L))

Check for
Updates

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE) | 979-8-3503-2996-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ASE56229.2023.00193

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

CAT-LM&S Training Language Models on Aligned
Code And Tests

Nikitha Rao*, Kush Jain*, Uri Alon, Claire Le Goues, Vincent J. Hellendoorn
Carnegie Mellon University
United States
{nikitharao, kdjain, urialon, legoues, vhellendoorn}@cmu.edu

Abstract—Testing is an integral but often neglected part of
the software development process. Classical test generation tools
such as EvoSuite generate behavioral test suites by optimizing for
coverage, but tend to produce tests that are hard to understand.
Language models trained on code can generate code that is
highly similar to that written by humans, but current models are
trained to generate each file separately, as is standard practice in
natural language processing, and thus fail to consider the code-
under-test context when producing a test file. In this work, we
propose the Aligned Code And Tests Language Model (CAT-
LM), a GPT-style language model with 2.7 Billion parameters,
trained on a corpus of Python and Java projects. We utilize a
novel pretraining signal that explicitly considers the mapping
between code and test files when available. We also drastically
increase the maximum sequence length of inputs to 8,192 tokens,
4x more than typical code generation models, to ensure that the
code context is available to the model when generating test code.
We analyze its usefulness for realistic applications, showing that
sampling with filtering (e.g., by compilability, coverage) allows it
to efficiently produce tests that achieve coverage similar to ones
written by developers while resembling their writing style. By
utilizing the code context, CAT-LM generates more valid tests
than even much larger language models trained with more data
(CodeGen 16B and StarCoder) and substantially outperforms a
recent test-specific model (TeCo) at test completion. Overall, our
work highlights the importance of incorporating software-specific
insights when training language models for code and paves the
way to more powerful automated test generation.

Index Terms—test generation, test completion, large language
models, code-test alignment

[. INTRODUCTION

Software testing is a critical component of the software
development process. In well-tested projects, most code files
are paired with at least one corresponding test file that imple-
ments unit and/or integration test functions that evaluate the
functionality of the code. However, writing high quality tests
can be time-consuming [1], [2] and is often either partially or
entirely neglected. This has led to extensive work in automated
test generation, including both classical [3], [4], [5], [6] and
neural-based methods [3], [7], [8].

Classical test generation tools like EvoSuite [4] directly op-
timize to generate high-coverage tests. However, the generated
tests are often hard to read and may be unrealistic or even
wrong [9]. This requires time and effort from developers to
verify generated test correctness [5].

F
Equal contribution

Meanwhile, Large Language Models (LLMs) trained on
code have made major strides in generating human-like, high-
quality functions based on their file-level context [10], [11],
[12], [13]. Tools like Copilot excel at code generation, and
can significantly improve the productivity of its users [14].
Currently, these models are less well-suited for test generation,
because they tend to be trained to generate the code in each
file separately, standard practice in natural language process-
ing. Generating meaningful tests, of course, critically requires
considering the alignment between the tests and the corre-
sponding code under test. Some prior work on neural-based
test generation methods has focused on modeling this align-
ment [3], [7], [15]. However, this work typically focuses on
the relatively narrow task of generating individual assertions in
otherwise complete tests, based on a single method under test.
Unlocking the more impactful ability to generate entire tests
requires leveraging both the entire code file and existing tests
as context, which in turn requires substantially larger models.

In this work, we make a significant step towards accurate
whole-test generation via CAT-LM, a language model trained
on aligned Code And Tests. CAT-LM is a bi-lingual GPT-
style LLM with 2.7B parameters. It is trained on a large corpus
of Python and Java projects using a novel pretraining signal
that explicitly considers the mapping between code and test
files, when available, while also leveraging the (much larger)
volume of untested code. Modeling the code file along with
the test leads to additional challenges regarding a model’s
context length. Most code generation models support a context
window of up to 2,048 tokens. However, our data analysis
indicates that many code-test file pairs comprise more than 8K
tokens. We thus increase the maximum sequence input length,
training CAT-LM with a context window of 8,192 tokens.

Our results show that the model effectively leverages the
code file context to generate more syntactically valid tests that
achieve higher coverage. The model provides a strong prior for
generating plausible tests: combined with basic filters for com-
pilability and coverage, CAT-LM frequently generates tests
with coverage close to those written by human developers.

We evaluate CAT-LM against several strong baselines
across two realistic applications: test method generation and
test method completion. For test method generation, we com-
pare CAT-LM to both human written tests as well as the tests
generated by StarCoder [16] and, the CodeGen [11] model

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00193

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

409

——

25 N 7 \\
/ Data Preprocessing ~ N/ - o Pretraining CAT-LM \
[: \ I—ﬂ—' <> = |
' | <> o = C ,
: : — : ” code I
| code + o) train data - > :
> <’> e <|codetestpair|> —H—> _— _ @ LM |
I i T : :I file pair =5 G el |
' <> S N |
| % n
| t L .| |
\ est I\ p— |
. s IETPIIIRE N\ v
C) S [Coteestparmignent | N T 7
SO e RN
/' Evaluating CAT-LM - [, e \\
[; Test Generation
: (924 |
: m : — l : I
| p— wde < - |
L | > - | — <|codetestpair|> —» @ LM > - —’ :
| =</ : + :
: Generated | : |
| : L2 —T Test Output [ExecuteTests | [Compute Metrics | :
I [setup Executable | : . : |
: Projects : testinput context I
\ B Prepare Test Input /'
\ e e /
~ -~

Fig. 1: Approach overview. We extract Java and Python projects with tests from GitHub and heuristically align code and test
files (top), which, along with unaligned files, train CAT-LM, a large, auto-regressive language model. We evaluate CAT-LM’s
generated tests on a suite of executable projects (bottom), measuring its ability to generate syntactically valid tests that yield

coverage comparable to those written by developers.

family, which includes mono-lingual models trained on a much
larger budget than ours. We also compare against TeCo [15],
a recent test-specific model, for test completion. CAT-LM
generates more valid tests on average than StarCoder and all
CodeGen models, and substantially outperforms TeCo at test
completion. Our results highlight the merit of combining the
power of large neural methods with a pretraining signal based
on software engineering expertise—in this case, the impor-
tance of the relation between code and test files.

In summary, we make the following contributions:

o We release a corpus of 1.1M code-test file pairs along
with 14.4M Java and Python files across 196K open-
source projects. We believe this corpus will be useful for
many testing-related tasks.

We release CAT-LM, the first pretrained LLM that mod-
els aligned code and test files from Java and Python
projects on GitHub.

We release the testing framework used to evaluate the
tests generated by CAT-LM.

We conduct an extensive evaluation of CAT-LM with
strong baselines on downstream tasks such as test method
generation and test completion.

The model checkpoints along with usage code samples can
be found at https://github.com/RaoNikitha/CAT-LM.

410

II. OVERVIEW

CAT-LM is a GPT-style model that can generate tests given
code context. Figure 1 shows an overview of our entire system,
which includes data collection and preprocessing (detailed in
Section IV-A), pretraining CAT-LM (Section V), and evalua-
tion (Section VI).

We first collect a corpus of ca. 200K Python and Java
GitHub repositories, focusing on those with at least 10 stars.
We split these at the project level into a train and test set (Sec-
tion IV-A). We filter our training set following CodeParrot [17]
standards (including deduplication), resulting in ~15M code
and test files. We align code and test files using a fuzzy string
match heuristic (Section IV-B).

We then prepare the training data, comprising of
the code-test file pairs, paired with a unique token
(<|codetestpair|>), as well as unpaired code and test
files. We tokenize the files using a custom-trained senten-
cepiece tokenizer [18]. We then determine the appropriate
model size, 2.7B parameters based on our training budget
and the Chinchilla scaling laws [19]. We use the GPT-NeoX
toolkit [20] enhanced with Flash Attention [21] to pretrain
CAT-LM using an auto-regressive (standard left-to-right) pre-
training objective that captures the mapping between code and
test files, while learning general code and test structure.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

Test generation with code context

public class Bank {
public String methodName() {...}

¥
<|codetestpair|>
public class BankTest {
@Test
public void FirstTest() {...}
@Test
public void Test_k() {
assertNotNull(Bank());
}
@Test
public void LastTest() {...}

@Test
public void ExtraTest() {...}

Fig. 2: Evaluation tasks, with code context shown for
completeness: test generation for the first test method ,
last test method , and extra test method , along with
test completion for Java.

Finally, we evaluate CAT-LM on the held-out test data. We
manually set up all projects with executable test suites from
the test set to form our testing framework. We prepare our
test inputs for CAT-LM by concatenating the code context to
the respective test context for test generation. The test context
varies based on the task. We asses our model’s ability to
generate (1) the first test method, (2) the last test method, add
(3) an additional, new test to an already complete test suite.
We also evaluate completing a statement within a test function.
We tokenize prepared input and task CAT-LM with sampling
multiple (typically 10) test outputs, each consisting of a single
method. We then attempt to execute the generated tests with
our testing framework and compute metrics like number of
generated tests that compile and pass, along with the coverage
they provide, to evaluate test quality.

III. TASKS

We describe two tasks for which CAT-LM can be used,
namely test method generation (with three settings) and test
completion. Figure 2 demonstrates the setup for all tasks in-
cluding code context.

A. Test Method Generation

Given a partially complete test file and its corresponding
code file, the goal of test method generation is to generate
the next test method. Developers can use test generation to
produce an entire test suite, or add tests to an existing test

411

TABLE I: Summary statistics of the overall dataset.

Attribute Python Java Total
Total 148,605 49,125 197,730
. Deduplicated 147,970 48,382 196,852
Project
W/o Tests 84,186 15,128 99,314
W/o File pairs 108,042 23,933 131,975
Size |Raw 123 157 280
(GB) |Deduplicated 53 94 147
Total 8,101,457 | 14,894,317 | 22,995,774
Filtered 7,375,317 | 14,698,938 | 22,074,255
Deduplicated | 5,101,457 | 10,418,609 | 15,520,066
Files |Code 4,128,813 | 8,380,496 | 12,509,309
Test 972,644 | 2,038,113| 3,010,757
File pairs 412,881 743,882 | 1,156,763
Training 4,688,576 | 9,674,727 | 14,363,303

suite to test new functionality. We evaluate three different set-
tings, corresponding to different phases in the testing process,
namely generating (1) the first test in the file, representing
the beginning of a developer’s testing efforts. In this setting,
we assume that basic imports and high-level scaffolding are
in place, but no test cases have been written, (2) the final test
in a file, assessing a model’s ability to infer what is missing
from a near-complete test suite. We evaluate this ability only
on test files that have two or more (human-written) tests to
avoid cases where only a single test is appropriate, and (3) an
extra or additional test, which investigates whether a model
can generate new tests for a largely complete test suite. Note
that this may often be unnecessary in practice.

B. Test Completion

The goal of test completion is to generate the next state-
ment in a given incomplete test method. Test completion aims
to help developers write tests more quickly. Although test
completion shares similarities with general code completion,
it differs in two ways: (1) the method under test offers more
context about what is being tested, and (2) source code and test
code often have distinct programming styles, with test code
typically comprising setup, invocation of the method under
test, and assertions about the output (the test oracle).

IV. DATASET

This section describes dataset preparation for both training
and evaluating CAT-LM. Table I provides high-level statistics
pertaining to data collection and filtering.

A. Data Collection

We use the GitHub API [22] to mine Python and Java repos-
itories that have at least 10 stars and have new commits after
January 1st, 2020. Following [23] and [24], we also remove
forks, to prevent data duplication. This results in a total of
148,605 Python and 49,125 Java repositories with a total of
~23M files (about 280 GB). We randomly split this into train
and test set, ensuring that the test set includes 500 repositories
for Python and Java each.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

B. Training Data Preparation

We first remove all non-source code files (e.g., configuration
and README files) to ensure that the model is trained on
source code only. We then apply a series of filters in ac-
cordance with CodeParrot’s standards [17] to minimize noise
from our training signal. This includes removing files that are
larger than 1MB, as well as files with any lines longer than
1000 characters; an average line length of >100 characters;
more than 25% non-alphanumeric characters, and indicators
of being automatically generated. This removes 9% of both
Python and Java files. We deduplicate the files by checking
each file’s md5 hash against all other files in our corpus. This
removes approximately 30% of both Python and Java files.

We extract code-test file pairs from this data using a com-
bination of exact and fuzzy match heuristics. Given a code
file with the name <CFN>, we first search for test files that
have the pattern test_<CFN>, <CFN>_test, <CFN>Test
or Test <CEFN>. If no matches are found, we perform a fuzzy
string match [25] between code and test file names, and group
them as a pair if they achieve a similarity score greater than
0.85. If multiple matches are found, we keep the pair with the
highest score.

Following file pair extraction, we prepare our training data

by replacing the code and test files with a new file that
concatenates the contents of the code file and the test file,
separating them with a unique <|codetestpair|> token.
This ensures that the model learns the mapping between code
and test files from the pretraining signal. Note that we always
combine these files starting with the code, so the model (which
operates left-to-right) only benefits from this pairing informa-
tion when generating the test. We additionally include all the
other code and test files for which we did not find pairs in
our training data, which results in 4.7M Python files and 9.7
Java files. We include these unmatched files to maximize the
amount of data the model can learn from. Figure 3 summarizes
the distribution of files in the training data along with sample
code snippets for each type of file.
Distribution of files and file pairs: Figure 4 summarizes
the distribution of files in projects with respect to their star
count. We observe a decreasing trend in not just the number
of code files and test files, but also the file pairs. Upon manual
inspection of a few randomly selected projects, we find that
popular projects with a high star count tend to be better-tested,
in line with prior literature [26], [27]. Note that we normalize
the plot to help illustrate trends by aggregating projects in
buckets based on percentiles, after sorting them based on stars.
The data distribution varies between Python and Java: Python
has approximately 3x more projects than Java, but Java has
roughly twice as many code-test file pairs.

C. Test Data Preparation and Execution Setup

To prepare our test data, we first excluded all projects with-
out code-test file pairs. This resulted in a total of 97 Java and
152 Python projects. We then attempted to set up all projects
for automated test execution.

412

Test Files

public class AppTest {
@Test

11.35M public void homePage() {

1.15M 1.85M

}
}

Code-Test File Pairs

public class Bank {

Code Files public String customerSummary() {

public class UserController {
public String getAllUsers() { }

i. ’ <|codetestpair|>
} public class BankTest {
@Test
public void customerSummary() {

}
¥

Fig. 3: Distribution of files with sample code snippets

300000

—— Python code files
—— Python test files
Python file pairs
—— Java code files
Java test files
Java File pairs

200000

100000

Total File Counts

O 40 20 20 0 PO O 10 PO o0 ‘\'00

Project Percentiles

Fig. 4: Distribution of files in projects sorted by GitHub stars,
normalized by percentiles

Execution Setup for Java: Projects may use different Java
versions (which include Java 8, 11, 14, and 17) and build sys-
tems (mostly Maven and Gradle). We manually set up Docker
images for each combination. We then attempted to execute
the build commands for each project in a container from each
image. We successfully built 54 out of the 97 Java projects,
containing 61 code-test file pairs.

Execution Setup for Python: We manually set up Docker
containers for Python 3.8 and 3.10 with the pytest frame-
work and attempted to run the build commands for each
project until the build was successful. We successfully built
41 of the 152 Python projects, containing 1080 code-test file-
pairs.

We further discarded all pairs within these projects with
only a single code method or a single test method to ensure
that code-test file-pairs in our test set correspond to nontriv-
ial test suites. We additionally require the Java and Python
projects to be compatible with the Jacoco and coverage
libraries respectively. This leaves a total of 27 code-test file
pairs across 26 unique Java projects and 517 code-test file pairs
across 26 unique Python projects. In Python, we randomly
sampled up to 10 file pairs per project to reduce the bias
towards large projects (the top two projects account for 346
tests) leading to a final set of 123 file pairs across 26 unique

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

Python
Java

200000

150000

100000

50000

Number of File Pairs

0

[B
° 50 o 1t oh® 09° 9t & 6%90‘31
Number of Tokens

Fig. 5: Distribution of file pair tokens

Python projects. Note that we reuse these Docker containers
in our testing framework (See Section VI-AS5).

V. CAT-LM

This section describes the details for preparing the input,
pretraining CAT-LM and generating the outputs.

A. Input Representation for Pretraining CAT-LM

We use the corpus of 14M Java and Python files that we
prepared for the pretraining of our model (see Section IV-A).
We first train a subword tokenizer [28] using the Sentence-
Piece [18] toolkit with a vocabulary size of 64K tokens. The
tokenizer is trained over 3 GB of data using ten random lines
sampled from each file. We then tokenize our input files into
a binary format used to efficiently stream data during training.
Analysing the distribution of tokens: Language models are
typically constrained in the amount of text they fit in their
context window. Most current code generation*models use a
context window of up to 2,048 tokens [11], [29]. Our analysis
on the distribution of tokens, visualized in Figure 5, showed
that this only covers 35% of the total number of file pairs. As
such, while it may be appropriate for a (slight) majority of
individual files, it would not allow our model to leverage the
code file’s context while predicting text in the test file. This
is a significant limitation since we want to train the model to
use the context from the code file when generating tests.

Further analysis showed that approximately 82% of all file
pairs for Java and Python have fewer than 8,192 tokens. Since
the cost of the attention operation increases quadratically with
the context length, we choose this cutoff to balance training
cost and benefit. Therefore, we chose to train a model with
a longer context window of 8192 tokens to accommodate an
additional ~550K file pairs. Note that this does not lead to any
samples being discarded; pairs with more tokens will simply
be (randomly) chunked by the training toolkit.

B. Model and Training Details

We determined the model size based on our cloud compute
budget of $20,000 and the amount of available training data,
based on the Chinchilla scaling laws [19], which suggest that
the training loss for a fixed compute budget can be minimized
(lower is better) by training a model with ca. (and no fewer

*The average length of a token depends on the vocabulary and dataset, but
can typically be assumed to be around 3 characters.

413

than) 20 times as many tokens as it has parameters. Based on
preliminary runs, we determined the appropriate model size
to be 2.7 (non-embedding) parameters, a common size for
medium to large language models [29], [11], which we there-
fore aimed to train with at least 54B tokens. This model archi-
tecture consists of a 2,560-dimensional, 32 layer Transformer
model with a context window of 8,192 tokens. We trained the
model with a batch size of 256 sequences, which corresponds
to ~2M tokens. We use the GPT-NeoX toolkit [20] to train
the model efficiently with 8 Nvidia A100 80GB GPUs on
a single machine on the Google Cloud Platform. We trained
the model for 28.5K steps, for a total of nearly 60B tokens,
across 18 days, thus averaging roughly 1,583 steps per day.
We note that this training guration is much shorter than many
popular models [11], [30]; the model could thus be improved
substantially with further training. The final model is named
CAT-LM as it is trained on aligned Code And Tests.

C. Prompting CAT-LM fto generate outputs:

Since CAT-LM has been trained using a left-to-right au-
togressive pretraining signal, it can be prompted to generate
some code based on the preceding context. In our case, we task
it to either generate an entire test method given the preceding
test (and usually, code) file context, or generating a line to
complete the test method (given the same). We prompt CAT-
LM with the inputs for each task, both with and without
code context, and sample 10 outputs from CAT-LM with a
“temperature” of 0.2, which encourages generating different,
but highly plausible (to the model) outputs. Sampling multiple
outputs is relatively inexpensive given the size of a method
compared to the context size, and allows the model to effi-
ciently generate multiple methods from an encoded context.
We can then filter out tests that do not compile, lack asserts,
or fail (since we are generating behavioral tests), by executing
them in the test framework. We prepare the outputs for exe-
cution by adding the generated test method to its respective
position in the baseline test files, without making any changes
to the other tests in the file.

VI. EXPERIMENTAL SETUP

We describe the setup for evaluating CAT-LM across both
tasks outlined in Section III, namely test method generation,
and test completion.

A. Test Method Generation

The test method generation task involves three different
cases: generating the first test, the final test, and an extra test
in a test suite (see Section III). We evaluate CAT-LM on test
method generation both with code context and, as an ablation,
without code context.

*
The “Chinchilla” optimum does not focus on maximizing the performance
for a given model size, only for a total compute budget.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

1) Baseline Models: CodeGen is a family of Transformer-
based LLMs trained auto-regressively (left-to-right) [11]. Pre-
trained CodeGen models are available in a wide range of sizes,
including 350M, 2.7B, 6.1B and 16.1B parameters. These
models were trained on three different datasets, starting with
a large, predominantly English corpus, followed by a multi-
lingual programming language corpus (incl. Java and Python),
and concluding with fine-tuning on Python data only. The
largest model trained this way is competitive with Codex [10]
on a Python benchmark [11].

For our evaluation, we compare with CodeGen-2.7B-multi,
which is comparable in size to our model and trained on mul-
tiple programming languages, like our own. We also consider
CodeGen-16B-multi (with 16B parameters, ca. 6 times larger
than CAT-LM) which is the largest available model trained
on multiple programming languages. For all Python tasks,
we also compare against CodeGen-2.7B-mono and CodeGen-
16B-mono, variants of the aforementioned models fine-tuned
on only Python code for an additional 150k training steps.

We also compare the performance of CAT-LM with Star-
Coder [16], which is a 15.5B parameter model trained on over
80 programming languages, including Java and Python, from
The Stack (v1.2). StarCoder has a context window of 8, 192 to-
kens. It was trained using the Fill-in-the-Middle objective [13]
on 1 trillion tokens of code, using the sample approach of
randomizing the document order as CodeGen.

2) Lexical Metrics: Although our goal is not to exactly
replicate the human-written tests, we provide measures of the
lexical similarity between the generated tests and their real-
world counterparts as indicators of their realism. Generated
tests that frequently overlap in their phrasing with ground-truth
tests are likely to be similar in structure and thus relatively easy
to read for developers. Specifically, we report both the rate of
exact matches and several measures of approximate similarity,
including ROUGE [31] (longest overlapping subsequence of
tokens) and CodeBLEU [32] score (n-gram overlap that takes
into account code AST and dataflow graph). We only report
lexical metrics for our first test and last test settings, as there
is no ground truth to compare against in our extra test setting.
These metrics have been used extensively in prior work on
code generation and test completion [15], [33], [34], [35].

3) Runtime Metrics: We also report runtime metrics that
better gauge test utility than the lexical metrics. This includes
the number of generated tests that compile, and generated tests
that pass the test suite. We also measure coverage of the gener-
ated tests. For first and last tests, we compare this with the cov-
erage realized by the corresponding human-written tests. We
hope that this work will encourage more widespread adoption
of runtime metrics (which are an important part of test utility),
as prior work primarily focuses on lexical similarity [3], [7],
[15]. See Section 2.2 in supplementary material for additional
detailed descriptions of all lexical and run-time metrics.

4) Preparing Input Context and Baseline Test Files: We
use an AST parser on the ground-truth test files to prepare
partial tests with which to prompt CAT-LM. For first test
generation, we remove all test cases (but not the imports, nor

414

TABLE II: Baseline coverage for human written tests over the
given number of file pairs.

PL | Case | CovImp % | # File Pairs
First test 59.3% 112
Python | Last test 5.0% 93
Extra test 0.0% 123
First test 50.5% 27
Java Last test 5.3% 18
Extra test 0.0% 27

any other setup code that precedes the first test); for last test
generation, we leave all but the final test method, and for final
test generation we only remove code after the last test. We
then concatenate the code context to the test context using our
delimiter token for the ‘with code context’ condition.

We additionally obtain coverage with the original, human-
written test files under the same conditions, keeping only the
first or all tests as baselines for first and last test prediction
respectively. Note that there is no baseline for the extra test
generation task. See Section 1 for in supplementary material
for coverage distribution of human-written tests.

5) Testing Framework: We evaluate the quality of the gen-
erated tests using the containers that we setup to execute
projects in Section IV-C. We insert the generated test into the
original test file, execute the respective project’s setup com-
mands and check for errors, recording the number of generated
tests that compile and pass the test suite (see Section VI-A3).
If the generated test compiles successfully (or, for Python, is
free of import or syntax errors), we run the test suite and
record whether the generated test passed or failed. We com-
pute code coverage for all passing tests, contrasting this with
the coverage achieved by the human-written test cases (when
available) as baselines.

B. Test Completion

Recall the test completion task involves generating a single
line in a given test method, given the test’s previous lines. We
perform our evaluation for test completion under two condi-
tions, with code context and without code context.

1) Baseline Model: We compare against TeCo [15], a state
of the art baseline on test statement completion that has
outperformed many existing models, including CodeT5 [35],
CodeGPT [36] and TOGA [3]. TeCo [15] is a encoder-decoder
transformer model based on the CodeT5 architecture [35].
TeCo takes the test method signature, prior statements in the
test, the method under test, the variable types, absent types
and method setup and teardown as input.

Initially, we intended to compare CAT-LM against TeCo
on our test set. However, TeCo performs extensive filtering
including requiring JUnit, Maven, well-named tests, a one-to-
one mapping between test and method under test, and no if
statements or non-sequential control flow in the test method.
We thus compared CAT-LM against TeCo for 1000 randomly
sampled statements from their test set.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

120

CodeGen-multi-2B
CodeGen-multi-16B
100 CodeGen-mono-2B
" CodeGen-mono-16B
S StarCoder
',JE 80 CAT-LM
9]
C
9]
o
o 60
c
‘0
%]
3
« 40
S}
3#
20
0
First test Last test Extra test
(a) Python.
35
CodeGen-multi-2B
CodeGen-multi-16B
30 StarCoder
CAT-LM
)]
525
)
o
2
g 20
o
o
C
@ 15
0w
(8]
Q
—
© 10
#
5
0
First test Last test Extra test
(b) Java.

Fig. 6: Passing tests by model for Python and Java.

2) Metrics: We compare CAT-LM against TeCo across all
lexical metrics (outlined in Section VI-A2).

VII. EVALUATION

We evaluate CAT-LM’s ability to generate valid tests that
achieve coverage, comparing against state of the art baselines
for both code generation and test completion. Additional re-
sults can be found in the supplementary material.

A. Test Method Generation

1) Pass Rate: Figure 6 shows the number of passing tests
generated by each model for Python and Java. Note that these

415

= 1.0 CAT-LM cov impr.
9] Human cov impr.
£ 0.8
(9]
3
5 0.6
E
o 0.4
o)
o
202
S >
00 ——iEn —
First test Last test Extra test

(a) Coverage improvement of our model vs humans for Python.

2 CAT-LM cov impr.
g 0.8 Human cov impr.
g
© 0.6
S
§ 1
0 0.4 |
o)
o
g 0.2
o
O
0.0

First test Last test Extra test

(b) Coverage improvement of our model vs humans for Java.

Fig. 7: Coverage improvement of our model vs humans for
different languages.

are absolute numbers, out of a different total for each setting.*

CAT-LM outperforms StarCoder and all CodeGen models,
including ones that are much larger and language-specific in
most settings. For Python, all models perform worst in the
first test setting, where they have the least context to build on.
Nonetheless, equipped with the context of the corresponding
code file, our model generates substantially more passing tests
than StarCoder (with 15.5B parameters) and the multilingual
CodeGen baselines (trained with far more tokens) in both first
and extra test setting. Only in the last-test settings do some
of the models compete with ours, though we note that their
performance may be inflated as the models may have seen the
files in our test set during training (the test set explicitly omits
files seen by CAT-LM during training). For Java, we find that
CAT-LM generates more passing tests than StarCoder and the
two multilingual CodeGen models (no Java-only model exists).
The difference is most pronounced in the extra test setting,
where CAT-LM generates nearly twice as many passing tests
compared to StarCoder and the CodeGen baseline models.
Overall, despite being undertrained, CAT-LM generates more
number of passing tests on average across all settings. Both
StarCoder and the CodeGen models don’t show significant
gains with more parameters or longer contexts (StarCoder can

*The denominator for each group is the number of file pairs shown in
Table II multiplied by 10, the number of samples per context.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

use 8, 192 tokens), highlighting that training with code context
is important.

2) Coverage: Figure 7 shows the coverage distribution of
CAT-LM, contrasted with that of the human-written tests. For
both the first test and last test settings, our model performs
mostly comparably to humans, with both distributions having
approximately the same median and quartile ranges. The extra
test task is clearly especially hard: while our model was able
to generate many tests in this setting (Figure 6), these rarely
translate into additional coverage, beyond what is provided
by the rest of the test suite, in part because most of the
developer-written test suites in our dataset already have high
code coverage (average coverage of 78.6% for Java and 81.6%
for Python), and may have no need for additional tests. Table II
shows the average human coverage improvement for the first
and last test added to a test suite. Note that the average is
significantly lower for last test, as baseline coverage is already
high for this mode (74.7% for Java and 76.1% for Python).

We note that we could not compute coverage for all the
file pairs in each setting. We excluded file pairs with only one
test from our last test setting to differentiate it from our first
test setting. For the first test setting, some baseline files were
missing helper methods between the first test and last test in
the file, preventing us from computing coverage.

3) Lexical Similarity: Table III shows the lexical similarity
metrics results relative to the human-written tests for CAT-
LM, both with and without context, along with StarCoder and
CodeGen baselines. CAT-LM reports high lexical similarity
scores when leveraging code context, typically at or above
the level of the other best model, StarCoder (with 15B pa-
rameters). This effect is consistent across first and last test
generation.

4) Impact of Code Context: As is expected, CAT-LM heav-
ily benefits from the presence of code context. When it is
queried without this context, its performance on lexical met-
rics tends to drop to below the level of CodeGen-2B, which
matches it in size but was trained with more tokens. The
differences in lexical metric performance are sometimes quite
pronounced, with up to a 9.2% increase in Rouge score and
up to a 5.1% increase in CodeBLEU score.

In terms of runtime metrics, code context mainly helps on
the first and last test prediction task, with especially large
gains on the former. Context does not seem to help generate
more passing tests in the extra test setting. This may be in part
because the test suite is already comprehensive, so the model
can infer most of the information it needs about the code
under test from the tests. It may also be due to the test suites
often being (nearly) complete in this setting, so that generating
additional tests that pass (but yield no meaningful coverage)
is relatively straightforward (e.g., by copying an existing test
Section VII-C). Overall, these results support our core hy-
pothesis that models of code should consider the relationship
between code and test files to generate meaningful tests.

5) Other Runtime Metrics: Table III also shows a compari-
son between CAT-LM and StarCoder and CodeGen baselines
for all runtime metrics. CAT-LM outperforms both StarCoder

416

and the CodeGen baselines in both Python in Java across
compiling and passing generations, with CAT-LM typically
generating the most samples that compile and pass. The one
setting where the CodeGen baselines perform slightly better
is in generating more last tests that pass for Python. However,
the compile rate of these CodeGen generated tests is signifi-
cantly lower than those generated by CAT-LM. We note that
CodeGen’s performance may be inflated in the last test setting,
as it may have seen the files from the test set during training.

CAT-LM outperforms StarCoder and CodeGen for
both Python and Java, generating more passing tests
on average across all settings. We find that code context
improves performance across most settings in terms of
both lexical and runtime metrics.

B. Test Completion

For test completion (see Section III-B for task definition),
we compare CAT-LM against TeCo [15] on the lexical met-
rics outlined in Section VI-A2. Specifically, we sample 1000
statements at random from across the test set released by the
authors of TeCo, on which we obtain similar performance with
TeCo to those reported in the original paper. Table IV shows
the results. CAT-LM outperforms TeCo across all lexical met-
rics, with a 36.6% increase in exact match, 22.6% increase
in ROUGE and 40.4% increase in CodeBLEU score. Even
prompting CAT-LM with just the test context (i.e., without
the code context) yields substantially better results than TeCo.
This underscores that providing the entire test file prior to
the statement being completed as context, rather than just the
setup methods, is helpful for models to reason about what is
being tested.

In contrast to the test generation task, code context only
slightly helps CAT-LM in this setting, with an increase in
CodeBLEU score of 1.2% and increase in exact match accu-
racy of 1.5%. Apparently, many individual statements in test
cases can be completed relatively easily based on patterns
found in the test file, without considering the code under tests.
This suggests that statement completion is significantly less
context-intensive than whole-test case generation. We there-
fore argue that entire test generation is a more appropriate task
for assessing models trained for test generation.

CAT-LM outperforms TeCo across all lexical met-
rics, with a 40.4% improvement in CodeBLEU score
and 36.6% improvement in exact match accuracy. We
find that context only slightly helps with test statement
prediction, indicating that test completion can largely be
done without the code under test, in contrast to entire
test generation.

See Section 3 and 4 in the supplementary material for ad-
ditional results on all tasks.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

TABLE III: Lexical and runtime metrics performance comparison of the models on the held-out test set for Java and Python.
CodeGen refers to CodeGen-multi for Java and CodeGen-mono for Python results. We only report lexical metrics for our first
test and last test settings, as there is no gold test to compare against in our extra test setting.

Java

| Python

| Runtime Metrics |

Lexical Metrics | Runtime Metrics

\
| Lexical Metrics
|

Model CodeBLEU XMatch Rouge | Compile Pass | CodeBLEU XMatch Rouge | Compile Pass
First Test (Total: Java = 270, Python = 1120)
CAT-LM w Context 41.4% 154% 60.9% 50 22 21.0% 03% 39.4% 384 44
CAT-LM w/o Context 37.5% 154% 56.5% 9 9 17.7% 04% 30.2% 236 31
Codegen-2B 35.5% 77% 56.8% 24 14 18.2% 0.0% 30.9% 259 37
Codegen-16B 42.2% 77% 61.8% 25 7 20.8% 03% 35.1% 361 42
StarCoder 44.6 % 109% 62.2% 28 16 24.0% 1.8% 38.8% 269 23
Last Test (Total: Java = 180, Python = 930)
CAT-LM w Context 55.4% 20.8% 70.8% 54 17 38.3% 48% 54.9% 335 77
CAT-LM w/o Context 53.6% 20.8% 68.9% 33 14 33.2% 14% 51.9% 350 79
Codegen-2B 51.7% 13.0% 69.2% 43 16 36.3% 22% 53.2% 326 84
Codegen-16B 56.5% 14.3% 70.9% 24 9 37.9% 34% 54.0% 349 83
StarCoder 56.9% 21.0% 69.9% 34 17 37.6% 42% 54.5% 227 65
Extra Test (Total: Java = 270, Python = 1230)
CAT-LM w Context - - 41 17 - - - 380 98
CAT-LM w/o Context - - - 29 20 - - - 425 104
Codegen-2B - - - 17 8 - - - 376 90
Codegen-16B - - - 15 7 - - - 384 89
StarCoder - - - 17 10 - - - 269 36

TABLE IV: Comparison of CAT-LM and TeCo on 1000 ran-
domly sampled statements in their test set.

Model | CodeBLEU | XMatch | Rouge
CAT-LM w/ Context 67.1% 50.4% | 82.8%
CAT-LM w/o Context 65.9% 48.9% | 82.2%
TeCo 26.7% 13.8% | 60.2%

C. Qualitative Comparisons

Finally, we conduct a small-scale qualitative case-study of
tests generated by CAT-LM, CodeGen-2B-multi [11], GPT-
4 [37] and EvoSuite [4]. GPT-4 is a vastly larger language
model than ours, trained with an undisclosed budget by Ope-
nAl. EvoSuite is a popular test generation tool for Java based
on evolutionary algorithms.

We analyze a randomly sampled passing generation from
CAT-LM in contrast to the tests generated by the other tools in
the same context across each our three settings (first test, last
test and extra test). The tests here are generated for a Bank
class, which includes methods to add a customer, open an ac-
count and print a summary of all accounts and customers. Our
goal is to better understand the benefits and drawbacks of each
tool’s generated tests. Specifically, we look for characteristics
of high quality tests, such as meaningful method and variable
names, proper invocation of the method under test and high
quality assertions. We mainly discuss the first generated test
here; for our full set of examples, see Supplemental Materials.
CAT-LM: Listing 1 shows the first test generation by CAT-
LM. The name of the test is informative, along with its vari-
ables. It also follows unit testing conventions of testing one

417

specific method in the Bank class. This is consistent across
the examples for last test and extra test. However, for our extra
test example, CAT-LM copied the previous test and changed
the name of the test method, not testing new functionality.
CodeGen: in Listing 2, the test generated by CodeGen is quite
readable, semantically correct, and natural looking. However,
it uses multiple non-existent methods from the code under
test—a phenomenon popularly dubbed “hallucinating”—since
it lacks awareness of Bank’s implementation. StarCoder per-
forms similarly, generating tests that are readable, semantically
correct, and natural looking but suffer from hallucinations.
GPT-4: GPT-4 consistently performs the best of all three tools,
generating tests that either are identical to the ground truth or
test new functionality that none of the existing tests do. Listing
3 shows GPT-4’s generation for the first test case. Similar to
CAT-LM, the GPT-4 generated test has meaningful identifier
names and assertions. GPT-4 had similarly good tests for our
last test and extra test settings. However, these results come
with several caveats. First, GPT-4 was trained on a very large
volume of data, including public code, so it is quite likely
that it was tr*ained on our test data and has thus seen the
original tests. Second, GPT-4 is a much larger, model, with
a training budget orders of magnitude higher than ours. Given
our strong performance compared to the (already much more
expensive) CodeGen models, we expect that modestly scaling
up our training approach could well yield similar or better
results.

EvoSuite: EvoSuite performs the worst in all three settings.

*
In fact, a similar caveat applies to CodeGen, which we do outperform.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

@Test
public void testCustomerSummary () {
Bank bank = new Bank () ;
assertEquals ("Customer Summary", "Customer
Summary", bank.customerSummary());
}
Listing 1: CAT-LM first test generation
@Test
public void testBank() {
Bank bank = new Bank () ;

assertEquals (0, bank.getBalance(),
DOUBLE_DELTA) ;

bank.deposit (100);

assertEquals (100,
DOUBLE_DELTA) ;

bank.withdraw (50) ;

assertEquals (50, bank.getBalance(),
DOUBLE_DELTA) ;

bank.getBalance (),

Listing 2: CodeGen first test generation

@Before

public void setUp() {
bank = new Bank();

}

@Test

public void testAddCustomerAndCustomerSummary ()
{
Customer customerl
Doe");

bank.addCustomer (customerl) ;

new Customer ("John

"Customer
(0 ounts)";

String expectedSummary
John Doe

Summar Yy \n
String actualSummary
bank.customerSummary () ;

acc

assertEquals (expectedSummary,
actualSummary) ;

Listing 3: GPT-4 first test generation

@Test (timeout 4000)

public void test0() throws Throwable ({
Bank bankO new Bank () ;
Customer customer(new Customer ("v\"PD");
bank0.addCustomer (customer0) ;
Account accountO new Account (0);
account0O.deposit (148.3628547);
customer0.openAccount (accountO) ;
double doublel bankO.totalInterestPaid();
assertEquals (0.14836285470000002, doubleO,

0.01);

Listing 4: EvoSuite first test generation

Fig. 8: Example first tests generated by CAT-LM, CodeGen,
GPT-4, and EvoSuite. CAT-LM and GPT-4 both generate re-
alistic and readable tests; EvoSuite struggles with poor naming
conventions and unrealistic tests. CodeGen generates readable
test cases, but hallucinates methods in the code under test. See
Section 5 in supplementary material for additional examples.

Listing 4 shows the EvoSuite completion for the bank class.
The generated test uses very poor naming conventions, such as

418

naming the method test0, and each of the variables bankO0,
customer0, and account0. The deposit amounts do not
make logical sense, as they are not rounded to the nearest cent.
There is also a timeout of 4000 milliseconds. Such timeouts
are highly likely to lead to flaky tests, where this test might
pass in one environment and timeout in a different environ-
ment. The other generations by EvoSuite, suffer similar prob-
lems, including lacking asserts and using spurious exception
handling. Due to this lack of proper naming conventions and
the use of trivial asserts, it is very difficult to understand what
is being tested in EvoSuite’s generation.

Both GPT-4 and CAT-LM generate high quality tests,
checking for realistic situations with readable asserts.
However CAT-LM struggles to generate meaningfully
distinct tests in the extra test setting. CodeGen and Star-
Coder produces highly readable, but incorrect tests. Evo-
Suite struggles to generate meaningful tests; it uses poor
naming conventions and spurious exception handling.

VIII. RELATED WORK

Classical Test Generation: Classical test generation tech-
niques employ both black-box and white-box techniques to
generate test inputs and test code. Random/fuzzing techniques
such as Randoop [38], aflplusplus [39] and honggfuzz use
coverage to guide generation of test prefixes. Property test-
ing tools such as Korat [40], QuickCheck [41] and Hypothe-
sis [42] allow a developer to specify a set of properties and
subsequently generates a suite of tests that test the specified
properties. PeX [43] and Eclipser [44] use dynamic symbolic
execution to reason about multiple program paths and generate
interesting inputs. The core issue with fuzzing and classical
test generation techniques is their reliance on program crashing
or exceptional behavior in driving test generation [3], which
limits the level of testing they provide. EvoSuite [4] addresses
these challenges by using mutation testing to make the gen-
erated test suite compact, without losing coverage. However,
EvoSuite generates tests that look “unnatural”, and signifi-
cantly different from human tests, suffering from both stylistic
and readability problems [5], [45], [46].

Neural Test Generation: More recently, neural test genera-
tion methods have been developed to generate more natural
and human understandable tests. ConTest[8] makes use of a
generic transformer model, using the tree representation of
code to generate assert statements. ATLAS [7], ReAssert [47],
AthenaTest [48] and TOGA [3] extend this work by leveraging
the transformer architecture for this task. They show that their
generated asserts are more natural and preferred by develop-
ers when comparing against existing tools such as EvoSuite.
TeCo [15] expands the scope of test completion by completing
statements in a test, one statement at a time. They leverage
execution context and execution information to inform their
prediction of the next statement, outperforming TOGA and
ATLAS on a range of lexical metrics. While these neural
approaches solve many of the readability issues of classical

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

test generation approaches, they focus on generating individual
statements in a test, which offers significantly less time saving
benefits than generating entire tests.

Large Language Models of Code: Large language models
(LLMs) can perform well across many tasks when prompted
with instructions and examples [49], [30]. Codex [10] is
an autoregressive (left to right generation) LLM with 12B
parameters, fine-tuned from GPT-3 on 54 million GitHub
Python repositories. CodeGen-16B, with which we compare,
outperforms this model [11]. Later, unpublished, iterations of
Codex have also been applied to commercial settings, pow-
ering GitHub’s Copilot [14]. TestPilot [50] uses Codex to
generate unit tests. However, it requires significant volumes
of documentation as input, which is often not available for
open-source projects. While all of these models perform well
at generating code, they are relatively poor (for their size)
at generating fests for the code. These models are typically
trained on a randomly shuffled corpus of entire files, and thus
do not learn the alignment of tests to the code under test. We
pretrained a comparatively small language model on a much
more modest budget that explicitly learns to align code and
the corresponding test files, which yields substantially better
performance than modestly larger classically trained models.

IX. CONCLUSION

We develop CAT-LM, a GPT-style language model with

2.7 Billion parameters that was pretrained using a novel signal
that explicitly considers the mapping between code and test
files when available. We elect to use a larger context window
of 8,192 tokens, 4x more than typical code generation models,
to ensure that code context is available when generating tests.
We evaluate CAT-LM on both test method generation and
test completion, with CAT-LM outperforming CodeGen, Star-
Coder, and TeCo state-of-the-art baselines, even with CodeGen
and StarCoder baselines significantly larger training budgets
and model sizes. We show that adding the additional context
helps CAT-LM, with code context significantly improving
both lexical and runtime metric performance. Despite its strong
performance, CAT-LM has limitations including that it may
struggle to generalize to unpopular projects, and the compar-
ison with TeCo likely has data leakage (CAT-LM is likely
to have seen TeCo’s test set in pretraining). We hope that
these limitations can be overcome in future work. Overall, we
highlight how incorporating domain knowledge, namely the
relationship between code and test files, can be used to create
more powerful models for automated test generation.
Data availability: The model weights for CAT-LM, code and
datasets for training and evaluating CAT-LM, results of addi-
tional experiments and comparison with TeCo and CodeGen
are available at: https://doi.org/10.5281/zenodo.7901830.

X. ACKNOWLEDGEMENTS

The authors would like to thank Charles Sutton for his
mentorship as part of the Google Collab Ph.D. Fellowship,
which also included $20,000 in cloud credits without which
this work would not have been possible. We additionally thank

419

the authors of TeCo for providing us with data and code for
our baseline experiments. This work is supported in part by
the US National Science Foundation, awards CCF-2129388
and CCF-1910067.

REFERENCES
[1] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Joint Meeting of
the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 15, 2015, p.
179-190.
M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in International Conference on Software Engineering, ser. ICSE
’15, 2015, p. 559-562.
E. Dinella, G. Ryan, T. Mytkowicz, and S. Lahiri, “Toga: A neural
method for test oracle generation,” in International Conference on Soft-
ware Engineering, ser. ICSE °22, 2022, p. 2130-2141.
G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Soft-
ware Engineering, ser. ESEC/FSE 11, 2011, p. 416-419.
C. Brandt and A. Zaidman, “Developer-centric test amplification: The
interplay between automatic generation human exploration,” Empirical
Software Engineering, vol. 27, no. 4, 2022.
R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
Survey of Symbolic Execution Techniques,” ACM Computing Survey,
vol. 51, no. 3, pp. 50-88, 2018.
C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” CoRR, vol.
abs/2002.05800, 2020.
J. Villmow, J. Depoix, and A. Ulges, “ConTest: A Unit Test Comple-
tion Benchmark featuring Context,” in Workshop on Natural Language
Processing for Programming, Aug. 2021, pp. 17-25.
A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J. Hel-
lendoorn, “Revisiting Test Smells in Automatically Generated Tests:
Limitations, Pitfalls, and Opportunities,” in International Conference on
Software Maintenance and Evolution, 2020, pp. 523-533.
M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. W. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, I. Babuschkin, S. A. Balaji, S. Jain,
A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. M.
Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” CoRR, vol. abs/2107.03374,
2021.
E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A Conversational Paradigm for Program Synthesis,”
CoRR, vol. abs/2203.13474, 2022.
D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “InCoder: A Generative Model
for Code Infilling and Synthesis,” CoRR, vol. abs/2204.05999, 2022.
M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. McLeavey, J. Tworek,
and M. Chen, “Efficient Training of Language Models to Fill in the
Middle,” CoRR, vol. abs/2207.14255, 2022.
“GitHub Copilot,” 2021. [Online]. Available: https://github.com/features/
copilot
P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning
deep semantics for test completion,” in International Conference on
Software Engineering, ser. ICSE °23, 2023, p. 2111-2123.
R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K. Umap-
athi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy, J. Stillerman,
S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang, N. Fahmy,
U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas, M. Kunakov,
F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger,
H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu, J. Robinson, C. J.

[2

3

[4]

[5]

[6]

[7]

[8]

[9

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

[24]

[25]

[27]

(28]

[29]

[30]

(34]

(35]

Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy, D. Fried, D. Bah-
danau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von
Werra, and H. de Vries, “Starcoder: may the source be with you!” 2023.
L. v. Werra, “Codeparrot,” https://github.com/huggingface/transformers/
tree/main/examples/research_projects/codeparrot.

“SentencePiece.” [Online]. Available: https:/github.com/google/
sentencepiece

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
et al., “Training compute-optimal large language models,” CoRR, vol.
arXiv:2203.15556, 2022.

“GPT-neox Toolkit.” [Online]. Available: https://github.com/EleutherAl/
gpt-neox

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and memory-efficient exact attention with IO-awareness,” in Advances
in Neural Information Processing Systems, 2022.

“GitHub REST API” [Online]. Available: https://docs.github.com/en/
rest

M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, ser.
SPLASH 19, 2019, pp. 143-153.

C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjavu: a map of code duplicates on GitHub,” in Pro-
ceedings of the ACM on Programming Languages, ser. OOPSLA 17,
vol. 1, 2017, pp. 1-28.

“TheFuzz: Fuzzy String Matching in Python.” [Online]. Available:
https://github.com/seatgeek/thefuzz

P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in International
Conference on Quality Software, ser. ICQS 13, 2013, pp. 103-112.
H. H. F. d. Souza, I. Wiese, 1. Steinmacher, and R. Ré, “A characteriza-
tion study of testing contributors and their contributions in open source
projects,” in Brazilian Symposium on Software Engineering, ser. SBES
’22, 2022, pp. 95-105.

T. Kudo, “Subword regularization: Improving neural network translation
models with multiple subword candidates,” in Annual Meeting of the
Association for Computational Linguistics, ser. ACL 18, 2018, pp. 66—
75.

F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A Systematic Eval-
uation of Large Language Models of Code,” CoRR, vol. abs/2202.13169,
2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and Efficient
Foundation Language Models,” CoRR, vol. abs/2302.13971, 2023.
C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Conference on Text Summarization Branches Out, 2004, pp. 74-81.
S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “CodeBLEU: a Method for Automatic
Evaluation of Code Synthesis,” CoRR, vol. abs/2009.10297, 2020.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with Hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179-2217, 2020.

A. LeClair, S. Jiang, and C. McMillan, “A Neural model for generating
natural language summaries of program subroutines,” in International
Conference on Software Engineering, ser. ICSE *19, 2019, pp. 795-806.
Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for Code Understanding
and Generation,” in Conference on Empirical Methods in Natural Lan-
guage Processing, 2021, pp. 8696-8708.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021.

OpenAl, “Gpt-4 technical report,” 2023.

C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random test-
ing for Java,” in Conference on Object-Oriented Programming Systems
and Applications Companion, ser. OOPSLA 07, 2007, pp. 815-816.
A. Fioraldi, D. Maier, H. EiBfeldt, and M. Heuse, “AFL++: Combin-
ing incremental steps of fuzzing research,” in Conference on Offensive
Technologies, ser. WOOT °20, 2020, pp. 10-10.

420

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated test-
ing based on Java predicates,” SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 123-133, 2002.

K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in International Conference on Functional
Programming, ser. ICFP 00, 2000, p. 268-279.

D. Maclver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A
New Approach to property-based testing,” Journal of Open Source Soft-
ware, vol. 4, no. 43, p. 1891, 2019.

N. Tillmann and P. de Halleux, “Pex - white box test generation for .net,”
in Tests and Proofs, ser. TAP *08, vol. 4966, April 2008, pp. 134-153.
J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing on
binary code,” in International Conference on Software Engineering, ser.
ICSE 19, 2019, pp. 736-747.

E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with descrip-
tive names or: Would you name your children Thingl and Thing2?” in
International Symposium on Software Testing and Analysis, ser. ISSTA
’17, 2017, pp. 57-67.

B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li,
“Scaling up automated test generation: Automatically generating main-
tainable regression unit tests for programs,” in Joint Meeting of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering, ser. ASE ’11, 2011, pp. 23-32.
R. White and J. Krinke, “Reassert: Deep learning for assert generation,”
CoRR, vol. abs/2011.09784, 2020.

M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sun-
daresan, “Unit test case generation with transformers,” CoRR, vol.
abs/2009.05617, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are Few-Shot learners,” in Advances in
Neural Information Processing Systems, 2020, pp. 1877-1901.

M. Schifer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive Test Generation
Using a Large Language Model,” CoRR, vol. abs/2302.06527, 2023.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

