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The calculation of the electrostatic potential and/or electrostatic field due to a continuous dis-
tribution of charge is a well-covered topic in all calculus-based undergraduate physics courses. The
most common approach is to consider bodies with uniform charge distribution and obtain the quan-
tity of interest by integrating over the contributions from all the differential charges. The examples
of a uniformly charged disk and ring are prominent in many physics textbooks since they illustrate
well this technique at least for special points or directions of symmetry where the calculations are
relatively simple. Surprisingly, the case of a uniformly charged annulus, namely, an annular disk,
is largely absent from the literature. One might speculate that a uniformly charged annulus is not
extremely interesting since after all, it is a uniformly charged disk with a central circular hole. How-
ever, we show in this work that the electrostatic potential created by a uniformly charged annulus
has features that are much more interesting than one might have expected. A uniformly charged
annulus interpolates between a uniformly charged disk and ring. However, the results of this work
suggest that a uniformly charged annulus has such electrostatic features that may be essentially
viewed as ring-like. The ring-like characteristics of the electrostatic potential of a uniformly charged
annulus are evident as soon as a hole is present no matter how small the hole might be. The solu-
tion of this problem allows us to draw attention to the pedagogical aspects of this overlooked, but
very interesting case study in electrostatics. In our opinion, the problem of a uniformly charged
annulus and its electrostatic properties deserves to be treated at more depth in all calculus-based

undergraduate physics courses covering electricity and magnetism.
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I. INTRODUCTION

The calculation of the electrostatic potential or elec-
trostatic field due to a continuous charge distribution is
a very important topic in electrostatics. The typical sce-
nario considered is that of a uniform charge distribution
over the length, surface or volume of a given body for the
respective one-dimensional (1D), two-dimensional (2D)
or three-dimensional (3D) cases. The typical objects
studied in physics textbooks are regular charged bodies
that have some form of symmetry. Prominent examples
that feature in almost all calculus-based undergraduate
physics textbooks that deal with the topics of electricity
and magnetism [1-7] are objects like a uniformly charged
finite line, ring, disk, spherical surface and solid sphere.
The 1D case of a finite line with constant linear charge
density is easy to handle by direct integration using a
variety of methods [8]. The 3D case studies of a con-
ducting spherical surface with constant surface charge
density and a non-conducting solid sphere with constant
volume charge density are perfect examples that illus-
trate the application of Gauss’s law to derive the electric
field. The 2D case of a disk with constant surface charge
density represents a scenario in which the calculation of
electrostatic potential/field is relatively straightforward
for special points or directions of symmetry, for instance,
at center of disk or along the axis of symmetry (line go-
ing through center of disk perpendicular to its plane).
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The same can be said for a uniformly charged ring. An
expression for the electrostatic potential/field due to a
uniformly charged disk or ring at an arbitrary point in
space is not provided in most university physics text-
books because such a calculation is mathematically very
demanding [9, 10]. Calculations for the electrostatic po-
tential of a uniformly charged square/rectangular plate
are mostly available from published peer-reviewed spe-
cialized papers [11, 12].

The problem of a uniformly charged annulus is ab-
sent in most of the common calculus-based undergrad-
uate physics textbooks that cover electricity and mag-
netism [1-7]. A uniformly charged annulus, namely, an
annular disk, can be seen as either a disk with a small
circular hole when the inner radius is small or as a ring-
like object when the inner radius of the annulus is about
the same size as the outer radius. If one recalls, there
are striking differences between the electrostatic poten-
tial due to a uniformly charged disk and that due to a
uniformly charged ring even for points/directions of sym-
metry. For example, the electrostatic potential on the
plane of a uniformly charged ring is singular (divergent)
at points in the ring, but this is not the case for the
potential at the edge of a uniformly charged disk. On
the contrary, the electrostatic potential on the plane of a
uniformly charged disk is smooth everywhere. It has its
largest value at the center of the disk and monotonically
decreases with distance (without having any peaks).

Therefore, a simple question that arises is whether
the electrostatic potential of a uniformly charged annu-
lus has disk-like or ring-like traits given that an annu-



lus interpolates between these two objects. The naive
expectation is that the electrostatic potential of a uni-
formly charged annulus should resemble that of a uni-
formly charged disk when the inner radius of the annulus
is relatively small (the circular hole is small) and that of
a uniformly charged ring, otherwise. It turns out that
the correct answer to this question is, in our view, sub-
tler than expected and a little bit surprising. Our results
show that, for all instances in which the electrostatic po-
tentials of a uniformly charged disk and ring differ from
each other (like points on the respective planes of each
object), the electrostatic potential of a uniformly charged
annulus shows ring-like characteristics. In simple words,
as soon as the annulus has a hole, its electrostatic po-
tential on its plane does not look like the potential of a
uniformly charged disk.

In this work, we calculate the electrostatic potential
of a uniformly charged annulus at an arbitrary point in
space. We introduce a special calculation method and ex-
plain the key mathematical steps in a clear pedagogical
manner. The mathematical method that we use allows
us to obtain a very useful compact exact 1D integral ex-
pression for the electrostatic potential of the annulus at
any point in space as a function of its inner/outer radii,
the two parameters that determine the shape of the ob-
ject. Since the mathematical treatment quickly becomes
a little bit too challenging for the audience that we have
in mind, we move on to focus our attention on some spe-
cial cases that are easy to understand. The results ob-
tained illustrate that, indeed a uniformly charged annulus
has fascinating properties that, unfortunately, have been
largely overlooked in the wider literature.

The article is organized as follows. In Section I we ex-
plain the model and introduce the theoretical formalism.
In Section IIT we discuss the main results. In Section IV
we deliberate on the nature of the equilibrium state at
the center of the uniformly charged annulus. In Section V
we draw some conclusions and give a sense of the broader
pedagogical and technical aspects of the work.

II. MODEL AND THEORY

A schematic view of an annulus is shown in Fig. 1.
The annulus has an inner radius, R; and outer radius,
Rs. We assume that:

0<Ri<Rs. (1)

The annulus becomes a disk with radius, Ry when R; =
0. The annulus becomes a ring with radius, Ro when
Ry = R;. However, one must be very careful for this
case and interpret the ring limit of the annulus as:

Rl — RQ_ i (2)
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where the sign means that the limit is reached from
the side of R; that is smaller than Ry. The two parame-
ters, R; and Ry determine the shape and, thus, the geom-
etry of the object. The annulus contains a net charge, @)
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FIG. 1. Schematic view of a uniformly charged annulus lying
on the x — y plane. The origin of the Cartesian system of
coordinates corresponds to the center of the annulus. The
annulus has an inner radius, R; and an outer radius, Rs. The
annnulus contains a total charge, @ that is spread uniformly
on its surface.

that is uniformly distributed on its surface. As a result,
the annulus has a constant surface charge density:
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The system of coordinates is chosen so that the annulus
lies on the x — y plane with its center at the origin. For
clarity, the z-axis is not drawn in Fig. 1 where we show
only a 2D view of the domain occupied by the charge
contained in the annulus. The annulus has circular sym-
metry. This means that a 3D cylindrical system of co-
ordinates is the most suitable one to study this object.
We denote by 7/ = (z’,y’,2’ = 0) the position of an
arbitrary point on the annulus. In 3D cylindrical coor-
dinates, the 2D vector, g/ = («’,y’) has its components
written as: ' = p’ cos(p’) and y’ = p’ sin(p’) where
p’ =|p’| > 0 is the 2D radial distance and 0 < ¢’ < 27
is the polar angle. On the other hand, the 3D vector,
7 = (x,y, z) represents an arbitrary point in space where
the electrostatic potential is to be calculated. The cor-
responding 2D vector, g = (z,y) has its components ex-
pressed as its ”primed” counterpart except that it is not
?primed”. The annulus surface domain reads:

D:{ngp’§R2;0§@’<27r}. (4)

We consider a differential element of charge, dQ’' =
od%’ where d®’ = dx'dy’ = dp’' p’ dp' is an elementary
surface area on the annulus at location, g’ = (z’,y’).
The resulting electrostatic potential that this differential
charge element creates at point, 7 is written as: dV (7) =



k. dQ'/|F — 7'|, where k. is Coulomb’s electric constant.
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VR, R, (7) = keU/del 7 — 7|
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FIG. 2. Electrostatic potential on the plane of a uniformly
charged disk, Vpisk(p, 2 = 0, R) (filled circles) and a uniformly
charged ring, Vring(p,z = 0, R) (solid line) as a function of
distance p/R. Both disk and ring have radius, R and contain a
net charge, Q. The disk has a constant surface charge density,
o = Q/(w R?) while the ring has a constant linear charge
density, A = Q/(27 R). Note the singularity (divergence) of
the electrostatic potential due to a uniformly charged ring at
p = R. The electrostatic potential is measured in units of

ke Q/R.

where the 2D integral is carried out over the annulus do-
main, D in Eq.(4) and |7 — 7| = \/|f— p'|?> + |2]2. The
integral in Eq.(5) cannot be calculated by direct inte-
gration and, thus, a special mathematical treatment is
required. At this juncture, we take the opportunity to
remind the reader about some already known results for
a uniformly charged disk and ring that will be useful to
us, later on.

The electrostatic potential due to a uniformly charged
disk with radius, R and constant surface charge density,
o = Q/(m R?) can be expressed in compact form [see
Eq.(11) of Ref. [13]] as:

Vpisk(p, 2, R) = (27) ke O‘R/
(6)

=k.o

Jo(kp) Ji(k R)e 1",

The electrostatic potential due to the whole uniformly
charged annulus is then written as:

Ro 2 1

dp'p’ dop' ——-, (5)
Ry 0 |7 — 7]

(

where J,,(x) are Bessel functions of the first kind of or-
der, m. As we proceed with this work, we note that
our preference is to use the 1D integral representation
in Eq.(6) for the electrostatic potential of a uniformly
charged disk instead of more explicitly written analytic
expressions. Available explicit analytic expressions from
the literature are very complicated even for the value of
the electrostatic potential on the plane of the disk [13]
and let alone its value everywhere in space [9, 10].

The electrostatic potential of a uniformly charged ring
with radius, R and constant linear charge density, A =
Q/(27 R) may be written [see Eq.(10) of Ref. [14]] as:

VRing(pvzvR) = (271-) ke AR /0OQ dk JO(kp) JO(/CR) ekl
(7)

An explicit analytic result may be obtained [see Eq.(3)

of Ref. [14]] in the form:
ke A\AR 4pR }
\% in ,Z,R = ’
Ring (P ) G+ R+ 2 [(p—FR)Q—l—ZZ

(8)

where

9)

/W/2 do
0 /1 —msin?)

is the complete elliptic integral of the first kind defined
for 0 < m < 1 as in Arfken and Weber [15] (see page 355).
However, as already discussed for the case of a uniformly
charged disk, we prefer to use the 1D integral represen-
tation in Eq.(7) even for the electrostatic potential of a
uniformly charged ring because it is compact.

At this point, we note that one can easily rewrite the
expressions in Eq.(6) and Eq.(7) in terms of charge, @ if
one so desires. In fact, let us rewrite these two quantities
for points that are on the plane of the respective objects
(z = 0) by using charge, @ as a parameter instead of o or
A. Although explicit analytical results are available [13,
14], the 1D integral form is preferred:

kQ/ g,
o /Oooquo(”q

Vpisk(psz2=0,R

(%) 1@ .

(10)
and

VRing(p7 Z = OaR) =

S
N—
=



where ¢ = k R is a dummy variable (for both disk and
ring). We note that the integrand in Eq.(10) is alter-
nating in sign for both p # R and p = R. However,
the integrand in Eq.(11) is alternating in sign for p # R
but becomes non-negative for p = R. The outcome of
this behavior is that the integral [ dg [Jo (¢)]” diverges.
Useful expressions for the value of the electrostatic po-
tential at some special points of a uniformly charged disk
are:

ke
VDisk(P = 07 zZ = O,R) =2 RQ (12)
and
4 k.
VDisk(p = R?’Z = 07 R) = ; RQ . (13)

It is also easy to obtain from Eq.(11) the expected result
for the electrostatic potential of a uniformly charged ring
at its center:

ke @

VRing(p = 0) z = Oa R) = R

(14)

The results above can be checked with help from the
following formulas: Jo(z = 0) = 1, [;° 92 5 (z) = 1,
IS L Jo(x) Ji(x) =2/m and [ da Jo(z) = 1.

As clearly shown in Fig. 2, the dependence of
Vpisk(p, 2 = 0, R) as a function of radial distance, p is
strikingly different from that of Vging(p, 2 = 0, R). Note
that Vpsk(p, 2 = 0, R) decreases monotonically from its
largest value at the center of the disk as p increases. On
the other hand, Vging(p, 2z = 0, R) increases monotoni-
cally starting from its value at the center of the ring, it is
divergent at p = R and then decreases monotonically as
p increases. Therefore, the question whether the electro-
static potential of a uniformly charged annulus resembles
that of a uniformly charged disk (for a small inner radius)
or that of a uniformly charged ring (for a much larger in-
ner radius) and how much it resembles one or another
object is not only interesting, but also demands a very
careful analysis.

IIT. RESULTS AND DISCUSSIONS

The success of the mathematical method that is used
to solve this problem hinges on the following expansion
from Jackson’s book [16] (see pg. 96):

1

=]

+oo %)
=> / dke!™ =) o (k p) Ty (k p') e R 12721
m=—oo”0
(15)
where i = y/—1 is the imaginary unit and .J,,,(z) was pre-
viously defined in the context of Eq.(6). The above trans-
formation applies to any pair of 3D vectors expressed in
cylindrical coordinates.

In many instances, integrals over angular variables of
two-particle functions are very difficult [17-20]. How-
ever, one can see that axial symmetry in conjunction with
Eq.(15) helps a lot in this case to obtain:

27 1 )
/ de' =, 2(277)/ dk Jo(k p) Jo(k p') e * 1!
0 |7”77“ ‘ 0

(16)
since z’ = 0. By substituting the result from Eq.(16)
into Eq.(5) one has:

o0
Veir, (p,2) = (27) ke o / dk Jo(k p) e * 17l
0 Ry

(17)
Note that the electrostatic potential of a uniformly
charged annulus is written as Vg, g, (p, ) where the vari-
ables p and z are explicitly shown as arguments. This
choice of notation reflects the circular symmetry of the
problem under consideration. At this juncture, one uses
the following indefinite integral formula involving Bessel
functions:

/dxxJo(x) =z Ji(z) , (18)

to obtain:

Ro 1
/ dp’ p' Jolkp') = 7 [Rg Ji(k Rs) — Ry Ji(k Ry)

Ry
(19)
As a result, we can write the electrostatic potential due
to a uniformly charged annulus in a simple 1D integral
form as:

V(o) = @) ko [ B ok ) [Ro a0 o) — By (kR e (20)

k

At this juncture, one can make an important observa-
tion with regard to the expression in Eq.(20) and notice

(

that one can write it as:

VR1R2 (p7 Z) = VDisk(P, z, R = R2) - VDisk([L z,R= Rl) s
(21)
where Vp;sk(p, z, R) is given from Eq.(6). This result can

R>
dp'p" Jo(kp') .



be interpreted from the standpoint of viewing the electro-
static potential of a uniformly charged annulus with inner
radius Ry, outer radius Ry and surface charge density o
as the electrostatic potential of a uniformly charged disk
with radius Re minus the electrostatic potential of a uni-
formly charged disk with radius R; where both disks are
concentric, coplanar and have the same surface charge
density o. Another equivalent way to reach the same
conclusion is by decomposing the uniformly charged an-
nulus with inner radius Ry, outer radius Ry and surface
charge density ¢ into two concentric coplanar uniformly
charged disks: one with a radius of Ry and a surface
charge density, ¢ and the other one with a radius Ry
and a surface charge density, —o. This decomposition
method, allows one to capture even the nature of the
electrostatic potential of a disk with an off-centered cir-
cular hole (let’s say with a radius R;) in it (with the
assumption that the object has constant surface charge
density) since the electrostatic potential of a uniformly
charged disk is known. However, when using the decom-
position approach, one must be careful while writing the
electrostatic potential of the uniformly charged disk (that
fills the off-centered circular hole) since the center of this
uniformly charged disk is shifted away from the origin.
If . = (%, y.) denotes such a 2D center then one can
conclude that the electrostatic potential at some point
7 = (z,y,2) can be formally written as a superposition:
Vpisk(p, 2, R = Ry) = Vpisk(|p—pecl, 2z, R = Ry1) where the

J

ke 2 *d
Vars (p,2) = @ / il Jo
0

Ry 1—a? q

Note that we explicitly put o and Rs as parameters in
the expression for the electrostatic potential function,
Var,(p, z) appearing in Eq.(25). The results in Eq.(20)
and Eq.(25) are very general and allow one to treat var-
ious special cases by carefully taking the proper limits.
Overall, the simplicity of the 1D integral presentation in
Eq.(20) and Eq.(25) is very appealing. The 1D integrals
can be easily calculated numerically with very high pre-
cision by using standard integration packages [21]. At
this stage, one can use either Eq.(20) or Eq.(25) to verify
whether the above quantities reduce to known results for
special cases. To be more specific, we will look at the
disk and ring limit of the electrostatic potential of the
uniformly charged annulus, value of electrostatic poten-
tial at center of annulus, value of electrostatic potential
on the plane of the annulus and value of electrostatic
potential along the axis of symmetry of the annulus. A
particular focus will be placed on the analysis of the two
latter scenarios since such an analysis represents an ex-
cellent case study to check whether the electrostatic po-
tential of a uniformly charged annulus manifests disk-like
or ring-like traits.

expression in Eq.(6) is used for Vp;sk(p, z, R). Obviously,
the total electrostatic potential in this scenario does not
have a circular symmetry.

Since it is preferable to express the electrostatic po-
tential in terms of the net charge rather than the surface
charge density, one writes:

2k Q
2m) koo = ——— . 22

For more convenience, one can make the expression in
Eq.(20) even more compact by introducing ratios of pa-
rameters. To this effect, we assume that:

Ry #0. (23)

Now, we express R; in terms of Rs by introducing a
parameter, « defined as:

0<a=—
S o Ry

<1. (24)

The range of a in Eq.(24) is such because of the condition,
0 < Ry < Ry from Eq.(1).

To simplify the calculations, one introduces a dummy
variable, ¢ = k Ry and after some careful manipulation
of the terms in Eq.(20), the final result reads:

pq) [Jl(q) —aJi(aq) ef%q. (25)

Ry

A. Disk limit

A uniformly charged annulus becomes a uniformly
charged disk with radius, Re when R; = 0. Therefore,
one sets Ry = 0 in Eq.(20), to obtain:

> dk
VR, —or, (p,2) = (27) keaRg/ — Jo(k p) Ji(k Ry) e 12l
0

k
(26)
At this juncture, it is easy to see that:
VRl=0R2 (pv Z) = VDisk(ﬂ, Z, R= RQ) P (27)

where the expression for Vpisi(p, 2, R) is given from
Eq.(6).

B. Ring limit

A uniformly charged annulus becomes a uniformly
charged ring with radius, Ry when Ry = R; . However,
this condition requires a very careful consideration of the



Ry — R limit:

lim (R3—R3)=2Ry lim (Ry—Ry).
R1—>R; R1—>R;

(28)
|

> dk
VRlZR;Rz(p’Z) = (27T) ke )\/0 ? Jo(kp)

The correct value of the limit under the integral sign is
obtained with help from the following derivative formula:

a [33 T (k x)} = (ka) Jo(kz) .

. (32)

As a consequence, one has:

Ve —r-r (p,z):(QW)ke)\RQ/ dk Jo(k p) Jo(k Ry) e 121,
2 112 0

(33)

The final result in Eq.(35) allows one to verify that:
(34)
|

Vii—rg 1, (P, 2) = VRing(p, 2, R = Ra) ,

VR1R2 (P =0,z =

where we used the fact that Jo(z 0) = 1. The
next step is to implement the following integral formula:

fooo dr 242 — 1. At this point, it is straightforward to

x

obtain:

VRIRQ(pZO,ZZO):(2’/T)keO'(R2*R1). (36)

In terms of charge, after writing o = Q/(7 R2 — m R?),
one derives:

2k.Q
Vi =0,z2=0=——"—F. 37
Rle(P ) % ) Ry + Ry ( )
J
kQ 2
VaRz(pazfo)* R 1— a2

We know that the electrostatic potential of a uniformly

lim
Ri— R,

0)(27r)k@0/000

= Jo

[ 9
o 4

dk

Based on the result from Eq.(28), one can write:

1

lim o=\ lim ————, 29
Ry —R; Ri—R; (R — Ry) (29)
where
Q
A= 30
271’R2 ’ ( )

represents the constant linear charge density of a ring
with radius, Ry and net charge, ). Imposition of the
condition from Eq.(29) into Eq.(20) leads to:

Ry Ji(k Ry) — Ry J1(k Ry)
Ry — Ry

ekl

(31)

(

where the expression for Vging(p, 2z, R) is provided in
Eq.(7).

C. Center of annulus

The value of the electrostatic potential at the center of
a uniformly charged annulus reads:

A Ry Ji(kRz) — Ry Ji(kRy)|

D. Plane of annulus

Now, we turn our fullest attention to the expression for
the electrostatic potential created by a uniformly charged
annulus on its own plane. We prefer to rely on the more
compact 1D expression in Eq.(25) for such an analysis:

<£2q> [Ai(a) ~ adi(aq)] . (38)

(

charged disk is smooth and monotonically decreasing
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FIG. 3. Electrostatic potential, Var,(p, z = 0) due to a uni-
formly charged annulus for points on its plane as a function of
radial distance from its center, p/R2. The total charge on the
surface of the annulus is denoted by (. The annulus has an
inner radius, Ry and an outer radius, Ry (which is kept fixed).
The inner radius may vary from R = 0 to Ry = R, . Plots
are given for a series of values of parameter, « = R1/R2 =0
(solid line), 0.1 (filled circles), 0.2 (filled diamonds), 0.3 (filled
squares), 0.4 (crosses) and 0.5 (stars). The case o = 0 rep-
resents a uniformly charged disk with radius, Rz (without a
central hole). The electrostatic potential is measured in units

of ke Q/Ro.

starting from its largest value at disk’s center. On the
other hand, the electrostatic potential of a uniformly
charged ring increases at points away from the center, be-
cames singular (infinite) on the ring and then gradually
decreases. In crude terms, the electrostatic potential of a
uniformly charged disk is smooth and falls monotonically
as a function of distance without having any peaks, while
the electrostatic potential of a uniformly charged ring has
an (infinite) peak. At first sight, we were tempted to be-
lieve that, for a small inner radius, the electrostatic po-
tential of a uniformly charged annulus may resemble that
of a uniformly charged disk. To check this point, we con-
sidered six values of parameter, & = Ry /Ry starting from
a = 0 (disk case) and o = 0.1,0.2,0.3,0.4 and 0.5. In
Fig.3 we show the electrostatic potential, Vo r,(p, z = 0)
as a function of radial distance from its center, p/ Rz for
0 < a <0.5 (in steps of 0.1). The resulting electrostatic
potential does not show any characteristics that resem-
ble the electrostatic potential of a uniformly charged disk
even for the smallest a # 0 value considered (o = 0.1).
One can see from Fig.3 that the electrostatic potential of
a uniformly charged annulus is not monotonic for values
« # 0 and always has a peak at some p # 0.

W

(3]

ts of k.Q/R,)

in uni

—

0 Lo L L L L Lo
0 0.25 0.5 0.75 1 1.25 1.5

p/ Rz

Vur(p,z=0) (

FIG. 4. The same as in Fig.3 but for different values of the
parameter, o = 0.6 (solid line), 0.7 (filled circles), 0.8 (filled
diamonds), 0.9 (filled squares) and 0.99 (stars). The case
a = 0.99 is very close to representing a uniformly charged ring
with radius, R which has a diverging potential at p = Ra.

For all values of a considered in Fig.3, one notices that
the peak of the electrostatic potential is broad and more
or less develops at some radial distance p # 0 within
the Ry < p < Ry region. One sees from Fig.3 that the
peak grows progressively sharper as R; approaches Rs,
namely, when parameter alpha grows from 0.1 to 0.5. We
verified that similar patterns occur for values of a that
are as small as &« = 0.01. Therefore, it is reasonable to
conclude that a peak in the electrostatic potential of a
uniformly charged annulus on its plane appears at some
p # 0 for any arbitrary value Ry # 0, no matter how
small such a value might be. In a nutshell, once a central
circular hole appears in the annulus (R; # 0), the elec-
trostatic potential of a uniformly charged annulus on its
plane develops a peak/maximum at a given point p # 0
between R; and Rs. Such traits are unlike those ob-
served for a uniformly charged disk which produces an
electrostatic potential that is smooth and has a peak at
the center of the disk (p = 0). From this perspective, one
might see the above features of the electrostatic potential
of the annulus as manifesting a ring-like behavior. This is
better seen in Fig.4 where we show the electrostatic po-
tential of a uniformly charged annulus for points on its
plane, Vg, (p, 2 = 0) as a function of the radial distance
from its center, p/ Ry for larger values of the parameter,
a = 0.6, 0.7, 0.8, 0.9 and 0.99. The value @ = 0.99 is
very close to representing a uniformly charged ring with
radius, Re which has a diverging potential at p = Rs.
The peak eventually becomes an infinity at p = Ry for
R, = R, . However, the maximum appears, morphs, and



blows up smoothly with the increase of the inner radius
of the annulus (as « increases). Therefore, the above ar-
gument is not a water-tight one. As a matter of fact, it
will be shown that an analysis of the electrostatic poten-
tial and the resulting electrostatic field along the z-axis
of the uniformly charged annulus represents a more con-
vincing evidence suggesting that, indeed, the physics of
a uniformly charged annulus is closer to the physics of a
uniformly charged ring than that of a disk.

VaRg(p = 072) = (271') ke O’Rg

where parameter « is defined in Eq.(24) and o is defined
in Eq.(3). In Fig.5 we show the electrostatic potential,
Var,(p = 0,z) in units of (27) k. o Rz as a function of
z/Rg for & = 0 (disk) and o« = 0.5. The ring limit
(Ri = R, ; a — 17) can be obtained from Eq.(39)
[or from Eq.(41)] by carefully following the procedure
already explained in Subsection.(IIIB).

For comparison, the electrostatic potential along the
z-axis of symmetry for a uniformly charged disk with
radius, R and constant surface charge density, ¢ =

Q/(m R?) reads:
Vbisk(p = 0,2, R) = @) ke o[V RZ+ 2 — |21 . (42)

For a uniformly charged ring with radius, R and constant
linear charge density, A = Q/(2 7 R) one has:
(2m)ke AR ke Q
VRE+ P RZAE
Knowledge of the electrostatic potential allows one to

obtain the electrostatic field along the z-axis. For in-
stance, when the annulus case is considered, one has:

Vring(p=0,2,R) = (43)

0
ER1R2 Z(p = 072) = _EVRle(p = O,Z) . (44>

The electrostatic field along the z-axis can be calculated
this way for each of the three objects under considera-
tion (annulus, disk and ring). The result for a uniformly
charged annulus is:

z z

e -
VR + 2?2 /R + 2
(45)

ERle Z(p = O,Z) = (2 7T) k

E. Axis of annulus

The expression for the electrostatic potential along the
z-axis of symmetry (p = 0) of a uniformly charged annu-
lus is:

Vaum, (p = 0,2) = (27) kea[\/Rg ez — R+ 417]

(39)
The result above can be easily verified if one starts from
the expression in Eq.(20) and applies the following inte-
gral formula:

/ d—le(x)e_sz/l—&—az—a ;
0

>0 40
- az0, (1)

where parameter, a > 0 is considered to be real. If desir-
able, one may rewrite the expression in Eq.(39) as:

o) e ()

; (41)

Vur(p=0,z) [in units of (2m)k.cR;]

Z/ Rz

FIG. 5. Electrostatic potential, Var,(p = 0,2) due to a
uniformly charged annulus as a function of z/Ry for a =
Ri/R; = 0 (solid line) and a = 0.5 (dotted line). The case
a = 0 represents a uniformly charged disk with radius, R2
(without a central circular hole). The electrostatic potential
is measured in units of (27) ke o Ra.

Note that as soon as R # 0 (which means that there is
circular hole at the center), one has:

ERlez(pZO,ZZO):O. (46)
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FIG. 6. Electrostatic field along the z-axis, for a uniformly
charged annulus, Er, g, -(p = 0, 2) for values R1 = 0.4 R and
R>; = R (solid line) and Ry = 0.2R and R, = R (dottd
line) as a function of z/R. The field is measured in units of
(27) ke o.

The electrostatic field along the z-axis of a uniformly
charged annulus is continous for all values of z. A simple
plot of ER, R, .(p = 0, z) measured in units of (27) k.o
for values Ry = 0.4 R and Ry = R (solid line) and R; =
0.2 R and Ry = R (dottd line) is shown in Fig.6.

The result for the electrostatic field of a uniformly
charged disk along its z-axis of symmetry is:

z z
Episk2(p=0,2,R) = 2m) koo | — — ——u
pisk= (0 ) =@ llz R? + |22
(47)

Note the discontinuity of the z-component of the electro-
static field at z = 0. A calculation of the electrostatic
feld slightly above (z = 07) and slightly below (z = 07)
the z = 0 plane of the disk at its center gives:

EDiskz(p:OaZZO+7R):(271-)]{:60-:% ) (48)
€0
and
EDiskz(p =0,z= 0_7R) = _(27T) keo = _% ) (49)
0

where ke = 1/(4d7meg). A plot of Episk-(p = 0,2, R)
measured in units of (27) k.o as a function of z/R is
shown in Fig.7.

Finally, the result for the electrostatic field on the z-
axis of a uniformly charged ring is:

R— Q2 (50

ERin z(p = O,Z,
! (R? + |2]2)*/?

Episk (p=0,z,R) [in units of (27)K.o]

FIG. 7. Electrostatic field along the z-axis, Episk-(p =
0, z, R) for a uniformly charged disk with radius, R and con-
stant surface charge density, o as a function of z/R. The field
is measured in units of (27) ke 0.

It is easy to note that:
ERing-(p=0,2=0,R)=0. (51)

Unlike the case of a uniformly charged disk, there is
no discontinuity at z = 0 for the case of a uniformly
charged ring (obviously, we consider R # 0). A plot of
ERing-(p = 0,2, R) measured in units of k. Q/R? as a
function of z/R is shown in Fig.8.

A quick comparison of Fig.6 and Fig.8 serves to illus-
trate what do we mean when we state that the physics
of a uniformly charged annulus is closer to the physics of
a uniformly ring than that of a uniformly charged disk.
For a uniformly charged disk, the electric field along the
z-axis goes through a jump (discontinuity) at the z = 0
plane because of the surface charge density present on
the disk. On the other hand, this discontinuity does not
appear for a uniformly charged annulus regardless of the
size of the inner radius (as long as Ry # 0). This is
also the case for a uniformly charged ring. The similar-
ity in shape when comparing the electrostatic field along
the z-axis of a uniformly charged annulus with the ring
counterpart is self-explanatory.

IV. EQUILIBRIUM AT THE CENTER OF
ANNULUS

We have tacitly assumed throughout this work that
the total charge that is uniformly spread over the area
of the annulus is positive, @ > 0 (and the same assump-
tion applies to the other bodies like the cases of disk or
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FIG. 8. Electrostatic field along the z-axis, Ering:(p =
0, z, R) for a uniformly charged ring with radius, R and con-
stant linear charge density, A as a function of z/R. The field
is measured in units of k. Q/R>.

ring). We also remark that the following discussion on
the nature of the equilibrium at the center of a uniformly
charged annulus applies to a situation in which the in-
ner radius of the annulus is Ry # 0. First, for a test
charge to be in equilibrium at any particular point (in
this case the point in question is the center of the an-
nulus, p = 0,z = 0), the electrostatic field (thus, force)
at that point must be zero. Second, if the equilibrium is
to be a stable equilibrium, one must require that if we
move the test charge away from that point by a little bit
there should be a restoring force directed opposite to the
displacement.

Let us consider a positive test charge ¢ > 0 initially
located at (p = 0,z = 0). At that point the electrostatic
field (and force) is zero. If we move the positive test
charge away along the z > 0 (or z < 0) direction, the
electrostatic force will not return it to the original loca-
tion. Therefore, the test charge must be negative, g_ < 0
in order to experience a restoring force that causes it re-
turn toward the center. This means that a negative test
charge, g < 0 will have a stable equilibrium along the
z-axis at the center of the uniformly charged annulus.

Let us now review the situation along the radial direc-
tion, p on the z = 0 plane. As already explained, a neg-
ative test charge, g— < 0 has a stable equilibrium at the
center when displaced solely along the z-axis. Therefore,
we consider this negative test charge, g_ < 0 initially at
(p = 0,z = 0) and move it along the radial direction to
a point (p # 0,z = 0) where p is small. The electric field
due to the uniformly charged annulus along the radial
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direction at that point can be calculated from:

_dVRle(p7Z = O) E

dp P’
where Vg, r,(p, 2 = 0) imay be obtained from Eq.(20).
One can easily note from Fig. 3 and Fig. 4 that
%ﬁf’z:o) > 0 for p # 0 (close to the center). This
means that the electrostatic field for a small radial dis-
tance p is:

ER1R2 P(pv z = O) = (52)

ERle p(p,Z = O) X _ﬁ' (53)

As a result the electrostatic force felt by the negative test
charge, ¢ < 0 is:

F(pvz =0)=¢q- ERle p(prz=0) o +7. (54)

This radially outward force will move the negative test
charge away from the center of the uniformly charged
annulus. This means that there is an unstable equi-
librium along the radial p-axis. As a result, there is
an overall unstable equilibrium at the center of a uni-
formly charged annulus. Mathematically speaking the
point (p = 0, z = 0) represents a saddle point for the elec-
trostatic potential due to a uniformly charged annulus.
The electrostatic potential increases as we move away
from the center of the annulus along the radial direction,
p for small values of p, but decreases when moving away
from the center along the z-axis direction.

This behavior is consistent with a venerable result in
electrostatics known as Earnshaw’s theorem [22] which
states that point charges in empty space cannot be main-
tained in a stable stationary equilibrium solely by means
of the electrostatic interaction of the charges. With few
words, a stable equilibrium of a charged particle cannot
exist in empty space and there must be an instability
in some direction. The impossibility of having a point
of stable equilibrium in any electrostatic field (with a
few additional subleties) is neatly discussed on the begin-
ning of Chapter 5 of " The Feynman Lectures on Physics”
Vol. 2 using Gauss’s law [23]. An important conclusion
reached is that a test charge cannot be in stable equilib-
rium in empty space at a point where there is no some op-
posite charge [23]. The situation above precisely applies
to the center of the uniformly charged annulus (which
is a point surrounded by empty space in its immedate
vicinity).

On the other hand, a test charge can be in stable equi-
librium if it is in the middle of a distributed opposite
charge with the understanding that the opposite charge
distribution woud have to be held in place by other then
electrical forces [23]. This would be the case of a negative
test charge, ¢ < 0 located at the center of a uniformly
charged disk (it is assumed that the disk contains a to-
tal positive charge, thus, opposite charge, ) > 0 that
is spread uniformly on its surface). This means that the
negative test charge located at the center of the positively
and uniformly charged disk (namely, a point surrounded
by a distributed opposite positive charge in its immediate
vicinity) can be in stable equilibrium.



V. CONCLUSIONS

In this work, we studied in detail the features of the
electrostatic potential created by a uniformly charged an-
nulus at an arbitraty point in space. We solved this prob-
lem with help from a special mathematical method that is
valid in systems with circular symmetry. The final result
for the electrostatic potential of a uniformly charged an-
nulus is given in a compact 1D integral form that is easy
to handle numerically. Naively, one might think that a
uniformly charged annulus has properties that might re-
semble those of a uniformly charged disk when the inner
radius is small. However, this work shows that the elec-
trostatic properties of a uniformly charged annulus (for
inner radius, Ry # 0) resemble more those of a uniformly
charged ring than disk. This means that the electrostatic
properties of a uniformly charged annulus are much more
interesting than one might have initially envisioned. It
turns out that, while interpolating between a uniformly
charged disk and ring, the electrostatic potential of a
uniformly charged annulus is ring-like.

The most interesting scenario that we investigated con-
cerned the attributes of the electrostatic potential of a
uniformly charged annulus on its plane. For this situ-
ation, the electrostatic potential of a uniformly charged
disk is fundamentally different from its ring counterpart.
The electrostatic potential of a uniformly charged disk
is finite at its center and then monotonically drops to a
smaller finite value at its edge. On the other hand, the
electrostatic potential of a uniformly charged ring is fi-
nite at its center and becomes infinite at points in the
circumference of the ring. The evolution of the shape of
the electrostatic potential of a uniformly charged annu-
lus on its plane is seen clearly in Fig.3 and Fig.4. One
can observe a singularity developing out of the initial
broad peak by considering sequences of annuli with an
inner radius that starts from zero (disk limit) and then
progressively grows to come closer to the outer radius.
An analysis of the electrostatic field along the z-axis of
symmetry of the uniformly charged annulus represents a
more convincing evidence that, indeed, the electrostatic

11

properties of a uniformly charged annulus are closer to a
uniformly charged ring than disk counterpart.

The electrostatic properties of a uniformly charged an-
nulus can be used to illustrate fundamental principles of
electrostatics from a pedagogical point of view. However,
this system is also very important for many other appli-
cations, for instance, in the world of sensors. As a matter
of fact, a charged annulus is a key component for build-
ing coplanar capacitive sensors which are used for a non-
destructive evaluation of materials [24-27]. The most
common design of a coplanar capacitive sensor has two
coplanar electrodes, namely, plates with any given shape
(square/rectangular, circular, etc.). Designs with circu-
lar symmetry are very common and typically they con-
sist of two concentric coplanar electrodes [28, 29] where a
disk acts as the inner electrode while a concentric annulus
that surrounds the disk and is coplanar to it represents
the outer electrode. In a nutshell, a charged annulus is
relevant for both electrostatic and sensor technology ap-
plications.

By solving this problem that is largely overlooked
in calculus-based undergraduate university physics text-
books, we want to draw particular attention to the very
attractive pedagogical aspects of this case study. In our
opinion, a uniformly charged annulus represents an ob-
ject with such rich electrostatic properties that it deserves
to be treated in more depth in physics courses dealing
with electromagnetism. As a result, we believe that the
insights gained from this work may appeal to a broad au-
dience of undergraduate/graduate students, teachers and
researchers working in various scientific disciplines.
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