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We study a two-dimensional system of interacting electrons confined in equidistant planar circular
rings. The electrons are considered spinless and each of them is localized in one ring. While confined
to such ring orbits, each electron interacts with the remaining ones by means of a standard Coulomb
interaction potential. The classical version of this two-dimensional quantum model can be viewed
as representing a system of electrons orbiting planar equidistant concentric rings where the kinetic
energy may be discarded when one is searching for the lowest possible energy. Within this framework,
the lowest possible energy of the system is the one that minimizes the total Coulomb interaction
energy. This is the equilibrium energy that is numerically determined with high accuracy by using
the simulated annealing method. This process allows us to obtain both the equilibrium energy and
position configuration for different system sizes. The adopted semi-classical approach allows us to
provide reliable approximations for the quantum ground state energy of the corresponding quantum
system. The model considered in this work represents an interesting problem for studies of low-
dimensional systems with echoes that resonate with developments in nanoscience and nanomaterials.

Keywords: Nanoscience; Nanotechnology; Quantum systems; Concentric rings; Semi-classical approximation;
Energy bounds.

I. INTRODUCTION

Nanoscience is the science of very small objects and materials that have sizes commensurate with those of atoms
and molecules. It is one of the current topics of great interest in all of science, touching on physics, biology, chemistry
as well as materials science and engineering. By advancing our understanding of materials at this scale, scientists
are gaining a better understanding of how various properties emerge. This knowledge can be used to design better
structures with great potential use. Research on nanostructures and nanomaterials has given rise to the development of
novel technologies and has enhanced the progress of nanoscience towards unforeseen scientific frontiers. For instance,
this progress is clearly seen in the world of microelectronics where smaller has always meant more components per
chip, a faster response, lower cost, lower power consumption, and improved device performance. Such trend towards
miniaturization and production of microelectronic chips with dimensions in the nanometer range seem to continue
unabated [1-7].

Within the framework of various nanostructures, the family of two-dimensional (2D) nanomaterials stands out
because of the unique properties associated with their lower dimensionality. Typically, such materials are composed
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of thin layers that may have a thickness of one atomic layer. Differently from their bulk counterparts, these materials
have a lot of atoms on their surface. These atoms behave differently from the atoms in bulk. As a result a 2D
material may behave quite differently from its bulk counterpart. One of the must famous examples of this category is
graphene. As one of the most important 2D materials, graphene has unique properties that result in its widespread
use in various industries. In particular, the behavior of electrons in 2D graphene samples as well as the properties
of electrons in other low-dimensional structures such 2D semiconductor systems has been object of intensive research
for the past few decades. The competition between confinement, spin effects, delocalization and strong Coulomb
repulsion between electrons provides a fertile ground for observation of interesting physical phenomena pertaining to
2D systems of electrons under various conditions [8-21].

It is worth noting that the study of electron correlations in 2D systems has always been one of the main goals
of quantum mechanics and condensed matter physics. Multi-pronged efforts in this direction run in parallel with
new theories and models in this fast-evolving research area [22, 23]. Recently, fabrication of GaAs/AlGaAs double
concentric quantum rings [24, 25] has enabled, for instance, the study of the Aharonov-Bohm effect [26] as well as the
role of Coulomb interaction in magnetic systems [27]. Introduction of minimal models for these intricate quantum
systems is a very desirable feature given the complexity of the phenomena that are observed in these structures.
Quasi-exact quantum approaches have been successfully applied to different geometries of concentric [28] and parallel
[29] quantum rings. However, the quantum treatment becomes very difficult when one decides to carry out ab initio
calculations and the number of particles is not small. For a situation like this, one may resort to a classical description
that may provide very useful insights with less difficulty. For instance, classical studies of 2D systems of interacting
electrons confined by a harmonic potential as well as electrons confined to a single circle [30-33] have shed light on
their peculiar properties. For instance, the Thomson problem [34] has been extensively studied from very different
perspectives in the literature [35-38].

In this work, we introduce a model of interacting electrons confined to a 2D planar system. The system consists
of an arbitrary number of interacting electrons localized in equidistant circular rings. The electrons are considered
spinless and each of them occupies one orbit. The novelty of this model is the fact that the orbits of the electrons
are pre-defined. As a result, no external confinement is required. The ensuing model for the electrons, somehow,
mimics that of a 2D classical atom, but without the presence of an attractive central force. The motivation for
studying such a model from both a quantum and a classical perspective is two-fold: i) we provide a brand new (to our
knowledge) discrete problem to solve; and ii) we shed light on the properties of an untractable quantum problem by
using classical tools. As we shall show in this work, the corresponding equilibrium solutions of the 2D classical model
under consideration are closely related to the quantum problem counterpart of searching for the ground state energy.

The present contribution is divided as follows: In Section II we introduce the classical model to study. In Section IIT
we define lower and upper bounds to the ground state energy of the quantum model. The main results for the 2D
classical model counterpart as well as related quantum energy bounds are shown in Section IV. An extension of the
classical Coulomb model to include Hooke’s law interaction is discussed in Section V. Finally, some brief conclusions
are drawn in Section VI.

II. CLASSICAL MODEL

We consider a system of N > 2 electrons with charge, —e (e > 0) confined to circular, concentric orbits that are
equally spaced. In other words, the first electron is forced to move in a circular ring with radius, R; = R, the second
electron moves in a circular orbit with radius Ry = 2R and, similarly, the N-th electron is confined to a ring with
radius Ry = NR. A schematic view of the model is shown in Fig. 1. The total Coulomb interaction energy of the
system is written as:
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where R; is the radial coordinate of the i-th electron, ¢; is its azimuthal (polar) angle and k is Coulomb’s electric
constant. The equilibrium of this purely electrostatic system is reached when the total energy reaches a global
minimum. Taking into account the fact that orbits have fixed radii (R; =i R ;i=1,2,...N), we write down a more
compact dimensionless object to optimize:
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For simplicity and for direct comparison of the results for this classical model to the quantum case counterpart, we
assume that the radius of the first ring (namely, parameter R) is R = ap where ap is the Bohr radius. This means




FIG. 1. (Color online) Relative position of the rings, each one containing one electron. See text for details.

that the chosen unit of energy is the atomic unit, ke?/ap (a Hartree) which is a commonly used unit in quantum
atomic physics. As matter of fact, atomic units (with ap as unit of length and ke?/ap as unit of energy) will be
used for the quantum counterpart case. The complexity of having to deal with the expression in Eq.(2) lies in the
fact that the electrons are not positioned on the same ring. Nevertheless, there are certain bounds that we can obtain
by looking at the functional form of Eq.(2) even before embarking on the minimization process of the total energy
function. At first, we notice that:
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For the case of two electrons, we have % < [72 < 1. The equilibrium solution in this case is trivial and coincides with

the lower energy bound. The case of three particles reads as: % + % +% < (73 <1+ % + 1. This result suggests that the
optimal solution of Eq.(2) should be found within the [0.783,2.5] range. The actual minimum energy value that we
found numerically (0.8805) is quite close to the lower energy bound (0.783). Thus, we reasonably expect the latter to
be of major relevance as we proceed further with increasing the values of N. The lower energy bound does not seem
to correspond to any easily identifiable physical configuration. On the other hand, the upper energy bound represents
the maximum possible value of the quantity in Eq.(2). This value corresponds to having all electrons aligned in the
same direction similar to the case of one-dimensional ionic crystals [39, 40].

In addition to such observations for small values of IV, we also point out that the energy bounds are related to the
Harmonic series, Hy; truncated at some value M. Therefore, let us derive explicit bounds for the optimal energies of
Eq.(2) via Eq.(3) and study the corresponding asymptotic behavior for large N. It turns out that the lower energy
bound can be written in terms of the digamma function, ¢¥(N) = H(N — 1) —~ with H(N — 1) being the summation
of the Harmonic series up to N — 1 terms and ~ the Euler constant. After some algebra, the lower energy bound in
Eq.(3) is obtained ezactly. The upper energy bound is found to be exact, as well. The final result reads:

1 1
NH(2N —-1)—(N+1)H(N +1)+ ZH<N+ 5)
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At this juncture, let us divide by N all terms in the above inequality taking into account that H(N) = In N+~v4+O(1/N)
and that N > 1. Under these conditions, we have:

In N ﬁN
In2 + — — <InN.
n2+ < 3 < (5)
This means that, whatever the minimum of the classical energy is, the energy per particle will be no greater than a

logarithmic function, In N, a common result for planar structures in electrostatics studies [41, 42]. The significance
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of Eq.(5) lies in the fact that it states the existence of a minimum (and a maximum) for the classical approach
to the problem. However, the lower bound is not tight enough. If it was tight enough one might have argued
that full optimization of energy can be avoided at least as a first crude step. However, as we found out, one must
minimize the total energy numerically, in our case by means of a simulated annealing procedure, in order to obtain
meaningful accurate results. Therefore, the minimum classical energy for systems with arbitrary values of N is
obtained numerically and is denoted as EZ"" = min{Ux}. Results obtained for both the classical and quantum
model counterpart model are discussed in more detail in Section. IV.

III. QUANTUM MODEL - GROUND STATE ENERGY

Let us consider the quantum counterpart to the model introduced earlier. The problem setup assumes that the
interacting electrons confined in equidistant 2D concentric rings are spinless (fully spin polarized). This is a sim-
plification because the electrons possess two possible spin states. In absence of interactions, it is evident that the
wave function of each electron is confined in its respective ring and, thus, there is no overlap. In reality, the effect
of the spin can be negligible in situations that are more realistic than our model as long as the inter-ring distance is
large enough to lead to only a small overlap between the wave functions of respective electrons in neighbouring rings.
The exchange effect, and the effect of tunneling between the rings can be neglected even in realistic systems when
this condition is satisfied. The idea is to prove that there is an energy bound for the quantum case which is also a
bound for the minimum energy of the classical configuration. To this effect, let us look at the quantum-mechanical
problem for NV = 2 electrons situated at circular rings with radii, R; and Rs, respectively. The quantum Hamiltonian
is written as:

. K2 9 9 ke?
H(Ry, Ry) B (VIi+V3) + B Rl (6)

wherr féi = (x;,y;) is the 2D vector position of the i-th electron in the i-th ring, V? is the 2D Laplacian operator, m,
is electron’s mass and h is the reduced Planck’s constant.
As stated earlier, we use atomic units in this work. The stationary Schrodinger equation in atomic units reads:
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where ¢, 5 are the azimuthal (polar) angles and d(¢1,¢2) = |Ry — Ra| = /R2 + R2 — 2 Ry Ry cos(¢y — ¢2) is the
separation distance between the pair of electrons localized in two different rings, Ry and Ra, respectively. One way
to solve Eq.(7) by preserving the periodicity is to span the unknown solution, ¥(¢1, ¢2) in the basis functions of two
non-interacting particles, one in each ring, and then truncate the expansion to N + 1 terms (N even):
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By substituting Eq.(8) into Eq.(7), multiplying both sides by \/éie_“mle_iw)2 and integrating over {¢1, ¢2} one

27 R1R2
obtains:
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form,n = f%, . % Let us denote as Hyimy, the term in the first line in Eq.(9). Solving Eq.(9) for ¢k is tantamount

to providing an approximate solution to Eq.(7) for the ground or excited states with an accuracy that increases as
the number of terms in the basis set increases. The matrix element for the Coulomb interaction term in Eq.(9) reads
explicitly as:
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The set of Eq.(9) for ¢x,; does not read yet as a standard eigenvalue-eigenstate problem. In order to do so, me must
tranform Hyjmn, — Ajj and c¢xy — g5, with 4,5 = 1,.,(N+1)? using i = (m+ §)(N+1)+ (n+ &) + 1 and

=(k+5)N+1)+(1+%)+1V(kI,m,n). With this transformation, we have the usual eigenvalue-eigenvector
problem:

(N+1)?

> (A —Edy)g; =0, (11)

Jj=1

where i = 1,2,..,(IN 4+ 1)2. The eigenvalues will give the energy spectrum of the system. In order to find the
eigenvectors, the inverse transformation g; — cx,; can be proved to be unique. In other words, given j and N, we
can find a sole couple (k,1).

Now, since we are looking for a bound to the quantum ground state energy, the kinetic energy terms in Eq.(9) can be
dropped (since they are always non-negative). The Coulomb energy term is bounded by virtue of the Cauchy-Schwarz
inequality for integrals:

_ b
d<¢17 ¢2) .

Thus, the eigenvalue problem in Eq.(9) gives rise to a total energy which is larger than the exact potential energy
which we denote as E% ar- This is easily understood by recalling that the total energy includes non-negative kinetic
energy terms. In other words, for the general N-particle problem, we can write that:
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The classical equilibrium energy for N electrons in concentric rings, EZ™ is also bound by Egﬁj["d because the
latter is nothing more but the average over all inverses of inter-particle dlstances. Since the minimum classical energy
configuration is always less than the average, we have EZI" < Eg’ﬁbd. For the exactly tractable case of two electrons
(R1 = ap and Ry = 2ap), we have E(‘f}in = % = 0.333 and Eg"ﬂ[”d = 0.536 while E%M = 0.483. The exact proof
that the classical minimum energy is smaller than its exact quantum counterpart (Egin < E% ) 1s a little bit more
involved, but it has been extensively checked numerically. The following lemma gives a sense of how the proof is
obtained for the case of a one-particle quantum problem.

Lemma: The classical (lowest) equilibrium energy is always a lower bound for the corresponding quantum energy of a
system. To this effect, let us assume that we have a quantum system described by the quantum Hamiltonian (written
in atomic units):

i= —%A—&—V(m), (14)

where A is a d-dimensional Laplace operator on RY space and V() is a real valued potential with z € R?. Assume
that V(z) is bounded below and that a minimum exists:

Vinin = min V(z) . 15
min (x) (15)
For all normalized wave functions, 1 one has:

To be more technical and consistent with the quantum rules, we must say that the wave function, ¢ should be in
the domain of H or the quadratic form domain of H (where the energy of the system is finite) and the operator H

should be self-adjoint. Here (f,g) = [ f x) dz is the usual scalar product on the Hilbert space L?(R?) where the
overline symbol means complex conjugatlon

Proof: We have:

(b, E9) = (5, ~ 3 A0)
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To obtain the above results we used the fact that the kinetic energy term is positive. At this juncture, we point out
that |(x)|? is non-negative. Therefore, for all € R?, we have the following lower bound:

V(@)[$(@)? = Vinin| (@), (18)

which can be easily checked by recalling that V(x) > V,,i,. By using the fact that V,,;,, is a constant, we have:

[V@ls@P s> [Vaalota) iz
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since we are assuming that ¢ is properly normalized. So, for any normalized quantum wave function we have:

The Rayleigh-Ritz principle now says that the ground state energy of the spectrum is given by:

Ey = min CHYY > Viin 21
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which concludes the proof. One can make sense of the main conclusion of this lemma by intuitively appealing to the
role played by Heisenberg’s uncertainty principle for such a problem.

IV. RESULTS
A. Bounds to classical energy

Finding the minimum value, EZ'™ of the quantity in Eq.(2) is a very difficult global minimization problem. However,
this goal may be achieved numerlcally by using tools originating from molecular dynamics simulations. In our case,
we employ the well-known simulated annealing approach [43]. This robust numerical recipe contains a mechanism
that allows for numerical searches to eventually escape local minima and, thus, enables one to identify the global
energy minimum in a reliable manner.

Results for the minimum total classical energies and configurations for systems with N = 3 — 20 electrons are shown
in Table. I and Fig. 2, respectively. One notices that the electrons seem to spread homogeneously in the plane, but,
while doing so, they preserve some parallel alignments to the diameter of the concentric circumferences.

Emn [N|| Epin
0.8805(12(|8.16254
1.5266(13(/9.06952
2.2442114(10.0028
3.0176]15((10.9343
3.8100|16|(11.8688
4.6470|17//12.8314
5.5058|18](13.7806
6.3744(19|/14.7164
7.2543(20(/15.7123
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TABLE I. Minimum total classical energy, EZ" for a given number of electrons. The energy is given in atomic units of k e?/ap
where R = ap is assumed. See text for details.
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FIG. 2. (Color online) Equilibrium configuration for systems with N = 3 — 20 electrons. Distances are given in atomic units
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FIG. 3. (Color online) Minimum classical energy per particle E&™ /N (upper curve) as a function of N for systems ranging
from N = 2 to N = 20 electrons. Its lower bound from Eq.(5) is plotted as the lower curve for comparison. Note that the lower
curve steadily tends to In2 as N increases. The energy is given in atomic units of ke?/ap where R = ap is assumed. See text
for details.

Fig. 3 depicts the evolution of the classical energy per particle, EZ1 /N as a function of N for N = 2 — 20 electrons.
It is worth mentioning that we observed that the minimum energy per particle, E(‘}lin /N obtained from the annealing
simulations is closely followed from below by the energy bound, In2 + % whereas the upper bound is not tight.
Thus, it seems that the behavior of the total energy, E}’}i“ is to be found between N In2+ % and NInN. A stability
analysis performed via Ay = Eny1 + En—1 — 2 En does not unveil any special packing or magic number, at least
for the system sizes currently considered. We also remark that finding the global energy minimum for this model
turned out to be a very challenging simulation problem because of the peculiar constraints imposed in the model.
This explains our computational limitations of not being able to go to very high values of N in our simulations

B. Bounds to quantum energy

In view of the previous results that we found, it is reasonable to expect that the quantum ground state of N electrons
each in its respective fixed ring may be well described by a many-electron wave function that has peaks around the
equilibrium positions of the classical counterpart system. In order to find the quantum energy bound, Eé’?"](j[”d defined
in Eq.(13), we calculate the mean value of the inverse distance, m for all the N (N — 1)/2 possible pairs of

electrons. The resulting quantum energies per particle, Egoj}j["d /N are depicted in Fig. 4 as a function of N (upper

curve). The classical equilibrium positions are obtained by the simulated annealing approach. While it is possible
to find the global energy minimum for systems with N > 20 electrons, we found out that this process comes at a
huge computational cost. The constraints imposed in our model makes the calculation of the global energy minimum
difficult even for the case of N = 3 electrons (the case of N = 2 electrons is the only where we can identify an
analytical result). Since we wanted to display each of the individual equilibrium positions, a sort of Mendeleev table,
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FIG. 4. (Color online) Energy per particle, Egyy"*/N as a function of N (upper curve). The classical counterpart EZ™/N is
also shown for comparison (lower curve). The energy is given in atomic units of ke*/ap where R = ap is assumed. See text
for details.

we stopped at N = 20 since the tendency is more or less clear. This way we also avoided the pitfalls of additional
costly simulations in which we are limited in accuracy by our computational power.

The bound energy curve for the quantum scenario does not correspond to a logarithm function. It is similar to the
bound for classic equilibrium energies, namely, In 2 + 121]{[\7 , plus some additive terms. This fact would imply that, for
large N, the chemical potential for either the classical, or the quantum system would be independent of N. In any
case, an important result of the present work is the observation that the quantum energy of the system lies between
two given precise bounds. This means that we have encountered a quantum system that allows the identification of
distinct upper and lower bounds to the ground state energy.

V. MOSHINSKY-LIKE SYSTEMS WITH COULOMB INTERACTION

The generalized Moshinsky system (or atom) [44] consists of N harmonically interacting particles confined by an
overall external isotropic harmonic potential. Let us now consider a modification of the previous 2D planar ring model.
The modification concerns the addition of a harmonic oscillator coupling between all electrons, 5 w? (R; — Ej)Q where
m. is electron’s mass and w is an angular frequency. This harmonic oscillator coupling is in addition to the already
present Coulomb interaction term. No external confinement is added since the electrons are kept confined in fixed
rings in both the original or presently modified model. The quantum treatment of this modified problem is only
partially possible for two electrons [44]. Therefore, let’s deal here with lower energy bounds to the quantum case by
employing classical tools. For such a situation, the total energy of the system would be written as:

ke? Me
Uv = Y (du + w2d?j>, (22)

1<i<j<N v
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where d;; = R\/i2 + 52 —21jcos(¢; — ¢;) is the usual pair separation distance between pairs of electrons. Let us
write the total energy of the system in atomic units:

~ 1 1 5
Uy = >, (di_j+2Q alij>7 (23)

1<i<j<N

where (2 is some rescaled dimensionless angular frequency. The rest is under the same conditions as before, namely,
it is assumed that we have N electrons confined to circular, concentric rings that are equally spaced (R = R, Ry =
2R,..,Ry = N R) with only one electron per ring and we take R = ap where ap is the Bohr radius. Equilibrium is
reached when the quantity in Eq.(23) has a global minimum.

There are two opposite regimes to consider depending of the strength of 2. When (2 is small enough, only a repulsive
regime dominates. When (2 is big enough, all electrons seem to align along the same direction, having a total ezact
energy:

2(AT2

Ejs\),:192R2w+1(1+N[H(N—1)—1]). (24)
2 12 R

In order to gauge the behavior of the minimum equilibrium energy as a function of frequency ), we performed
numerical simulations using the simulated annealing approach to find the minimum energy corresponding to the
expression in Eq.(23). We express this quantity as a ratio to E]% and study its dependence as a function of Q. For
such a choice, a value close to one indicates that the full harmonic oscillator regime has become dominant over the
repulsive Coulomb term. The results of the calculations are depicted in Fig. 5 for N = 5,10 and 15 electrons. Note

FIG. 5. (Color online) Equilibrium energies as Uy /ES versus Q for N =5 (upper curve), N = 10 (middle curve) and N = 15
(lower curve). The change of regime occurs quite abruptly. See text for details.

that as 2 — 0, the energies tend to the electrostatic equilibrium values. Also, notice how sudden the change is. Thus,
for the case of this Moshinsky-like 2D classical system, the concomitant equilibrium values are very sensitive to the
oscillator frequency. The question of what is any upper energy bound for the total or potential energy in the quantum
setting of this case is quite intricate. The argument using Cauchy-Schwarz inequality may not hold in this scenario.
In the classical case, it looks like Eq.(24) represents an upper bound (when all particles are aligned along the same

direction). However, in the quantum setting, we do not think that there is such an upper limit that can be easily
identifiable.

VI. CONCLUSIONS

To summarize, in this work we considered a 2D system of interacting electrons confined in equidistant planar
circular rings. The electrons are considered spinless. A constraint is set pertaining to the localization of electrons
in specific rings by mandating that one ring must be occupied by a single electron. While being confined to such
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rings, the electrons interact with each other via the standard Coulomb interaction potential. Both the quantum and
the classical version of this model are considered. The intricacies of quantum mechanics and the presence of electron
correlations does not permit analytic results. Therefore, a key idea of this work is to extract valuable information for
the system by looking at energy bounds from both a quantum and a classical perspective. For example, in a quantum
scenario, one may discard the quantum kinetic energy term when looking for lower energy bounds. At this juncture it
is worth to discuss possible realistic settings where the present model both the pure repulsive Coulomb interaction and
the repulsive-attractive situation (with the added harmonic confinement that induces localization) can be useful. The
discussed ring model is definitely useful for modelling a nanowire or a line dislocation since it can be made periodic in
one-dimension (1D) only. Furthermore, a collection of rings could be related to an array of 1D crystals. It is known
that dealing with a classical counterpart to a 2D quantum model can be extremely useful [45]. In the present case,
this approach leads to a global minimization problem of the energy of the system that can be handled numerically
by using the simulated annealing method. By using numerical simulations we were able to obtain accurately the
equilibrium position configuration and energy of the system. Then, we compared such classical energy bounds to
the quantum case counterpart. The analogy between the classical discrete problem and its quantum counterpart is
discussed from the perspective of energy bounds. Along these lines, we obtained analytic expressions for the energy
bounds for both classical and quantum models. Furthermore, we also studied the concomitant behavior of the system
as a function of the number of electrons. We believe that the correspondence found between equilibrium energies in
classical systems and quantum energy bounds may open the door to studying complex quantum many-body systems
by means of simpler tools in a way that leads to novel ideas.
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