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Loss of any symmetry in a system leads to quantum problems that typically are very difficult
to solve. Such a situation arises for particles with anisotropic mass like electrons in various semi-
conductor host materials where it is known that they may have an anisotropic effective mass. In
this work we consider the quantum problem of a spinless charged particle with anisotropic mass
in two dimensions and study the resulting energy and eigenstate spectrum in a uniform constant
perpendicular magnetic field when a Landau gauge is adopted. The exact analytic solution to the
problem is obtained for arbitrary values of the anisotropic mass using a mathematical technique
that relies on the rescaling of the original coordinates. The characteristic features of the energy
spectrum and corresponding eigenstate wave functions are analyzed. The results of this study are
expected to be of interest to the theory of quantum Hall effect.
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I. INTRODUCTION

Great advances in the field of nanotechnology and
low-dimensional systems have enabled the precise, con-
trolled fabrication of materials at atomic and molecu-
lar scales. The electron’s quantum mechanical nature
is very pronounced in this regime. Therefore, there is
a great potential payoff that electronic devices built on
nanoscale may manifest many desirable quantum proper-
ties. This means that the current science and technology
may be at the cusp of major developments that can fun-
damentally change our life for many decades to come.
Low-dimensional systems, in particular two-dimensional
(2D) systems of electrons are seen as some of the most
fascinating systems for meeting the technological chal-
lenges of the future1–5. The great interest in 2D sys-
tems of electrons stems from the fact that the combina-
tion of low-dimensionality, confinement, discreteness of
the electron’s charge, electron’s quantum spin and in-
teraction/correlation effects can lead to very intriguing
quantum phenomena6,7. The application of new and ex-
traordinary experimental tools in conjunction with the
production of novel materials has created an urgent need
for a better understanding of many novel unexpected
physical phenomena that are observed under these con-
ditions8,9.

Application of a strong uniform constant magnetic field
perpendicular to a 2D system of electrons dramatically
changes its physics. As a matter of fact, a 2D system
of electrons in a perpendicular magnetic field exhibits re-
markable quantum phenomena at very low temperatures.
Two novel specific physical phenomena, the integer quan-
tum Hall effect (IQHE)10 and fractional quantum Hall
effect (FQHE)11 stand out as two of the most impor-
tant discoveries in condensed matter physics for the last
decades. Appearance of plateaus in the plot of Hall re-
sistance as a function of the magnetic field was an unex-
pected finding. The Hall resistance on these plateaus is
quantized at values, RH = h/(ν e2) where h is the Planck

constant, e is the magnitude of electron’s charge and the
quantum number ν is integer (1, 2, etc.) for the IQHE
or fractional (1/3, 1/5, etc.) for the case of the FQHE.

The IQHE has a simpler explanation that originates
from the quantum physics of single-particle states in
a perpendicular magnetic field. On the other hand,
the FQHE represents a particular example of a novel
collective quantum liquid state of matter that origi-
nates in a unique way from strong electronic interac-
tions/correlations. For both cases, the first step to get
some comprehension of the phenomena is to consider the
solution of the quantum problem of a spinless charged
particle in a 2D system subject to a perpendicular mag-
netic field. This quantum problem was solved by Lan-
dau long time ago12. The model typically assumes that
charged particles (for instance, electrons) with a fixed
given isotropic mass are confined in a 2D system that
is subjected to a strong uniform constant perpendicu-
lar magnetic field. The main feature of the quantum
solution is that the resulting energy spectrum consists
of massively degenerate discrete quantum states known
as Landau levels which are separated by an energy gap
from each other. For a given Landau level, the eigen-
state spectrum of the many degenerate wave functions
describes states with the same kinetic energy quantized
by the application of the magnetic field.

Within the realm of quantum mechanics, the kinetic
energy of an electron moving in a perpendicular magnetic
field is quantized to values of ~ωc/2, 3 ~ωc/2, 5 ~ωc/2,
and so on, where ~ = h/(2π) is the reduced Planck’s
constant and ωc is the cyclotron angular frequency. The
energy gap between two neighboring Landau levels is ~ωc

and ~ωc/2 is known as the lowest Landau level energy.
The number of eigenstates in each Landau level, thus,
the degeneracy is proportional to the value of the mag-
netic field (B) and to the area (A) of the 2D sample,
Ns = BA/Φ0 where Φ0 = h/e is the magnetic flux quan-
tum. Note that the degeneracy, Ns of each Landau level
increases with increasing the magnetic field. A key pa-
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rameter that controls the properties of the system is the
filling factor, ν which is defined as the ratio of the num-
ber of electrons, N to the degeneracy (number of avail-
able states) of each Landau level, ν = N/Ns. In fact, the
filling factor represents exactly the quantum number, ν
in the expression for the Hall resistance plateaua, RH .
This means that, IQHE occurs when the filling factor, ν
is integer while the FQHE happens when ν is fractional.

In the extreme quantum limit of very high perpendic-
ular magnetic field, the degeneracy of each Landau level
becomes so large that all electrons may be accommodated
in the lowest Landau level, with negligible admixture of
higher Landau levels. In fact, some of most important
FQHE liquid states occur when the lowest Landau level
is fractionally filled with electrons. Under these condi-
tions, the kinetic energy of the electrons is essentially
quenched to a constant value (that corresponds to the
lowest Landau level energy per electron). The electrons
also have a quantum spin that couples to the magnetic
field. The energy associated with this coupling is known
as Zeeman energy and is the smallest when the quantum
spin of the electrons is aligned with the magnetic field.
For this reason and to simplify the treatment one may
assume that the quantum spin of electrons is ”frozen” by
the magnetic field and, therefore, the electrons may be
seen as effectively spinless charged particles.

As the magnetic field varies, stabilization of novel
quantum phases of electrons happens at special filling
factors that generally have odd denominators. Among
them, the most robust FQHE states correspond to fill-
ing factors ν = 1/3 and 1/5 and are well described by
Laughlin’s theory in terms of trial wave functions13. Dif-
ferently from odd-denominator-filled states in the lowest
Landau level, even-denominator-filled states with filling
factor ν = 1/2, 1/4 and 1/6 do not show typical FQHE
features and behave as isotropic compressible metallic
Fermi liquid states14. The composite fermion theory15

for the FQHE shed light on the Fermi-liquid nature of
such even-denominator-filled states. On the other hand,
Wigner crystallization occurs when the filling factor be-
comes around or less than ν = 1/7 as seen in various
studies16–20.

As discussed above, the 2D model of a charged particle
in a uniform constant perpendicular magnetic field has
many applications in quantum mechanics ranging from
theories of magnetism a century ago21,22 to quantum Hall
effect phenomena during the last few decades23–32. The
model in which a charged particle has a given constant
isotropic mass was exactly solved by Landau in a work
where the so-called Landau gauge was first introduced12.
The exact solution of the stationary Schrödinger equation
in this case is relatively straightforward for such a gauge
due to the possibility of separating variables and writing
the overall wave function as the product of a plane wave
for one position variable and a displaced one-dimensional
(1D) harmonic oscillator for the other one.

However, it is well known that any loss of symmetry in
a quantum system leads to mathematical problems that

generally become much more difficult to solve. A com-
mon situation of this nature arises when we deal with
particles such as electrons trapped in semiconductor ma-
terials that may possess an anisotropic effective mass.
The purpose of this work is to consider the 2D model
of a spinless charged particle with anisotropic mass in a
uniform constant perpendicular magnetic field and show
that this quantum problem has a simple and exact an-
alytic solution despite the presence of mass anisotropy.
The mathematical approach that we use is based on the
introduction of ”new” scaled distorted coordinates. The
method allows one to transform the original problem of
a charged particle with anisotropic mass in standard co-
ordinates to that of a charged particle with isotropic ef-
fective mass in ”new” scaled distorted coordinates.
The paper is organized as follows: In Section II we ex-

plain the quantum solution for the case of a charged par-
ticle with constant isotropic mass in a uniform constant
perpendicular magnetic field. In Section III we provide
the exact solution when mass is anisotropic and point out
the key details of the adopted mathematical method. In
Section IV we discuss the subtle effects that may come
from the anisotropic mass of electrons in quantum Hall
systems. In Section V we provide some concluding re-
marks.

II. RESULTS - ISOTROPIC MASS

In this section, we focus our attention on the quan-
tum problem of a spinless particle with constant isotropic
mass, m > 0 and charge, q moving in 2D space in pres-
ence of a uniform constant perpendicular magnetic field.
We clarify that by constant quantity we mean one that
does not change with time. A particle with constant
isotropic mass is a rather conventional one. For instance,
it can be an electron with bare mass, me and negative
charge in studies of 2D electronic systems under ideal
conditions. For more realistic experimental situations,
one must take into account the fact that many times 2D
systems of electrons are created at the interface of a semi-
conductor heterojunction and/or heterostructure such as
GaAs/AlGaAs. Since electrons are typically confined in
the conduction band of a given host semiconductor, the
mass, m for this case would represent the electron’s ef-
fective band mass for those structures that are known
to have a constant isotropic effective mass (for example,
it is known that the effective band mass of electrons is
isotropic and has the value, m = 0.067me in a GaAs
host semiconductor).
Providing certain details to the solution of this known

problem is beneficial for understanding how the emerging
new problem of a particle with anisotropic mass can be
mapped back to the known results. To begin with, the
magnetic field perpendicular to the 2D plane is written
as:

~B = (0, 0, Bz) . (1)
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Any magnetic field is given in terms of a vector potential
so that:

~B = ~∇× ~A(x, y) , (2)

where ~∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)

is the nabla or del operator,

∂
∂x ,

∂
∂y ,

∂
∂z are partial derivatives and ~A(x, y) is the vec-

tor potential for the given magnetic field. The choice of
~A(x, y) is not unique. The simplest choice is the so-called
Landau gauge which may take the following two flavours:

~A(x, y) = Bz (0, x, 0) , (3)

or

~A(x, y) = Bz (−y, 0, 0) . (4)

In this work we choose the Landau gauge in Eq.(3).
The general quantum Hamiltonian is:

Ĥ =
1

2m

[

~̂p − q ~A(x, y)
]2

, (5)

where ~̂p = (p̂x, p̂y) is the 2D linear momentum operator.
The x and y components of the 2D linear momentum
operator may be explicitly written as:

p̂x = −i ~
∂

∂x
; p̂y = −i ~

∂

∂y
, (6)

where i =
√
−1 is the imaginary unit and ~ is the reduced

Planck’s constant. One must notice that the interaction
of the particle’s quantum spin with the magnetic field
(the Zeeman effect) is not included in the Hamiltonian
of Eq.(5) since, for simplicity, we are assuming a spinless
charged particle.
One can write the quantum Hamiltonian as:

Ĥ =
1

2m

[

p̂x−q Ax(x, y)
]2

+
1

2m

[

p̂y−q Ay(x, y)
]2

. (7)

For the Landau gauge in Eq.(3), the quantum Hamilto-
nian in Eq.(7) becomes:

Ĥ =
p̂2x
2m

+
(p̂y − q Bz x)

2

2m
=

1

2m

[

p̂2x + (p̂y − q Bz x)
2
]

.

(8)
The stationary Schrödinger’s equation to solve is:

Ĥ Ψ(x, y) = EΨ(x, y) , (9)

where E is the energy and Ψ(x, y) is the wave func-
tion. In order to solve this equation, one envisions the
particle as being constrained in a 2D space of area,
Lx Ly where −Lx/2 ≤ x ≤ +Lx/2 , 0 ≤ y ≤ Ly and
Lx → ∞ and Ly → ∞. Hence, in the x-direction, one
has −∞ < x < +∞. On the other hand, periodic bound-
ary conditions (PBC) for the wave function are imposed
in the y-direction:

Ψ(x, y) = Ψ(x, y + Ly) . (10)

Given the form of the Hamiltonian in Eq.(8) and the PBC
choice in Eq.(10) one searches for a wave function that
solves Eq.(9) as a product of a plane wave state in the
y-direction and a function that depends on coordinate x
in the other direction:

Ψ(x, y) =
ei ky y

√

Ly

Φ(x) . (11)

The overall normalization of the wave function must be
such that:

∫ +∞

−∞

dx

∫ Ly

0

dy |Ψ(x, y)|2 = 1 . (12)

Substitution of the expression from Eq.(11) into Eq.(9)
gives:

[

p̂2x
2m

+
(~ ky − q Bz x)

2

2m

]

Φ(x) = E Φ(x) . (13)

One can rewrite Eq.(13) as:
[

p̂2x
2m

+
m

2

(

q Bz

m

)2(

x− ~ ky
q Bz

)2
]

Φ(x) = E Φ(x) .

(14)
At this juncture, we introduce the explicit definition of
the cyclotron angular frequency:

ωc =
|q| |Bz|

m
> 0 , (15)

where |q| > 0 is the magnitude of the charge of the par-
ticle, |Bz| > 0 is the magnitude of the magnetic field
perpendicular to the 2D plane and m > 0 is the constant
isotropic mass of the charged particle. Classically speak-
ing, a charged particle as the one described above, mov-
ing perpendicular to the direction of a uniform constant
magnetic field will undergo uniform circular motion with
a given rotational cyclotron frequency, fc = ωc/(2π).
The cyclotron frequency is independent of the radius of
the circle of rotation and velocity. All charged particles
with the same charge-to-mass ratio will undergo circular
motion with the same frequency.
With help from the definition in Eq.(15), one can write

Eq.(14) as:
[

p̂2x
2m

+
m

2
ω2
c

(

x− ~ ky
q Bz

)2
]

Φ(x) = E Φ(x) . (16)

The PBC in the y-direction as specified by Eq.(10) fixes
the allowed values of the ky wave vector:

ky =
2π

Ly
j ; j = 0,±1,±2... (17)

Note that Eq.(16) represents a displaced 1D quantum
oscillator centered at ~ ky/(q Bz) which has a known so-
lution. The resulting discrete energy eigenvalues are:

En = ~ωc

(

n+
1

2

)

; n = 0, 1, . . . . (18)
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These are the Landau levels. Note that the discrete Lan-
dau level energies are highly degenerate since the quan-
tum number ky does not enter the expression for the
energy. The normalized eigenfunctions corresponding to
the above energy levels may be written as:

Ψnky
(X, y) =

ei ky y

√

Ly

Φn(X) , (19)

where

X = x− ~ ky
q Bz

, (20)

and Φn(X) is the normalized eigenfunction of a 1D har-
monic oscillator of mass m and frequency ωc. Such a
wave function is given by:

Φn(X) = Nn exp

(

−α2 X2

2

)

Hn(α X) , (21)

where

Nn =

√

α√
π 2n n!

, (22)

is the normalization constant,

α =

√

mωc

~
, (23)

is a parameter with the dimensionality of an inverse
length and Hn(x) are the Hermite polynomials. By using
Eq.(15) one sees that:

α =

√

mωc

~
=

√

|q| |Bz|
~

=
1

lB
, (24)

where

lB =

√

~

|q| |Bz|
, (25)

is known as the magnetic length.

By looking at the expression obtained in Eq.(19),
one concludes that the normalized eigenfunctions for a
charged particle studied in a Landau gauge look like
stripes33. It is straightforward to note that the proba-
bility density for such eigenfunctions, |Ψnky

(X, y)|2 de-
pends only on the variable X (thus, x), but not y. This
means that one can view such states as extended in one
direction (in this case along the y-direction), but ex-
ponentially localized around a given set of centers in
the other perpendicular direction (in this case the x-
direction).

III. RESULTS - ANISOTROPIC MASS

Let us now consider the same quantum problem but
with the assumption that the charged particle has a con-
stant anisotropic (effective) mass of the form:

mx > 0 ; my > 0 , (26)

along the respective x and y directions. This situation
would apply to electrons hosted in semiconductors in
which the lowest energies of the conduction band are lo-
cally approximated in parabolic form by an anisotropic
dispersion relation:

E(~k) = E0+
~
2

2mx
(kx−k0x)

2+
~
2

2my
(ky−k0y)

2+
~
2

2mz
(kz−k0z)

2 ,

(27)

where E(~k) is the energy of an electron at wavevector ~k
in that band, E0 is the minimum energy of that band,
mx,y,z are the effective masses along the different axes

and ~k0 = (k0x, k0y, k0z) represents the wavevector of
the conduction band minimum (that, in principle, may
be offset from the zero value). Effective (isotropic or
anisotropic) masses of conduction band electrons in com-
mon host semiconductor materials (GaAs, GaP , InAs,
AlAs, Si, Ge, etc.) are all positive. However, if semi-
conductor band structures of certain exotic materials ex-
hibit saddle points (e.g., in heterostructures, curved 2D
materials, or topological insulator systems), there could
be situations where the effective mass is positive in one
direction (mx > 0) and negative in another (my < 0).
Dealing with the concept of a particle with a negative
mass either classically or quantum mechanically is be-
yond the scope of this work.
The scenario envisioned by Eq.(26) would lead to a

starting quantum Hamiltonian:

Ĥ =
1

2mx

[

p̂x − q Ax(x, y)
]2

+
1

2my

[

p̂y − q Ay(x, y)
]2

.

(28)
For the assumption of a Landau gauge as in Eq.(3), one
has:

Ĥ =
1

2mx

(

−i ~
∂

∂x

)2

+
1

2my

(

−i ~
∂

∂y
− q Bz x

)2

.

(29)
The Hamiltonian in Eq.(29) is the anisotropic mass coun-
terpart to that in Eq.(8) with the 2D linear momentum
operators written in explicit form.
The idea behind the solution of this quantum problem

is to try to identify some ”new” coordinates that will al-
low us to see the problem of a particle with anisotropic
mass in ”old” coordinates as that of a ”new” particle
with constant ”isotropic” mass in these ”new” coordi-
nates. This means that the solution of the problem will
be achieved elegantly if this process comes to fruition
given that, at this juncture, one can rely on already
known results.
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Being inspired by this idea, the mathematical approach
that we follow is centered on rescaling the original coor-
dinates x and y. We start by rescaling the variable x to
γ x where γ is seen as a real positive scaling parameter
whose precise value would be determined at a later stage.
Let us write Eq.( 29) as:

Ĥ =
1

2mx

[

−i ~ γ
∂

∂(γ x)

]2

+
1

2my

[

−i ~
∂

∂ y
−q Bz

γ
(γ x)

]2

.

(30)
Since γ x is going to be one of the ”new” scaled coordi-

nate variables, it immediately transpires that the scaling
parameter, γ can be factorized out of the second term in
the right-hand-side expression of Eq.(30) if one rescales
the other coordinate variable y to y/γ:

Ĥ =
1

2mx

[

−i ~ γ
∂

∂(γ x)

]2

+
1

2my

[

− i ~

γ

∂

∂
(

y
γ

)−q Bz

γ
(γ x)

]2

.

(31)
At this junction, one can check that the quantum Hamil-
tonian in Eq.( 31) can be rewritten as:

Ĥ =
γ2

2mx

[

−i ~
∂

∂(γ x)

]2

+
1

2my γ2

[

−i ~
∂

∂
(

y
γ

) − q Bz (γ x)

]2

. (32)

Let us choose the value of γ such that:

γ2

2mx
=

1

2my γ2
. (33)

This choice leads to:

γ2 =

√

mx

my
. (34)

For the choice of γ2 as in Eq.(34) one has:

γ2

mx
=

1

my γ2
=

1
√
mx my

; γ2 =

√

mx

my
. (35)

This means that one can use the result from Eq.(35) to
write the Hamiltonian in Eq.(32) as:

Ĥ =
1

2mc

(

−i ~
∂

∂x ′

)2

+
1

2mc

(

−i ~
∂

∂y ′
− q Bz x

′

)2

, (36)

where the two ”new” scaled coordinate variables are:

x ′ = γ x ; y ′ =
y

γ
, (37)

and

mc =
√
mx my , (38)

represents the effective cyclotron mass of a particle with
anisotropic mass34.
One can rewrite the quantum Hamiltonian in Eq.(36)

in more compact form as:

Ĥ =
1

2mc

[

p̂2x ′ +
(

p̂y ′ − q Bz x
′
)2
]

, (39)

where ~̂p ′ = (p̂x ′ , p̂y ′) is the 2D linear momentum opera-
tor with respect to the ”new” primed coordinates.
A comparison of the result from Eq.(39) to the original

Hamiltonian for a particle with constant isotropic mass

as seen in Eq.(8) indicates that the problem of a parti-
cle with anisotropic mass in variables x and y has been
transformed to that of a particle with isotropic mass,
mc =

√
mx my in terms of ”new” scaled variables x ′ and

y ′. Note that dx dy = dx ′ dy ′. However, one must be
careful to write:

∫ +∞

−∞

dx

∫ Ly

0

dy =

∫ +∞

−∞

dx ′

∫ Ly/γ

0

dy ′ , (40)

when the overall normalization condition of the wave
function is applied. The solution of the quantum problem
for a particle with constant isotropic mass is well known.
Thus, one can immediately use such known results with
the only consideration taken that all expressions must
be written in terms of the ”new” primed variables. The
energy eigenvalues are:

En = ~ω ′
c

(

n+
1

2

)

; n = 0, 1, . . . . (41)
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where

ω ′
c =

|q| |Bz|
mc

. (42)

Note that ω ′
c takes the place of the cyclotron angular

frequency, ωc for the case of a particle with constant
isotropic mass, m. Likewise, mc =

√
mx my takes the

place of mass, m for the case of a particle with constant
isotropic mass.
With some care, one can write the normalized eigen-

functions corresponding to the above energy levels as:

Ψnk ′

y
(X ′, y ′) =

ei k
′

y y ′

√

Ly/γ
Φn(X

′) , (43)

where

X ′ = x ′ −
~ k ′

y

q Bz
, (44)

and Φn(X
′) is the normalized eigenfunction of a dis-

placed 1D harmonic oscillator of mass mc, frequency ω ′
c

in ”new” primed coordinates. In order to have the PBC
in Eq.(10) still valid, one has:

k ′
y = γ ky , (45)

where ky is given from Eq.(17).
The displaced 1D quantum oscillator wave function in

the ”new” primed coordinates is written as:

Φn(X
′) = N ′

n exp

(

−α ′2 X ′2

2

)

Hn(α
′ X ′) , (46)

where

N ′
n =

√

α ′

√
π 2n n!

, (47)

and

α ′ =

√

mc ω ′
c

~
. (48)

IV. DISCUSSION

Classically speaking, a charged particle experiences a
magnetic force when moving through a magnetic field.
The fundamental questions that one must answer are
what happens to the particle if this magnetic field is
uniform over the motion of the charged particle. The
simplest case occurs when a charged particle with fixed
isotropic mass moves perpendicular to a uniform constant
magnetic field. Since the magnetic force is perpendicu-
lar to the direction of travel, a charged particle follows a
circular path in a magnetic field. Another way to look at
this is that the magnetic force is always perpendicular to
velocity, so that it does no work on the charged particle.

As a result, the particle’s kinetic energy and speed (mag-
nitude of velocity) remain constant. In a nutshell, the
direction of motion is affected but not the speed. The
classical description above becomes more nuanced when
the charged particle has a constant anisotropic mass with
values mx 6= my along the respective x and y directions.
We have investigated the classical 2D motion of a charged
particle with such an anisotropic mass in the presence of
a uniform constant magnetic field that is perpendicular
to the plane of motion and have found that the trajec-
tory of the particle for such a case is elliptical34. We also
have verified that, as expected, such a trajectory becomes
circular when the mass becomes isotropic (mx = my).
Overall, it was found that the resulting classical motion
and trajectory of such a particle is very sensitive to the
direction of the initial velocity.

The solution of the quantum counterpart to this prob-
lem is much more complicated. The main reason is that,
unlike the classical scenario, the quantum Hamiltonian
is given in terms of the vector potential and not the
magnetic field. There are different vector potentials that
can generate the same magnetic field. The freedom to

choose various vector potentials, ~A(x, y) that lead to the
same magnetic field is known as the choice of the gauge.
The most common gauges used are the symmetric gauge
and Landau gauge. A step-by-step solution of the quan-
tum problem of a charged particle with constant isotropic
mass in a perpendicular uniform constant magnetic field
for the case of a symmetric gauge is readily available in
the literature35. The quantum problem of a charged par-
ticle with isotropic mass is easier to solve for a Landau a
gauge. By providing the full details of such a solution we
reminded the reader to the peculiarities of the Landau
gauge and also prepared the ground to tackle the much
more difficult quantum problem for the counterpart case
of a charged particle with anisotropic mass. It is shown
in this work that the quantum problem of a charged par-
ticle with anisotropic mass in a perpendicular uniform
constant magnetic field can be solved rather elegantly by
adopting a mathematical method that rescales the orig-
inal coordinates to new distorted ones. This procedure
allows one to restore the mass symmetry of the station-
ary Schrödinger differential equation albeit in ”new” dis-
torted coordinates.

The quantum problem of a charged particle (with or
without an isotropic mass) undergoing 2D motion in
a perpendicular uniform constant magnetic field leads
to the physics of Landau states. The properties and
the nature of Landau states is fundamental to explain
a plethora of important phenomena in physics such
as the IQHE and FQHE. The unique nature of the
IQHE/FQHE phases has always been a fertile ground for
paradigm-shifting ideas in theoretical condensed matter
physics and materials science. Novel theories, phases of
matter and concepts such as topological states, incom-
pressible quantum Hall liquids or composite fermions are
now well-known in the literature and all originate from
studies of these two phenomena. For all these cases, the
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starting model assumes a standard Coulomb interaction
potential between the charged particles. Obviously, a
Coulomb interaction potential is isotropic in the sense
that the interaction energy of any pair of charged parti-
cles depends only in their separation distance. The same
presumption is valid for many inherently anisotropic
phases such as charge density waves, liquid crystalline
phases, Wigner solid phases, etc. The assumption made
is that the interaction potential is isotropic (for instance,
a Coulomb interaction potential) and there is no intrinsic
anisotropy.
However, in a real quantum Hall sample, electrons may

possess an anisotropic effective mass tensor or may in-
teract via an effective anisotropic interaction potential
(mediated from the substrate). This situation calls for a
re-examination of the role played by anisotropic factors
such as an anisotropic effective mass36. To be more spe-
cific, we consider a 2D system of charged particles with
anisotropic band mass values, mx > 0 and my > 0 along
two respective directions labelled x and y. The charged
particles interact with the usual (isotropic) Coulomb in-
teraction potential:

vC(~ri − ~rj) =
k q2

√

|xi − xj |2 + |yi − yj |2
, (49)

where k is Coulomb’s electric constant, q is the charge of
the particles and ~ri−~rj = (xi−xj , yi−yj) is the 2D vec-
tor that separates the positions of particles i and j. The
anisotropic mass of the charged particles breaks the rota-
tional symmetry of the quantum kinetic energy operator
(with or without a magnetic field). The transformation
of variables in Eq.(37) allows one to restore the rota-
tional symmetry of the quantum kinetic energy in the
”new” scaled coordinates. The same transformation of
coordinates when applied to the Coulomb interaction po-
tential would transform it into the following anisotropic
Coulomb interaction potential:

vγ(~r
′
i − ~r ′

j) =
k q2

√

|x ′

i
−x ′

j
|2

γ2 + γ2 |y ′
i − y ′

j |2
, (50)

where γ > 0 is an interaction anisotropy parameter that
leads to anisotropy when different from 1. This param-
eter (γ) is the same as the scaling parameter of the co-
ordinates that was discussed earlier. From the perspec-
tive of Eq.(50), one can view the directions of x and y
(primed or unprimed) as corresponding to the two prin-
cipal axes of the dielectric tensor. The potential becomes
the standard isotropic Coulomb interaction potential for
γ = 1. This anisotropic Coulomb interaction potential
(for γ 6= 1) breaks the usual assumption of isotropic pair
interaction potentials that have been consistently utilized
in past studies. It is expected that an anisotropic inter-
action potential of this nature can steer towards novel
conceptual frameworks37. The idea is to deal with the
rarely tackled but considerably more difficult problem of
understanding how anisotropic order arises in a quan-
tum system in which the constituent particles interact

with an anisotropic interaction potential. An anisotropic
interaction potential alone or in conjuncture with other
intrinsic degrees of anisotropy in the system may be seen
as a game changer that can lead to novel physics in the
field38,39.
Interaction/correlation effects in systems of electrons

may lead to the formation of novel quantum phases of
matter. Under certain conditions, one can describe vari-
ous properties in terms of the underlying topology of the
system. This is the case of topological insulators, in gen-
eral, and FQHE systems, in particular. In fact, FQHE
liquids are the ultimate examples of a phenomenon hav-
ing topological features. As already noticed, the FQHE
is observed in certain 2D materials (in presence of a large
perpendicular magnetic field near absolute zero temper-
ature). Quantum effects related to the magnetic field
cause a gap to open between energy bands in the bulk
material. As a result, the electrons in the bulk become
localized (they cannot move freely). This leads to bulk
states of electrons that represent an insulator. However,
the electrons at the edge still can move and, thus, they
can conduct (this is the physics of “edge states”) while
the bulk phase remains insulating. Overall, such phases
are characterized by the presence of an energy band-
gap within the bulk of the material, while the material’s
edge/boundary or surface hosts topologically protected
gapless conducting modes. The non-trivial topology of
the FQHE gives rise to fractionally charged elementary
excitations which in some cases may even possess non-
Abelian braiding statistics (for instance, the Pfaffian
state at filling factor ν = 5/2). Interaction/correlation
effects between electrons are the key ingredient that leads
to this sort of physics (in fact, there is no FQHE with-
out interaction between electrons). The predominant
view since the time of Laughlin’s theory13 has been that
FQHE states represent isotropic quantum liquid phases
that have rotational symmetry. However, recent work40

in quantum Hall fluids has revealed the importance of
a novel internal geometric degree of freedom (or metric)
previously overlooked. It has been pointed out that topo-
logical liquid phases arising in the FQHE regime are not
required to be rotationally invariant. This means that
presence of an internal anisotropy (such as anisotropic
mass and/or anisotropic interaction potential) may dras-
tically modify our view on the remarkable topological
properties of such systems. Therefore, the quantum solu-
tion of this problem for the case of a charged particle with
an anisotropic mass (mx 6= my) is very useful to analyze
situations in which the charged particles (for instance,
electrons and/or holes) posses a pronounced anisotropic
(effective) mass.

V. CONCLUSIONS

The quantum problem of a charged particle confined
in 2D space in a uniform constant perpendicular mag-
netic field is the foundation of many important phenom-
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ena in physics where the IQHE/FQHE stand out as two
major discoveries during the last few decades. The ba-
sic features of all quantum Hall phenomena were initially
understood by using the standard model of charged parti-
cles (electrons) with constant isotropic mass in a uniform
constant perpendicular magnetic field. However, experi-
mental sample refinements have led to a grown interest
in grasping more subtle systems involving electrons that
possess an effective anisotropic band mass.
Breaking any symmetry in a quantum system leads to

problems that are not easy to solve in analytical form.
The case of an (effective) particle with anisotropic mass
is one such scenario that is important not only from a
mathematical perspective, but also for real experimental
applications, for instance when dealing with electrons in a
semiconductor material. As a matter of fact, the concept
of an effective anisotropic mass tensor is routine when it
comes to studying the properties of electrons in periodic
potentials as the ones created by the crystal structure
of many semiconductor materials. The standard studies
of 2D systems of electrons in a perpendicular magnetic
field originally involved GaAs/AlGaAs heterostructures.
In these systems, the electrons typically manifest an (ef-
fective) isotropic mass. However, improvement of experi-
mental samples and materials allows now one to study 2D
systems of electrons for regimes that were not accessible
before including those in which the electrons manifest
an (effective) anisotropic mass. Any source of internal
anisotropy in a quantum system may lead to novel subtle
quantum phenomena involving scenarios that may have
not been observed before. This means that the system’s
symmetry (or lack of it) influences the patterns of various
observed quantum phenomena. In particular, this work
further emphasizes the role that symmetry (or lack of
it) plays in quantum problems that involve 2D systems
of charged particles with anisotropic mass subject to a
perpendicular magnetic field.
For a 2D system of electrons with applied uniform con-

stant magnetic field in the z-direction and a homogeneous
electric field, Ex in the x-direction, all states drift in the
transverse y-direction (where the plane waves are). As a
result, the current density in the y-direction, jy will be
given by:

jy = ν
e2

h
Ex , (51)

where, for simplicity, we consider IQHE states with fill-
ing factor, ν = 1, 2, . . .. Sample details including effects
from the presence of an anisotropic (effective) mass of the
electrons are expected not to play any role in the mea-
sured Hall resistance plateaus, RH = |Vy/Ix| = h/(ν e2)
where Vy is the Hall (transverse) voltage and Ix the lon-
gitudinal current. However, the ranges of the magnetic
field and/or the electron density where the plateaus ap-
pear will be affected by an anisotropic mass. The quan-
tized Hall resistance shows a universal behavior, but it is
known that the current distribution in real quantum Hall
devices is quite complicated41. Therefore, an anisotropic

mass of the charge carriers is expected to affect the pat-
terns of the current distribution, too. The occurrence of
such phenomena may be detected from the experimental
observation of unexpected magneto-transport anisotropy
features of a 2D system of electrons in the quantum Hall
regime.

Another interesting scenario where an anisotropic mass
may have a profound impact arises when one discusses
the effects of Earth’s gravity on the quantum Hall behav-
ior of 2D systems of electrons. To this effect, one may
consider a 2D quantum Hall sample of electrons oriented
in such a way that the gravitational field of the Earth
acts on the 2D plane of the sample perpendicular to the
magnetic field. The effect of gravity for such an orienta-
tion is to act as an effective in-plane constant homoge-
neous electric field due to the same linear nature of the
gravitational potential. For the geometry adopted in this
work, one may choose the gravitational field to act in the
x-direction. The new twist that comes from the (effec-
tive) mass anisotropy of the electrons is that the resulting
gravitational potential energy has the gravitational field
coupled to the mass of the electrons in the x-direction re-
sulting in an energy term of the form, mx g x where g is
the acceleration due to gravity on Earth’s surface. If the
quantum Hall effect is affected by the gravitational field,
the effects of the mass anisotropy should show up as a
modification to the current density expression when one
uses the quantum Hall effect to probe the inverse-square
law of gravity as recently suggested42:

jy(mx) =

(

1 +
mx g

eEx

)

ν
e2

h
Ex . (52)

This additional energy term correction due to Earth’s
gravity (∝ mx/Ex) may lead to subtler effects than the
case study of a constant isotropic mass, m previously
considered in a recent work that takes a fresh look at
the influence of gravity on the quantum Hall effect states
(more precisely, on the IQHE states) of electrons for a
variety of conditions42.

Based on these considerations, one can promptly rec-
ognize the reasons why it is important to consider the
2D quantum problem of a charged particle with an
anisotropic mass subject to a uniform constant perpen-
dicular magnetic field when a Landau gauge is adopted.
This problem is important to the physics of quantum Hall
effect for those situations in which the charged particles
(electrons) have an effective band mass anisotropy43–47.
It is shown that this model, despite exhibiting no axial
symmetry, allows an exact analytic calculation of the en-
ergy and eigenfunctions for any value of anisotropic mass
and magnetic field. The solution to the quantum prob-
lem is obtained elegantly by a scaling transformation of
the original coordinates. The results of this study would
be of interest to a broad audience of individuals working
in quantum mechanics as well as researchers that study
the applications of quantum theory in materials science.
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