−N

2

N

2
∑

n=−N

2

cm,n

1

2π
√
R1R2

eimφ1einφ2

(9)
By substituting Eq.(9) into Eq.(3), multiplying by

1
2π

√
R1R2

e−ikφ1e−ilφ2 and integrating over the angles, φ1

and φ2 we obtain:

N

2
∑

k=−N

2

N

2
∑

l=−N

2

[(

m2

2R2
1

+
n2

2R2
2

)

δk,mδl,n + 〈kl|1
d
|mn〉

−E δk,mδl,n

]

ck,l = 0 , (10)

for indices, m,n = −N
2 , ..,

N
2 . Let us denote by Hklmn

the first line in Eq.(10). Solving Eq.(10) for ck,l is tan-
tamount to providing an approximate solution to Eq.(3)
for both ground and excited states. One can increase the

accuracy of the calculations by augmenting the number
of terms in the expansion.
The Coulomb interaction matrix element shown in

Eq.(10) reads explicitly as:

〈kl|1
d
|mn〉 =

1

4π2

∫ 2π

0

∫ 2π

0

dφ1dφ2
ei(m−k)φ1ei(n−l)φ2

d(φ1, φ2)
.

(11)
The set of equations in Eq.(10) for ck,l does not read
yet as a standard eigenvalue problem. In order to do
so, one must transform Hklmn −→ Aij and ck,l −→ gj ,

i, j = 1, .., (N+1)2 using i = (m+N
2 )(N+1)+(n+N

2 )+1

and j = (k+ N
2 )(N +1)+(l+ N

2 )+1 ∀ (k, l,m, n). With
this transformation, we have the usual eigenvalue and
eigenvector problem:

(N+1)2
∑

j=1

(

Aij − E δij
)

gj = 0 , (12)

where i = 1, 2, .., (N + 1)2. Finding the corresponding
energy eigenvalues will give as the energy spectrum of
the system. In order to find the eigenvectors, the inverse
transformation gj −→ ck,l can be proved to be unique. In
other words, given j and N , we find a sole couple (k, l).
Once the coefficients ck,l are obtained, it is straight-

forward to obtain the wave function and, thus, calculate
the linear entropy as defined in Eq.(6). To this aim, we
use the fact that the ultimate integration turns out to
be on separate arguments provided that we use Eq.(9)
together with the orthogonality condition. The value of
linear entropy:

E = 1 −
N

2
∑

a=−N

2

N

2
∑

b=−N

2

N

2
∑

c=−N

2

N

2
∑

d=−N

2

ca,b c
∗
c,b c

∗
a,d cc,d , (13)

is obtained numerically once the desired numerical accu-
racy is met.

C. Numerical validation

In order to validate the accuracy of the numerical re-
sults, we compare them to the analytic case of two elec-
trons in concentric rings [35]. The results for the expan-
sion coefficients of the ground state wave function are
shown in Table. I. The matching is perfect.
The corresponding ground state wave function is

shown in Fig. 2 where Ψ(φ1, φ2) is plotted. Note that
the wave function is expressed as a linear combination
of terms for negative, zero and positive indices. It hap-
pens that the expansion coefficients, ck,l have the same
value for opposite indices. Therefore, the outcome is
a purely real ground state wave function meaning that
Ψ(φ1, φ2) = |Ψ(φ1, φ2)| where the latter would represent
the (real) modulus of the wave function. It is worth men-
tioning that, as in Table. I, it will be enough to have a
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APPENDIX

In this Appendix we present the explicit values of the
expansion coefficients for the ground state wave function
of three electrons. The values of ck1,k2,k3

for R1 = R2 =
R3 = 1 and H = 1 are shown in Table. III. Those for
H = 0.001 are shown in Table. IV.

k1 k2 k3 ck1,k2,k3

-4 0 4 -0.000131476609

-4 1 3 7.41767774×10−5

-4 2 2 1.53017668×10−5

-4 3 1 7.41767774×10−5

-4 4 0 -0.000131476609

-3 -1 4 3.09465428×10−5

-3 0 3 -0.000698293354

-3 1 2 0.000480345404

-3 2 1 0.000480345404

-3 3 0 -0.000698293354

-3 4 -1 3.09465428×10−5

-2 -2 4 2.12479165×10−6

-2 -1 3 0.000190306552

-2 0 2 -0.00520647438

-2 1 1 0.00909765478

-2 2 0 -0.00520647438

-2 3 -1 0.000190306552

-2 4 -2 2.12479165×10−6

-1 -3 4 5.40595983×10−6

-1 -2 3 7.70769349×10−5

-1 -1 2 0.00328129173

-1 0 1 -0.107830758

-1 1 0 -0.107830758

-1 2 -1 0.00328129173

-1 3 -2 7.70769349×10−5

-1 4 -3 5.40595983×10−6

0 -4 4 -5.26775736×10−6

0 -3 3 -6.4193788×10−5

0 -2 2 -0.0011496827

0 -1 1 -0.00899787456

0 0 0 0.976219937

TABLE III. Expansion coefficients, ck1,k2,k3
for the ground

state wave function solution for the system of three electrons
when R1 = R2 = R3 = 1 and H = 1. The rest of the
coefficients not shown are obtained by changing the sign of
the set of integers {ki}. They are exactly equal to the ck1,k2,k3

shown here. We have used a basis set with N = 8.



12

k1 k2 k3 ck1,k2,k3

-4 0 4 -0.00300389246

-4 1 3 0.00264379189

-4 3 1 -0.00264379189

-4 4 0 0.00300389246

-3 -1 4 0.00264382094

-3 0 3 -0.00815690883

-3 1 2 0.00950729392

-3 2 1 -0.00950729392

-3 3 0 0.00815690883

-3 4 -1 -0.00264382094

-2 -1 3 0.00950731754

-2 0 2 -0.0377186212

-2 2 0 0.0377186212

-2 3 -1 -0.00950731754

-1 -3 4 -0.00264370077

-1 -2 3 -0.00950718227

-1 0 1 0.406169353

-1 1 0 -0.406169353

-1 3 -2 0.00950718227

-1 4 -3 0.00264370077

0 -4 4 0.00300376913

0 -3 3 0.0081566846

0 -2 2 0.0377181052

0 -1 1 -0.406169831

TABLE IV. Expansion coefficients, ck1,k2,k3
for the ground

state wave function solution for the system of three electrons
when R1 = R2 = R3 = 1 and H = 0.001. This is the scenario
for which the three electrons are practically located in the
same ring. The rest of the coefficients not shown are obtained
by changing the sign of the set of integers {ki} and are exactly
the opposite of the ck1,k2,k3

coefficients shown here. Notice
the change of structure with respect to the H = 1 case. We
have used a basis set with N = 8.


