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The problem of the two-dimensional motion of a charged particle with constant mass in presence
of a uniform constant perpendicular magnetic field features in several undergraduate and graduate
quantum physics textbooks. This problem is very important to studies of two-dimensional materials
that manifest quantum Hall behavior as evidenced by several major discoveries over the last few
years. Many real experimental samples are more complicated due to the anisotropic mass of the
electrons. In this work, we provide the exact solution to this problem by means of a clever scaling of
coordinates. Calculations are done for a symmetric gauge of the magnetic field. This study allows
a broad audience of students and teachers to understand the mathematical techniques that lead to
the solution of this quantum problem.
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I. INTRODUCTION

The quantum problem of the two-dimensional (2D)
motion of a charged particle subject to a uniform con-
stant perpendicular magnetic field was first solved in 1930
by Lev Landau1. He showed that when a charged particle
is in a uniform constant magnetic field, the energy levels
are degenerate with degeneracy directly proportional to
the strength of the applied magnetic field. The quantiza-
tion of the levels leads to oscillations of thermodynamic
quantities (de Haas-van Alphen effect)2 and transport co-
efficients (Shubnikov-de Haas effect)3 upon variation of
the magnetic field. The quantization of energies has espe-
cially dramatic consequences in 2D systems of electrons
subject to a very strong perpendicular magnetic field. In
this regime, novel unexpected phenomena known as the
integer quantum Hall effect and the fractional quantum
Hall effect were discovered opening a whole new set of
research areas4–7. With improvement in the quality of
samples and experimental designs, more and more quan-
tum Hall states have been found in a variety of systems
that include novel materials such as graphene8. The en-
deavor to grasp the intricate quantum properties of sys-
tems of electrons continues to be a topic of great ongoing
research interest as evidenced by several Nobel Prizes in
Physics awarded over the last few years for discoveries
that have contributed to the understanding of the world
of electrons under a variety of quantum conditions9.

The solution to this problem is presented in sev-
eral quantum physics textbooks including Gasiorowicz’s
Quantum Physics (Third Edition)10 and Liboff’s Intro-
ductory Quantum Mechanics (Fourth Edition)11 (Chap-
ter 10, pgs. 430-435) as well as Bransden’s Quantum
Mechanics (Second Edition) book12 (Chapter 12, pgs.
571-574), though the latter seems to be more suitable
for a lower-level graduate course. In most instances
where this problem is considered, the charged particle
has an isotropic mass. However, the situation is more
nuanced for electrons confined to 2D semiconductors in-
cluding quantum wells in AlAs heterostructures13,14, Si
surfaces15, PbTe quantum wells16 as well as a number

of other types of semiconductors17. In these systems,
the electrons move in the periodic potential structure
of atomic potentials in the crystal. In such conditions
the role of mass is played by the so-called effective mass
of the electrons which might be anisotropic. Therefore,
the solution of the Landau problem for a model that ac-
commodates a charged particle with anisotropic mass is
more than just an exercise in quantum mechanics since
it is also important to understanding quantum Hall sys-
tems18. The effective mass of electrons in a semiconduc-
tor might be a tensor quantity. The simplest choice is
to assume an anisotropic mass, mx along the x direction
and my along the y direction.
In this work, we show that this seemingly challenging

problem can be solved through a transformation of co-
ordinates that reduces the unknown problem to the case
of a charged particle with isotropic mass, albeit in terms
of ”new” scaled coordinates. The solution is not only
of research interest, but also of pedagogical value since
the mathematical level of such transformations is not dif-
ficult to grasp by typical upper-level undergraduate or
low-level graduate students. We organize the paper as
follows: In Section II we explain briefly the model and
the theory for the familiar case of a charged particle with
constant isotropic mass in a uniform constant perpendic-
ular magnetic field. In Section III we provide an easy
to follow implementation of the solution method for the
problem under consideration. In Section IV we discuss
the results from a scientific and pedagogical point of view
and provide some concluding remarks.

II. CHARGED PARTICLE WITH CONSTANT

ISOTROPIC MASS IN A UNIFORM CONSTANT

PERPENDICULAR MAGNETIC FIELD

We first briefly review the quantum problem of a par-
ticle with constant isotropic mass, m, and charge, q,
constrained to move in the xy-plane in the presence of

a uniform constant perpendicular magnetic field, ~B =
(0, 0, Bz). Its solution is presented in much greater de-
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tail in Ref.[ 19].
The Hamiltonian is:

Ĥ =
1

2m

[

~̂p − q ~A(x, y)

]2

, (1)

where ~̂p = (p̂x, p̂y) =
(

−i ~ ∂
∂x

,−i ~ ∂
∂y

)

is the 2D linear

momentum operator and ~A(x, y) is the vector potential
for the magnetic field. Here, i =

√
−1 is the imaginary

unit and ~ is the reduced Planck’s constant. The inter-
action of the particle’s quantum spin with the magnetic
field (the Zeeman effect) is not considered.
In this work, we adopt the symmetric gauge:

~A(x, y) =
Bz

2

(

−y, x, 0
)

, (2)

so that the Hamiltonian becomes

Ĥ =
1

2m

(

−i ~
∂

∂x
+q

Bz

2
y

)2

+
1

2m

(

−i ~
∂

∂y
−q

Bz

2
x

)2

.

(3)
Because the operators within each bracket of Eq.(3)

commute with each other, the Hamiltonian simplifies to:

Ĥ =
p̂2x + p̂2y
2m

− q Bz

2m
L̂z +

m

2

(

q Bz

2m

)2

(x2 + y2) , (4)

where

L̂z = x p̂y − y p̂x , (5)

is the z-component of the angular momentum operator.
To describe electrons (q = −|q| < 0), it is particu-

larly convenient to choose Bz = −| ~B| < 0, since this
will enable us to describe the wave function in terms of a
complex variable z = x + i y instead of its complex con-
jugate. The above notation for the 2D complex position
is standard in the quantum Hall literature20 and readers
can easily rely on the context not to confuse it with the
z-direction.

For electrons, the Hamiltonian in Eq.(4) can be rewrit-
ten as:

Ĥ =
p̂2x + p̂2y
2m

− ωc

2
L̂z +

m

2

(ωc

2

)2
(

x2 + y2
)

, (6)

where

ωc =
|q| | ~B|
m

> 0 , (7)

is the cyclotron angular frequency.
The stationary Schrödinger’s equation is then solved

in 2D polar coordinates. The energy eigenvalues (found
in Ref.[ 19]) are:

Enrml
= ~ωc

(

nr +
1

2
+

|ml| −ml

2

)

, (8)

where nr = 0, 1, . . . represents a radial quantum number
and ml = 0,±1, . . . is the z-component angular momen-
tum quantum number. Note that there are no restrictions
on ml for a given nr. The normalized eigenfunctions are
written as a product of a radial function with an angular-
dependent function (the eigenstate of L̂z) as:

Ψnrml
(r, ϕ) = Rnrml

(r) Φml
(ϕ) , (9)

where r =
√

x2 + y2 ≥ 0 denotes the 2D radial distance
and 0 ≤ ϕ < 2π is the polar angle for a 2D polar system
of coordinates. The normalized radial function is:

Rnrml
(r) = Nnrml

(

r

l0

)|ml|

exp

(

− r2

4 l20

)

L|ml|
nr

(

r2

2 l20

)

,

(10)
where Nnrml

is a normalization constant, Lk
n(x) are as-

sociated Laguerre polynomials and

l0 =

√

~

|q| | ~B|
, (11)

is known as the magnetic length. The magnetic length
may be viewed as representing the smallest radius of a
circular orbit in a magnetic field that is allowed by the
rules of quantum mechanics.
Since the radial wave function is purely real, its or-

thonormalization condition is:
∫ ∞

0

dr r Rnrml
(r) Rn′

r
ml

(r) = δnrn′

r
, (12)

where δij is the Kronecker delta symbol. The condition in
Eq.(12) leads to the value of the normalization constant:

Nnrml
=

√

nr!

l20 2|ml| (nr + |ml|)!
. (13)

The normalized angular function, Φml
(ϕ) is the eigen-

state of the operator L̂z from Eq.(5) which, in 2D polar
coordinates, can be written as:

L̂z = −i ~
∂

∂ϕ
. (14)

One can verify that:

Φml
(ϕ) =

eiml ϕ

√
2π

, (15)

is orthonormal and also satisfies the condition:

L̂z Φml
(ϕ) = ~ml Φml

(ϕ) ; ml = 0,±1,±2, . . . (16)

Note that the allowed energy eigenvalues in Eq.(8) are
determined by the quantum number:

n = nr +
|ml| −ml

2
. (17)
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FIG. 1: The quantity, r |R0ml
(r)|2 is plotted as a function

of r for values of ml = 0 (solid line), ml = 1 (dashed line),
ml = 2 (dotted line) and ml = 3 (dash-dotted line). In our
notation, r is a 2D radial distance. It is assumed that l0 = 1.

The level with lowest possible energy (the ground state
energy) is known as the lowest Landau level (LLL). The
LLL energy has the value of ~ωc/2 and corresponds to
n = 0; thus, it is associated with the quantum numbers:

nr = 0 ; ml = 0, 1, 2, . . . . (18)

The other Landau levels (LLs) with higher energies cor-
respond to n = 1, 2, . . . values. All LLs are highly degen-
erate (through the quantum number ml). The number of
states, Ns with the same energy (degeneracy) for each LL
in a macroscopic (disk) sample with area, A is calculated
to be:

Ns =
A

2π l20
∝ | ~B| . (19)

To explain briefly this result one observes that states with
higher ml extend to a larger radial distance. As a matter
of fact, one can calculate exactly the expectation value,
〈r2〉 for any given state. If a state with n = 0 is taken
as an example, 〈r2〉 = 2 l20 (ml + 1) ; ml = 0, 1, 2, . . ..
Since the particle should be within the area of the given
sample, the maximum value of π〈r2〉 will be A. Thus,
the maximum value of ml denoted as mmax

l is such as to
satisfy the condition, 2π l20 (m

max
l + 1) = A. This means

that the resulting degeneracy is Ns = (mmax
l + 1) =

A/(2π l20) as seen from Eq.(19).
As a final observation, one can check that the LLL

single-particle wave functions (nr = 0 ; ml = 0, 1, . . .)

in Eq.(9) can be conveniently written using a complex
notation as:

Ψ0ml
(z) =

1
√

2π l20 2
ml ml!

(

z

l0

)ml

exp

(

−|z|2
4 l20

)

,

(20)
where z = x + i y = r ei ϕ represents a complex variable
for the 2D position vector and ml = 0, 1, . . . , Ns − 1.
A telling display is the plot of r |R0ml

(r)|2 for values
ml = 0, 1, 2 and 3 as shown in Fig. 1. For simplicity, we
assume a unit length, l0 = 1. One can visually get the
idea from Fig. 1 that all the curves have the same integral
consistent with the normalization condition in Eq.(12).

III. CHARGED PARTICLE WITH

ANISOTROPIC MASS IN A UNIFORM

CONSTANT PERPENDICULAR MAGNETIC

FIELD

Now we consider the same setup for a particle with
anisotropic mass of the form mx > 0 and my > 0, so
that the Hamiltonian becomes:

Ĥ =
1

2mx

(

−i ~
∂

∂x
+q

Bz

2
y

)2

+
1

2my

(

−i ~
∂

∂y
−q

Bz

2
x

)2

.

(21)
The Hamiltonian in Eq.(21) is the anisotropic mass coun-
terpart to that for a constant isotropic mass in Eq.(3).
Unfortunately, the counterpart to Eq.(4) is not useful,
since the anisotropic mass makes it impossible to ex-
press the Hamiltonian in terms of L̂z. Instead, we check
whether it is useful to rescale the variables, rewriting
Eq.(21) as:

Ĥ =
γ2

2mx

[

−i ~
∂

∂(γ x)
+ q

Bz

2

(y

γ

)

]2

+
1

2my γ2

[

−i ~
∂

∂( y
γ
)
− q

Bz

2

(

γ x
)

]2

, (22)

where γ is a real (positive) parameter to be determined.
In Eq.(3), the two coeffiecients in front of each bracket

were equal, which we can achieve in Eq.(22) by choosing

γ2

2mx

=
1

2my γ2
or γ2 =

√

mx

my

. (23)

Then the Hamiltonian becomes

Ĥ =
1

2mc

(

−i ~
∂

∂x ′
+q

Bz

2
y ′

)2

+
1

2mc

(

−i ~
∂

∂y ′
−q

Bz

2
x ′

)2

,

(24)
where

x ′ = γ x ; y ′ =
y

γ
, (25)
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FIG. 2: Magnitude squared of the LLL wave function,
|Ψ0 0(z

′)|2 for a particle with anisotropic mass, mx = 2me,
my = me/2 as a function of coordinates x and y. The
above values of the anisotropic mass give rise to parameter,
γ =

√
2. As a result, the complex 2D position variable, z ′

reads z ′ = x ′ + i y ′ = γ x + i y/γ =
√
2x + i y/

√
2. For

convenience, it is assumed that l0 = 1.

are two scaled coordinate variables and

mc =
√
mx my , (26)

denotes the effective cyclotron mass of a particle with
anisotropic mass21. The Hamiltonian in Eq.(24) has
exactly the same form as that in Eq.(3). Also, note
that dx dy = dx ′ dy ′. Therefore, the solutions pre-
sented in Section II are exactly the solutions to this
problem, with the substitutions x → x′, y → y′, and
m → mc =

√
mx my.

In the following, we write only the result for the LLL
states with a LLL energy of:

ELLL =
~ω ′

c

2
, (27)

where ω ′
c = |q|| ~B|/mc is the cyclotron frequency. The

normalized single-particle LLL states conveniently writ-
ten using complex notation and the primed coordinates
are:

Ψ0ml
(z ′) =

1
√

2π l20 2
ml ml!

(

z ′

l0

)ml

exp

(

−|z ′|2
4 l20

)

,

(28)
where nr = 0 is the value of the radial quantum number
for the LLL, ml = 0, 1, . . . for the LLL, z ′ = x ′ + i y ′

represents a complex variable in terms of the primed co-
ordinates and l0 is the magnetic length that does not
depend on the mass of the particle.
To see the effects of mass anisotropy on the form of

the Landau states, let us consider the simplest LLL state

with nr = 0 and ml = 0, choosing mx = 2me and my =
me/2 where me is the electron’s bare mass. The effective
cyclotron mass in this case with be mc =

√
mx my =

me. This means that the LLL energy of this particle
with anisotropic mass is exactly the same as that for an
electron with constant isotropic mass, m = me. Since
γ2 = 2, the magnitude squared of this quantum state is:

|Ψ0 0(z
′)|2 =

1

2π l20
exp

(

−|z ′|2
2 l20

)

=
1

2π l20
exp



−1

2

γ2 x2 + y2

γ2

l20





=
1

2π l20
exp

(

−1

2

2x2 + y2

2

l20

)

, (29)

after we revert back to the coordinates x and y. A three-
dimensional plot of |Ψ0 0(z

′)|2 is shown in Fig. 2. For
convenience, we assume l0 = 1. As can be seen from the
above plot, the magnitude squared of the wave function
manifests the expected lack of circular symmetry induced
by the anisotropic mass of the particle.

IV. CONCLUSIONS

There are not many problems in quantum mechan-
ics that have analytical solutions and are straightfor-
ward enough to teach to undergraduate students. The
list of such problems typically involves a free particle,
various potential wells, the harmonic oscillator, the hy-
drogen atom and a particle in a magnetic field, with
the latter featuring either in upper-level undergraduate
courses or lower-level graduate courses. The problem of
the quantum states of a charged particle moving in 2D
space subject to a uniform constant perpendicular mag-
netic field is intimately connected to the understanding
of two very important phenomena in condensed matter
physics, namely, the integer quantum Hall effect and the
fractional quantum Hall effect. To understand realistic
experimental results, it’s necessary to use a model with
effective band mass anisotropy of electrons13–17. There-
fore, we hope that this work will encourage future authors
of quantum mechanics textbooks to incorporate the prob-
lem of a particle with anisotropic mass (with or without
the presence of a magnetic field) more often as a very use-
ful case study that illustrates the behavior of a system
with inherent anisotropy.
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