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We study a two-dimensional system of interacting electrons confined in equidistant planar circular
rings. The electrons are considered spinless and each of them is localized in one ring. While confined
to such ring orbits, each electron interacts with the remaining ones by means of a standard Coulomb
interaction potential. The classical version of this two-dimensional quantum model can be viewed
as representing a system of electrons orbiting planar equidistant concentric rings where the kinetic
energy may be discarded when one is searching for the lowest possible energy. Within this framework,
the lowest possible energy of the system is the one that minimizes the total Coulomb interaction
energy. This is the equilibrium energy that is numerically determined with high accuracy by using
the simulated annealing method. This process allows us to obtain both the equilibrium energy and
position configuration for different system sizes. The adopted semi-classical approach allows us to
provide reliable approximations for the quantum ground state energy of the corresponding quantum
system. The model considered in this work represents an interesting problem for studies of low-
dimensional systems with echoes that resonate with developments in nanoscience and nanomaterials.
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Energy bounds.

I. INTRODUCTION

Nanoscience is the science of very small objects and materials that have sizes commensurate with those of atoms
and molecules. It is one of the current topics of great interest in all of science, touching on physics, biology, chemistry
as well as materials science and engineering. By advancing our understanding of materials at this scale, scientists
are gaining a better understanding of how various properties emerge. This knowledge can be used to design better
structures with great potential use. Research on nanostructures and nanomaterials has given rise to the development of
novel technologies and has enhanced the progress of nanoscience towards unforeseen scientific frontiers. For instance,
this progress is clearly seen in the world of microelectronics where smaller has always meant more components per
chip, a faster response, lower cost, lower power consumption, and improved device performance. Such trend towards
miniaturization and production of microelectronic chips with dimensions in the nanometer range seem to continue
unabated [1–7].
Within the framework of various nanostructures, the family of two-dimensional (2D) nanomaterials stands out

because of the unique properties associated with their lower dimensionality. Typically, such materials are composed
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of thin layers that may have a thickness of one atomic layer. Differently from their bulk counterparts, these materials
have a lot of atoms on their surface. These atoms behave differently from the atoms in bulk. As a result a 2D
material may behave quite differently from its bulk counterpart. One of the must famous examples of this category is
graphene. As one of the most important 2D materials, graphene has unique properties that result in its widespread
use in various industries. In particular, the behavior of electrons in 2D graphene samples as well as the properties
of electrons in other low-dimensional structures such 2D semiconductor systems has been object of intensive research
for the past few decades. The competition between confinement, spin effects, delocalization and strong Coulomb
repulsion between electrons provides a fertile ground for observation of interesting physical phenomena pertaining to
2D systems of electrons under various conditions [8–21].
It is worth noting that the study of electron correlations in 2D systems has always been one of the main goals

of quantum mechanics and condensed matter physics. Multi-pronged efforts in this direction run in parallel with
new theories and models in this fast-evolving research area [22, 23]. Recently, fabrication of GaAs/AlGaAs double
concentric quantum rings [24, 25] has enabled, for instance, the study of the Aharonov-Bohm effect [26] as well as the
role of Coulomb interaction in magnetic systems [27]. Introduction of minimal models for these intricate quantum
systems is a very desirable feature given the complexity of the phenomena that are observed in these structures.
Quasi-exact quantum approaches have been successfully applied to different geometries of concentric [28] and parallel
[29] quantum rings. However, the quantum treatment becomes very difficult when one decides to carry out ab initio

calculations and the number of particles is not small. For a situation like this, one may resort to a classical description
that may provide very useful insights with less difficulty. For instance, classical studies of 2D systems of interacting
electrons confined by a harmonic potential as well as electrons confined to a single circle [30–33] have shed light on
their peculiar properties. For instance, the Thomson problem [34] has been extensively studied from very different
perspectives in the literature [35–38].
In this work, we introduce a model of interacting electrons confined to a 2D planar system. The system consists

of an arbitrary number of interacting electrons localized in equidistant circular rings. The electrons are considered
spinless and each of them occupies one orbit. The novelty of this model is the fact that the orbits of the electrons
are pre-defined. As a result, no external confinement is required. The ensuing model for the electrons, somehow,
mimics that of a 2D classical atom, but without the presence of an attractive central force. The motivation for
studying such a model from both a quantum and a classical perspective is two-fold: i) we provide a brand new (to our
knowledge) discrete problem to solve; and ii) we shed light on the properties of an untractable quantum problem by
using classical tools. As we shall show in this work, the corresponding equilibrium solutions of the 2D classical model
under consideration are closely related to the quantum problem counterpart of searching for the ground state energy.

The present contribution is divided as follows: In Section II we introduce the classical model to study. In Section III
we define lower and upper bounds to the ground state energy of the quantum model. The main results for the 2D
classical model counterpart as well as related quantum energy bounds are shown in Section IV. An extension of the
classical Coulomb model to include Hooke’s law interaction is discussed in Section V. Finally, some brief conclusions
are drawn in Section VI.

II. CLASSICAL MODEL

We consider a system of N ≥ 2 electrons with charge, −e (e > 0) confined to circular, concentric orbits that are
equally spaced. In other words, the first electron is forced to move in a circular ring with radius, R1 = R, the second
electron moves in a circular orbit with radius R2 = 2R and, similarly, the N -th electron is confined to a ring with
radius RN = NR. A schematic view of the model is shown in Fig. 1. The total Coulomb interaction energy of the
system is written as:

UN =
∑

1≤i<j≤N

k e2√
R2
i +R2

j − 2RiRj cos(φi − φj)
, (1)

where Ri is the radial coordinate of the i-th electron, φi is its azimuthal (polar) angle and k is Coulomb’s electric
constant. The equilibrium of this purely electrostatic system is reached when the total energy reaches a global
minimum. Taking into account the fact that orbits have fixed radii (Ri = i R ; i = 1, 2, . . . N), we write down a more
compact dimensionless object to optimize:

ŨN ≡ UN(
k e2

R

) =
∑

1≤i<j≤N

1√
i2 + j2 − 2 i j cos(φi − φj)

. (2)

For simplicity and for direct comparison of the results for this classical model to the quantum case counterpart, we
assume that the radius of the first ring (namely, parameter R) is R = aB where aB is the Bohr radius. This means
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of Eq.(5) lies in the fact that it states the existence of a minimum (and a maximum) for the classical approach
to the problem. However, the lower bound is not tight enough. If it was tight enough one might have argued
that full optimization of energy can be avoided at least as a first crude step. However, as we found out, one must
minimize the total energy numerically, in our case by means of a simulated annealing procedure, in order to obtain
meaningful accurate results. Therefore, the minimum classical energy for systems with arbitrary values of N is

obtained numerically and is denoted as EminC = min{ŨN}. Results obtained for both the classical and quantum
model counterpart model are discussed in more detail in Section. IV.

III. QUANTUM MODEL - GROUND STATE ENERGY

Let us consider the quantum counterpart to the model introduced earlier. The problem setup assumes that the
interacting electrons confined in equidistant 2D concentric rings are spinless (fully spin polarized). This is a sim-
plification because the electrons possess two possible spin states. In absence of interactions, it is evident that the
wave function of each electron is confined in its respective ring and, thus, there is no overlap. In reality, the effect
of the spin can be negligible in situations that are more realistic than our model as long as the inter-ring distance is
large enough to lead to only a small overlap between the wave functions of respective electrons in neighbouring rings.
The exchange effect, and the effect of tunneling between the rings can be neglected even in realistic systems when
this condition is satisfied. The idea is to prove that there is an energy bound for the quantum case which is also a
bound for the minimum energy of the classical configuration. To this effect, let us look at the quantum-mechanical
problem for N = 2 electrons situated at circular rings with radii, R1 and R2, respectively. The quantum Hamiltonian
is written as:

Ĥ(~R1, ~R2) = − ~
2

2me

(
∇2

1 +∇2
2

)
+

k e2

|~R1 − ~R2|
, (6)

wherr ~Ri = (xi, yi) is the 2D vector position of the i-th electron in the i-th ring, ∇2
i is the 2D Laplacian operator, me

is electron’s mass and ~ is the reduced Planck’s constant.
As stated earlier, we use atomic units in this work. The stationary Schrödinger equation in atomic units reads:

− 1

2R2
1

∂2

∂φ21
Ψ(φ1, φ2)−

1

2R2
2

∂2

∂φ22
Ψ(φ1, φ2)

+
1

d(φ1, φ2)
Ψ(φ1, φ2) = EΨ(φ1, φ2) , (7)

where φ1,2 are the azimuthal (polar) angles and d(φ1, φ2) = |~R1 − ~R2| =
√
R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2) is the

separation distance between the pair of electrons localized in two different rings, R1 and R2, respectively. One way
to solve Eq.(7) by preserving the periodicity is to span the unknown solution, Ψ(φ1, φ2) in the basis functions of two
non-interacting particles, one in each ring, and then truncate the expansion to N + 1 terms (N even):

Ψ(φ1, φ2) =

N

2∑

m=−N

2

N

2∑

n=−N

2

cm,n
eimφ1ei n φ2

2π
√
R1R2

. (8)

By substituting Eq.(8) into Eq.(7), multiplying both sides by 1
2π

√
R1R2

e−ikφ1e−ilφ2 and integrating over {φ1, φ2} one

obtains:
N

2∑

k=−N

2

N

2∑

l=−N

2

[(
m2

2R2
1

+
n2

2R2
2

)
δk,mδl,n + 〈kl|1

d
|mn〉

−E δk,mδl,n
]
ck,l = 0 , (9)

for m,n = −N
2 , ..,

N
2 . Let us denote as Hklmn the term in the first line in Eq.(9). Solving Eq.(9) for ck,l is tantamount

to providing an approximate solution to Eq.(7) for the ground or excited states with an accuracy that increases as
the number of terms in the basis set increases. The matrix element for the Coulomb interaction term in Eq.(9) reads
explicitly as:

〈kl|1
d
|mn〉 =

1

4π2

∫ 2π

0

∫ 2π

0

dφ1dφ2
ei(m−k)φ1ei(n−l)φ2

d(φ1, φ2)
. (10)
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The set of Eq.(9) for ck,l does not read yet as a standard eigenvalue-eigenstate problem. In order to do so, me must

tranform Hklmn −→ Aij and ck,l −→ gj , with i, j = 1, .., (N + 1)2 using i = (m + N
2 )(N + 1) + (n + N

2 ) + 1 and

j = (k + N
2 )(N + 1) + (l + N

2 ) + 1 ∀ (k, l,m, n). With this transformation, we have the usual eigenvalue-eigenvector
problem:

(N+1)2∑

j=1

(
Aij − E δij

)
gj = 0, (11)

where i = 1, 2, .., (N + 1)2. The eigenvalues will give the energy spectrum of the system. In order to find the
eigenvectors, the inverse transformation gj −→ ck,l can be proved to be unique. In other words, given j and N , we
can find a sole couple (k, l).
Now, since we are looking for a bound to the quantum ground state energy, the kinetic energy terms in Eq.(9) can be

dropped (since they are always non-negative). The Coulomb energy term is bounded by virtue of the Cauchy-Schwarz
inequality for integrals:

〈kl|1
d
|mn〉 ≤ EboundQM ≡ 1

4π2

∫ 2π

0

∫ 2π

0

dφ1dφ2
1

d(φ1, φ2)
. (12)

Thus, the eigenvalue problem in Eq.(9) gives rise to a total energy which is larger than the exact potential energy
which we denote as E0

QM . This is easily understood by recalling that the total energy includes non-negative kinetic
energy terms. In other words, for the general N -particle problem, we can write that:

E0
QM < EboundQM =

∑

1≤i<j≤N

1

4π2

∫ 2π

0

∫ 2π

0

dφidφj
1

d(φi, φj)
. (13)

The classical equilibrium energy for N electrons in concentric rings, EminC is also bound by EboundQM because the
latter is nothing more but the average over all inverses of inter-particle distances. Since the minimum classical energy
configuration is always less than the average, we have Emin

C < EboundQM . For the exactly tractable case of two electrons

(R1 = aB and R2 = 2 aB), we have Emin
C = 1

3 = 0.333 and EboundQM = 0.536 while E0
QM = 0.483. The exact proof

that the classical minimum energy is smaller than its exact quantum counterpart (Emin
C < E0

QM ) is a little bit more
involved, but it has been extensively checked numerically. The following lemma gives a sense of how the proof is
obtained for the case of a one-particle quantum problem.

Lemma: The classical (lowest) equilibrium energy is always a lower bound for the corresponding quantum energy of a
system. To this effect, let us assume that we have a quantum system described by the quantum Hamiltonian (written
in atomic units):

Ĥ = −1

2
∆ + V (x) , (14)

where ∆ is a d-dimensional Laplace operator on R
d space and V (x) is a real valued potential with x ∈ R

d. Assume
that V (x) is bounded below and that a minimum exists:

Vmin = min
x∈Rd

V (x) . (15)

For all normalized wave functions, ψ one has:

〈ψ, Ĥψ〉 ≥ Vmin . (16)

To be more technical and consistent with the quantum rules, we must say that the wave function, ψ should be in
the domain of Ĥ or the quadratic form domain of Ĥ (where the energy of the system is finite) and the operator Ĥ

should be self-adjoint. Here 〈f, g〉 =
∫
f(x)g(x) dx is the usual scalar product on the Hilbert space L2(Rd) where the

overline symbol means complex conjugation.

Proof : We have:

〈ψ, Ĥψ〉 = 〈ψ,−1

2
∆ψ〉
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+〈ψ, V ψ〉 = 1

2

∫
|∇ψ(x)|2 dx

+

∫
V (x)|ψ(x)|2 dx

≥
∫
V (x)|ψ(x)|2 dx . (17)

To obtain the above results we used the fact that the kinetic energy term is positive. At this juncture, we point out
that |ψ(x)|2 is non-negative. Therefore, for all x ∈ R

d, we have the following lower bound:

V (x)|ψ(x)|2 ≥ Vmin|ψ(x)|2 , (18)

which can be easily checked by recalling that V (x) ≥ Vmin. By using the fact that Vmin is a constant, we have:
∫
V (x)|ψ(x)|2 dx ≥

∫
Vmin|ψ(x)|2 dx

= Vmin

∫
|ψ(x)|2 dx = Vmin , (19)

since we are assuming that ψ is properly normalized. So, for any normalized quantum wave function we have:

〈ψ, Ĥψ〉 ≥ Vmin . (20)

The Rayleigh-Ritz principle now says that the ground state energy of the spectrum is given by:

E0 = min
ψ∈L2(Rd),‖ψ‖2=1

〈ψ, Ĥψ〉 ≥ Vmin , (21)

which concludes the proof. One can make sense of the main conclusion of this lemma by intuitively appealing to the
role played by Heisenberg’s uncertainty principle for such a problem.

IV. RESULTS

A. Bounds to classical energy

Finding the minimum value, Emin
C of the quantity in Eq.(2) is a very difficult global minimization problem. However,

this goal may be achieved numerically by using tools originating from molecular dynamics simulations. In our case,
we employ the well-known simulated annealing approach [43]. This robust numerical recipe contains a mechanism
that allows for numerical searches to eventually escape local minima and, thus, enables one to identify the global
energy minimum in a reliable manner.
Results for the minimum total classical energies and configurations for systems with N = 3−20 electrons are shown

in Table. I and Fig. 2, respectively. One notices that the electrons seem to spread homogeneously in the plane, but,
while doing so, they preserve some parallel alignments to the diameter of the concentric circumferences.

N Emin
C N Emin

C

3 0.8805 12 8.16254

4 1.5266 13 9.06952

5 2.2442 14 10.0028

6 3.0176 15 10.9343

7 3.8100 16 11.8688

8 4.6470 17 12.8314

9 5.5058 18 13.7806

10 6.3744 19 14.7164

11 7.2543 20 15.7123

TABLE I. Minimum total classical energy, Emin
C for a given number of electrons. The energy is given in atomic units of k e2/aB

where R = aB is assumed. See text for details.
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FIG. 4. (Color online) Energy per particle, Ebound
QM /N as a function of N (upper curve). The classical counterpart Emin

C /N is

also shown for comparison (lower curve). The energy is given in atomic units of k e2/aB where R = aB is assumed. See text
for details.

we stopped at N = 20 since the tendency is more or less clear. This way we also avoided the pitfalls of additional
costly simulations in which we are limited in accuracy by our computational power.

The bound energy curve for the quantum scenario does not correspond to a logarithm function. It is similar to the
bound for classic equilibrium energies, namely, ln 2 + lnN

4N , plus some additive terms. This fact would imply that, for
large N , the chemical potential for either the classical, or the quantum system would be independent of N . In any
case, an important result of the present work is the observation that the quantum energy of the system lies between
two given precise bounds. This means that we have encountered a quantum system that allows the identification of
distinct upper and lower bounds to the ground state energy.

V. MOSHINSKY-LIKE SYSTEMS WITH COULOMB INTERACTION

The generalized Moshinsky system (or atom) [44] consists of N harmonically interacting particles confined by an
overall external isotropic harmonic potential. Let us now consider a modification of the previous 2D planar ring model.

The modification concerns the addition of a harmonic oscillator coupling between all electrons, me

2 ω
2(~Ri− ~Rj)

2 where
me is electron’s mass and ω is an angular frequency. This harmonic oscillator coupling is in addition to the already
present Coulomb interaction term. No external confinement is added since the electrons are kept confined in fixed
rings in both the original or presently modified model. The quantum treatment of this modified problem is only
partially possible for two electrons [44]. Therefore, let’s deal here with lower energy bounds to the quantum case by
employing classical tools. For such a situation, the total energy of the system would be written as:

UN =
∑

1≤i<j≤N

(
k e2

dij
+
me

2
ω2 d2ij

)
, (22)
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where dij = R
√
i2 + j2 − 2 i j cos(φi − φj) is the usual pair separation distance between pairs of electrons. Let us

write the total energy of the system in atomic units:

ŨN =
∑

1≤i<j≤N

(
1

dij
+

1

2
Ω2 d2ij

)
, (23)

where Ω is some rescaled dimensionless angular frequency. The rest is under the same conditions as before, namely,
it is assumed that we have N electrons confined to circular, concentric rings that are equally spaced (R1 = R,R2 =
2R, .., RN = N R) with only one electron per ring and we take R = aB where aB is the Bohr radius. Equilibrium is
reached when the quantity in Eq.(23) has a global minimum.

There are two opposite regimes to consider depending of the strength of Ω. When Ω is small enough, only a repulsive
regime dominates. When Ω is big enough, all electrons seem to align along the same direction, having a total exact
energy:

EΩ
N =

1

2
Ω2R2 N

2(N2 − 1)

12
+

1

R
(1 +N [H(N − 1)− 1]) . (24)

In order to gauge the behavior of the minimum equilibrium energy as a function of frequency Ω, we performed
numerical simulations using the simulated annealing approach to find the minimum energy corresponding to the
expression in Eq.(23). We express this quantity as a ratio to EΩ

N and study its dependence as a function of Ω. For
such a choice, a value close to one indicates that the full harmonic oscillator regime has become dominant over the
repulsive Coulomb term. The results of the calculations are depicted in Fig. 5 for N = 5, 10 and 15 electrons. Note

  

Ũ
N
/
E
NΩ

Ω

FIG. 5. (Color online) Equilibrium energies as ŨN/EΩ

N versus Ω for N = 5 (upper curve), N = 10 (middle curve) and N = 15
(lower curve). The change of regime occurs quite abruptly. See text for details.

that as Ω → 0, the energies tend to the electrostatic equilibrium values. Also, notice how sudden the change is. Thus,
for the case of this Moshinsky-like 2D classical system, the concomitant equilibrium values are very sensitive to the
oscillator frequency. The question of what is any upper energy bound for the total or potential energy in the quantum
setting of this case is quite intricate. The argument using Cauchy-Schwarz inequality may not hold in this scenario.
In the classical case, it looks like Eq.(24) represents an upper bound (when all particles are aligned along the same
direction). However, in the quantum setting, we do not think that there is such an upper limit that can be easily
identifiable.

VI. CONCLUSIONS

To summarize, in this work we considered a 2D system of interacting electrons confined in equidistant planar
circular rings. The electrons are considered spinless. A constraint is set pertaining to the localization of electrons
in specific rings by mandating that one ring must be occupied by a single electron. While being confined to such
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rings, the electrons interact with each other via the standard Coulomb interaction potential. Both the quantum and
the classical version of this model are considered. The intricacies of quantum mechanics and the presence of electron
correlations does not permit analytic results. Therefore, a key idea of this work is to extract valuable information for
the system by looking at energy bounds from both a quantum and a classical perspective. For example, in a quantum
scenario, one may discard the quantum kinetic energy term when looking for lower energy bounds. At this juncture it
is worth to discuss possible realistic settings where the present model both the pure repulsive Coulomb interaction and
the repulsive-attractive situation (with the added harmonic confinement that induces localization) can be useful. The
discussed ring model is definitely useful for modelling a nanowire or a line dislocation since it can be made periodic in
one-dimension (1D) only. Furthermore, a collection of rings could be related to an array of 1D crystals. It is known
that dealing with a classical counterpart to a 2D quantum model can be extremely useful [45]. In the present case,
this approach leads to a global minimization problem of the energy of the system that can be handled numerically
by using the simulated annealing method. By using numerical simulations we were able to obtain accurately the
equilibrium position configuration and energy of the system. Then, we compared such classical energy bounds to
the quantum case counterpart. The analogy between the classical discrete problem and its quantum counterpart is
discussed from the perspective of energy bounds. Along these lines, we obtained analytic expressions for the energy
bounds for both classical and quantum models. Furthermore, we also studied the concomitant behavior of the system
as a function of the number of electrons. We believe that the correspondence found between equilibrium energies in
classical systems and quantum energy bounds may open the door to studying complex quantum many-body systems
by means of simpler tools in a way that leads to novel ideas.
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