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Systems composed by several multi-layer compounds have been extremely useful in tailoring
different quantum physical properties of nanomaterials. This is very much true when it comes to
semiconductor materials and, in particular, to heterostructures and heterojunctions. The formalism
of a position-dependent effective mass has proved to be a very efficient tool in those cases where
quantum wells emerge either in one or two dimensions. In this work we use a variety of mathematical
theorems as well as numerical computations to study different scenarios pertaining to choices of a
specific piecewise constant effective mass for a particle which causes its energy eigenvalues to reach
an extremum. These results are relevant when it comes to practical technological applications such
as modifying the optical energy gap between the first excited state and the ground state energy of the
system. At the end of our contribution, we also question the physical validity of some approximations
for systems with particles that possess a position-dependent mass especially for those cases in which

the mass distribution is divergent.
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I. INTRODUCTION

The concept of effective mass for electrons in a semi-
conductor material is familiar to many of those working
in physical sciences and/or engineering disciplines. In
solid state physics, the effective mass is a quantity that
is used to simplify band structures by constructing an
analogy to the behavior of a free particle. In the sim-
plest of the cases, the effective mass of an electron in a
semiconductor may be constant and isotropic or constant
and anisotropic [1, 2]. Sometimes, the effective mass of
the electron in a host semiconductor is very different
from its bare mass though all depends on the specific
nature of the semiconducting materials under consider-
ation. For instance, electrons in some III-V compounds
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such as GaAs and InSb have far smaller effective masses
than their counterparts in tetrahedral group IV materi-
als like Si and Ge. This is relevant because the ultimate
speed of integrated circuits depends on the carrier veloc-
ity which is inversely proportional to the effective mass.
Therefore, the low effective mass of electrons in III-V
compounds explains why GaAs and its derivatives are
used in high-bandwidth applications instead of Si.

On the other hand, the study of quantum systems
consisting of electrons with position-dependent effective
masses is much more difficult and has received consid-
erable attention in the recent years [3-5]. In this work
we consider a quantum particle such as an electron that
possesses a position-dependent mass. We study specific
situations that arise when solving the resulting quantum
problem in a one-dimensional (1D) or a two-dimensional
(2D) space. For the 1D case, the position-dependent
mass of the electrons is different in different 1D regions.
The simplest choice considered is a piecewise constant
function for the mass meaning that the function has
different values in different regions but is locally con-
stant within any given region. We assume circular sym-



metry for the corresponding 2D case scenario in order
to keep the problem analytically treatable up to a cer-
tain point. Although most of the ideas concerning the
position-dependent mass concept were conceived in the
domain of solid state physics [6-11], the approach has
naturally spread to other subjects [12-16]. The result-
ing stationary Schrédinger’s equation for a particle with
a non-constant mass provides an interesting and use-
ful model for the description of many physical problems
especially in the case of semiconductor nanostructures.
One of the most popular of these structures is the semi-
conductor quantum well where the Schrodinger’s equa-
tion there is effectively 1D. The 1D finite well poten-
tial [17] can be modeled in such a way as the wave func-
tion is approximately zero at the boundaries. Neverthe-
less, one must be cautious about this idealization and
remark that the approach should not be treated very
strictly because otherwise there would not be any trans-
port and/or tunneling phenomena in such structures.

The amount of studies of quantum systems contain-
ing particles with position-dependent masses has greatly
increased in the last decade due to the widening of
the range of potential technological applications [18-23].
Therefore, it is safe to say that there are several ar-
eas where intensive work is being done. Among them,
we may mention efforts to understand the electronic
properties of semiconductor heterostructures, quantum
wells and quantum dots [24-41], crystal-growth [42],
helium clusters [43], quantum liquids [44, 45] as well
as research in superconductors [46-51]. In particular,
low-dimensional carrier systems in semiconductor het-
erostructures have gained great importance due to the
potential use of their unique properties in applications
ranging from optoelectronics to high speed devices [52—
54]. For example, InGaN/GaN quantum well structures
are of great interest to various technologies because their
band gap can be tailored to cover a wide spectral range
from red to ultraviolet by changing the composition of
In.

The objective of the present work is to determine per-
tinent features that apply to a quantum particle with
position-dependent mass confined in a 1D or 2D struc-
ture with the understanding that such features lead to an
optimal ground state and first excited energy eigenvalue.
We consider a particle with mass that depends on posi-
tion coordinate for the 1D case and a position-dependent
mass with radial symmetry for the 2D case scenario. This
allows us to use a functional form similar to that in 1D
when considering a position-dependent mass in 2D with
the assumption that the mass is a function of the radial
coordinate. In this study, we consider a particle with
position-dependent mass that is piecewise constant. Our
analysis of the results includes various scenarios for such
a mass distribution. The external confinement potential
that we will consider is constant or piecewise contant.
For simplicity, we focus the attention in a single region
and assume that the potential there is zero while infinite
walls are applied at the boundaries. Therefore, the focus

of the current study is the mere form of the position-
dependent mass.

The article is structured as follows: Section II
deals with the mathematical description of the ensuing
Schrodinger’s equation so that the problem is well posed.
Section III describes some specific position-dependent
mass models that are used in the study. Results for 1D
structures are presented in Section IV. Corresponding
results for 2D structures are shown in Section V. Fi-
nally, some brief discussions and conclusions are drawn
in Section VL

II. MATHEMATICAL STATEMENT OF THE
PROBLEM

The 1D stationary Schrodinger’s equation for a particle
with constant mass, for instance, an electron with bare
mass, m, reads:
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where p, is the linear momentum operator along the z
direction, V(z) is an external potential, E is the energy
eigenvalue and v(z) is the wave function. Extension of
Eq.(1) to the case of a quantum particle with position-
dependent mass, m(z) is not a straightforward process
since the linear momentum operator, p, in general, does
not commute with m(z). Quantum mechanical rules re-
quire the kinetic energy operator to be Hermitian. A
very general form of this operator that satisfies such a
condition is:
T = [ (2) 2 m*(2) o m () 4m (2) o () o ()]
(2)

where a + b+ ¢ = —1. The simplest form of the kinetic
energy operator is obtained when a = c=0 and b = —1
leading to the following expression:
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The choice in Eq.(3) is the most common selection
for particles with position-dependent effective masses in
semiconductor theory [55]. Any other more general forms
lead to more challenging differential equations to handle.
More extensive discussions regarding the various forms of
the kinetic energy operator and the ordering ambiguity
can be found in Ref. [56, 57].

In particular, the above two works [56, 57] discuss at
length the problem of a 1D classical and quantum har-
monic oscillator for a particle with position-dependent
mass. For example, Ref. [57] studies the problem of
a classical and quantum 1D harmonic oscillator for a
particle with position-dependent mass by using a super-
symmetric approach that involves properly constructed
operators. The correspondence between the classical and
the quantum Hamiltonians is used to fix the ordering



of the kinetic energy terms in the quantum framework.
Examples of specific position-dependent mass functions
with no singularities and with singularities are also stud-
ied.

If the particle is free but confined by infinite walls in
the 0 < z < L region, the potential in that region may
be written as:

V(iz)=0 ; 0<z<L. (4)
As a result the stationary Schrédinger’s equation describ-
ing a particle with position-dependent effective mass in
a 1D infinite quantum well becomes:
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e CC R R
where the nabla operator in 1D is V = 9/0z.

For simplicity, we assume that atomic units are used.
This way the energy is measured in units of a Hartree
(ke?/ap) where k is Coulomb’s electric constant, e is
the electron’s charge and ap is the Bohr radius. The
distances are measured in units of ag. Use of atomic
units means that one can formally set A = m, = e =
k = 1 and, as a result, the notation for Eq.(5) further
simplifies.

The above problem can be written in a more general
mathematical form as:

¥ [55Ve(2)] = A (=) $(2) in @,
¥(z) =0 on 09 ,

(6)

where Q is a bounded domain in RN, N > 1, 99 is the
boundary of that domain and m(z) is a positive function
that represents the effective position-dependent mass of
the particle. Notice that the eigenvalue A is explicitly
written as a functional of the input mass function, m(z)
for clarity. We employ the usual notation used in mathe-
matics for elliptic differential equations to adhere to the
theorems that we shall apply. Notice that any other form
for the position-dependent mass that is different from
that of Eq.(6) renders the mapping to elliptic theory of
little use. The boundary condition considered in Eq.(6)
is that of Dirichlet (absorbing) type. This would be con-
sistent with the continuity condition of the wave function
with the understanding that the particle is confined by
infinite walls. Quantum rules make this choice for the
wave function mandatory, but do not impose any condi-
tion on the derivative of the wave function. This means
that a Neuman type reflecting boundary condition for
the adequate derivative has to be excluded for such a
case. An interesting discussion with regard to these two
classes of boundary conditions from the perspective of a
classical statistical case involving a fractal-like and finite
system is found in Ref.[58].

This mathematical problem has countably many real
positive eigenvalues with finite multiplicity which diverge
to infinity. These eigenvalues are explicitly computable

only for a handful of domains (such as a disk or a rectan-
gle) when m(z) is constant or piecewise constant. There-
fore, this difficulty motivated the research looking for a
function m(z) within a given class of functions which
can minimize or maximize (leading to an extremum) the
eigenvalues of the problem in Eq.(6). The aim of the
present work is to look for specific values of the piece-
wise constant mass of the electron that can maximize
the ground state energy of the electron for the given
constraints that are imposed in the system. The max-
imization of the ground state energy of an electron with
piecewise constant mass for the 1D system under consid-
eration is a direct result of the application of the vari-
ational principle in the theory of elliptic equations. In
the same vein, and strictly within physical applications,
one could also opt to minimize the ground-state energy.
This would imply appealing to a lower energy value and,
perhaps, a more stable system. A much more interesting
case is that of engineering the difference, A = E1—FEy be-
tween the first pair of neighboring energy levels which is
directly linked to tunneling effects. But this instance is
out of the scope of the present approach for it involves
two energy levels and it departs from the mathematical
theory that supports a single eigenvalue. An important
tool in this direction is given by the following classical
minimum-maximum characterization:

Jo sy IVy(2)* d=

Ey(m) = min
( y£0 2 fQ y(2)3dz
y € Hj ()
and
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Ei (m) = min fQ m(z) Vol
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(8)
Given that the main goal of the current work is an op-
timization study we will employ the above mathemat-
ical tools which are borrowed from the theory of vari-
ational formulation of elliptic partial differential equa-
tions. Details about formalism and rationale behind
these equations can be found in Ref.[59] and references
therein. At this juncture, we remark that the function
m — FEj(m) is decreasing, namely, m; < mg im-
plies Ej (my) > Ej (m2). Therefore, there is no interest
to study the minimization or maximization problem for
Ei (m) in a class of type:

F={melL®(Q):a<m(z)<Pfae inQ}, (9

since the obvious solution will be m(z) = 8 or m(z) = a.
Therefore, in this paper we will be dealing with opti-
mization problems for the eigenvalues of Eq.(6) in the
following class:

e meL®():0<a<m(z) <pae inQ,
Wi Jom(z)dz =c¢ ,
(10)



where the constant ¢ will be given and ”a.e.” means ” al-
most everywhere” .

III. MASS DISTRIBUTION MODELING

The problem of having a position-dependent mass
in the stationary Schrodinger’s equation with Dirichlet
boundary conditions implies that we must impose the
continuity of the wave function between regions. In ad-
dition, one must consider special matching conditions be-
tween the slopes and masses on either sides. For instance,
when a heterojunction is formed by two different semi-
conductors, a quantum well can be fabricated at the in-
terface due to difference in the band structure. In order
to calculate the energy levels within the quantum well,
it is of great importance to understand the mismatch of
the effective mass, m* across the junction. The reported
boundary condition for the envelope function in a quan-
tum well is known as the BenDaniel-Duke boundary con-
dition [60]. The envelope function for such a boundary
condition must be such that ¥(z) and -1 Z(z) must
be continuous on both sides of the interface region.

One way to avoid the numerical burden associated with
these boundary conditions is to have a smooth, continu-
ous and differentiable mass distribution everywhere. In
those cases where we shall deal with step-wise functions,
we employ instead a form of the type tanh[k (z — z)]
where the parameter, k£ (kK = 5000 in our case) is large
enough so that the differences between the obtained
eigenvalues and the ones using the matching conditions
are absolutely negligible. Needless to say, we can also as-
sume a particular form of the position-dependent mass,
m(z) such that it is a continuous and monotonic function
with results that can be obtained even analytically.

Since we will be dealing with a 1D or a 2D prob-
lem with radial symmetry, the four simplest step-wise
functions used in each case are those depicted in Fig. 1.
The 2D quantum problem reduces to a 1D mathematical
problem if the position-dependent mass of the particle
depends only on the radial coordinate, but not the po-
lar angle. Thus, one employs the radial symmetry of the
mass to reduce the problem to a 1D scenario that involves
the 2D radial direction only. An interesting discussion of
how symmetry leads to a dimensional reduction of this
type can be found in Ref.[61].

Since the objective of the work is to compare eigenval-
ues with the case of constant mass, mg = 1, we choose
L = 2 so that all areas in Fig. 1 are equal to 2mg = 2.
The choice of L = 2 is motivated by the fact that results
will be symmetric with respect to the mid-point. We
use standard Numerov and Runge-Kutta methods [62] to
obtain the numerical solution of the resulting stationary
Schrodinger’s differential equations. This means that we
have double-checked the numerical accuracy of the re-
sults that we obtained. These two numerical methods
represent robust tools to solve eigenvalue-eigenfunction
problems of the nature encountered in our work. Both
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FIG. 1. (Color online) Different step-like mass distributions
proposed for either 1D or 2D systems. See text for details.

methods require truncating and discretizing a region of
space that is normally spanned by an infinite dimensional
Hilbert space. The Numerov method is a finite difference
method that calculates the shape of the state by integrat-
ing step-by-step along a grid. The Runge-Kutta method
is an alternative popular choice which has the ability to
increase the accuracy of the calculations at the expense
of more iterations. We employed the fourth-order variant
of the Runge-Kutta method to achieve utmost accuracy.
The configurations studied in Fig. 1 are the simplest non-
trivial instances for piecewise constant mass distribution
functions for which the maximum principle is applied in
the theory of elliptic differential equations. Other in-
stances would render the study unnecessarily complex
and would blur the mapping between mathematical the-
ory and piecewise mass design.

The required parameters are 8/« and zy. This means
that o and S are uniquely defined in terms of §/a and z
(because all areas are the same). Special attention must
be paid to the symmetric cases for zy ranges that are
between 0 and 1, not between 0 and 2. The parametriza-
tion employed is the following: (i) Single jump, a =
2/((2 — 20)B/a + 20) and B =28/a/((2 — 20)B/a + 20);
(ii) Double jump , a = 1/((1 — 29)B/a + 2¢) and 8 =
B/a/((1 — 29)B/a + 2zp). These values ensure that the
area under the mass curves is equal to 2. This corre-
sponds to a constant mass of mg = 1 up to L = 2 either
in 1D or in the 2D case of a mass with with radial sym-
metry that we will study later on.

Armed with these tools, we are now in a position to
solve the problem of a particle with position-dependent
mass either in 1D or 2D with the aim of obtaining those
distributions that optimize the first eigenvalue, Ej as well
as the next eigenvalue in terms of the first one, that is,
E1/Ey. These quantities can be relevant when designing
a semiconductor device for a specific use. This is very



much the case when the mass dependency on position
comes in the form of a stepwise function which can be
achieved experimentally.

One very important point here is to acknowledge that
our discussion for the 2D case relies in a kinetic energy
term of the form f%VﬁV where m(7) = m(r) and
r = |r] > 0. This means that we will investigate the role
of a mass which is dependent only on the radial position.
This assumption will turn out to be crucial throughout
the present work. As we will show, the final results for
several mass distributions in 1D behave differently from
those in 2D due to the radial symmetry existing in 2D.
The ultimate reason has to do mainly with the different
boundary conditions at the origin.

IV. RESULTS FOR 1D SYSTEMS
A. Ground state

The corresponding stationary Schrodinger’s equation
for the 1D system under considerationis given by:

' (2)
m(2)

As we shall see, some distributions in Fig. 1 are optimal
while others are not. When we refer to optimal distribu-
tions we imply those piecewise functions for the position-
dependent mass, m(z) that retrieve a maximum of en-
ergy. For instance, if we consider the case in Fig. 1(a)
which is probably the easiest one to implement experi-
mentally, we obtain some interesting results as depicted
in Fig. 2. The overall distribution is not globally optimal
since, depending on the position zp, one can have locally
maximum or minimum values for the ground state energy
E, for any 8/« ratio. Although we acknowledge that the
distribution is not optimal, it may suffice for all practical
purposes.

Let us now consider other distributions in Fig. 1 that
are optimal in 1D. If the mass is constant near the origin,
which is certainly the case for the distributions of m(z)
in Fig. 1, then we have 9(0) = 0 and ¢'(0) = 1. The case
where the mass is constant returns the usual sin(v/2Ez)
solution with its known zeroes.

In Fig. 3(a) we depict the ensuing ground state, Fy as
a function of the position, zo for several values of 3/a.
The curves ranging from top to bottom have 8/« values
of the form 0.1,0.2,...,1. One can easily appreciate the
result for « = . This case coincides with the constant
mass, mo = 1 where Ey = 72/8 (in atomic units as ex-
plained earlier). What can be immediately appreciated
is that there is indeed a maximal value for E; for each
value of 3/a and a particular position, zg. Therefore,
we have indeed found the maximizing distribution, m(z)
to be of the form of Fig. 3(a). Remarkably enough, the
maximum values Ej and the concomitant values for 5/«
seem to follow a very interesting functional form that

W) - T ey 2 Emez) =0 (1)
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FIG. 2. (Color online) Evolution of the ground state energy,
Eyp as a function of parameter zo for different values of 8/«
(from top to bottom: 0.1,0.2,...,0.9). The corresponding re-
sults belong to the mass distribution in Fig. 1(a) which is not
optimal. However, this structure can be of practical interest.
The horizontal line corresponds to Fy = 72/8 for B/a = 1.
See text for details.

is reminiscent of the Wien’s displacement law for black
body radiation, Ej = %2 (8/a)Y. Actually, this form is
quite accurate for v ~ 0.39. The functional form for this
correspondence is far more complex, but it constitutes a
nice and simple approximation to the optimal value, Ej
with regard to the parameter (5/a).

In Fig. 3(b) we display the ground state, Fy as a func-
tion of the position, zg, for several values of 8/« corre-
sponding to the mass distribution in Fig. 1(c). It is ab-
solutely obvious that mass distributions in Fig. 1(a) and
Fig. 1(c) have very little in common. However, we see
that a similar pattern occurs when discussing the results
from Fig. 2(b), but in this case being a minimum, Ey. We
can clearly see that a minimum occurs along some value
for zo with constant 3/a. The curves, again, have (from
bottom to top) values of 5/« of the form 0.1,0.2,...,1.
The situation, a = 3, gives rise to the case with constant
mass with Ey = 72/8.

When we further analyze the results, we see that the
positions (1 — zp) for the minimizer actually match the
ones for the maximizer. That is, both the ensuing maxi-
mizer and minimizer optimal energies are symmetric with
respect to the value of zy = 1/2. This implies that a com-
mon structure must be shared although it is challenging
to know the precise reason.

When considering other expressions for the mass dis-
tribution as a function of position, one simple functional
form is given by m(z) = a 2P where a is such that the
total mass between 0 and L = 2 is the same as in all
other distributions. The general solution is physical only
in the range between 0 < p < 1 since for p > 1 it diverges
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FIG. 3. (Color online) Fig. 3(a) depicts maximum energies, Ey as a function of zo for several values of 8/a. Fig. 3(b) is
equivalent to Fig. 3(a) but for minimum values, Ey. Fig. 3(c) (with range doubled for the sake of clarity) and Fig. 3(d) display
the results for the 2D mass distributions being maximum and minimum, respectively. The difference between various mass
optimizers in 1D or 2D lies in the diverse concomitant boundary conditions. Horizontal lines correspond to concomitant 1D
and 2D values of Ey for a constant mass, mo = 1. Colors have been added at the endpoints in Fig.3(c) to highlight the almost

linear behavior at the origin. See text for details.

at the origin. In the case of 0 < p < 1, both solutions
1
are of the form z 2" Ji115 (u) where the argument, u of
P

the Bessel function is p—?ﬂ\/ 2aEz"3". We obtain the fi-
nal answer by requesting the state to be zero at L = 2.
However, the eigenvalues become monotonic with m(z)
being maximum at p = 1. It is certainly intriguing to
observe how the convexity of m(z) = a 2P plays a major
role for the existence of a physical solution.

Very few analytic solutions are available, but among
all of them, the most intriguing one is the divergent case
of m(z) = a/z. Obviously, this distribution cannot be
normalized and, furthermore, it has a singularity at the
origin. Nevertheless, it admits an analytic solution of
the form Jo(2v/2aE+/z) which implies E  j3 ,, /L where
Jjo,n are the zeroes of the Bessel function of first kind

and zeroth order. The fact that the mass is infinite at
the origin cannot be explained in terms of the physical
meaning of the actual mass of the particle. Since we are
discussing about a position-dependent mass approach for
a particle in a quantum well, we have to think about the
mass contribution arising as an effective potential term
of the form o ﬁ - Vm after a proper identification of the
previous term in the expansion of the second derivative
in the stationary Schrédinger’s equation.

B. First excited state

It is also of some interest to discuss the first excited
state (the second eigenvalue) for the 1D case. In order to




compare the results, we have solved the same problem as
before but for one more energetic level. We have found
out that the ratio E;/FEy reaches a minimum value ex-
actly at the same position zy where Ej is a maximum.
Furthermore, the concomitant result increases as a/f in-
creases where values of 0.1,0.2,...,1 are being consid-
ered. What is certain is that our computations are in
perfect agreement with theory (see M. Ashbaugh and R.
Benguria [59]) in the sense of finding the ratio F1/Ey < 4.
The equality is attained when o« = 8 which represents the
situation when the mass of the particle becomes a con-
stant.

C. Analytic investigation

The numerical results mentioned above are supported
by some analytical calculations. More precisely, let us
consider the 1D case of the problem in Eq.(6) given in
the following form:

~4 (F5v) =2B(m)y in Q= (0,L), )
$(0)=v(L)=0.

Without loss of generality, we keep the constraints used in
the above numerical investigations and want to look for a
function m belonging to the class F, g2 which can mini-
mize the ground state energy, Ey. To this end, we follow
an idea from S. J. Cox and R. Lipton [63]. We will make
use of an appropriate change of variable which allows us
to transfer the variable into the lower-order term and,
thereafter, use a result from M. G. Krein [64]. More pre-
cisely, let us consider any pair 1 and E of eigenfunctions
and eigenvalues, respectively, for Eq.(12) associated to a
mass, m(z) belonging to the set F, g 2. Since m( ) >0
in the interval, (0,L) the function z — [ m (t)dt is
increasing. Hence, we may consider the following change

of variable
y:/ m(t)dt , (13)
0

and a new function v (y) given as v(y) := u(z) is intro-
duced. Next, let us denote by L; the maximum value
attained by y. That is L; = fOL m(t)dt and by z(y) the
inverse function of z — y (¢) defined on [0, L;]. From

dy/dz = m(z) we see that v satisfies the following equa-
tion:
{ dva_QEm(z) v(y) in Q= (0,L1), (14)
v(0) =v(L1) =0.

By introducing a new function:
1
pYy) = ——
m (z (y))
we immediately note that we have 1/5 < p(y) <1/« and

fo dyffO (2)dz = 2 so that p € Fi/51/a2- It
follows then, due to a theorem of M. G. Krein [64] that:

(15)

1. The unique minimizer of the ground state Fy (m)
in the class F, 3,2 is obtained for the following step-like
mass distribution:

B for z € (0,1 =9),

m*(z):=¢ aforze(1-6,1+9), (16)
B forze (144,2),
where § = a(8—1)/(8 — a).

2. The unique maximizer of the ground state Ey (m)
in the class F, g2 is obtained for the following step-like
mass distribution:

a for z € (0,1 -9),
Bforze (1-46,149), (17)
aforze (1446,2) ,

m* (z) :=

where § = 8(1 — ) /(8 — ).

Finally, we note that Krein’s theorem addresses the
extreme values of each eigenvalue of Eq.(14) under the
assumption that the function, p defined in Eq.(15) is
bounded uniformly from below and above and has a fixed
mean. Therefore, Krein’s theorem may also be used
here to get similar results for higher order eigenvalues
of Eq.(12) where the optimal values of Ej are obtained
for some periodic step-like mass distributions (see M. G.
Krein [64] for more details).

V. RESULTS FOR 2D SYSTEMS

Realistic 2D systems of electrons can be created in
semiconductor heterojunctions and/or heterostructures.
A commonly studied heterojunction is one that combines
GaAs and AlGaAs (GaAs dopped with Al). Both GaAs
and AlGaAs have the same crystal structure, but AlGaAs
has a wider band gap than GaAs. As a result, electrons
originally on the AlGaAs side of the interface can lower
their energy by moving across the interface to the GaAs
side. The net result is the creation of an almost per-
fect 2D system of electrons at the interface [65, 66]. For
this particular example (GaAs/AlGaAs heterojunction),
the effective mass of the electrons is constant (though
much smaller than the bare electron’s mass). However,
one can envision more complicated scenarios in which
the electrons have a more complex position-dependent
mass. A 2D setup that is challenging but still amenable
to an analytical treatment is that of a particle that has
a position-dependent mass which is a function solely of
the radial variable:

m(r) =m(r) , (18)

where r = |F] = /22 + y? in 2D. The corresponding sta-
tionary Schrodinger’s equation for the radial part, R(r)
of the wave function (the angular part just gives rise to



the usual circular functions imposing periodicity) is given
by:

PR+ |r-r T R0y 2 Em) | R =0
(19)

where n = 0,1,2,... are the radial quantum numbers.
If the mass is constant near the origin, as it is the case
for mass distributions in Fig. 1, then we have R(0) =
1 and R'(0) = 0. The previous equation leads to the
usual Bessel functions of the first kind, J,(v2Er) for
m(r) = mg. One notes that the 1D radial differential
equation for R(r) in Eq.(19) was obtained only because
of the assumption of radial symmetry for the position-
dependent mass.

The results in the 2D case scenario are different from
those for the 1D counterpart. We see that Ey depicted in
Fig. 3(a) is different from the one depicted in Fig. 3(c).
The concomitant result is definitely a maximum. The
surprising thing is that it happens for different step-wise
mass distributions as Fig. 1(a) in this case.

However, the minimum case scenario in Fig. 3(d) co-
incides with the one in 1D. The 2D case with mass that
has radial symmetry has a complete different differen-
tial equation, yet the mathematical problem remains the
same, except for the boundary conditions. There is no
mathematical theorem that defines the optimal shape for
the position-dependent mass, m(r). However, what we
can say is that its existence and uniqueness are war-
ranted. The message from Fig. 3 is that there are two
mass distributions that are most likely to be the ones.

As in the 1D case, a position-dependent mass such as
m(r) = a/r allows for an analytic result. The solution
of the radial differential equations turns out to be of the
form, Jy(u) with argument v = 2v/2aFEr which is con-
vergent everywhere. The discussion of the validity of
the usual approach for particles with position-dependent
mass remains open, unless some effective potential anal-
ogy is made.

VI. CONCLUSIONS

We discussed in detail the mathematical implications
of having a particle with position-dependent mass, m(z)
as an optimizer for Ey and F; in 1D. We also consid-
ered a 2D quantum well scenario where we assumed a
radially-dependent mass of the form, m(7) = m(r) where
r = |r] > 0 is the 2D radial variable. In both cases,
the kinetic energy term in the Schrédinger’s equation is
of the form —%vﬁv with the proper interpretation
of the gradient operator in terms of dimensionality of
space. We have obtained analytical and numerical results
supporting specific step-like mass distributions which are
not difficult to implement experimentally. Overall, our
conclusions agree with the analysis of the results found.
Therefore, it is expected that our contribution will shed
some light on phenomena involving semiconductor mate-

rials, for instance, in designing new semiconductor nan-
odevices with properties tailored to meet specific require-
ments.

There are questions to be asked about the present
approach for those mass distributions that give rise to
analytic solutions whereas the functional form for the
position-dependent mass is clearly divergent. In other
words, having a solution that is mathematically regular
at a pole of m(z) is physically questionable especially if
m(z) represents an effective form for the mass. Of course
the effective mass is related to the band structure, but
in any case singularities tend always to be cumbersome.
Therefore, this fact by no means can be acceptable from
a physical point of view unless some constraints are im-
posed within the position-dependent mass approach em-
ployed in the present work.

A few other questions that may rise from the approach
carried out in the present work are listed below:

(i) The spatial dependence of the effective mass of a par-
ticle in a given realistic semiconductor heterostructure is
caused by the spatial dependence of composition of the
material (e.g. the content of Al in a GaAs/AlGaAs het-
erojunction). Crucially, this spatial variation of compo-
sition results in spatial dependence of all the other band-
structure parameters and not only the effective mass. In
the minimal single-band model considered here, it means
that the energy of the minimum of conduction band (as-
suming for concreteness that we are talking about elec-
trons in the conduction band) should be spatially de-
pendent. This would imply that for any realistic semi-
conductor heterostructure there should be an extra term
(written in 1D notation) in the left hand side of Eq.(6)
of the form 2 F,, .y (z) with E,,(.) being the energy of
band minimum at a given position.

(i) The addition of the previous term in the problem
of mass distribution optimization would provide a natu-
ral constraint for the optimization problem. This would
also remove the need for introduction of the constraint,
Jom(2) dz = ¢ which is essential in the connection made
between the quantum problem and the maximum princi-
ple in the theory of elliptic differential equations.

(iii) The envelope function, ¥ (z) is not exactly zero at
the boundaries. However, in most cases the transport oc-
curs in other directions. For example, in most transport
experiments involving quantum wells the current flows in
the plane of the quantum well. Namely, charge carriers
are free to move in the z-y plane under the assumption
that the quantum well confinement is in the z-direction.
However, a more careful treatment of wave functions at
well boundaries is of course needed when tunneling in a
direction perpendicular to the plane of a quantum well
(in the z-direction) is considered.

(iv) An infinite effective mass means that the band is
flat. This can happen (approximately) for realistic band
structures. However, based on our knowledge, it does
not happen for alloys of popular semiconductors that are
used to manufacture heterostructures.

At this juncture, we take the opportunity to remark



that, in our view, the contribution spelled out in this
work represents a brand new approach (perhaps a zero-
th order approach) that connects the quantum prob-
lem of a particle with position-dependent mass with
some well-known results in the theory of elliptic differ-
ential equations. This means that it is possible to re-
late possible experimental applications in the field of
low-dimensional semiconductors with purely mathemati-
cal results as those concerning the maximum principle in
the theory of elliptic equations. It would have been very
nice to compare the present results with corresponding
available results in the literature obtained by other meth-
ods. However, we are not aware of the existence of other
cases in the literature where such a comparison is fea-
sible. To the best of our knowledge, little is found in
the literature for the main case of our study, that is a
particle with piecewise constant effective mass in 1D or
2D. Nevertheless, we are confident on the accuracy of
the present numerical results which, in our opinion, can
be easily reproduced by other researchers if need arises.

As a final note, we point out that in our study, there
is no external potential considered neither in the 1D,
nor in the 2D case except for the presence of the infinite
walls at the boundary. This means that the properties of
the system under consideration are solely determined by
the piecewise constant effective mass of the electron to-
gether with the boundary conditions. This is unlike some
prior studies that we are aware of, for instance, studies
of 1D classical and quantum oscillators with position-
dependent mass [57].
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