


3UHWUDLQLQJ�&$7�/0

ILOH�SDLU

FRGH

WHVW

/0

$XWR�5HJUHVVLYH�
7UDQVIRUPHU

'DWD�3UHSURFHVVLQJ

Ï

Ô�>J?@O@NOK<DM�Õ

Ï�

FRGH

WHVW�

7UDLQ�'DWD

&RGH�7HVW�3DLU�$OLJQPHQW

(YDOXDWLQJ�&$7�/0

6HWXS�([HFXWDEOH�
3URMHFWV

([HFXWH�7HVWV &RPSXWH�0HWULFV

Ï

� �Ô�>J?@O@NOK<DM�Õ

Ï

FRGH

WHVW�

�����������������

WUDLQ�GDWD

7HVW�*HQHUDWLRQ

/0
Ï

Ô�>J?@O@NOK<DM�Õ

Ï�

FRGH

WHVW�LQSXW�FRQWH[W

3UHSDUH�7HVW�,QSXW

*HQHUDWHG�
7HVW�2XWSXW

Fig. 1: Approach overview. We extract Java and Python projects with tests from GitHub and heuristically align code and test

files (top), which, along with unaligned files, train CAT-LM, a large, auto-regressive language model. We evaluate CAT-LM’s

generated tests on a suite of executable projects (bottom), measuring its ability to generate syntactically valid tests that yield

coverage comparable to those written by developers.

family, which includes mono-lingual models trained on a much

larger budget than ours. We also compare against TeCo [15],

a recent test-specific model, for test completion. CAT-LM

generates more valid tests on average than StarCoder and all

CodeGen models, and substantially outperforms TeCo at test

completion. Our results highlight the merit of combining the

power of large neural methods with a pretraining signal based

on software engineering expertise—in this case, the impor-

tance of the relation between code and test files.

In summary, we make the following contributions:

• We release a corpus of 1.1M code-test file pairs along

with 14.4M Java and Python files across 196K open-

source projects. We believe this corpus will be useful for

many testing-related tasks.

• We release CAT-LM, the first pretrained LLM that mod-

els aligned code and test files from Java and Python

projects on GitHub.

• We release the testing framework used to evaluate the

tests generated by CAT-LM.

• We conduct an extensive evaluation of CAT-LM with

strong baselines on downstream tasks such as test method

generation and test completion.

The model checkpoints along with usage code samples can

be found at https://github.com/RaoNikitha/CAT-LM.

II. OVERVIEW

CAT-LM is a GPT-style model that can generate tests given

code context. Figure 1 shows an overview of our entire system,

which includes data collection and preprocessing (detailed in

Section IV-A), pretraining CAT-LM (Section V), and evalua-

tion (Section VI).

We first collect a corpus of ca. 200K Python and Java

GitHub repositories, focusing on those with at least 10 stars.

We split these at the project level into a train and test set (Sec-

tion IV-A). We filter our training set following CodeParrot [17]

standards (including deduplication), resulting in ∼15M code

and test files. We align code and test files using a fuzzy string

match heuristic (Section IV-B).

We then prepare the training data, comprising of

the code-test file pairs, paired with a unique token

(<|codetestpair|>), as well as unpaired code and test

files. We tokenize the files using a custom-trained senten-

cepiece tokenizer [18]. We then determine the appropriate

model size, 2.7B parameters based on our training budget

and the Chinchilla scaling laws [19]. We use the GPT-NeoX

toolkit [20] enhanced with Flash Attention [21] to pretrain

CAT-LM using an auto-regressive (standard left-to-right) pre-

training objective that captures the mapping between code and

test files, while learning general code and test structure.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



KP=GD>�>G<NN��<IF�£

����KP=GD>��OMDIB�H@OCJ?�<H@� �£���¤

�������

¤

Ô�>J?@O@NOK<DM�Õ

KP=GD>�>G<NN��<IF�@NO�£

����°�@NO�����

����KP=GD>�QJD?�	DMNO�@NO� �£���¤

�������

����°�@NO�����

����KP=GD>�QJD?��@NO­F� �£

��������<NN@MO�JO�PGG��<IF�  �

����¤

�������

����°�@NO�����

����KP=GD>�QJD?��<NO�@NO� �£���¤

����°�@NO�����

����KP=GD>�QJD?��SOM<�@NO� �£���¤

¤

7HVW�JHQHUDWLRQ�ZLWK�FRGH�FRQWH[W

Fig. 2: Evaluation tasks, with code context shown for

completeness: test generation for the first test method ,

last test method , and extra test method , along with

test completion for Java.

Finally, we evaluate CAT-LM on the held-out test data. We

manually set up all projects with executable test suites from

the test set to form our testing framework. We prepare our

test inputs for CAT-LM by concatenating the code context to

the respective test context for test generation. The test context

varies based on the task. We asses our model’s ability to

generate (1) the first test method, (2) the last test method, add

(3) an additional, new test to an already complete test suite.

We also evaluate completing a statement within a test function.

We tokenize prepared input and task CAT-LM with sampling

multiple (typically 10) test outputs, each consisting of a single

method. We then attempt to execute the generated tests with

our testing framework and compute metrics like number of

generated tests that compile and pass, along with the coverage

they provide, to evaluate test quality.

III. TASKS

We describe two tasks for which CAT-LM can be used,

namely test method generation (with three settings) and test

completion. Figure 2 demonstrates the setup for all tasks in-

cluding code context.

A. Test Method Generation

Given a partially complete test file and its corresponding

code file, the goal of test method generation is to generate

the next test method. Developers can use test generation to

produce an entire test suite, or add tests to an existing test

TABLE I: Summary statistics of the overall dataset.

Attribute Python Java Total

Project

Total 148,605 49,125 197,730

Deduplicated 147,970 48,882 196,852

W/o Tests 84,186 15,128 99,314

W/o File pairs 108,042 23,933 131,975

Size
(GB)

Raw 123 157 280

Deduplicated 53 94 147

Files

Total 8,101,457 14,894,317 22,995,774

Filtered 7,375,317 14,698,938 22,074,255

Deduplicated 5,101,457 10,418,609 15,520,066

Code 4,128,813 8,380,496 12,509,309

Test 972,644 2,038,113 3,010,757

File pairs 412,881 743,882 1,156,763

Training 4,688,576 9,674,727 14,363,303

suite to test new functionality. We evaluate three different set-

tings, corresponding to different phases in the testing process,

namely generating (1) the first test in the file, representing

the beginning of a developer’s testing efforts. In this setting,

we assume that basic imports and high-level scaffolding are

in place, but no test cases have been written, (2) the final test

in a file, assessing a model’s ability to infer what is missing

from a near-complete test suite. We evaluate this ability only

on test files that have two or more (human-written) tests to

avoid cases where only a single test is appropriate, and (3) an

extra or additional test, which investigates whether a model

can generate new tests for a largely complete test suite. Note

that this may often be unnecessary in practice.

B. Test Completion

The goal of test completion is to generate the next state-

ment in a given incomplete test method. Test completion aims

to help developers write tests more quickly. Although test

completion shares similarities with general code completion,

it differs in two ways: (1) the method under test offers more

context about what is being tested, and (2) source code and test

code often have distinct programming styles, with test code

typically comprising setup, invocation of the method under

test, and assertions about the output (the test oracle).

IV. DATASET

This section describes dataset preparation for both training

and evaluating CAT-LM. Table I provides high-level statistics

pertaining to data collection and filtering.

A. Data Collection

We use the GitHub API [22] to mine Python and Java repos-

itories that have at least 10 stars and have new commits after

January 1st, 2020. Following [23] and [24], we also remove

forks, to prevent data duplication. This results in a total of

148,605 Python and 49,125 Java repositories with a total of

∼23M files (about 280 GB). We randomly split this into train

and test set, ensuring that the test set includes 500 repositories

for Python and Java each.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



B. Training Data Preparation

We first remove all non-source code files (e.g., configuration

and README files) to ensure that the model is trained on

source code only. We then apply a series of filters in ac-

cordance with CodeParrot’s standards [17] to minimize noise

from our training signal. This includes removing files that are

larger than 1MB, as well as files with any lines longer than

1000 characters; an average line length of >100 characters;

more than 25% non-alphanumeric characters, and indicators

of being automatically generated. This removes 9% of both

Python and Java files. We deduplicate the files by checking

each file’s md5 hash against all other files in our corpus. This

removes approximately 30% of both Python and Java files.

We extract code-test file pairs from this data using a com-

bination of exact and fuzzy match heuristics. Given a code

file with the name <CFN>, we first search for test files that

have the pattern test_<CFN>, <CFN>_test, <CFN>Test

or Test<CFN>. If no matches are found, we perform a fuzzy

string match [25] between code and test file names, and group

them as a pair if they achieve a similarity score greater than

0.85. If multiple matches are found, we keep the pair with the

highest score.

Following file pair extraction, we prepare our training data

by replacing the code and test files with a new file that

concatenates the contents of the code file and the test file,

separating them with a unique <|codetestpair|> token.

This ensures that the model learns the mapping between code

and test files from the pretraining signal. Note that we always

combine these files starting with the code, so the model (which

operates left-to-right) only benefits from this pairing informa-

tion when generating the test. We additionally include all the

other code and test files for which we did not find pairs in

our training data, which results in 4.7M Python files and 9.7

Java files. We include these unmatched files to maximize the

amount of data the model can learn from. Figure 3 summarizes

the distribution of files in the training data along with sample

code snippets for each type of file.

Distribution of files and file pairs: Figure 4 summarizes

the distribution of files in projects with respect to their star

count. We observe a decreasing trend in not just the number

of code files and test files, but also the file pairs. Upon manual

inspection of a few randomly selected projects, we find that

popular projects with a high star count tend to be better-tested,

in line with prior literature [26], [27]. Note that we normalize

the plot to help illustrate trends by aggregating projects in

buckets based on percentiles, after sorting them based on stars.

The data distribution varies between Python and Java: Python

has approximately 3x more projects than Java, but Java has

roughly twice as many code-test file pairs.

C. Test Data Preparation and Execution Setup

To prepare our test data, we first excluded all projects with-

out code-test file pairs. This resulted in a total of 97 Java and

152 Python projects. We then attempted to set up all projects

for automated test execution.

KP=GD>�>G<NN��N@M�JIOMJGG@M�£

����KP=GD>��OMDIB�B@O�GG�N@MN� �£

�������

����¤

¤

&RGH�)LOHV

KP=GD>�>G<NN��KK�@NO�£

����°�@NO

����KP=GD>�QJD?�CJH@�<B@� �£

�������

����¤

¤

7HVW�)LOHV

KP=GD>�>G<NN��<IF�£

����KP=GD>��OMDIB�>PNOJH@M�PHH<MT� �£

�������

����¤

¤

Ô�>J?@O@NOK<DM�Õ

KP=GD>�>G<NN��<IF�@NO�£

����°�@NO

����KP=GD>�QJD?�>PNOJH@M�PHH<MT� �£

�������

����¤

¤

&RGH�7HVW�)LOH�3DLUV

�����0 ����0 ����0

Fig. 3: Distribution of files with sample code snippets

Fig. 4: Distribution of files in projects sorted by GitHub stars,

normalized by percentiles

Execution Setup for Java: Projects may use different Java

versions (which include Java 8, 11, 14, and 17) and build sys-

tems (mostly Maven and Gradle). We manually set up Docker

images for each combination. We then attempted to execute

the build commands for each project in a container from each

image. We successfully built 54 out of the 97 Java projects,

containing 61 code-test file pairs.

Execution Setup for Python: We manually set up Docker

containers for Python 3.8 and 3.10 with the pytest frame-

work and attempted to run the build commands for each

project until the build was successful. We successfully built

41 of the 152 Python projects, containing 1080 code-test file-

pairs.

We further discarded all pairs within these projects with

only a single code method or a single test method to ensure

that code-test file-pairs in our test set correspond to nontriv-

ial test suites. We additionally require the Java and Python

projects to be compatible with the Jacoco and coverage

libraries respectively. This leaves a total of 27 code-test file

pairs across 26 unique Java projects and 517 code-test file pairs

across 26 unique Python projects. In Python, we randomly

sampled up to 10 file pairs per project to reduce the bias

towards large projects (the top two projects account for 346

tests) leading to a final set of 123 file pairs across 26 unique

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



Fig. 5: Distribution of file pair tokens

Python projects. Note that we reuse these Docker containers

in our testing framework (See Section VI-A5).

V. CAT-LM

This section describes the details for preparing the input,

pretraining CAT-LM and generating the outputs.

A. Input Representation for Pretraining CAT-LM

We use the corpus of 14M Java and Python files that we

prepared for the pretraining of our model (see Section IV-A).

We first train a subword tokenizer [28] using the Sentence-

Piece [18] toolkit with a vocabulary size of 64K tokens. The

tokenizer is trained over 3 GB of data using ten random lines

sampled from each file. We then tokenize our input files into

a binary format used to efficiently stream data during training.

Analysing the distribution of tokens: Language models are

typically constrained in the amount of text they fit in their

context window. Most current code generation models use a

context window of up to 2,048 tokens [11], [29].
∗

Our analysis

on the distribution of tokens, visualized in Figure 5, showed

that this only covers 35% of the total number of file pairs. As

such, while it may be appropriate for a (slight) majority of

individual files, it would not allow our model to leverage the

code file’s context while predicting text in the test file. This

is a significant limitation since we want to train the model to

use the context from the code file when generating tests.

Further analysis showed that approximately 82% of all file

pairs for Java and Python have fewer than 8,192 tokens. Since

the cost of the attention operation increases quadratically with

the context length, we choose this cutoff to balance training

cost and benefit. Therefore, we chose to train a model with

a longer context window of 8192 tokens to accommodate an

additional ∼550K file pairs. Note that this does not lead to any

samples being discarded; pairs with more tokens will simply

be (randomly) chunked by the training toolkit.

B. Model and Training Details

We determined the model size based on our cloud compute

budget of $20,000 and the amount of available training data,

based on the Chinchilla scaling laws [19], which suggest that

the training loss for a fixed compute budget can be minimized

(lower is better) by training a model with ca. (and no fewer

∗

The average length of a token depends on the vocabulary and dataset, but
can typically be assumed to be around 3 characters.

than) 20 times as many tokens as it has parameters. Based on

preliminary runs, we determined the appropriate model size

to be 2.7 (non-embedding) parameters, a common size for

medium to large language models [29], [11], which we there-

fore aimed to train with at least 54B tokens. This model archi-

tecture consists of a 2,560-dimensional, 32 layer Transformer

model with a context window of 8,192 tokens. We trained the

model with a batch size of 256 sequences, which corresponds

to ∼2M tokens. We use the GPT-NeoX toolkit [20] to train

the model efficiently with 8 Nvidia A100 80GB GPUs on

a single machine on the Google Cloud Platform. We trained

the model for 28.5K steps, for a total of nearly 60B tokens,

across 18 days, thus averaging roughly 1,583 steps per day.

We note that this training duration is much shorter than many

popular models [11], [30];
∗

the model could thus be improved

substantially with further training. The final model is named

CAT-LM as it is trained on aligned Code And Tests.

C. Prompting CAT-LM to generate outputs:

Since CAT-LM has been trained using a left-to-right au-

togressive pretraining signal, it can be prompted to generate

some code based on the preceding context. In our case, we task

it to either generate an entire test method given the preceding

test (and usually, code) file context, or generating a line to

complete the test method (given the same). We prompt CAT-

LM with the inputs for each task, both with and without

code context, and sample 10 outputs from CAT-LM with a

“temperature” of 0.2, which encourages generating different,

but highly plausible (to the model) outputs. Sampling multiple

outputs is relatively inexpensive given the size of a method

compared to the context size, and allows the model to effi-

ciently generate multiple methods from an encoded context.

We can then filter out tests that do not compile, lack asserts,

or fail (since we are generating behavioral tests), by executing

them in the test framework. We prepare the outputs for exe-

cution by adding the generated test method to its respective

position in the baseline test files, without making any changes

to the other tests in the file.

VI. EXPERIMENTAL SETUP

We describe the setup for evaluating CAT-LM across both

tasks outlined in Section III, namely test method generation,

and test completion.

A. Test Method Generation

The test method generation task involves three different

cases: generating the first test, the final test, and an extra test

in a test suite (see Section III). We evaluate CAT-LM on test

method generation both with code context and, as an ablation,

without code context.

∗

The “Chinchilla” optimum does not focus on maximizing the performance
for a given model size, only for a total compute budget.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



1) Baseline Models: CodeGen is a family of Transformer-

based LLMs trained auto-regressively (left-to-right) [11]. Pre-

trained CodeGen models are available in a wide range of sizes,

including 350M, 2.7B, 6.1B and 16.1B parameters. These

models were trained on three different datasets, starting with

a large, predominantly English corpus, followed by a multi-

lingual programming language corpus (incl. Java and Python),

and concluding with fine-tuning on Python data only. The

largest model trained this way is competitive with Codex [10]

on a Python benchmark [11].

For our evaluation, we compare with CodeGen-2.7B-multi,

which is comparable in size to our model and trained on mul-

tiple programming languages, like our own. We also consider

CodeGen-16B-multi (with 16B parameters, ca. 6 times larger

than CAT-LM) which is the largest available model trained

on multiple programming languages. For all Python tasks,

we also compare against CodeGen-2.7B-mono and CodeGen-

16B-mono, variants of the aforementioned models fine-tuned

on only Python code for an additional 150k training steps.

We also compare the performance of CAT-LM with Star-

Coder [16], which is a 15.5B parameter model trained on over

80 programming languages, including Java and Python, from

The Stack (v1.2). StarCoder has a context window of 8, 192 to-

kens. It was trained using the Fill-in-the-Middle objective [13]

on 1 trillion tokens of code, using the sample approach of

randomizing the document order as CodeGen.

2) Lexical Metrics: Although our goal is not to exactly

replicate the human-written tests, we provide measures of the

lexical similarity between the generated tests and their real-

world counterparts as indicators of their realism. Generated

tests that frequently overlap in their phrasing with ground-truth

tests are likely to be similar in structure and thus relatively easy

to read for developers. Specifically, we report both the rate of

exact matches and several measures of approximate similarity,

including ROUGE [31] (longest overlapping subsequence of

tokens) and CodeBLEU [32] score (n-gram overlap that takes

into account code AST and dataflow graph). We only report

lexical metrics for our first test and last test settings, as there

is no ground truth to compare against in our extra test setting.

These metrics have been used extensively in prior work on

code generation and test completion [15], [33], [34], [35].

3) Runtime Metrics: We also report runtime metrics that

better gauge test utility than the lexical metrics. This includes

the number of generated tests that compile, and generated tests

that pass the test suite. We also measure coverage of the gener-

ated tests. For first and last tests, we compare this with the cov-

erage realized by the corresponding human-written tests. We

hope that this work will encourage more widespread adoption

of runtime metrics (which are an important part of test utility),

as prior work primarily focuses on lexical similarity [3], [7],

[15]. See Section 2.2 in supplementary material for additional

detailed descriptions of all lexical and run-time metrics.

4) Preparing Input Context and Baseline Test Files: We

use an AST parser on the ground-truth test files to prepare

partial tests with which to prompt CAT-LM. For first test

generation, we remove all test cases (but not the imports, nor

TABLE II: Baseline coverage for human written tests over the

given number of file pairs.

PL Case Cov Imp % # File Pairs

Python
First test 59.3% 112
Last test 5.0% 93
Extra test 0.0% 123

Java
First test 50.5% 27
Last test 5.3% 18
Extra test 0.0% 27

any other setup code that precedes the first test); for last test

generation, we leave all but the final test method, and for final

test generation we only remove code after the last test. We

then concatenate the code context to the test context using our

delimiter token for the ‘with code context’ condition.

We additionally obtain coverage with the original, human-

written test files under the same conditions, keeping only the

first or all tests as baselines for first and last test prediction

respectively. Note that there is no baseline for the extra test

generation task. See Section 1 for in supplementary material

for coverage distribution of human-written tests.

5) Testing Framework: We evaluate the quality of the gen-

erated tests using the containers that we setup to execute

projects in Section IV-C. We insert the generated test into the

original test file, execute the respective project’s setup com-

mands and check for errors, recording the number of generated

tests that compile and pass the test suite (see Section VI-A3).

If the generated test compiles successfully (or, for Python, is

free of import or syntax errors), we run the test suite and

record whether the generated test passed or failed. We com-

pute code coverage for all passing tests, contrasting this with

the coverage achieved by the human-written test cases (when

available) as baselines.

B. Test Completion

Recall the test completion task involves generating a single

line in a given test method, given the test’s previous lines. We

perform our evaluation for test completion under two condi-

tions, with code context and without code context.

1) Baseline Model: We compare against TeCo [15], a state

of the art baseline on test statement completion that has

outperformed many existing models, including CodeT5 [35],

CodeGPT [36] and TOGA [3]. TeCo [15] is a encoder-decoder

transformer model based on the CodeT5 architecture [35].

TeCo takes the test method signature, prior statements in the

test, the method under test, the variable types, absent types

and method setup and teardown as input.

Initially, we intended to compare CAT-LM against TeCo

on our test set. However, TeCo performs extensive filtering

including requiring JUnit, Maven, well-named tests, a one-to-

one mapping between test and method under test, and no if

statements or non-sequential control flow in the test method.

We thus compared CAT-LM against TeCo for 1000 randomly

sampled statements from their test set.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



(a) Python.

(b) Java.

Fig. 6: Passing tests by model for Python and Java.

2) Metrics: We compare CAT-LM against TeCo across all

lexical metrics (outlined in Section VI-A2).

VII. EVALUATION

We evaluate CAT-LM’s ability to generate valid tests that

achieve coverage, comparing against state of the art baselines

for both code generation and test completion. Additional re-

sults can be found in the supplementary material.

A. Test Method Generation

1) Pass Rate: Figure 6 shows the number of passing tests

generated by each model for Python and Java. Note that these

(a) Coverage improvement of our model vs humans for Python.

(b) Coverage improvement of our model vs humans for Java.

Fig. 7: Coverage improvement of our model vs humans for

different languages.

are absolute numbers, out of a different total for each setting.
∗

CAT-LM outperforms StarCoder and all CodeGen models,

including ones that are much larger and language-specific in

most settings. For Python, all models perform worst in the

first test setting, where they have the least context to build on.

Nonetheless, equipped with the context of the corresponding

code file, our model generates substantially more passing tests

than StarCoder (with 15.5B parameters) and the multilingual

CodeGen baselines (trained with far more tokens) in both first

and extra test setting. Only in the last-test settings do some

of the models compete with ours, though we note that their

performance may be inflated as the models may have seen the

files in our test set during training (the test set explicitly omits

files seen by CAT-LM during training). For Java, we find that

CAT-LM generates more passing tests than StarCoder and the

two multilingual CodeGen models (no Java-only model exists).

The difference is most pronounced in the extra test setting,

where CAT-LM generates nearly twice as many passing tests

compared to StarCoder and the CodeGen baseline models.

Overall, despite being undertrained, CAT-LM generates more

number of passing tests on average across all settings. Both

StarCoder and the CodeGen models don’t show significant

gains with more parameters or longer contexts (StarCoder can

∗

The denominator for each group is the number of file pairs shown in
Table II multiplied by 10, the number of samples per context.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



use 8, 192 tokens), highlighting that training with code context

is important.

2) Coverage: Figure 7 shows the coverage distribution of

CAT-LM, contrasted with that of the human-written tests. For

both the first test and last test settings, our model performs

mostly comparably to humans, with both distributions having

approximately the same median and quartile ranges. The extra

test task is clearly especially hard: while our model was able

to generate many tests in this setting (Figure 6), these rarely

translate into additional coverage, beyond what is provided

by the rest of the test suite, in part because most of the

developer-written test suites in our dataset already have high

code coverage (average coverage of 78.6% for Java and 81.6%

for Python), and may have no need for additional tests. Table II

shows the average human coverage improvement for the first

and last test added to a test suite. Note that the average is

significantly lower for last test, as baseline coverage is already

high for this mode (74.7% for Java and 76.1% for Python).

We note that we could not compute coverage for all the

file pairs in each setting. We excluded file pairs with only one

test from our last test setting to differentiate it from our first

test setting. For the first test setting, some baseline files were

missing helper methods between the first test and last test in

the file, preventing us from computing coverage.

3) Lexical Similarity: Table III shows the lexical similarity

metrics results relative to the human-written tests for CAT-

LM, both with and without context, along with StarCoder and

CodeGen baselines. CAT-LM reports high lexical similarity

scores when leveraging code context, typically at or above

the level of the other best model, StarCoder (with 15B pa-

rameters). This effect is consistent across first and last test

generation.

4) Impact of Code Context: As is expected, CAT-LM heav-

ily benefits from the presence of code context. When it is

queried without this context, its performance on lexical met-

rics tends to drop to below the level of CodeGen-2B, which

matches it in size but was trained with more tokens. The

differences in lexical metric performance are sometimes quite

pronounced, with up to a 9.2% increase in Rouge score and

up to a 5.1% increase in CodeBLEU score.

In terms of runtime metrics, code context mainly helps on

the first and last test prediction task, with especially large

gains on the former. Context does not seem to help generate

more passing tests in the extra test setting. This may be in part

because the test suite is already comprehensive, so the model

can infer most of the information it needs about the code

under test from the tests. It may also be due to the test suites

often being (nearly) complete in this setting, so that generating

additional tests that pass (but yield no meaningful coverage)

is relatively straightforward (e.g., by copying an existing test

Section VII-C). Overall, these results support our core hy-

pothesis that models of code should consider the relationship

between code and test files to generate meaningful tests.

5) Other Runtime Metrics: Table III also shows a compari-

son between CAT-LM and StarCoder and CodeGen baselines

for all runtime metrics. CAT-LM outperforms both StarCoder

and the CodeGen baselines in both Python in Java across

compiling and passing generations, with CAT-LM typically

generating the most samples that compile and pass. The one

setting where the CodeGen baselines perform slightly better

is in generating more last tests that pass for Python. However,

the compile rate of these CodeGen generated tests is signifi-

cantly lower than those generated by CAT-LM. We note that

CodeGen’s performance may be inflated in the last test setting,

as it may have seen the files from the test set during training.

CAT-LM outperforms StarCoder and CodeGen for

both Python and Java, generating more passing tests

on average across all settings. We find that code context

improves performance across most settings in terms of

both lexical and runtime metrics.

B. Test Completion

For test completion (see Section III-B for task definition),

we compare CAT-LM against TeCo [15] on the lexical met-

rics outlined in Section VI-A2. Specifically, we sample 1000

statements at random from across the test set released by the

authors of TeCo, on which we obtain similar performance with

TeCo to those reported in the original paper. Table IV shows

the results. CAT-LM outperforms TeCo across all lexical met-

rics, with a 36.6% increase in exact match, 22.6% increase

in ROUGE and 40.4% increase in CodeBLEU score. Even

prompting CAT-LM with just the test context (i.e., without

the code context) yields substantially better results than TeCo.

This underscores that providing the entire test file prior to

the statement being completed as context, rather than just the

setup methods, is helpful for models to reason about what is

being tested.

In contrast to the test generation task, code context only

slightly helps CAT-LM in this setting, with an increase in

CodeBLEU score of 1.2% and increase in exact match accu-

racy of 1.5%. Apparently, many individual statements in test

cases can be completed relatively easily based on patterns

found in the test file, without considering the code under tests.

This suggests that statement completion is significantly less

context-intensive than whole-test case generation. We there-

fore argue that entire test generation is a more appropriate task

for assessing models trained for test generation.

CAT-LM outperforms TeCo across all lexical met-

rics, with a 40.4% improvement in CodeBLEU score

and 36.6% improvement in exact match accuracy. We

find that context only slightly helps with test statement

prediction, indicating that test completion can largely be

done without the code under test, in contrast to entire

test generation.

See Section 3 and 4 in the supplementary material for ad-

ditional results on all tasks.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



TABLE III: Lexical and runtime metrics performance comparison of the models on the held-out test set for Java and Python.

CodeGen refers to CodeGen-multi for Java and CodeGen-mono for Python results. We only report lexical metrics for our first

test and last test settings, as there is no gold test to compare against in our extra test setting.

Java Python

Lexical Metrics Runtime Metrics Lexical Metrics Runtime Metrics

Model CodeBLEU XMatch Rouge Compile Pass CodeBLEU XMatch Rouge Compile Pass

First Test (Total: Java = 270, Python = 1120)

CAT-LM w Context 41.4% 15.4% 60.9% 50 22 21.0% 0.3% 39.4% 384 44
CAT-LM w/o Context 37.5% 15.4% 56.5% 9 9 17.7% 0.4% 30.2% 236 31
Codegen-2B 35.5% 7.7% 56.8% 24 14 18.2% 0.0% 30.9% 259 37
Codegen-16B 42.2% 7.7% 61.8% 25 7 20.8% 0.3% 35.1% 361 42
StarCoder 44.6% 10.9% 62.2% 28 16 24.0% 1.8% 38.8% 269 23

Last Test (Total: Java = 180, Python = 930)

CAT-LM w Context 55.4% 20.8% 70.8% 54 17 38.3% 4.8% 54.9% 335 77
CAT-LM w/o Context 53.6% 20.8% 68.9% 33 14 33.2% 1.4% 51.9% 350 79
Codegen-2B 51.7% 13.0% 69.2% 43 16 36.3% 2.2% 53.2% 326 84
Codegen-16B 56.5% 14.3% 70.9% 24 9 37.9% 3.4% 54.0% 349 83
StarCoder 56.9% 21.0% 69.9% 34 17 37.6% 4.2% 54.5% 227 65

Extra Test (Total: Java = 270, Python = 1230)

CAT-LM w Context – – – 41 17 – – – 380 98
CAT-LM w/o Context – – – 29 20 – – – 425 104
Codegen-2B – – – 17 8 – – – 376 90
Codegen-16B – – – 15 7 – – – 384 89
StarCoder – – – 17 10 – – – 269 36

TABLE IV: Comparison of CAT-LM and TeCo on 1000 ran-

domly sampled statements in their test set.

Model CodeBLEU XMatch Rouge

CAT-LM w/ Context 67.1% 50.4% 82.8%
CAT-LM w/o Context 65.9% 48.9% 82.2%
TeCo 26.7% 13.8% 60.2%

C. Qualitative Comparisons

Finally, we conduct a small-scale qualitative case-study of

tests generated by CAT-LM, CodeGen-2B-multi [11], GPT-

4 [37] and EvoSuite [4]. GPT-4 is a vastly larger language

model than ours, trained with an undisclosed budget by Ope-

nAI. EvoSuite is a popular test generation tool for Java based

on evolutionary algorithms.

We analyze a randomly sampled passing generation from

CAT-LM in contrast to the tests generated by the other tools in

the same context across each our three settings (first test, last

test and extra test). The tests here are generated for a Bank

class, which includes methods to add a customer, open an ac-

count and print a summary of all accounts and customers. Our

goal is to better understand the benefits and drawbacks of each

tool’s generated tests. Specifically, we look for characteristics

of high quality tests, such as meaningful method and variable

names, proper invocation of the method under test and high

quality assertions. We mainly discuss the first generated test

here; for our full set of examples, see Supplemental Materials.

CAT-LM: Listing 1 shows the first test generation by CAT-

LM. The name of the test is informative, along with its vari-

ables. It also follows unit testing conventions of testing one

specific method in the Bank class. This is consistent across

the examples for last test and extra test. However, for our extra

test example, CAT-LM copied the previous test and changed

the name of the test method, not testing new functionality.

CodeGen: in Listing 2, the test generated by CodeGen is quite

readable, semantically correct, and natural looking. However,

it uses multiple non-existent methods from the code under

test—a phenomenon popularly dubbed “hallucinating”—since

it lacks awareness of Bank’s implementation. StarCoder per-

forms similarly, generating tests that are readable, semantically

correct, and natural looking but suffer from hallucinations.

GPT-4: GPT-4 consistently performs the best of all three tools,

generating tests that either are identical to the ground truth or

test new functionality that none of the existing tests do. Listing

3 shows GPT-4’s generation for the first test case. Similar to

CAT-LM, the GPT-4 generated test has meaningful identifier

names and assertions. GPT-4 had similarly good tests for our

last test and extra test settings. However, these results come

with several caveats. First, GPT-4 was trained on a very large

volume of data, including public code, so it is quite likely

that it was trained on our test data and has thus seen the

original tests.
∗

Second, GPT-4 is a much larger, model, with

a training budget orders of magnitude higher than ours. Given

our strong performance compared to the (already much more

expensive) CodeGen models, we expect that modestly scaling

up our training approach could well yield similar or better

results.

EvoSuite: EvoSuite performs the worst in all three settings.

∗

In fact, a similar caveat applies to CodeGen, which we do outperform.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



1 @Test

2 public void testCustomerSummary() {

3 Bank bank = new Bank();

4 assertEquals("Customer Summary", "Customer

Summary", bank.customerSummary());

5 }

Listing 1: CAT-LM first test generation

1 @Test

2 public void testBank() {

3 Bank bank = new Bank();

4 assertEquals(0, bank.getBalance(),

DOUBLE_DELTA);

5 bank.deposit(100);

6 assertEquals(100, bank.getBalance(),

DOUBLE_DELTA);

7 bank.withdraw(50);

8 assertEquals(50, bank.getBalance(),

DOUBLE_DELTA);

9 }

Listing 2: CodeGen first test generation

1 @Before

2 public void setUp() {

3 bank = new Bank();

4 }

5

6 @Test

7 public void testAddCustomerAndCustomerSummary()

{

8 Customer customer1 = new Customer("John

Doe");

9 bank.addCustomer(customer1);

10

11 String expectedSummary = "Customer

Summary\n - John Doe (0 accounts)";

12 String actualSummary =

bank.customerSummary();

13

14 assertEquals(expectedSummary,

actualSummary);

15 }

Listing 3: GPT-4 first test generation

1 @Test(timeout = 4000)

2 public void test0() throws Throwable {

3 Bank bank0 = new Bank();

4 Customer customer0 = new Customer("v\"PD");

5 bank0.addCustomer(customer0);

6 Account account0 = new Account(0);

7 account0.deposit(148.3628547);

8 customer0.openAccount(account0);

9 double double0 = bank0.totalInterestPaid();

10 assertEquals(0.14836285470000002, double0,

0.01);

11 }

Listing 4: EvoSuite first test generation

Fig. 8: Example first tests generated by CAT-LM, CodeGen,

GPT-4, and EvoSuite. CAT-LM and GPT-4 both generate re-

alistic and readable tests; EvoSuite struggles with poor naming

conventions and unrealistic tests. CodeGen generates readable

test cases, but hallucinates methods in the code under test. See

Section 5 in supplementary material for additional examples.

Listing 4 shows the EvoSuite completion for the bank class.

The generated test uses very poor naming conventions, such as

naming the method test0, and each of the variables bank0,

customer0, and account0. The deposit amounts do not

make logical sense, as they are not rounded to the nearest cent.

There is also a timeout of 4000 milliseconds. Such timeouts

are highly likely to lead to flaky tests, where this test might

pass in one environment and timeout in a different environ-

ment. The other generations by EvoSuite, suffer similar prob-

lems, including lacking asserts and using spurious exception

handling. Due to this lack of proper naming conventions and

the use of trivial asserts, it is very difficult to understand what

is being tested in EvoSuite’s generation.

Both GPT-4 and CAT-LM generate high quality tests,

checking for realistic situations with readable asserts.

However CAT-LM struggles to generate meaningfully

distinct tests in the extra test setting. CodeGen and Star-

Coder produces highly readable, but incorrect tests. Evo-

Suite struggles to generate meaningful tests; it uses poor

naming conventions and spurious exception handling.

VIII. RELATED WORK

Classical Test Generation: Classical test generation tech-

niques employ both black-box and white-box techniques to

generate test inputs and test code. Random/fuzzing techniques

such as Randoop [38], aflplusplus [39] and honggfuzz use

coverage to guide generation of test prefixes. Property test-

ing tools such as Korat [40], QuickCheck [41] and Hypothe-

sis [42] allow a developer to specify a set of properties and

subsequently generates a suite of tests that test the specified

properties. PeX [43] and Eclipser [44] use dynamic symbolic

execution to reason about multiple program paths and generate

interesting inputs. The core issue with fuzzing and classical

test generation techniques is their reliance on program crashing

or exceptional behavior in driving test generation [3], which

limits the level of testing they provide. EvoSuite [4] addresses

these challenges by using mutation testing to make the gen-

erated test suite compact, without losing coverage. However,

EvoSuite generates tests that look “unnatural”, and signifi-

cantly different from human tests, suffering from both stylistic

and readability problems [5], [45], [46].

Neural Test Generation: More recently, neural test genera-

tion methods have been developed to generate more natural

and human understandable tests. ConTest[8] makes use of a

generic transformer model, using the tree representation of

code to generate assert statements. ATLAS [7], ReAssert [47],

AthenaTest [48] and TOGA [3] extend this work by leveraging

the transformer architecture for this task. They show that their

generated asserts are more natural and preferred by develop-

ers when comparing against existing tools such as EvoSuite.

TeCo [15] expands the scope of test completion by completing

statements in a test, one statement at a time. They leverage

execution context and execution information to inform their

prediction of the next statement, outperforming TOGA and

ATLAS on a range of lexical metrics. While these neural

approaches solve many of the readability issues of classical

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



test generation approaches, they focus on generating individual

statements in a test, which offers significantly less time saving

benefits than generating entire tests.

Large Language Models of Code: Large language models

(LLMs) can perform well across many tasks when prompted

with instructions and examples [49], [30]. Codex [10] is

an autoregressive (left to right generation) LLM with 12B

parameters, fine-tuned from GPT-3 on 54 million GitHub

Python repositories. CodeGen-16B, with which we compare,

outperforms this model [11]. Later, unpublished, iterations of

Codex have also been applied to commercial settings, pow-

ering GitHub’s Copilot [14]. TestPilot [50] uses Codex to

generate unit tests. However, it requires significant volumes

of documentation as input, which is often not available for

open-source projects. While all of these models perform well

at generating code, they are relatively poor (for their size)

at generating tests for the code. These models are typically

trained on a randomly shuffled corpus of entire files, and thus

do not learn the alignment of tests to the code under test. We

pretrained a comparatively small language model on a much

more modest budget that explicitly learns to align code and

the corresponding test files, which yields substantially better

performance than modestly larger classically trained models.

IX. CONCLUSION

We develop CAT-LM, a GPT-style language model with

2.7 Billion parameters that was pretrained using a novel signal

that explicitly considers the mapping between code and test

files when available. We elect to use a larger context window

of 8,192 tokens, 4x more than typical code generation models,

to ensure that code context is available when generating tests.

We evaluate CAT-LM on both test method generation and

test completion, with CAT-LM outperforming CodeGen, Star-

Coder, and TeCo state-of-the-art baselines, even with CodeGen

and StarCoder baselines significantly larger training budgets

and model sizes. We show that adding the additional context

helps CAT-LM, with code context significantly improving

both lexical and runtime metric performance. Despite its strong

performance, CAT-LM has limitations including that it may

struggle to generalize to unpopular projects, and the compar-

ison with TeCo likely has data leakage (CAT-LM is likely

to have seen TeCo’s test set in pretraining). We hope that

these limitations can be overcome in future work. Overall, we

highlight how incorporating domain knowledge, namely the

relationship between code and test files, can be used to create

more powerful models for automated test generation.

Data availability: The model weights for CAT-LM, code and

datasets for training and evaluating CAT-LM, results of addi-

tional experiments and comparison with TeCo and CodeGen

are available at: https://doi.org/10.5281/zenodo.7901830.

X. ACKNOWLEDGEMENTS

The authors would like to thank Charles Sutton for his

mentorship as part of the Google Collab Ph.D. Fellowship,

which also included $20,000 in cloud credits without which

this work would not have been possible. We additionally thank

the authors of TeCo for providing us with data and code for

our baseline experiments. This work is supported in part by

the US National Science Foundation, awards CCF-2129388

and CCF-1910067.

REFERENCES

[1] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Joint Meeting of

the European Software Engineering Conference and the Symposium on

the Foundations of Software Engineering, ser. ESEC/FSE ’15, 2015, p.
179–190.

[2] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in International Conference on Software Engineering, ser. ICSE
’15, 2015, p. 559–562.

[3] E. Dinella, G. Ryan, T. Mytkowicz, and S. Lahiri, “Toga: A neural
method for test oracle generation,” in International Conference on Soft-

ware Engineering, ser. ICSE ’22, 2022, p. 2130–2141.
[4] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for

object-oriented software,” in Joint Meeting of the European Software

Engineering Conference and the Symposium on the Foundations of Soft-

ware Engineering, ser. ESEC/FSE ’11, 2011, p. 416–419.
[5] C. Brandt and A. Zaidman, “Developer-centric test amplification: The

interplay between automatic generation human exploration,” Empirical

Software Engineering, vol. 27, no. 4, 2022.
[6] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A

Survey of Symbolic Execution Techniques,” ACM Computing Survey,
vol. 51, no. 3, pp. 50–88, 2018.

[7] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” CoRR, vol.
abs/2002.05800, 2020.

[8] J. Villmow, J. Depoix, and A. Ulges, “ConTest: A Unit Test Comple-
tion Benchmark featuring Context,” in Workshop on Natural Language

Processing for Programming, Aug. 2021, pp. 17–25.
[9] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J. Hel-

lendoorn, “Revisiting Test Smells in Automatically Generated Tests:
Limitations, Pitfalls, and Opportunities,” in International Conference on

Software Maintenance and Evolution, 2020, pp. 523–533.
[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Ed-

wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. W. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, I. Babuschkin, S. A. Balaji, S. Jain,
A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. M.
Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” CoRR, vol. abs/2107.03374,
2021.

[11] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A Conversational Paradigm for Program Synthesis,”
CoRR, vol. abs/2203.13474, 2022.

[12] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “InCoder: A Generative Model
for Code Infilling and Synthesis,” CoRR, vol. abs/2204.05999, 2022.

[13] M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. McLeavey, J. Tworek,
and M. Chen, “Efficient Training of Language Models to Fill in the
Middle,” CoRR, vol. abs/2207.14255, 2022.

[14] “GitHub Copilot,” 2021. [Online]. Available: https://github.com/features/
copilot

[15] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning
deep semantics for test completion,” in International Conference on

Software Engineering, ser. ICSE ’23, 2023, p. 2111–2123.
[16] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,

M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K. Umap-
athi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy, J. Stillerman,
S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang, N. Fahmy,
U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas, M. Kunakov,
F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger,
H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu, J. Robinson, C. J.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy, D. Fried, D. Bah-
danau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von
Werra, and H. de Vries, “Starcoder: may the source be with you!” 2023.

[17] L. v. Werra, “Codeparrot,” https://github.com/huggingface/transformers/
tree/main/examples/research projects/codeparrot.

[18] “SentencePiece.” [Online]. Available: https://github.com/google/
sentencepiece

[19] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
et al., “Training compute-optimal large language models,” CoRR, vol.
arXiv:2203.15556, 2022.

[20] “GPT-neox Toolkit.” [Online]. Available: https://github.com/EleutherAI/
gpt-neox

[21] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and memory-efficient exact attention with IO-awareness,” in Advances

in Neural Information Processing Systems, 2022.
[22] “GitHub REST API.” [Online]. Available: https://docs.github.com/en/

rest
[23] M. Allamanis, “The adverse effects of code duplication in machine

learning models of code,” in International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, ser.
SPLASH ’19, 2019, pp. 143–153.

[24] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: a map of code duplicates on GitHub,” in Pro-

ceedings of the ACM on Programming Languages, ser. OOPSLA ’17,
vol. 1, 2017, pp. 1–28.

[25] “TheFuzz: Fuzzy String Matching in Python.” [Online]. Available:
https://github.com/seatgeek/thefuzz

[26] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in International

Conference on Quality Software, ser. ICQS ’13, 2013, pp. 103–112.
[27] H. H. F. d. Souza, I. Wiese, I. Steinmacher, and R. Ré, “A characteriza-

tion study of testing contributors and their contributions in open source
projects,” in Brazilian Symposium on Software Engineering, ser. SBES
’22, 2022, pp. 95–105.

[28] T. Kudo, “Subword regularization: Improving neural network translation
models with multiple subword candidates,” in Annual Meeting of the

Association for Computational Linguistics, ser. ACL ’18, 2018, pp. 66–
75.

[29] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A Systematic Eval-
uation of Large Language Models of Code,” CoRR, vol. abs/2202.13169,
2022.

[30] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and Efficient
Foundation Language Models,” CoRR, vol. abs/2302.13971, 2023.

[31] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Conference on Text Summarization Branches Out, 2004, pp. 74–81.

[32] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “CodeBLEU: a Method for Automatic
Evaluation of Code Synthesis,” CoRR, vol. abs/2009.10297, 2020.

[33] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with Hybrid lexical and syntactical information,” Empirical Software

Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.
[34] A. LeClair, S. Jiang, and C. McMillan, “A Neural model for generating

natural language summaries of program subroutines,” in International

Conference on Software Engineering, ser. ICSE ’19, 2019, pp. 795–806.
[35] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware

Unified Pre-trained Encoder-Decoder Models for Code Understanding
and Generation,” in Conference on Empirical Methods in Natural Lan-

guage Processing, 2021, pp. 8696–8708.
[36] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.

Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021.

[37] OpenAI, “Gpt-4 technical report,” 2023.
[38] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random test-

ing for Java,” in Conference on Object-Oriented Programming Systems

and Applications Companion, ser. OOPSLA ’07, 2007, pp. 815–816.
[39] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combin-

ing incremental steps of fuzzing research,” in Conference on Offensive

Technologies, ser. WOOT ’20, 2020, pp. 10–10.

[40] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated test-
ing based on Java predicates,” SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 123–133, 2002.

[41] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in International Conference on Functional

Programming, ser. ICFP ’00, 2000, p. 268–279.
[42] D. MacIver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A

New Approach to property-based testing,” Journal of Open Source Soft-

ware, vol. 4, no. 43, p. 1891, 2019.
[43] N. Tillmann and P. de Halleux, “Pex - white box test generation for .net,”

in Tests and Proofs, ser. TAP ’08, vol. 4966, April 2008, pp. 134–153.
[44] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing on

binary code,” in International Conference on Software Engineering, ser.
ICSE ’19, 2019, pp. 736–747.

[45] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with descrip-
tive names or: Would you name your children Thing1 and Thing2?” in
International Symposium on Software Testing and Analysis, ser. ISSTA
’17, 2017, pp. 57–67.

[46] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li,
“Scaling up automated test generation: Automatically generating main-
tainable regression unit tests for programs,” in Joint Meeting of the

European Software Engineering Conference and the Symposium on the

Foundations of Software Engineering, ser. ASE ’11, 2011, pp. 23–32.
[47] R. White and J. Krinke, “Reassert: Deep learning for assert generation,”

CoRR, vol. abs/2011.09784, 2020.
[48] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sun-

daresan, “Unit test case generation with transformers,” CoRR, vol.
abs/2009.05617, 2020.

[49] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are Few-Shot learners,” in Advances in

Neural Information Processing Systems, 2020, pp. 1877–1901.
[50] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive Test Generation

Using a Large Language Model,” CoRR, vol. abs/2302.06527, 2023.

���

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 


