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We study a two-dimensional electron gas in which the electrons are separated from the corresponding jellium neturalizing
background. For simplicity, we assume that the electrons are fully spin-polarized meaning that they are treated as spinless particles.
The current setup implies that the overall energy of the system will depend on both density and separation distance of the electrons
from the neutralizing background. The subtle interplay of these two parameters determines the stability of the system. Analytical
results for the energy are obtained in the thermodynamic limit by using the Hartree-Fock approach. It is found that, within the
framework of this approximation, the effect of separation manifests as an effective increase of Kkinetic energy.

Index Terms—Electron gas, Energy, Jellium, Separation distance.

I. INTRODUCTION

XPERIMENTAL ADVANCES have led to the creation of

many low-dimensional structures under laboratory con-
ditions. This includes two-dimensional electron gas (2DEG)
systems which may be fabricated by means of various tech-
niques [1], [2]. A 2DEG system is routinely studied by
assuming that the electrons are immersed in a two-dimensional
(2D) jellium neutralizing positive background so that overall
charge neutrality is imposed. This means that the 2D system
of electrons is in the same space layer as the 2D jellium
background. It is assumed that the electrons interact via a
standard Coulomb pair interaction among themselves and with
the background. Many studies of this model have shown that
the 2D system of electrons crystallizes in a Wigner solid
state at low density, but is a liquid state at high density [3]-
[5]. Studies where the interaction potential is different from
a Coulomb potential are rare [6]. The simplest treatment of
a 2DEG system involves use of an anti-symmetrized Slater
determinant wave function [7] which stands at the core of the
Hartree-Fock (HF) approximation [8]. This treatment allows
one to obtain the total energy of the system as a sum of two
competing terms. One being the positive kinetic energy and
the other one the negative potential (exchange) energy. The
correlation energy is not included in the HF treatment.

In this work, we revisit this model by modifying a crucial
part of it. We assume that the 2D system of electrons is parallel
and spatially separated from the 2D jellium background layer
by a given arbitrary distance. This modification affects the
way the electrons interact with the neutralizing background
and, thus, it impacts the overall energy stability of the system.
For simplicity, we consider the system of electrons to be fully
spin-polarized which means that we are treating the electrons
as being spinless particles. The (effective) mass of electrons
is considered constant and isotropic. For this scenario, one
expects that the total energy of the system in the thermody-
namic limit will depend on two parameters: (i) the average
interparticle distance and (ii) the separation distance between
the 2D system of electrons and the 2D jellium background.
The subtle interplay of these two parameters determines the

overall stability of the system. The key purpose of this study
is to calculate the resulting energy in the thermodynamic limit
in order to shed more light on how space separation affects
the properties of the system.

II. MODEL AND RESULTS

We start with a 2D system of N electrons in which the
electrons are separated by an arbitrary distance, d from the
neutralizing 2D neutralizing jellium background with area, A.
In the thermodynamic limit, both N and A go to infinity.
However, their ratio pg = N/A which represents the electron
number density remains constant. One can write:
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where 7, is the dimensionless Wigner-Seitz parameter and a g
is the Bohr radius. The Hamiltonian of the system reads:

H=T+V, (2)
where
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is the kinetic energy operator and
V= Vee + Voo + Vo )

is the potential energy operator. The Kinetic energy opera-
tor is the sum of the individual kinetic energies where p;
is the linear momentum quantum operator and m is the
mass of the electrons. The potential operator consists of
the sum of electron-electron (ee), electron-background (eb)
and background-background (bb) interaction potential energy
terms. One has:
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is the Coulomb interaction potential between two electrons
with charge —e (e > 0) localized at 2D vector positions 7
(and 7;) and k. is Coulomb’s electric constant. One sees that:
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with d > 0 being the separation distance between the layer

of electrons and the 2D jellium background layer. The energy
term originating from the background is a constant written as:
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where 7 and 7/ are dummy background 2D vector variables.
We adopt a HF approach and start with a normalized N-
particle antisymmetric wave function of electrons built as
a Slater determinant of the ortho-normalized single-particle
space-spin orbitals:
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where the single-particle states are ortho-normalized 2D plane
waves, ¢z(7) = ﬁ ¢**7 with periodic boundary conditions
being applied. The total energy of the system is:

(H) = (T) + (V) , (1
where (O} is the quantum expectation value of operator 0.

The energy per particle in the thermodynamic limit is:
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where r, and d are shown as arguments. The energy is
expressed in units of Rydbergs (Ry) which is defined as:
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where ap = h?/(mk.e?) is the Bohr radius. The quantity,
€(rs,d = 0) represents the known result [9] for the energy of
a fully spin-polarized 2DEG system:
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where the first term represents the kinetic energy per particle
while the second term is the (exchange) potential energy per
particle. The calculation of (T')/N is straightforward. The
calculation of (V') /N requires a rather careful consideration of
the thermodynamic limit (N — oo ; A — oo with pg = N/A
constant). For the sake of brevity we skip the details of the
calculation. The final result obtained for the total energy per
particle as a function of 74 and d is:
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In Fig. 1 we show the dependence of €(rs, d) as a function of
rs for values of d/ap = 0,0.3 and 0.6. The most important
observation is that the effect of space separation between
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Fig. 1. Energy per particle, €(rs, d) as a function of 7 for separation distance
parameters, d/ap = 0, 0.3 and 0.6 for a fully spin-polarized 2DEG system
in which the 2D system of electrons has a separation distance, d from the 2D
neutralizing layer. The energy per particle is given in units of k. e2/(2ag).

the 2D system of electrons and the 2D neutralizing layer
manifests exactly as a positive effective kinetic energy o< 1/r2
modified by a proportionality factor that dependes on d/ap.
The minimum of energy is obtained for values of r, that grow
larger (density becomes smaller) as d/ap increases meaning
that the Wigner solid-liquid transition is very much affected
by the variation of the separation distance.
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