Spatial entanglement between electrons confined to rings

Orion Ciftja*
Department of Physics, Prairie View A & M University, Prairie View, TX 77446, USA

Josep Batlet
Departament de Fisica and Institut d’Aplicacions Computacionals de Codi Comunitari (IACS3),
University of Balearic Islands, E-07122 Palma de Mallorca, Spain and
CRISP - Centre de Recerca Independent de sa Pobla, E-074/20 Mallorca, Spain

Mahmoud Abdel-Aty*
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt and
Deanship of Graduate Studies and Research, Ahlia University, Manama 10878, Bahrain

Mohamed Ahmed Hafez®
Department of Civil Engineering, Faculty of Engineering,
INTI International University, Nilai 71800, Malaysia

Shawkat Alkhazaleh¥

Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid 21110, Jordan

(Dated: December 12, 2024)

We study systems of two and three electrons confined to circular rings. The electrons are con-
sidered spinless and we assume that one electron occupies a single ring. We use the framework
of such a model to calculate the linear entropy and, thus, the spatial entanglement between the
confined electrons. The geometry of the problem for the case of two electrons incorporates situa-
tions in which the planes of the two rings form an arbitrary angle with each other. The resulting
Schrédinger’s equation is solved numerically with very high accuracy by means of the exact diag-
onalization method. We compute the ground state energy and entanglement for all configurations
under consideration. We also study the case of three electrons confined to identical, parallel and
concentric rings which are located in three different equidistant planes. The vertically separated
system of rings is allowed to gradually merge into a single ring geometry which would represent the
equivalent system of a ring with three electrons. It is observed that the system of three electrons
gives rise to a richer structure as the three rings merge into a single one.
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I. INTRODUCTION

Understanding correlation effects continues to be one
of the most central problems in theoretical quantum
chemistry and condensed matter physics. As a matter of
fact, this has been the main goal of the majority of the-
ories and models introduced in this research area [1, 2].
In particular, the behavior of electrons in low dimensions
such as the two-dimensional (2D) electron gas [3] or 2D
semiconductor systems [4-8] has been intensively studied
during the past years. The interplay between confine-
ment, quantum spin, delocalization effects and Coulomb
repulsion between electrons under the dictate of quan-
tum rules leads to many interesting physical phenomena
and unanticipated patterns [9-11]. A system where con-
siderable effort has been devoted in the past decade is
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the study of GaAs/AlGaAs concentric double quantum
rings [12-16]. A double quantum ring system can be used
to study the electronic transport and optical properties of
various semiconducting materials [12-16]. For instance,
the electronic transport in the system can be studied and
controlled by means of external metallic electrodes that
can be attached. Similarly, one can manipulate the elec-
tronic and optical properties of a double quantum ring by
applying a laser field. By tuning the laser field one can
create new degenerate energy levels and, thus, affect the
optical properties of the system. Overall, a double quan-
tum ring system has many possible technological appli-
cations with research topics ranging from opto-electronic
properties to spin transport and/or quantum computa-
tion. The fabrication of such quantum rings was made
possible by the invention of precise droplet-epitaxial tech-
niques [17]. These nanosystems are extremely useful
in order to gauge subtle quantum phenomena such as
the Aharonov-Bohm effect [18] and the influence of the
Coulomb interaction on the magnetic properties of small
quantum systems of electrons [19].

In this study, we consider a concise model consisting of



a few interacting electrons confined in distinct rings [20].
Each electron is allowed to occupy a single ring. For
simplicity, the electrons are considered spinless. We, ini-
tially, consider a system of two electrons. The relative
position of planes of the rings is allowed to change. This
means that we are able to tune the geometry of the two
rings in order to explore all relevant physical situations
that involve the correlations between the two electrons.
In addition to the model for two electrons, we also study
another model of three electrons where each of them is
confined to identical parallel coaxial rings situated in dif-
ferent equidistant planes. The three rings are allowed to
merge forming a single ring as the inter-plane separation
distance between them becomes zero. This special sit-
uation is tantamount to representing a system of three
electrons confined to a single ring as far as the ground
state and entanglement properties are concerned.

The present model of rings can be viewed as a simple
presentation for more realistic realizations of double [21-
23] or triple quantum ring systems [24, 25]. Double quan-
tum rings typically consist of two concentric rings where
the localization of electrons in each ring is provided by
some confining potential. The confinement in both radial
and azimuthal directions gives rise to interesting phe-
nomena. The simplest approximation made would be to
assume no radial extension with the electrons confined in
an ideal ring where only the azimuthal angle varies. The
aim of out model is to describe the entanglement effects
between electrons separated in space in different rings.
Therefore, it is a reasonable starting point to assume one
electron per ring. This way we can pursue a theoretical
investigation of the entanglement effects between elec-
trons in different rings rather than having them in differ-
ent states of the same ring. The model that we consider
is simpler than typical experimental realization, but yet
it is realistic enough to capture key features pertaining
to entanglements effects in these structures. This work
presents a study of a system of a few spinless electrons
confined to circular rings with the assumption that one
electron occupies a single ring. We calculate the linear
entropy for ultra-small system of two or three electrons
connected to distinct rings with an arbitrary geometry.
The main goal is to estimate the amount of spatial en-
tanglement between the electrons for the model under
consideration as a function of the geometry parameters
of the system.

The present contribution is organized as follows. In
Section IT we introduce the model for two and three elec-
tron systems, respectively. In Section III we describe the
theoretical formalism and the numerical method used to
calculate the entanglement between the electrons. The
results for systems with two and three electrons are dis-
cussed in Section IV. Some brief conclusions are drawn
in Section V.

II. MODEL

A. Two electrons

FIG. 1. (Color online) Relative position and geometry of two
rings with radii, R; and Rs. Each of the rings contains one
electron. The planes of the rings may be tilted relative to
each other by an angle, a. Furthermore, the geometry of
the system may range from coplanar to vertically separated
(and tilted) double rings. A lateral view is also shown for
clarification purposes. See text for details.

The model for two electrons and the geometry of the
problem is illustrated by Fig. 1. We consider two different
rings with respective radii, R; and R,. We assume that
Ry < Rs. Electron 1 is located on the ring of radius, R;
and electron 2 is located on the other ring of radius, R,.
Their location in these respective rings is determined by
the azimuthal angles, ¢; and ¢2. There can be a vertical
distance, H separating the planar rings. Furthermore,
the plane of ring 2 with radius, Ry can be tilted by an
angle a with respect to the x —y plane of ring 1 at a min-
imum distance H from it. The two rings are parallel at a
separation distance, H when the value of the tilting angle
becomes zero (« = 0). If this instance(aw = 0 is projected
on the x — y plane, we have the dotted circumference
with radius, Ry. A point of contact will appear at the
position (z =0,y = —R, z = 0) if one reduces parameter
H by keeping a nonzero tilting angle (o # 0) and makes
R; = Ry, = R. An additional inset in Fig. 1 displays the
possibility of one ring being tilted with respect to the
other. The electrons interact via the standard Coulomb
interaction potential. The quantum Hamiltonian for the
system of two electrons is written as:
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(1)

where h is the reduced Planck’s constant, m, is the
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mass of the electrons, k is Coulomb’s electric con-
stant, e is the charge of the electron and d(¢1, ¢2) =
d(¢1, d2; R1, Ra, v, H) is the separation distance between
the pair of electrons. The square of such distance is given
by:

d?(¢1, ¢o; R1, Ry, o, H) =Ry cos ¢y — Ry cos ¢1]>+
[Rg cos« — Ry + Ro cos asin ¢g
—Ry sin¢1]2—|—
[Rysina(1 + sin ¢o) + H]? . (2)

No other subtler effects coming from electron’s effective
mass in a semiconductor host and/or from presence of a
magnetic field are taken into account [26, 27].

The scenario with added tilting allows one to tune the
quantum properties of the system of electrons by incor-
porating drastically different limiting cases that range
from coplanar concentric double rings to vertically sepa-
rated double rings with an arbitrary tilting. Therefore,
the mere change of the geometric parameters may lead
to fundamentally different quantum behavior of the sys-
tem in a controllable fashion. Any effort in simplify-
ing the quantity in Eq.(2) will not lead to a useful ex-
pression for our endeavor. Therefore, our main objec-
tive becomes the numerical solution of the resulting sta-
tionary Schrodinger’s equation. Atomic units are used
in which distances are measured in units of the Bohr
radius, ap while the energy is measured in the atomic
unit of ke?/ap (a Hartree), which is a commonly used in
quantum atomic physics. At a formal level, one simply
sets h = m, = k = e = 1. For this choice of units, the
stationary Schrodinger’s equation reads:
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where U(¢1, ¢2) is the wave function for the system of
two electrons, E is the energy eigenvalue and 0 < ¢; < 0
for i = 1 and 2. Note that the wave function for non-
interacting particles is that of a particle confined in a cir-
cular ring with infinite potential wells outside the ring.
The solution of the quantum problem is obviously peri-
odic, (0, ¢2) = ¥(2m, ¢2) and ¥(¢1,0) = U(oy,27).
We use the following normalization condition:

27 27
Ry R2/0 /0 dprdeo [V(p1,02))> = 1. (4)

The case a = 0 is quasi-exactly solvable by using the dis-
tance between particles as a new variable. Although this
analytic approach does not apply here, we can use such
results to gauge the accuracy of our numerical computa-
tions.

B. Three electrons

The model of three electrons is a variation of the geom-
etry of Fig. 1. For the setup of three electrons, we will

have three vertically separated, parallel and concentric
rings with the same radius, R = Ry = R3 = R = 1 situ-
ated on three different equidistant parallel planes. Each
ring will contain one single electron. For example, one
ring is situated below the z — y plane by a vertical dis-
tance, H (ring 1), a second ring is above such plane at a
distance, H (ring 2) while the third ring is on the z — y
plane (ring 3). We believe that the reader can easily vi-
sualize the geometry of such a ring setup without need
to draw a schematic presentation. The quantum Hamil-
tonian for the system of three electrons can be easily
generalized from Eq.(1). The extension of the stationary
Schrédinger’s equation for such a case is straightforward
(in atomic units):
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+d(¢117¢3)\11(¢17¢27¢3)
+mqj<¢la¢2a¢3) = qu(¢17¢2’¢3) , (5)

where U(¢1,¢o,¢3) is the wave function for three
electrons, F is the corresponding energy eigenvalue
of the system and, in this scenario, d(¢;,¢;) =
d(¢i, ¢;; R, R, o = 0, H) are the separation distances be-
tween pairs of electrons written in short-hand notation.
Obviously, the same periodicity properties are imposed
on the wave function.

M)

U (1, p2, P3)

i=1

III. THEORY AND METHOD
A. Spatial entanglement

A natural question that emerges is what happens to the
quantum system under consideration when the geometry
of the Hamiltonian changes. One quantum information-
based measure of the spatial entanglement (mixedness)
in quantum states is the so-called linear entropy defined
as:

£=1- T[], (6)

where Tr is the trace operation and p, is the single-
particle reduced density matrix [28] of the state:

pr = / dds U(d1, 62) U (61, 62) (7)
One can check that:

Tr[p2)= / Ay A dy ddd W(br, d2) U (61, 6)
T (61, 6) U(b/, 65) . (8)



Note that the calculation of the linear entropy is a rather
involved mathematical process. The linear entropy de-
fined in Eq.(6) is quite popular for the analysis of entan-
glement in two-particle systems and has been pursued at
length in the literature [29-34].

Our objective in this work is to obtain the entangle-
ment measure, £ defined in Eq.(6) for various combina-
tions of the geometry of the system. To be more specific,
we will consider the following four cases:

e o = 0, H = 0 which reduces to the case of two co-
planar concentric rings studied in [35]. The special
case, Ry = Ry implies two electrons in the same
ring.

e o = 0 and H # 0 reduces to the case of two elec-
trons in vertically coupled parallel rings studied in
[36].

ea = 0, H =0 and Ry = Ry where both radii
increase, but they differ slightly from each other.

e o # 0 and Ry = Ry which corresponds to two rings
that almost share a point of contact since « is tilted
and Ry # Ry (since they differ slightly).

All these cases are studied numerically by solving the
the stationary Schréodinger’s equation via the exact diag-
onalization method.

B. Numerical method

Let us illustrate the exact numerical diagonalization
approach for the system of two electrons. One easy way
of preserving the periodicity of the solution is to span
the (unknown) wave function, ¥(¢1, ¢2) in the basis of
the eigenstates for two non-interacting electrons each one
in its respective ring and then truncate the expansion to
N + 1 terms where N even. That is:

1
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N e 27/ R1R2
2

ezm¢1 el7l¢2

U(o1,¢2) =
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By substituting Eq.(9) into Eq.(3), multiplying by
27r\/ﬁe_”@leﬂlq52 and integrating over the angles, ¢
and ¢, we obtain:

m? n? 1
— 4+ —= | 0k.mOin kl|=

-F 6k,m6l,n:| Ck,l = 0 5 (10)

for indices, m,n = —%, . % Let us denote by Hyimn
the first line in Eq.(10). Solving Eq.(10) for ¢k, is tan-
tamount to providing an approximate solution to Eq.(3)
for both ground and excited states. One can increase the

accuracy of the calculations by augmenting the number
of terms in the expansion.

The Coulomb interaction matrix element shown in
Eq.(10) reads explicitly as:
1 2m 2w i(m—k)o1 pi(n—1)¢2

d(¢17 ¢2)

(Kl|lmn) = A1 ©

2
47 0 0

The set of equations in Eq.(10) for ¢;; does not read
yet as a standard eigenvalue problem. In order to do
so, one must transform Hypmn — Ai; and cxy — g5,
i,j = 1,.,(N+1)2 using i = (m+L)(N+1)+(n+¥)+1
and j = (k+5)(N+1)+ (1+5)+1V(k,I,m,n). With
this transformation, we have the usual eigenvalue and
eigenvector problem:

(N+1)?

> (A -

=1

Edij)g; =0, (12)

where i = 1,2,..,(N + 1)2. Finding the corresponding
energy eigenvalues will give as the energy spectrum of
the system. In order to find the eigenvectors, the inverse
transformation g; — ¢ can be proved to be unique. In
other words, given j and N, we find a sole couple (k,1).

Once the coefficients cj; are obtained, it is straight-
forward to obtain the wave function and, thus, calculate
the linear entropy as defined in Eq.(6). To this aim, we
use the fact that the ultimate integration turns out to
be on separate arguments provided that we use Eq.(9)
together with the orthogonality condition. The value of
linear entropy:

is obtained numerically once the desired numerical accu-
racy is met.

C. Numerical validation

In order to validate the accuracy of the numerical re-
sults, we compare them to the analytic case of two elec-
trons in concentric rings [35]. The results for the expan-
sion coefficients of the ground state wave function are
shown in Table. I. The matching is perfect.

The corresponding ground state wave function is
shown in Fig. 2 where ¥(¢1,¢2) is plotted. Note that
the wave function is expressed as a linear combination
of terms for negative, zero and positive indices. It hap-
pens that the expansion coefficients, c;; have the same
value for opposite indices. Therefore, the outcome is
a purely real ground state wave function meaning that
U (1, p2) = |¥(¢1, ¢p2)| where the latter would represent
the (real) modulus of the wave function. It is worth men-
tioning that, as in Table. I, it will be enough to have a
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TABLE 1. Expansion coefficients, ¢, corresponding to the
ground state wave function solution for the analytic case,

Ry = £./3(13 - V78), Ry = £,/3(13 + V/78), H = 0 and
a = 0. The ground state energy that we calculated numeri-
cally is virtually equal to the exact value of %. The linear
entropy was found to be 0.493413059. Notice the symmetry
in the indexes k,! and in the numerical value of cg,;. As one
can notice, the numerical solution is accurately obtained with

only 11 expansion coefficients, ck,;. See text for details.

basis set with N = 10 for the linear expansion in Eq.(9)
for all cases considered. The case of two electrons in
vertically coupled rings has also quasi-exact analytic so-
lutions [36]. The corresponding results for the expansion
coefficients of the ground state wave function are dis-
played in Table. II.

k|l Ck,1

-5(| 5 4.52937079x107°
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-3|13| 0.00133573128
22| 0.0393656611
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21([-2| 0.0393656611

3||-3] 0.00133573128
41|-4] 0.00021068459
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TABLE II. Solution coefficients cx,; for the analytic case R1 =
R = R = 133/4‘/5, H = R2VYBVT 41d o = 0. The

1/4 1/4
numerically cafc(llated ground stage/energy is virtually equal
. 4,/7/13 . .

to the analytic value, . The linear entropy is found
to be 0.493413077. Notice the astonishing similarity between
the values of the expansion coefficients for the present case
and their concentric counterparts shown in Table I. Totally
different geometric configurations result in almost the same
solution coefficients, ck,; and, consequently, the same linear
entropy value. See text for details.

FIG. 2. (Color online) (a) Plot for the ground state wave

function for Ry = 424/3(13 — V78), Ry = 13,/3(13 4+ V/78),
H =0 and o = 0. (b) Similar plot for Ri = R = R =

13’:{#, H = RY2VY13-VT “1//1_::’_‘/? and a = 0. The two plots look

very similar because the obtained corresponding coefficients,
cr, have very small differences. See text for details.

It is indeed remarkable to see that the expansion co-
efficients, c,; are almost identical in both cases. Having
different geometries, we cannot explain why the two in-
stances, although returning different ground state ener-
gies, provide the same answer as far as the wave function
and entanglement are concerned. In both cases, concomi-
tant wave functions have very low values when ¢; = ¢o
due to the strong Coulomb repulsion.

In any case, the symmetry of the coefficients has a two-
fold meaning. On one hand, the total truncated state is
real, whereas on the other hand, the system depends only
on the difference of angles, |1 —@2|. The method of span-
ning the function in a suitable basis is quite convenient.
Although the treatment is numerical, the final result rep-
resents accurately the exact eigenvalue when the number
of elements in the expansion basis tends to infinity. For
our system of two electrons in two coplanar concentric
rings, the 11 expansion coefficients for the ground state
wave function are available from Table I. By analyzing

the 121 x 121 matrix elements of A;;, one can observe



typical parabolas as a function of the indices i, j corre-
sponding to free electrons in a ring. What is remarkable
is that almost all the matrix elements intervene in de-
termining the value of the ground state energy, Ey. In
other words, there is no such subset that makes it easier
to diagonalize the matrix, A;; and thus find, Ey. This
seems to be the most likely scenario in all cases.

The extension of the calculations to three electrons
is straightforward, though it becomes computationally
more demanding. The wave function ¥(¢1, ¢, ¢3) reads
(all radii are equal):

N
22 1
Cn1 ,na2,n3 3
_ V2mR
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\‘| M |2
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ni n2 n3=-—

(14)
Proceeding as before, the set of equations to solve is:
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with Ofr,niy = OkyniOkomaOksng and ni,na,ng =

—%, - % The addition of a new electron makes the
whole computation grow from a (N +1)? x (N +1)? ma-
trix to (N + 1)% x (N + 1)3 (recall that N is an even
number). This is so because in order to accommodate an
additional index into a square matrix, we have to perform
the transformation i = (ny + 4 )(N+1)2+ (no + 5)(N +
D4 (ng+ &) +1and j = (k1 + 5)(N + 1)% + (ke +
%)(N + 1) —+ (kg + %) —+ 1 V(klkg, kg,nl,ng,ng). Wlth
this transformation, we then have the usual eigenvalue
and eigenvector problem:

(N+1)®
Z (Aij — E(;ij) gj = 0 5 (16)
j=1
where i = 1,2,..,(N + 1)3. In practice, we shall use a

value of N = 8 which implies a total of 9 basis elements
for the system of three electrons. For the case of the com-
putation of entanglement between pairs, the expression
in Eq.(13) remains the same provided we make zero the
subindex in ¢, 5, belonging to the particle not involved.
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FIG. 3. (Color online) Plot of the linear entropy (entangle-
ment), £ between the two electrons when the corresponding
rings are coplanar and concentric with R; = 1 and R that in-
creases its value. In this semi-logarithmic plot (with the axis
of Ry shown in a logarithmic scale), we can identify a region
where an exponential decay takes place. The inset depicts the
ground state energy, Ey as a function of Ry alongside with the
classical result (lower curve). See text for details.

IV. RESULTS
A. Two rings

Before discussing each configuration separately, we like
to draw attention to the fact that the classical equilib-
rium energy for the system of two electrons in separate
planar concentric rings is m. We remind the reader
that the energy values are given in atomic units. It is
notable that this value is close to the quantum ground
state energy value, Fy. Thus, for those instances where
we have coplanar rings, we will compare the quantum
ground state energy, Fy with its classical counterpart.

1. Two coplanar concentric rings (R1 # Rz )

We consider two coplanar concentric rings (H = 0 and
a =0). We set Ry = 1 while Ry is treated as a variable
with the condition that Ry > Rj;. The linear entropy
(entanglement), £ and the ground state energy, Fy are
depicted in Fig. 3. The lower curve in the inset represents
the classical equilibrium energy.

2. Two almost identical vertically separated parallel coarial
rings (R1 ~ R2)

We consider two vertically separated parallel coaxial
rings (H # 0 and o = 0). We assume that the rings are



almost identical by setting the values of their respective
radii to By = 1 and Ry = 1.01. The variable for the
present case is the vertical separation distance, H be-
tween the rings. The linear entropy, £ and ground state
energy, Fy are shown in Fig. 4 as a function of H.
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FIG. 4. (Color online) Plot of the linear entropy (entangle-
ment), £ between the two electrons and ground state energy
of the system, Ey as a function of the vertical separation dis-
tance, H between the two rings. The value of H changes from
0 to a maximum of 1.8. See text for details.

3. Two almost identical coplanar concentric rings

(B1 ~ R2)

Here we consider two coplanar concentric rings (H = 0
and o = 0) that are almost identical to each other. For
such a case, we assume Ry = R, R, = R + 0.01 with
R being treated as a variable. The linear entropy and
the ground state energy as a function of R are depicted
in Fig. 5. In all other cases, both ground state energy
and entanglement decreases. However, in the present
instance, entanglement increases as R increases. The
ground state energy of the system, Ej is followed closely
from below by its classical equilibrium counterpart (lower
curve in the inset of Fig. 5). Note an almost power-law
decay of Ej as a function of R which is not present in
the previous scenarios.

4. Two almost identical tilted rings forming an angle «
(R1 ~ RQ)

The last possible situation that we studied is that of
two almost identical rings with respective radii, R; = 1
and Ro = 1.01 which are tilted by a given angle relative
to each other. For such a situation, we consider R; = 1,
Ry =1.01 and H = 0 and tilt the second ring, Ry by some
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FIG. 5. (Color online) Plot of the linear entropy (entangle-
ment), £ as a function of R for two electrons in coplanar con-
centric rings with radii that grow in such a way that R = R,
Rs = R+ 0.01 under the constraint, R2 — R; = 0.01. In this
case, R is the variable. This constraint is imposed in order to
have two rings with almost the same radius. The axis of R is
shown in a logarithmic scale. It is the only instance consid-
ered where the entanglement between the electrons increases
as the radius, R; = R of the inner ring increases. Also, note
in the inset how close the ground state energy, Ey is to its
classical counterpart (lower curve). See text for details.

angle, a as shown in Fig. 1. The corresponding results
for the ground state energy, Ej and linear entropy, £ as a
function of angle, a are depicted in Fig. 6. As expected,
two coplanar rings that are tangent to each other (a = 0)
have much less entanglement than for any other angle.

B. Three rings

As we will see, the case of three electrons with each
of them confined to one of the three vertically separated
parallel rings manifests a much richer structure than the
corresponding cases of two electrons. The ultimate sce-
nario that we are interested to study is that of three rings
merging into a single one while decreasing their separa-
tion distance, H. Larger systems are more demanding to
be handled numerically. However, we note that a total
of 9 basis sets will still suffice to calculate with enough
precision the energy and entanglement of the system of
three electrons. The energy of the ground state and the
first, second and third excited state energies are plotted
in Fig. 7 as a function of the distance between the planes,
H. The first and second excited states are degenerate up
to values of H = 0.001 where they have the same en-
ergy. Thus, we focus our attention on the ground state
energy. It is apparent that at some point around the
value H = 0.004 there is a level crossing of the energy as
enhanced in the inset of Fig. 7. By employing the cur-
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FIG. 6. (Color online) Ground state energy, Ey and linear
entropy (entanglement), £ as a function of tilting angle, «
ranging from 0 to 7 shown as a semi-logarithmic plot (with
the axis of o shown in a logarithmic scale). This geomet-
ric configuration has not been considered previously in the
literature. See text for details.
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FIG. 7. (Color online) Plot of the first three eigen-energies,
E for the system of three electrons as function of the distance
between planes, H. The axis of H is shown in a logarithmic
scale. The first and second excited states are degenerate, thus,
have the same energy. There is a level-crossing at some point
as H decreases (detailed in the inset). See text for details.

rent method, we can assess that the ground state energy
is not greater than Ey = 3.0775 (in atomic units) in the
H — 0 limit. However, it is only when we study the
entanglement between the electrons in the rings that we
can appreciate a change in the structure of the ground
state. The two-party, namely, bipartite (or pairwise) en-
tanglement in the system is depicted in Fig. 8. Due to

symmetry reasons, nearest-neighbors rings have the same
entanglement. Only the next-to-nearest neighbor case
differs slightly. Actually, all the three pairs tend to the
same value as H decreases.
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FIG. 8. (Color online) Plot of the three pairwise entangle-
ment quantities as the distance between planes H for the
three-particle case diminishes. The axis of H is shown in a
logarithmic scale. A discontinuous jump is shown due to the
level crossing in energy. Normally, a level crossing arises from
a phase transition or symmetry breaking. The level-crossing
in Fig. 7 indicates an abrupt change in the structure of the
ground state very close to H = 0. This would be the only
factor that can account for a different entanglement. See text
for details.

This situation does not occur for the corresponding
case of two electrons due to the nature of their energy
spectrum. This intriguing fact is very interesting for two
main reasons. First, we have to go to considerably small
values of H to see this effect with the result collapsing to
a constant value for smaller values of H. Does this imply
that the three electrons system can now be regarded as an
effective three particle system inside the same ring? Sec-
ondly, it is not easy to predict the implications that this
very remarkable feature may have for other quantities be-
sides entanglement and ground state energy. Therefore,
it is of great interest to study if this phenomenon occurs
for systems with a much larger number of electrons. Un-
fortunately, such a problem is very challenging to solve
even from a numerical perspective.

In order to further assess the properties of the system
of three particles in the extreme cases of H = 1 and
H = 0.001 we have depicted two ways of visualizing the
related ground state wave function, U(¢q, ¢2, ¢3). Note
that the corresponding numerical values of the expansion
coefficients for the ground state wave function are given
in the Appendix.

The first way belongs to Fig. 9 where the magnitude
square of the ground state wave function, |¥(¢1, g2, ¢3)|?
is plotted as a function of angle differences, ¢2 — ¢1 and
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FIG. 9. (Color online) Plot of |¥(¢1, ¢2, ¢3)|? (ground state)
as a function of angle differences, ¢2 — ¢1 and ¢3 — ¢1 for a
value of H = 1. Notice the central high peak value. In the
light of this result, it can be argued that the three electrons
have the largest overlap for nearly the same angular position.
See text for details.

¢3 — ¢1 for a value of H = 1. One can appreciate the
fact that electrons tend to be localized around the same
position.

The second way is illustrated by Fig. 10 where we show
|U(p1, P2, p3)|? as a function of angles, ¢ and ¢o for a
value of H = 1. It is plainly clear to argue that, most
likely, one can find the electrons localized in the same
region. Also, the probability density is zero when the
value of the angles are far apart. A similar behavior oc-
curs for H = 0.001 (not displayed). This is the situation
pertaining to three electrons being practically located in
the same ring. The main difference with respect to the
H = 1 case is that the previous regions of zero proba-
bility are now filled with non-negligible ”bumps” which
account for a different structure in the ground state of
the system.

V. CONCLUSIONS

In conclusion, this work deals with some ultra-small
systems consisting of two or three electrons. The elec-
trons are confined to move in circular rings. It is assumed
that the electrons are spinless and that each ring is oc-
cupied by a single electron. We consider various geome-
tries for the setup of rings and this makes this problem
rather challenging. The resulting general quantum prob-
lem cannot be solved exactly in analytical form. There-
fore, in order to obtain the energy and wave function
for the systems under consideration we resort to the use
of the exact numerical diagonalization method. We use
such a framework to calculate the linear entropy for two

FIG. 10. (Color online) Plot of |¥(¢1, ¢2, ¢3)|? (ground state)
as a function of the angles, ¢1 and ¢2 of the electrons in the
two neighboring rings and H = 1. Note that the third angle
¢s runs free and takes all the possible values from 0 to 2.
A similar situation for small H (not shown) does not change
much the overall result. The high probability of finding any
two electrons being close is apparent. See text for details.

and three electron systems while allowing the geometry
of the problem to change between various scenarios. The
exact numerical diagonalization method that we use can
be extended to systems with more than three electrons.
However, the computational costs and the time to com-
plete the calculations grows very fast as the number of
electrons grows. For this reason we limited our calcu-
lations to systems with only two and three electrons in
order to carry out accurate calculations within a reason-
able amount of computer time.

To this effect we implemented accurate exact numerical
diagonalization calculations by using an exact basis trun-
cation method in order to solve the quantum problem.
This approach allows us to obtain the energies, linear en-
tropy and entanglement between the two electrons in the
two rings for rings that have different possible geometric
configurations. The ground state energy and entangle-
ment is numerically calculated for all the configurations
considered. By using the same procedure, we studied
also the model of three electrons each occupying verti-
cally separated identical coaxial rings. The special situa-
tion of three electrons with the three rings being merged
into a single one is also analyzed. We find some surpris-
ing results as far as the localization of the particles is
concerned for such a case. We also observe an interest-
ing discontinuous increase in the entanglement between
pairs as the distance between the rings tends to zero.
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APPENDIX

In this Appendix we present the explicit values of the
expansion coeflicients for the ground state wave function
of three electrons. The values of ¢, , k, for R = Ry =
Rz =1 and H = 1 are shown in Table. III. Those for
H =0.001 are shown in Table. IV.
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k1| k2| k3 Chky ,ka,ks

-4]/ 01| 4 || -0.000131476609
4|l 1| 31| 7.41767774x107°
411221 1.53017668x10°
4|31 7.41767774x107°
-4( 41 0 -0.000131476609
-3||-1]| 4 || 3.09465428x10~°
-3 01| 3| -0.000698293354
=301 2| 0.000480345404
2302 1| 0.000480345404
=31/ 31| 0| -0.000698293354
-3|| 4 ||-1]| 3.09465428x10~°
-21-2| 4 ]| 2.12479165x10~°
-2(|-1]| 3 || 0.000190306552
=210 2| -0.00520647438
-2( 1] 1| 0.00909765478

-2/ 2]/ 0] -0.00520647438
=21/ 3|-1|| 0.000190306552
=21 4 []-2]| 2.12479165x10~°
-1{|-31] 4 || 5.40595983x 10~
-1{|-21| 3| 7.70769349x 10>
-1{|-1]] 2|| 0.00328129173
-1loff1 -0.107830758

-1{1] 0| -0.107830758

-1{/ 2 [|-1]| 0.00328129173
-1/ 3|-2|| 7.70769349x10~°
-11{| 4 [|-3]| 5.40595983x 10~
01-41 4 |-5.26775736x10~°
01-3]| 3| -6.4193788x10~°
01-2]l 2| -0.0011496827

01-1]/ 1| -0.00899787456
offofo 0.976219937

TABLE III. Expansion coefficients, ¢, k,,k; for the ground
state wave function solution for the system of three electrons
when Ri = Ro = R3 = 1 and H = 1. The rest of the
coefficients not shown are obtained by changing the sign of
the set of integers {k; }. They are exactly equal to the ¢, iy ks
shown here. We have used a basis set with N = 8.



k1| k2 | k3 Chky ,ka,ks

-41| 0] 4 |-0.00300389246
-4 11 31 0.00264379189
-4 1 {|-0.00264379189
-4/ 4 || 0 {| 0.00300389246
-3(|-11| 4 || 0.00264382094
-31| 0] 3 ||-0.00815690883
=300 1] 2 || 0.00950729392
=311 2] 1]-0.00950729392
-31| 3 ]| 0 || 0.00815690883
-3|| 4 ][-11|-0.00264382094
-21|-11| 3 || 0.00950731754

-2/ 0] 2 -0.0377186212
-2 2] 0] 0.0377186212
-21| 3 ||-11|-0.00950731754
-1|[-31| 4 ]|-0.00264370077
-1|[-21| 3 ]|-0.00950718227
-1|{0 || 1] 0.406169353
-1| 1] 0]l -0.406169353
-1|| 3 ||-2]| 0.00950718227
-1|| 4 ||-3]| 0.00264370077
0 4 |1 0.00300376913
01-3 3| 0.0081566846
0 2 || 0.0377181052
0 1| -0.406169831

TABLE IV. Expansion coefficients, ¢, kq,k; for the ground
state wave function solution for the system of three electrons
when R1 = R2 = R3 =1 and H = 0.001. This is the scenario
for which the three electrons are practically located in the
same ring. The rest of the coefficients not shown are obtained
by changing the sign of the set of integers {k;} and are exactly
the opposite of the ck, i, k; coeflicients shown here. Notice
the change of structure with respect to the H = 1 case. We
have used a basis set with N = 8.
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