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We consider a semiclassical approach to study the possible stabilization of a zigzag phase for a
system of interacting electrons confined within a thin annulus region with infinite inner/outer walls.
The electrons are considered spinless and interact via the standard Coulomb interaction potential.
The classical minimum energy configuration of the system due to the Coulomb repulsion between
electrons is accurately determined by using the simulated annealing method. As the number of
electrons increases we see the appearance and stabilization of a two-ring structure with zigzag
patterns. Further increase of the number of electrons appears to eventually lead to the collapse of
the two-ring zigzag structure. A simple quantum treatment of the nodal features of the free many-
particle wave function shows the appearance of nodal domain patterns that are consistent with the
zigzag features that were observed in the classical model.

I. INTRODUCTION

There are many models well known in the field of con-
densed matter physics that can be used to describe the
behavior of electrons inside solids. In some instances,
one thinks about electrons as being tightly bound to a
particular atomic site. In many other cases, one sees
the electrons as free particles that wonder from site to
site. When this common situation materializes, the elec-
trons interact strongly with both the ions in the lattice
sites and with one another. A quantum treatment of this
scenario leads to a very complicated many-body prob-
lem that typically cannot be solved exactly. However,
ingenious theories that rely on the concept of quasiparti-
cles reduce the difficulty of the treatment by still retain-
ing the one-particle nature of individual electrons in the
form of quasiparticles that behave somewhat like them
but might have a different effective mass and distinct
characteristics. This approach works very well for under-
standing the main features of metals and semiconductors
and, generally speaking, is quite succesful on describing
the properties of a large class of three-dimensuional (3D)
and two-dimensional (2D) materials. Interestingly, this
framework does not apply to one-dimensional (1D) sys-
tems.

In appearance, 1D electronic systems seem to be sim-
ple, but they have long been an intriguing field of study
in solid state sciences and atomic physics because of their
different physics from their higher-dimensional counter-
parts1,2. The main reason why 1D systems are so chal-
lenging to study by means of conventional theories is be-
cause they manifest a rich variety of exotic quantum phe-
nomena such as charge/spin-soliton, polaron/bipolaron,
bond-order wave, charge/spin-density wave, and, most
noteworthy, Luttinger liquid (non-Fermi liquid) behav-
ior3–5. Differently from the case of 2D and 3D systems,
the quasiparticle approach for the electrons does not ap-

ply in 1D systems. In other words, one cannot treat
the electrons as individual particles, but instead must
consider their collective wave-like motion. The Luttinger
liquid model of 1D electronic systems provides a powerful
tool for understanding strongly correlated physics6.

In principle, 1D structures allow the formation of var-
ious kinds of ordered phases. These quantum phases
sometimes break the translational symmetry of lattice,
charge, or spin degrees of freedom. For example, a
very large number of experiments involving semiconduc-
tor quantum wires and carbon nanotubes have elucidated
various features of 1D electron systems under a diverse
set of situations7–10. Theoretically speaking, quantum
fluctuations which play a very prominent role in 1D sys-
tems work to suppress any long-range ordering at a fi-
nite temperature. However, experimentally speaking,
such systems are quasi-1D and not truly 1D. As a re-
sult, transverse interactions that extend beyond the lim-
its of 1D space are usually present and play an important
role in guiding the system to stabilize in an ordered state.
The interplay of low-dimensionality with many other fac-
tors makes such systems even more attractive from the
perspective of computational or theoretical studies with
various techniques11–15. Therefore, understanding 1D or
quasi-1D systems, the transition from 1D to quasi-1D as
well as the transition from quasi-1D to 2D/3D behavior
is of great interest from both a practical and a theoretical
perspective16.

A first stage for a 1D to quasi-1D transition has been
predicted to involve a structural change from a 1D linear
arrangement of particles to a quasi-1D zigzag configura-
tion. While the zigzag phase of electrons is stable for
a certain range of parameters, such a state eventually
becomes a liquid state at higher densities. The features
of the zigzag phase transition for a ring-like structure
with harmonic confinement have been recently studied
via quantum Monte Carlo (QMC) methods17. In agree-
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ment with experimental findings, the electrons confined
in a 1D quantum wire by a transverse harmonic poten-
tial form a linear Wigner crystal at low densities18,19. On
the other hand, a quasi-1D zigzag structure stabilizes at
some high critical electron density20–26. At even higher
densities, the zigzag structure is destroyed suggesting the
creation of a coupled two-row structure27. Creation of
two coupled 1D systems (quantum wires) and, more gen-
erally, creation of arrays of 1D quantum wires is a very in-
teresting phenonenon. Understanding its features would
allow one to extend the Luttinger liquid phenomenology
to 2D systems when considering closely packed arrays of
1D quantum wires where each of them is being described
as a Luttinger liquid.
In this work we introduce a semiclassical approach to

study the zigzag phase transition in a quantum wire
modeled as a system of electrons confined in a circu-
lar region with the geometry of an annulus, namely, an
annular disk. To this effect, we consider an arbitrary
number of electrons confined between the infinite inner
wall and outer wall of the annulus. For simplicity, the
electrons are considered spinless. The competition be-
tween the confinement, delocalization effects and strong
Coulomb repulsion between electrons always provides
a fertile ground for observation of interesting phenom-
ena28–30. For the presently considered case, these factors
shape the nature of the lowest energy state of the system
and its geometric configuration including the possible re-
alization of a quasi-1D state with zigzag patterns. The
eventual stabilization of such a zigzag structure for spe-
cific conditions of our model is carefully studied by using
the simulated annealing calculation method.

II. MODEL AND SEMICLASSICAL THEORY

The model under consideration consists of N spinless
electrons confined within an annular disk region, Ω with
inner radius, r1 and outer radius, r2 where it is assumed
that r1 < r2. The center of the annulus corresponds
to the origin of the chosen system of coordinates. This
means that the electrons are confined within a potential
well with infinite hard walls at r1 and r2 of the form:

V (r) =







0 ; r1 ≤ r ≤ r2 ,

+∞ ; elsewhere ,
(1)

where r, r1 and r2 are 2D radial variables. Any pair of
electrons i and j interact with each other via the usual
repulsive Coulomb interaction potential. The quantum
Hamiltonian of the system would be written as:

Ĥ = −1

2

N
∑

i=1

∇2
i +

N
∑

i<j

1

|ri − rj |
+

N
∑

i=i

V (ri) , (2)

where use of atomic units is implicit. As a matter of
convenience, we write the inner/outer radii of the annulus

as:

r1 = R−∆ ; r2 = R+∆ , (3)

where R and ∆ represent two new parameters that con-
trol the geometry of the domain under consideration. A
schematic view of the annulus confining region is depicted
in Fig. 1. With the choice of R = 1 and ∆ = 1/10, we
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FIG. 1: Schematic view of the annulus region, Ω in which the
electrons are confined. The two infinite hard walls are located
at r1 = R−∆ and r2 = R+∆. See text for details.

have r1 = 1− 1/10 and r2 = 1 + 1/10.
A typical quantum calculation of the ground state

properties of the system would imply use of sophisticated
QMC techniques31,32. However, as a first step in our ap-
proach, we chose to adopt a semiclassical treatment. For
such a framework, we look at the system from the per-
spective of finding the optimal electronic configuration
that minimizes the total energy of Eq.(2) while discarding
the first (kinetic) energy term. From this point of view,
only the second term in Eq.(2), namely, the Coulomb re-
pulsion energy is relevant. As a second step in our tret-
ment, we will assess the magnitude of quantum effects
by considering the previously discarded quantum kinetic
energy term and looking at the full quantum description
of a system of N non-interacting confined fermions with
positions r1 ≤ ri ≤ r2 and arbitrary angular dependence.
Within the framework of this classical treatment, there

are two length scales of interest in our system. They are
related to the average separation distance between: i)
Charges localized in the inner radius, r1 and ii) Charges
localized in the outer radius, r2. Let us assume that
N1 and N2 are the number of charges at the rings with
radius r1 and r2, respectively. The two length scales just
mentioned can be defined as rs1 = (2π r1)/N1 and rs2 =
(2π r2)/N2, respectively. These two length scales are,
somehow, reminiscent of the Wigner-Seitz dimensionless
parameter, rs in 1D.
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ergy. However, the key point to reason is that the onset
of a third row nevertheless occurs. The exact energy of
the real (likely symmetric) configuration is not of vital
importance in this study. This means that the zigzag
state becomes unstable and eventually ends at some crit-
ical number N . Systems with N larger than this crit-
ical value (namely, systems with increased density val-
ues) eventually would collapse into structures that are
different from the two-ring zigzag state seen for values
of N such as N = 60 or N = 110 as an example. At
this juncture, we point out that it is not easy to com-
pare our classical results with quantum ones. However,
the way that we understand this problem, the rupture of
the zigzag phase will eventually occur in the form of the
appearance of an intermediate ring. This is the precise
situation that is encountered in the quantum case, too17.

At a sufficiently large number of electrons (N ∝ 120 in
the classical calculation), rather than viewing the struc-
ture of the electron distribution as zigzag, one can view
it as two discrete chains of electrons, where the distance
between the electrons within each chain is already quite
small compared to the distance between the chains. In
this regard, one may wonder about the energy of the po-
tential barrier that must be overcome in order for one
row of a zigzag structure to move relative to another or
whether is it possible to independently control the con-
ductance of one of the two rows36,37. The latter question
regarding control of the conductance departs too much
from the the orginal aims of this work and it is difficult to
answer. As far as the prior question, we point out that,
at some point, one can even retrieve an expression for the
total energy for the system with two rows or chains. The
total energy for N particles forming a regular polygon of
radius r is given by:

EN (r) =
ke
2 r

N−1
∑

i=1

N
∑

j=i+1

1

sin π
N
(|i− j|) =

keN

4 r

N−1
∑

k=1

1

sin π
N
k

(4)
where ke = e2/(4πε0εr). For two concentric regular rings
with radii, R1 < R2 and occupation numbers, N1 and
N2 (where N1+N2 = N), respectively, we encounter the
average energy38:

Emean(N1, N2, R1, R2) / ke =
N1

4R1

N1−1
∑

k=1

1

sin π
N1

k

+
N2

4R2

N2−1
∑

k=1

1

sin π
N2

k
+

2

π
N1N2

K(R1/R2)

R2

, (5)

where K is the complete elliptic integral of first kind.
One has to bear in mind that R1 and R2 can be consid-
ered as known in our context and consider N1, N2 as the
only variables to optimize (subject to the condition that
N1 +N2 = N is kept fixed). The last term in the previ-
ous expression is obtained by averaging the relative angle
position. This expression would be valid for N around
and not much greater that N = 120 (where structures
with two chains are present).

The consideration of zigzag structures of electrons is
certainly not novel, from the classical point of view. It is
also known that presence of a harmonic oscillator (HO)
confinement plus the interaction between charges makes
the system more realistic as well as more challenging
to handle. In a recent work, Piacente et al.11 carried
out elaborate Monte Carlo studies of a quasi-1D system
of charged particles interacting through a Yukawa-type
screened Coulomb potential with a controllable screen-
ing length. In that study, the ground-state energy was
calculated and, depending on the density and the screen-
ing length, the system crystallizes in a number of chains.
The combination of the interaction among particles and
the confining potential displays a rich structural phase
diagram as a function of the density (or the confining
potential) at both zero and nonzero temperature. Our
system has a different confinement potential (thin annu-
lus with hard walls) and has a circular symmetry. De-
spite its simplicity, it allows one to observe the onset of
a zigzag transition for certain values of the parameters.
Thus, similar qualitative parallels can be drawn regard-
ing our final results and those by Piacente et al.11 despite
the fact that the latter work considers a more realistic
system that lacks the circular symmetry of ours.

III. QUANTUM APPROACH

We now go beyond the earlier semiclassical treatment
and provide an estimate of the impact that the quantum
kinetic energy term has on the properties of the system.
The quantum system of electrons confined within the an-
nulus region considered in our work can be viewed as the
quantum counterpart of the so-called classical billiard.
The classical billiard is a dynamical system consisting
of a point particle moving freely in an enclosure, alter-
nating between motion along a straight line and elastic
reflections off the boundary39,40. This sequence of spec-
ular reflections is captured by the billiard map, which
completely describes the motion of the particle.
Over the last two decades, the quantum analogues of

the classical billiard systems, namely, the quantum bil-
liards, have been experimentally realized in gated, meso-
scopic GaAs tables41 or microwave cavities42. It has been
found that eigenfunctions of these planar billiards or-
ganize themselves into regions, or domains, with posi-
tive and negative signs, often in remarkably complicated
geometric shapes. Formally, such nodal domains may
be defined as the maximally connected regions wherein
the wave function does not change sign. Experimentally,
nodal domains have also been the focus of much atten-
tion43–45.
For the 2D annular disk confining region of our model,

one writes the stationary Schrödinger’s equation of the
particle in 2D polar coordinates as:

− ~
2

2µ

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

ψ(r, θ) = E ψ(r, θ) , (6)
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where r is the 2D radial distance, θ is the azimuth (po-
lar) angle, ~ is Planck’s reduced constant and µ is the
(reduced) masss of the particle. Utilizing the usual sep-
aration of variables for the wave function, ψ(r, θ) =
R(r)Θ(θ), the angular part has a solution of the form:

Θm(θ) =
1√
2π

eim θ ; m = 0,±1,±2, . . . , (7)

where θ ∈ [0, 2π). With the change of variable to z = k r

where k =
√

2µE/~2, the differential equation for the
radial part of the wave function becomes:

d2R(z)

dz2
+

1

z

dR(z)

dz
+

(

1 − m2

z2

)

R(z) = 0 . (8)

The solution of this differential equation is given by:

R(r) = αJm(k r) + β Ym(k r) , (9)

where Jm(x) (Ym(x)) is them-th order Bessel function of
the first (second) kind and α, β are arbitrary constants.
Note that Ym(x = 0) is divergent. However, the origin
is not part of the annulus domain. Therefore, the most
general solution is, indeed, the expression in Eq.(9).

The Dirichlet boundary conditions require that the
wave funtion be zero at both locations r = r1 and r = r2
regardless of the angular dependence. One can write the
resulting equations for the unknown quantities α and β
in matrix form. Since we are looking for nonzero solu-
tions for α and β, we must require that the determinant
of the coefficient matrix be zero46. This means that the
eigenenergies (the values of k) must satisfy the following
equation:

Jm(k r1)Ym(k r2) − Jm(k r2)Ym(k r1) = 0, (10)

where km,nr
=

√

2µEm,nr
/~2 would represent the roots

(zeros) of the above equation. Hence, the energy spec-
trum must be retrieved by numerically solving for the
roots of the expression in Eq.(10). Note that the value
of km,nr

cannot be zero. The first positive root that
solves Eq.(10) is labeled nr = 1, the second one is labeled
nr = 2 and so on. Furthermore, one must remember that
all nonzero values of m are 2-fold degenerate.

The Dirichlet boundary conditions at r = r1 and r =
r2 lead to a radial wave function of the kind:

Rm,nr
(r) = N

[

Jm(km,nr
r)Ym(km,nr

r1) − Jm(km,nr
r1)Ym(km,nr

r)
]

, (11)

where r ∈ [r1, r2] and N is an irrelevant normalization
constant. Since ψm,nr

(r, θ) and ψ−m,nr
(r, θ) have the

same energy, one can form linear combinations, for in-
stance, Rm,nr

(r) cos(mθ) that represent real wave func-
tions. We can plot them for increasing values of km,nr

(energy). In particular, the many-particle wave function
for a given range of values of the number of fermions, N
is displayed in Fig 4. The fermionic case requires all en-
ergy eigenvalues, Em,nr

to be sorted in increasing order.
This energy spectrum involves, of course, a discontinuous
”staircase” function for the total number of particles at
zero temperature of the form:

N =
∑

m,nr

Θ(EF − Em,nr
) , (12)

as well as the total energy:

U0 =
∑

m,nr

Em,nr
Θ(EF − Em,nr

) . (13)

The procedure previously outlined has to be performed
numerically. Assuming the Fermi energy EF to be the
n-th sorted eigenenergy Em,nr

, we count the number
of contributions including the degeneracy, gm,nr

associ-
ated with any given {m,nr} state. In other words, we
calculate N =

∑

k gk where, in a short-hand notation,

k ≡ km,nr
. In this fashion, we retrieve the number of

particles N as a function of EF .

The shape of the container of the free electron gas is
not relevant in the thermodynamic limit. This amounts
to having a smoothed expression for the Fermi energy as
a function N while N increases asymptotically. Weyl’s
law47,48 is the mechanism that guarantees the earlier
statement provided that the system is integrable in the
language of quantum billiards. Mathematically speaking,
Weyl’s law states that the typical staircase of the inter-
nal energy that appears for any finite system of fermions
is smoothed out in a way that does not depend on the
shape of the domain, Ω that contains the particles when
the number of particles is large (in the thermodynamic
limit). In other words, the only thing that matters is the
volume that is occupied by the particles. The shape, be
it a parallelogram or a sphere, is not relevant. Otherwise
Weyl’s law in its current form has to be modified. For the
particular case of a 2D shape of area A and perimeter P ,
the number of normal mode wave numbers in the range
(k, k + dk) is given by:

dN(k) =

(

A

2π
k − P

4π

)

dk . (14)
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N=55        N=56       N=58        N=60         N=62        N=64        N=66 

N=68        N=70        N=72        N=74         N=76       N=78        N=80 

N=82        N=84        N=86        N=88        N=90        N=92        N=94 

N=96        N=98       N=100       N=102      N=104      N=106       N=108 

N=110      N=112      N=114       N=116      N=118      N=120      N=122 

N=124      N=126       N=128      N=130      N=132      N=134      N=136 

N=138      N=140       N=142      N=144      N=146      N=148      N=150 

N=152      N=154       N=156       N=158     N=159       N=161     N=163

N=165       N=167      N=169       N=171     N=173      N=175       N=177 

FIG. 4: Plot of the many-particle wave function of the sorted spectrum of the annulus as we increase the number of fermions,
N . We observed that, for the quantum counterpart of the electrostatic classic cases, several domains appear everywhere the
wave function changes its sign. The first instance occurs at N = 58 and finishes at N = 158. Within this range, the zigzag
structure happens starting from the radial quantum number, nr = 2. It ends abruptly beginning from N = 159 where three
”stripes” begin to appear. See text for details.
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to the system using confined fermions can also account
in a similar way as the purely classical, electrostatic one.
Incidentally, the energies in the quantum case are higher.

IV. DISCUSSION AND CONCLUSIONS

It is important to discuss the role of the confinement
potential in the overall picture. The model under consid-
eration exploits a hard wall potential in a thin annulus
region, but in experimental studies of quasi-1D quantum
wires confinement can be much softer, approaching to
a harmonic one as noticed in various works49,50. Over-
all, the nature of the confinement influences very much
the degree of localization. This means that replacing the
present confinement with a HO confinement, for the sake
of illustration, will indeed change the structure of the
stable configurations of the system because we now have
a competition between confinement and repulsion. If we
scale the whole Hamiltonian in terms of e2/R, we are
left only with a free parameter depending on the angular
frequency, ω0 for the HO parabolic confinement poten-
tial. Previous calculations have shown that the ensuing
electron distribution strongly depends on the value of the
frequency ω0. The effect of a frequency that is sufficiently
high is to disguise the onset of any zigzag transition. This
means that a HO confinement does not help in enhanc-
ing the formation of a zigzag phase in the classical case.
The quantum case is different and far more difficult to
analyze.
The interplay of various forms of confinement and

other parameters in the system (such as electron den-
sity, interaction, spin, externally applied magnetic field,
etc.) leads to interesting experimental findings. For ex-
ample, Hew et al.51 have studied the low-temperature
transport properties of 1D quantum wires as the confine-
ment strength and the carrier density are varied. Their
results show the beginnings of the formation of an elec-
tron lattice in an interacting quasi-1D quantum wire.
Kumar et al.52 investigated electron transport in a quasi-
1D electron gas as a function of the confinement poten-
tial. It was noticed that, at a particular potential con-
figuration and electron concentration, the ground state
of a 1D quantum wire splits into two rows to form an
incipient Wigner lattice. In addition, it was found that
application of a transverse magnetic field can transform a
double-row electron configuration into a single row. This
means that an in-plane magnetic field can tune both the
degree of the confinement and the nature of the energy
spectrum. Similarlly, Kumar et al.53 studied the electron
transport in quasi-1D quantum wires in GaAs/AlGaAs
heterostructures obtained using an asymmetric confine-
ment potential. Their results show how the behavior of
the system can be affected by the inhomogeneity in back-
ground potential and they observed the formation of dou-
ble rows of electrons.
In this work, we studied the geometric arrangement

of a system of N electrons confined in a 2D annular re-

gion with infinite hard hard walls at r1 = R − ∆ and
r2 = R + ∆. For simplicity, it is assumed the electrons
are spinless. The interplay bettwen N , R, ∆ and the
Coulomb repulsion between electrons determines the low-
est energy arrangement of the system. We choose specific
values of R and ∆ and aimed to obtain the lowest energy
configuration of the system as the number, N of elec-
trons is varied. As a first step, we adopt a semiclasical
approach and look at determining what geometric config-
uration of electrons has the lowest energy that minimizes
the total Coulomb repulsion energy of the system. The
idea is to see whether a two-ring zigzag structure emerges
as the global energy mininum for the system under con-
sideration.

Finding the global energy minumn for an interacting
system of this nature is a very challenging problem. Spe-
cialized numerical methods must be used and utmost care
must be exercised since there are instances in which the
system may get ”stuck” in a local energy mininum. We
use the simulated annealing method to solve this many-
particle minimization problem as accurately as possible.
The method is effective and efficient timewise for sys-
tems as large as of the order of 100 − 200 electrons.
The results indicate the stabilization of a two-ring struc-
ture with zigzag patterns for a wide range of values of
N considered in this work. However, as the number of
electrons grows larger, one envisions the collapse of the
two-ring zigzag structure to a more extended geometric
arrangement. This implies that there is a range of sys-
tem sizes, namely, density values where the zigzag struc-
ture emerges. Other non-zigzag structures may eventu-
ally stabilize outside this range.

A complementary approach would introduce quantum
features in the model by considering an appropriate
many-particle wave function and take into account the
quantum kinetic energy of the system of non-interacting
fermions, namely, the ensemble of electrons trapped be-
tween the walls of the 2D annular confining domain. In
this case, we study the emergent nodal features since
they indicate inherent patterns for this system that can
be viewed as a quantum billiard-like setup. The nodal
features of the many-particle wave function indicate a
nodal domain pattern that is consistent with zigzag fea-
tures observed at those particular values of N that we
considered.

Along these lines, it is somehow surprising to see that
two different approaches give qualitatitely similar results.
In the classical case, it is not difficult to understand intu-
itively that the bare Coulomb repulsion is responsile for
the appearance of the two-row zigzag structure within
the constraint of the hard-wall confinement. With re-
gard to the (simplified) quantum model where no inter-
action is considered, we believe that the combined effect
of the specific hard-wall annular confinement in conjunc-
tion with the Fermi statistics is the key actor responsible
for the observed ”localization” of the particles. There-
fore, it is not inconceivable to speculate that it is possible
that a structural phase transition from a 1D chain to a
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zigzag structure can occur for electrons in a very strong
hard-wall confinement inside a thin annulus region even
in the absence of interaction (or when the interaction is
quite weak). This state might also bear resemblance to a
double-row structure or (for the case of an infinitely thin
annulus with hard-walls) to a ”string-zigzag” transition
as discussed in a recent work by Mahmoodian et al.16.

Obviously the quantum mechanical treatment is over-
simplified since it does not include electron interaction
and correlation effects in a broader context. A more real-
istic quantum treatment along these lines can be done via
QMC and/or density functional theory (DFT) methods.
For example, accurate DFT numerical studies by Yaki-
menko et al.15 show how one can investigate rather in-
tricate systems in structures consisting of quantum wires
and quantum point contacts (QPCs) that have been re-
alized in GaAs/AlGaAs heterostructures. This paper
studies the electron transport through a wide top-gated
QPC in a low-density regime based on DFT methods. It
shows how the electron–electron interaction and shallow
confinement affect electron conduction and spin polar-
ization. Earlier work50 on similar systems also showed
subtle effects that relate the occurrence of local magneti-
zation and the effects of electron localization in different
models of QPCs. In the case of soft confinement poten-
tials the degree of electron localization is weak. However,
when a strong confinement potential is achieved, elec-
tron localization is favored in the relatively low density
regime. In such cases one may create a variety of electron
configurations ranging from a single localized electron to
structures with multiple rows and Wigner lattices.

To summarize, the stabilization of a zigzag structure
for specific conditions is carefully studied by using the
simulated annealing calculation method. We have pre-
sented two complementary ways of describing the onset
of the zigzag state with results that seem to be quite
robust for the range of N considered in this work The
original work that described the existence of a zigzag
phase17 considered a HO confinement plus the Coulomb
interaction. The specific setting makes the scale of ener-
gies and the number of particles where the phase appears
dependent on the nature of the confinement potential. In
our approach, we cover an extreme localization scenario
(classical case) and a non-interacting one (quantum case,
fermions). Both are able to roughly predict the same
number of particles where the zigzag phase does occur.
This alternative description of the system departs from
the one originally studied17, but that does not affect the
findings of the present work. After all, our results con-
sider and support the existence of such zigzag phase, al-
beit with different energy scales and a different type of
confinement potential.
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