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We study a two-dimensional electron gas in which the electrons are separated from the corresponding jellium neturalizing
background. For simplicity, we assume that the electrons are fully spin-polarized meaning that they are treated as spinless particles.
The current setup implies that the overall energy of the system will depend on both density and separation distance of the electrons
from the neutralizing background. The subtle interplay of these two parameters determines the stability of the system. Analytical
results for the energy are obtained in the thermodynamic limit by using the Hartree–Fock approach. It is found that, within the
framework of this approximation, the effect of separation manifests as an effective increase of kinetic energy.

Index Terms—Electron gas, Energy, Jellium, Separation distance.

I. INTRODUCTION

EXPERIMENTAL ADVANCES have led to the creation of

many low-dimensional structures under laboratory con-

ditions. This includes two-dimensional electron gas (2DEG)

systems which may be fabricated by means of various tech-

niques [1], [2]. A 2DEG system is routinely studied by

assuming that the electrons are immersed in a two-dimensional

(2D) jellium neutralizing positive background so that overall

charge neutrality is imposed. This means that the 2D system

of electrons is in the same space layer as the 2D jellium

background. It is assumed that the electrons interact via a

standard Coulomb pair interaction among themselves and with

the background. Many studies of this model have shown that

the 2D system of electrons crystallizes in a Wigner solid

state at low density, but is a liquid state at high density [3]–

[5]. Studies where the interaction potential is different from

a Coulomb potential are rare [6]. The simplest treatment of

a 2DEG system involves use of an anti-symmetrized Slater

determinant wave function [7] which stands at the core of the

Hartree-Fock (HF) approximation [8]. This treatment allows

one to obtain the total energy of the system as a sum of two

competing terms. One being the positive kinetic energy and

the other one the negative potential (exchange) energy. The

correlation energy is not included in the HF treatment.

In this work, we revisit this model by modifying a crucial

part of it. We assume that the 2D system of electrons is parallel

and spatially separated from the 2D jellium background layer

by a given arbitrary distance. This modification affects the

way the electrons interact with the neutralizing background

and, thus, it impacts the overall energy stability of the system.

For simplicity, we consider the system of electrons to be fully

spin-polarized which means that we are treating the electrons

as being spinless particles. The (effective) mass of electrons

is considered constant and isotropic. For this scenario, one

expects that the total energy of the system in the thermody-

namic limit will depend on two parameters: (i) the average

interparticle distance and (ii) the separation distance between

the 2D system of electrons and the 2D jellium background.

The subtle interplay of these two parameters determines the

overall stability of the system. The key purpose of this study

is to calculate the resulting energy in the thermodynamic limit

in order to shed more light on how space separation affects

the properties of the system.

II. MODEL AND RESULTS

We start with a 2D system of N electrons in which the

electrons are separated by an arbitrary distance, d from the

neutralizing 2D neutralizing jellium background with area, A.

In the thermodynamic limit, both N and A go to infinity.

However, their ratio ρ0 = N/A which represents the electron

number density remains constant. One can write:

ρ0 =
N

A
=

1

π (rs aB)2
, (1)

where rs is the dimensionless Wigner-Seitz parameter and aB
is the Bohr radius. The Hamiltonian of the system reads:

Ĥ = T̂ + V̂ , (2)

where

T̂ =

N
∑

i=1

|~̂pi|2
2m

, (3)

is the kinetic energy operator and

V̂ = V̂ee + V̂eb + V̂bb , (4)

is the potential energy operator. The kinetic energy opera-

tor is the sum of the individual kinetic energies where ~̂pi
is the linear momentum quantum operator and m is the

mass of the electrons. The potential operator consists of

the sum of electron-electron (ee), electron-background (eb)

and background-background (bb) interaction potential energy

terms. One has:

V̂ee =
1

2

N
∑

i=1

N
∑

j 6=i

v(|~ri − ~rj |) , (5)

where

v(|~ri − ~rj |) =
ke e

2

|~ri − ~rj |
, (6)



is the Coulomb interaction potential between two electrons

with charge −e (e > 0) localized at 2D vector positions ~ri
(and ~rj) and ke is Coulomb’s electric constant. One sees that:

V̂eb = −ρ0

N
∑

i=1

∫

A

d2r ′ vd(|~ri − ~r ′|) , (7)

where

vd(|~ri − ~r ′|) = ke e
2

√

|~ri − ~r ′|2 + d2
, (8)

with d ≥ 0 being the separation distance between the layer

of electrons and the 2D jellium background layer. The energy

term originating from the background is a constant written as:

V̂bb =
ρ2
0

2

∫

A

d2r

∫

A

d2r ′ v(|~r − ~r ′|) , (9)

where ~r and ~r ′ are dummy background 2D vector variables.

We adopt a HF approach and start with a normalized N -

particle antisymmetric wave function of electrons built as

a Slater determinant of the ortho-normalized single-particle

space-spin orbitals:

|Ψ〉 = 1√
N !

Det
{

φ~k1

(~r1), . . . , φ~kN

(~rN )
}

, (10)

where the single-particle states are ortho-normalized 2D plane

waves, φ~k(~r) = 1√
A
ei

~k ~r with periodic boundary conditions

being applied. The total energy of the system is:

〈Ĥ〉 = 〈T̂ 〉+ 〈V̂ 〉 , (11)

where 〈Ô〉 is the quantum expectation value of operator Ô.

The energy per particle in the thermodynamic limit is:

ε(rs, d) =
〈Ĥ〉
N

, (12)

where rs and d are shown as arguments. The energy is

expressed in units of Rydbergs (Ry) which is defined as:

1Ry =
~
2

2ma2B
=

ke e
2

2 aB
, (13)

where aB = ~
2/(mke e

2) is the Bohr radius. The quantity,

ε(rs, d = 0) represents the known result [9] for the energy of

a fully spin-polarized 2DEG system:

ε(rs, d = 0) =

(

2

r2s
− 16

3π

1

rs

)

ke e
2

2 aB
, (14)

where the first term represents the kinetic energy per particle

while the second term is the (exchange) potential energy per

particle. The calculation of 〈T̂ 〉/N is straightforward. The

calculation of 〈V̂ 〉/N requires a rather careful consideration of

the thermodynamic limit (N → ∞ ; A → ∞ with ρ0 = N/A
constant). For the sake of brevity we skip the details of the

calculation. The final result obtained for the total energy per

particle as a function of rs and d is:

ε(rs, d) =

[(

2 + 4
d

aB

)

1

r2s
− 16

3π

1

rs

]

ke e
2

2 aB
. (15)

In Fig. 1 we show the dependence of ε(rs, d) as a function of

rs for values of d/aB = 0, 0.3 and 0.6. The most important

observation is that the effect of space separation between
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Fig. 1. Energy per particle, ε(rs, d) as a function of rs for separation distance
parameters, d/aB = 0, 0.3 and 0.6 for a fully spin-polarized 2DEG system
in which the 2D system of electrons has a separation distance, d from the 2D
neutralizing layer. The energy per particle is given in units of ke e2/(2 aB).

the 2D system of electrons and the 2D neutralizing layer

manifests exactly as a positive effective kinetic energy ∝ 1/r2s
modified by a proportionality factor that dependes on d/aB .

The minimum of energy is obtained for values of rs that grow

larger (density becomes smaller) as d/aB increases meaning

that the Wigner solid-liquid transition is very much affected

by the variation of the separation distance.
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