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Abstract

In-context learning has emerged as a ground-
breaking ability of Large Language Models
(LLMs) and revolutionized various fields by
providing a few task-relevant demonstrations
in the prompt. However, trustworthy issues
with LLM’s response, such as hallucination,
have also been actively discussed. Existing
works have been devoted to quantifying the
uncertainty in LLM’s response, but they of-
ten overlook the complex nature of LLMs
and the uniqueness of in-context learning. In
this work, we delve into the predictive un-
certainty of LLMs associated with in-context
learning, highlighting that such uncertainties
may stem from both the provided demonstra-
tions (aleatoric uncertainty) and ambiguities
tied to the model’s configurations (epistemic
uncertainty). We propose a novel formula-
tion and corresponding estimation method to
quantify both types of uncertainties. The pro-
posed method offers an unsupervised way to
understand the prediction of in-context learn-
ing in a plug-and-play fashion. Extensive ex-
periments are conducted to demonstrate the ef-
fectiveness of the decomposition. The code
and data are available at: https://github.
com/lingchen0331/UQ_ICL.

1 Introduction

Large Language Models (LLMs) have revolution-
ized diverse domains by serving as general task
solvers, which can be largely attributed to the
emerging capability: in-context learning. By pro-
viding demonstrations of the task to LLMs as part
of the prompt, LLMs can quickly grasp the inten-
tion and make corresponding responses to the par-
ticular task (Min et al., 2022). In this paradigm,
LLMs can quickly adapt to solve new tasks at infer-
ence time (without any changes to their weights).
Advanced LLMs, e.g., GPT-4 and LLaMA, have
achieved state-of-the-art results on LAMBADA
(commonsense sentence completion), TriviaQA

(question answering) (Xie et al., 2021), and many
tasks in other domains (Ling et al., 2023b,a).
While in-context learning has achieved notable

success, LLMs remain vulnerable to well-known
reliability issues like hallucination (Rawte et al.,
2023; Bai et al., 2024). Uncertainty quantification
has emerged as a popular strategy to assess the re-
liability of LLM responses. In the past two years,
numerous works (Xiao et al., 2022; Lin et al., 2023;
Ling et al., 2023c; Amayuelas et al., 2023; Kuhn
et al., 2023) have been proposed to quantify the
uncertainty of LLM response. These approaches
could return a confidence score or directly compute
variance/entropy across multiple LLM responses;
however, they often overlook the complex nature
of LLMs and their reliance on provided demonstra-
tions in in-context learning, so that existing meth-
ods may not provide insights into the underlying
causes or the interactions among different factors
contributing to uncertainty.
A natural question therefore arises: when LLM

uses in-context learning to predict a wrong answer
with high uncertainty, can we indicate if it is caused
by the demonstration examples or by the model it-
self? Given LLM’s responses to a particular task,
it’s essential to decompose the uncertainty into its
primary sources to address the question. Specifi-
cally, Aleatoric Uncertainty (AU) refers to varia-
tions in the data, often linked to the demonstration
examples. As shown in Figure 1 (a), LLM’s output
can easily be disturbed by inappropriate demon-
strations since the provided demonstrations do not
cover all possible labels. The noise and potential
ambiguity of these demonstrations could bring un-
certainty, which, in turn, may hinder the accuracy
of the response. In contrast, Epistemic Uncertainty
(EU) stems from ambiguities related to the model
parameters or different configurations. As depicted
in Figure 1 (b), different decoding strategies (e.g.,
beam search and greedy decoding) and their hyper-
parameter settings can have different decoding re-
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Example #1: I didn’t feel humiliated
Label: 0 Sadness
Example #2: I’m feeling a bit burdened 
Label: 0 Sadness
Example #3: I feel low energy
Label: 0 Sadness
Example #4: Dad will blow a fuse
Label: 3 Anger

Test: I have the feeling she was amused
LLM Prediction: [2: Love]
Ground Truth:  [1: Joy]

❌

(a) Inappropriate or insufficient few-shot
 demonstrations may cause uncertainty

(b) Various decoding strategies and parameter
 settings may cause uncertainty

Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].

Decoding Results
Beam Search
The answer is 1: Joy 

Greedy
The answer is 2

Top-K Sampling
[1: Joy], please let …

Parameter Setting

ngram_size,
# of beams, etc.

if_sampling,
seq_length, etc.

Prediction

top_k, top_p, etc.

1

2

1

❌

Figure 1: Uncertainty in LLM’s prediction can stem from two aspects: a) Demonstration Quality: LLMs are likely
to make wrong predictions if the demonstrations are inappropriate; b) Model Configuration: different decoding
strategies (e.g., beam_search and top_k sampling) and their parameter settings may return different predictions.

sults. Recognizing and quantifying the uncertainty
from the model’s perspective can also be critical in
evaluating the generated responses, which allows
us to understand the model’s confidence level to-
ward the task and make necessary adjustments (e.g.,
choosing a more powerful model or conducting an
ensemble prediction).
Despite the strides made by existing works in

understanding the total uncertainty, the decomposi-
tion of uncertainty in the realm of in-context learn-
ing remains under-explored. In this work, we pro-
pose a novel framework for quantifying the uncer-
tainty of in-context learning to aleatoric and epis-
temic components from the generated outputs. Our
contributions are summarized as follows.

• Problem. We formulate the problem of uncer-
tainty decomposition that extracts epistemic and
aleatoric uncertainties from the predictive distri-
bution of LLMs with in-context learning.

• Method. We propose quantifying both aleatoric
and epistemic uncertainty from the mutual in-
formation perspective. A novel entropy-based
estimation method is also designed to handle the
free-form outputs of LLMs.

• Experiment. Extensive experiments are con-
ducted to evaluate different aspects of uncertainty,
followed by specific applications and case studies
to show how two types of uncertainty influence
the model’s performance.

2 Uncertainty Decomposition of
In-context Learning

We first formulate the process of in-context learn-
ing as Bayesian Neural Networks with latent vari-
ables. Based on the formulation, we propose to

decompose the predictive uncertainty into its epis-
temic and aleatoric components from the mutual
information perspective, followed by a novel way
to estimate both uncertainties based on the entropy
of the prediction’s distribution.

2.1 Background
LLMs are typically trained using maximum like-
lihood estimation on a large corpus of text.
The training goal is to maximize the likeli-
hood of the observed data under the model:
L(Θ) =

∏
i≤N p(ωi|ω1, ω2, . . . , ωi−1; Θ), where

each ωi ∈ x is a token in a sentence x =
[ω1, . . . , ωN ], and Θ denotes the set of parameters.

Latent Concept. From the Bayesian point of
view, LLM’s in-context learning ability is obtained
by mapping the training token sequence x to a la-
tent concept z (Xie et al., 2021). The concept z is a
latent variable sampled from a space of concepts Z ,
which defines a distribution over observed tokens
ωi from a training context x:

p(ω1, . . . , ωN ) =

∫

z∈Z
p(ω1, . . . , ωN |z)p(z)dz.

The concept can be interpreted as various
document-level statistics, such as the general sub-
ject matter of the text, the structure/complexity of
the text, the overall emotional tone of the text, etc.

In-context Learning. Given a list of indepen-
dent and identically distributed (i.i.d.) in-context
demonstrations (contain both question and answer)
[x1, . . . ,xT−1] concatenated with a test question
(without the task answer) xT as prompt. Each
demonstration xi in the prompt is drawn as a se-
quence conditioned on the same concept z and
describes the task to be learned. LLMs generate a
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response yT to the test question xT based on the
aggregated prompt x1:T :

p(yT |x1:T ) =

∫

z∈Z
p(yT |x1:T , z)p(z|x1:T )dz.

In-context learning can be interpreted as locat-
ing a pre-existing concept z based on the pro-
vided demonstrations x1:T−1, which is then em-
ployed to tackle a new task xT . Including more
high-quality demonstrations within the prompt can
help refine the focus on the relevant concept, en-
abling its selection through the marginalization
term p(z|x1:T ). Note that formulating in-context
learning as Bayesian inference with latent variables
is more of a hypothesis; however, demystifying the
in-context learning from the view of Bayesian in-
ference offers a probabilistic interpretation of how
LLM learns and adapts to new data in context.
In this work, we focus on quantifying the pre-

dictive uncertainty of LLMs in deterministic NLP
tasks, such as text classification. Specifically, we
address tasks where the training dataset D =
{X ,Y} consists of token sequences X = {x} and
their corresponding target outputs Y = {y}. For
LLMs, the generation process is defined by the
function y = f(x, z; Θ), where f : X × Z → Y
is a deterministic function. The output y ex-
hibits stochastic behavior, influenced by the latent
concept z ∼ p(z|x1:T ) and the model parame-
ters/configurations Θ (e.g., temperature, etc.).

2.2 Predictive Uncertainty Formulation of
In-context Learning

We formulate the predictive distribution of in-
context learning for predicting yT given few-shot
demonstrations x1:T−1 and a test case xT as:

p(yT |x1:T ) ≈
∫

p(yT |Θ,x1:T , z) (1)

· p(z|x1:T )q(Θ)dz dΘ,

where p(yT |Θ,x1:T , z) is approximated by a
Bayesian Neural Network-based likelihood func-
tion N (f(x1:T , z),Σ), and Σ is the covariance
matrix contains the variances and covariances asso-
ciated with LLM parameters. q(Θ) is the approx-
imated posterior of the LLM’s parameters Θ. Eq.
(1) approximates LLM outputs following a Gaus-
sian distribution, which serves as an initial frame-
work for generating predictions based on input data
and accompanying demonstrations: p(yT |x1:T ),
which entangles different types of uncertainties.

LLM

Input
𝒙!

Training Set

𝒙":!$" ∼ 𝝌

Θ% ∼ 𝑞(Θ)

Output 𝒚!"
Θ"

Θ&
𝝌

𝒚!" ∼ 𝑝(𝒚!|Θ" , 	 𝒙#:! , 𝑧	)

𝑧 ∼ 𝑝(𝑧|𝒙":!)

Output 𝒚!"

Figure 2: Uncertainty Quantification of In-context
Learning Pipeline: we want to quantify the uncertainty
that comes from 1) different in-context demonstrations
x1:T ; and 2) different model configurations Θl.

We first present the overall pipeline of our un-
certainty quantification framework, followed by
formulation on decomposing the total uncertainty
based on mutual information (Sec. 2.3) and a novel
way to estimate the uncertainty (Sec. 2.4). Note
that LLMs can be categorized into white-box and
black-box models (Ling et al., 2023b) based on
their transparency. Quantifying mutual informa-
tion involves accessing the probability of generated
tokens, which is not applicable to black-box LLMs.
In this study, we also provide a decomposition way
from the variance perspective for black-box LLMs.
Due to the space limit, the variance-based decom-
position can be found in Appendix A.1.

Framework Pipeline. In this work, we employ
a Bayesian framework to quantify the predictive
uncertainty from LLMs, and the overall pipeline
is visualized in Figure 2. Specifically, the input
x1:T is composed of a test query xT and a set of
demonstrations x1:T−1 sampled from X . By sam-
pling different model parameters/configurations
Θl ∼ q(Θ), LLM can return different outputs
yl
T ∈ [y1

T , · · · ,yL
T ] based on the conditional prob-

ability p(yT |Θl,x1:T , z). The collection of outputs
[y1

T , · · · ,yL
T ] records the total uncertainty regard-

ing Θl and demonstrations x1:T−1.

2.3 Entropy-based Decomposition
As a widely adopted measure of uncertainty, en-
tropy provides a quantifiable and interpretable met-
ric to assess the degree of confidence in the model’s
predictions (Malinin and Gales, 2020). Since white-
box LLMs can return the probability of each to-
ken in the generated sequence, it naturally makes
entropy-based uncertainty measures applicable uni-
formly across different types of white-box LLMs.

Epistemic Uncertainty (EU). Let H(·) be the
differential entropy of a probability distribution,
the total uncertainty in Eq. (1) can be quantified as
H (yT |x1:T ), which entangles both aleatoric (i.e.,
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Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].
Sentence 𝒙𝑻: I have the feeling she was amused .

0 1 2 3
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Figure 3: Framework of entropy-based uncertainty estimation, which consists of 1) generating M sequences based
on a set of x1:T−1; 2) selecting token(s) that is relevant to the answer and extract the probabilities; 3) aggregating
the token probabilities of M sequences into a distribution of predicted labels; 4) iterating the process L times
corresponding to L different demonstration sets and form a probability matrix M, where the column denotes
different demonstration sets and the row denotes labels of the dataset.

demonstration x1:T−1) and epistemic (i.e., model
parameter Θ) uncertainties. To estimate the EU,
we condition Eq. (1) on a specific realization of
the model parameter Θ, yielding p(yT |x1:T ,Θ) =∫
p(yT |x1:T , z,Θ)p(z|x1:T )dz with an associated

entropy H(yT |x1:T , z,Θ). The expected value
of this entropy under different demonstration sets
can be expressed as Ez [H(yT |x1:T , z,Θ)], which
serves as a metric to quantify the EU in Eq. (1).

Aleatoric Uncertainty (AU). In terms of AU, the
randomness comes from different sets of demon-
stration x1:T−1 and their corresponding latent con-
cept z. To estimate AU, we can quantify the mu-
tual information between yT and latent concept
z, which can often be leveraged as an evaluation
metric of AU (Wimmer et al., 2023). As we have
already obtained the EU, AU can subsequently be
calculated as the discrepancy between the total un-
certainty and the epistemic uncertainty:

I(yT , z|Θ) =H (yT |x1:T ,Θ) (2)

− Ez [H(yT |x1:T , z,Θ)] .

The entropyH (yT |x1:T ,Θ) can be approximately
calculated as −∑

t

[
p(ωyT

t ) · log p
(
ωyT
t

)]
, where

p(ωyT
t ) represents the probability of each possi-

ble next token ωyT
t given the input prompt x1:T .

Therefore, the AU in Eq. (2) can be approximated
by sampling many z (by sampling different sets
of demonstrations) to obtain different yT condi-
tioning on one set of parameters Θ. The group of

yT can then be used to approximate the respective
entropies for each group of demonstrations x1:T−1:

I(yT , z|Θ) (3)

= H (yT |x1:T ,Θ)− Ez [H(yT |x1:T , z,Θ)]

≈
M×L∑

H(yT )−
1

M

M∑

m=1

L∑

l=1

[
H(yΘm,l

T )
]
,

where [yΘm,l
T ] are obtained corresponding to dif-

ferent demonstrations [x1
1:T−1, . . . ,x

L
1:T−1], and

[Θ1, . . . ,ΘM ] are sampled from q(Θ). However,
in many cases, direct sampling from the posterior
is hard since it requires a prohibitive number of
samples to approximate it effectively. Beam search
is then used as an efficient alternative to find high-
quality hypotheses. This approach can be viewed
as a form of importance sampling, where hypothe-
ses are drawn from high-probability regions of
the space. Each hypothesis yT observed during
the beam search process is associated with uncer-
tainty, which is importance-weighted in proportion
to p(yT |x1:T , z). Beam Search thus serves as a
practical and efficient way to sample from the poste-
rior by focusing on the most relevant parts of the hy-
pothesis space. In addition, since calculating the en-
tropy H (yT ) entails to obtain the joint probability
of the generated tokens p(yT ) = (ωyT

1 , . . . , ωyT
T ),

entropy-based method may only be applicable to
white-box LLMs.
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2.4 Entropy Approximation
The generation of LLMs is generally free-form,
which makes the uncertainty estimation for in-
context learning still different from well-studied
classification models that have specific labels.
Specifically, not only may the LLM not always
be able to return an expected answer, but the gen-
erated sequence may also consist of placeholder
tokens. Calculating the entropy of the whole gen-
erated sequence would involve redundant tokens.
Therefore, in this work, we propose to approximate
the entropy of the output H(yT ), and the process
is summarized in Figure 3.
Given the probability distributions of the gener-

ated tokens p(yT ) for one set of demonstrations,
we only select token(s) ωyT

t that directly answer
the provided question. Taking the text classifica-
tion task as an example, LLM is asked to directly
output a numerical value standing for a predefined
category (e.g., 0: Sadness, 1: Joy, etc.). The proba-
bility of the token ωyT

t that represents the numer-
ical value is then leveraged to denote the overall
distribution of p(yT ). We aggregate the answer
probabilities from all M decoded sequences and
transform them as an answer distribution (as shown
in the top right corner in Figure 3). After repeat-
ing the process L times, where L corresponds to L
different sets of demonstrations, we have a matrix
M recording the answer distributions of choosing
different demonstrations and model configurations
(as shown in the lower right corner in Figure 3).
The EU and AU can then be approximated as:

EU =
1

L

∑
H (σ(M:,j)) ,

AU = H
(
σ
(∑

[M:,j ]
))

− 1

L

∑
H (σ (M:,j)) ,

where σ(·) normalizes the columnM:,j into a prob-
ability distribution, and entropy H(·) can be calcu-
lated as −∑K

k=1 (p(Mk,j) ∗ log(p(Mk,j))) if the
number of labels isK. Note that we have instructed
LLMs to not generate tokens with less semantic
meaning, such as dashes, spaces, or non-related
words. In practice, our adopted LLMs can follow
the instruction to only return desired answers so
that the whole sentence will be the answer tokens
(no need to select tokens).

3 Related Works

Uncertainty Quantification and Decomposition.
Uncertainty quantification aims to measure the con-
fidence of models’ predictions, which has drawn

attention from various domains (Zhao et al., 2020;
Ling et al., 2022; Malo et al., 2014). Measuring
uncertainty is essential in many real-world NLP ap-
plications where making a wrong prediction with
high confidence can be disastrous (e.g., assess-
ing the confidence in a translation or a generated
piece of information). This is especially impor-
tant in foundation models since we do not have
enough resources to finetune the model (Abdar
et al., 2021). To better understand the uncertainty,
the primary focus is on understanding and cate-
gorizing the sources of uncertainty for interpret-
ing the models’ outputs more effectively. The out-
put uncertainty can typically be categorized into
Aleatoric Uncertainty that arises from the inherent
noise in the data, and Epistemic Uncertainty that
arises due to inappropriate model architecture or
overfitted/underfitted parameters. Existing meth-
ods (Chowdhary and Dupuis, 2013; Depeweg et al.,
2017; Malinin and Gales, 2020) have come up with
various methods (e.g., Bayesian neural network,
Deep Ensembles, and Monte Carlo Dropout) to
decompose the uncertainty.

Uncertainty in Language Models. LLMs have
revolutionized the learning and inference paradigm
in many domains (Chen et al., 2024, 2021), but
existing works using LLMs often neglect the im-
portance of uncertainty in their responses. Ear-
lier works (Xiao and Wang, 2019; Desai and Dur-
rett, 2020; Jiang et al., 2021) on uncertainty in
language models have focused on the calibration
of classifiers (e.g., applying dropout to the model
parameters or leveraging ensemble voting) to bet-
ter assess the confidence of the generated output.
When it comes to the era of LLMs, multiple works
(Xiao and Wang, 2021; Xiao et al., 2022; Lin et al.,
2022; Yu et al., 2022; Lin et al., 2023; Kuhn et al.,
2023; Fadeeva et al., 2023) have been proposed
to measure the uncertainty of LLM’s prediction
in multiple aspects (e.g., lexical uncertainty, text
uncertainty, and semantic uncertainty) for multiple
NLP tasks. Another line of works (Kadavath et al.,
2022; Zhou et al., 2023; Amayuelas et al., 2023;
Chen et al., 2024) instead tries to analyze how to
extract knowledge from a language model correctly
and self-evaluate the correctness with a confidence
score. However, despite these commendable ef-
forts, existing methods still lack an effective way
to directly quantify and decompose the uncertainty
inherent in the outputs of LLMs with in-context
learning.
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4 Experiments

We evaluate the uncertainty decomposition proce-
dure on realistic natural language understanding
problems. By comparing state-of-the-art uncer-
tainty quantification methods, we aim to examine
what type of uncertainty is the most promising in-
dicator of high confidence for LLMs. In addition,
we also provide generalization analysis and two
specific out-of-distribution detection applications.
Due to the space limit, extra experiments and ex-
periment settings are provided in the Appendix.

4.1 Experiment Setup

We evaluate the decomposed uncertainties on open-
source LLMs with different model sizes. We lever-
age LLAMA-2 (Touvron et al., 2023), which is the
most widely applied open LLM, with its 7B, 13B,
and 70B model sizes. The primary experiments are
conducted with LLAMA-2 models. In order to fur-
ther demonstrate the generalization ability of our
method, we apply our uncertainty quantification
method on OPT-13B (Zhang et al., 2022).
Data. We consider different Natural Language Un-
derstanding tasks. 1) Sentiment Analysis: EMO-
TION (Saravia et al., 2018) contains 2, 000 test
cases and six classes; Financial Phrasebank (Fi-
nancial) (Malo et al., 2014) contains 850 financial
news and three sentiment classes; Stanford Sen-
timent Treebank v2 (SST2) (Socher et al., 2013)
consists of 872 sentences from movie reviews and
two classes. 2) Linguistic Acceptability: The Cor-
pus of Linguistic Acceptability (COLA) (Warstadt
et al., 2019) is about English acceptability judg-
ments, which has 1, 040 test cases and two classes.
3) Topic Classification: AG_News (Zhang et al.,
2015) contains 1, 160 test cases and four classes.
Demonstration & Model Configuration Sam-
pling. We evaluate each method on the testing
set of each dataset and choose two strategies to ran-
domly sample in-context learning demonstrations.
1) Random: we randomly sample demonstrations
(training instances with labels) from the training
set regardless their labels. 2) Class: we randomly
sample demonstrations but ensure there is at least
one demonstration per label class. To generate var-
ious sequences based on one set of demonstrations,
we adopt Beam Search with beam width = 10 to
approximate the sampling process of Θ ∼ q(Θ).
Comparison Methods. Our study also evaluates
the following baseline uncertainty estimation meth-
ods: 1) Likelihood-based Uncertainty (Likelihood)

(Malinin and Gales, 2020) calculates the sum of
log probabilities of all tokens generated from lan-
guage models and normalizes it by the sequence
length. 2) Entropy-based Uncertainty (Entropy)
(Xiao and Wang, 2019) calculates the entropy of
the probability distributions of the generated to-
kens. 3) Semantic Uncertainty (Semantic) (Kuhn
et al., 2023) is the most advanced entropy-based
uncertainty estimation method, which groups gen-
erated sequences into clusters according to their
semantic embeddings. The average entropy across
all groups is viewed as the uncertainty score.
Evaluation Metrics. We show the prediction accu-
racy of each dataset. In addition, we leverage two
standard metrics: the Area under Precision-Recall
Curve (AUPR) and AUROC (ROC) to evaluate the
uncertainty. AUPR calculates the area under the
Precision-Recall curve. AP is high when both pre-
cision and recall are high, and low when either of
them is low across a range of confidence thresholds.
ROC represents the likelihood that a correct answer
is selected. An ideal ROC rating is 1, whereas a ran-
dom uncertainty estimate would yield ROC = 0.5.

4.2 Quantitative Analysis

We compare the performance of different methods
in assessing the misclassification samples based
on their perspective uncertainty scores. We follow
the procedure: 1) We use LLMs to classify all ex-
amples in the dataset with different beam search
branches and demonstrations; 2) we use different
uncertainty quantification methods to obtain a score
associated with each test instance; 3) we assign
each example a 0 if it was classified correctly or a
1 if it was misclassified; and 4) we calculate AUPR
and AUROC based on the misclassification rate
and uncertainty score. Ideally, misclassified sam-
ples should have higher uncertainty scores. The re-
sults are shown in Table 1. Note that our proposed
method can decompose the uncertainty into epis-
temic uncertainty (EU) and aleatoric uncertainty
(AU), we thus show the performance of EU and
AU separately.

As shown in the table, in most cases, our pro-
posed methods (EU and AU) consistently show
higher AUPR and ROC scores across all datasets,
which indicates a better performance in assess-
ing misclassification samples based on uncertainty
scores. Moreover, we also draw some observa-
tions from the table. 1. Class Sampling Strat-
egy Proves Superior: The class sampling strategy
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Inference
Model

ACC
Likelihood Entropy Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC AUPR ROC AUPR ROC
E
m
ot
io
n

LLAMA-7B-RANDOM 0.407 0.423 0.426 0.448 0.501 0.598 0.607 0.688 0.667 0.625 0.579
LLAMA-7B-CLASS 0.411 0.562 0.423 0.657 0.538 0.697 0.653 0.745 0.696 0.691 0.601
LLAMA-13B-RANDOM 0.501 0.597 0.613 0.584 0.503 0.612 0.625 0.645 0.681 0.559 0.585
LLAMA-13B-CLASS 0.533 0.641 0.578 0.593 0.554 0.652 0.701 0.622 0.686 0.526 0.599
LLAMA-70B-RANDOM 0.584 0.512 0.462 0.491 0.452 0.657 0.696 0.667 0.713 0.531 0.663
LLAMA-70B-CLASS 0.592 0.537 0.484 0.469 0.442 0.622 0.689 0.659 0.721 0.612 0.693

Fi
na

nc
ia
l

LLAMA-7B-RANDOM 0.379 0.821 0.532 0.728 0.438 0.715 0.624 0.731 0.672 0.669 0.582
LLAMA-7B-CLASS 0.397 0.593 0.505 0.548 0.362 0.732 0.699 0.803 0.711 0.753 0.589
LLAMA-13B-RANDOM 0.476 0.894 0.571 0.652 0.463 0.705 0.545 0.718 0.512 0.729 0.573
LLAMA-13B-CLASS 0.477 0.752 0.594 0.692 0.531 0.694 0.543 0.765 0.610 0.758 0.592
LLAMA-70B-RANDOM 0.530 0.816 0.509 0.754 0.493 0.679 0.688 0.779 0.754 0.734 0.642
LLAMA-70B-CLASS 0.537 0.668 0.469 0.623 0.439 0.774 0.649 0.893 0.804 0.739 0.659

SS
T-
2

LLAMA-7B-RANDOM 0.856 0.149 0.636 0.135 0.587 0.244 0.593 0.286 0.683 0.205 0.702
LLAMA-7B-CLASS 0.897 0.230 0.666 0.196 0.579 0.253 0.577 0.248 0.701 0.302 0.673
LLAMA-13B-RANDOM 0.866 0.268 0.472 0.204 0.467 0.355 0.712 0.314 0.677 0.326 0.816
LLAMA-13B-CLASS 0.928 0.178 0.425 0.113 0.439 0.343 0.631 0.397 0.836 0.367 0.639
LLAMA-70B-RANDOM 0.932 0.091 0.597 0.137 0.475 0.258 0.565 0.318 0.764 0.298 0.571
LLAMA-70B-CLASS 0.938 0.132 0.552 0.185 0.531 0.312 0.679 0.331 0.851 0.362 0.697

C
O
L
A

LLAMA-7B-RANDOM 0.599 0.388 0.557 0.329 0.443 0.358 0.502 0.416 0.562 0.377 0.517
LLAMA-7B-CLASS 0.639 0.392 0.523 0.381 0.478 0.425 0.526 0.473 0.587 0.401 0.506
LLAMA-13B-RANDOM 0.652 0.389 0.498 0.287 0.512 0.433 0.562 0.469 0.572 0.488 0.565
LLAMA-13B-CLASS 0.649 0.412 0.418 0.342 0.517 0.426 0.548 0.456 0.568 0.523 0.641
LLAMA-70B-RANDOM 0.826 0.481 0.599 0.312 0.471 0.372 0.625 0.317 0.716 0.329 0.676
LLAMA-70B-CLASS 0.852 0.357 0.612 0.397 0.588 0.397 0.613 0.389 0.727 0.425 0.682

A
G
_N

ew
s

LLAMA-7B-RANDOM 0.646 0.238 0.472 0.265 0.463 0.312 0.612 0.448 0.634 0.361 0.537
LLAMA-7B-CLASS 0.679 0.267 0.505 0.372 0.523 0.378 0.562 0.384 0.627 0.326 0.538
LLAMA-13B-RANDOM 0.685 0.365 0.517 0.364 0.522 0.374 0.548 0.395 0.648 0.378 0.552
LLAMA-13B-CLASS 0.685 0.378 0.528 0.359 0.413 0.411 0.566 0.429 0.654 0.401 0.569
LLAMA-70B-RANDOM 0.792 0.311 0.478 0.316 0.498 0.401 0.552 0.309 0.635 0.319 0.543
LLAMA-70B-CLASS 0.838 0.302 0.511 0.271 0.528 0.354 0.532 0.274 0.662 0.283 0.571

Table 1: The performance comparison on the misclassification rate based on the uncertainty score from each
approach. For each dataset, correct predictions are labeled as 0 and incorrect ones are labeled as 1. We show the
AUPR and ROC (the higher the better) based on the uncertainty score and misclassification rate with two types of
demonstration selection strategy: RANDOM and CLASS as well as three LLAMA model sizes: 7B, 13B, and 70B.

generally yields higher AUPR and ROC scores
across datasets, which proves it is more effective
than random demonstration sampling. Class sam-
pling ensures that each class is represented in the
sample and reduces sampling bias, which is cru-
cial in scenarios where the dataset might be im-
balanced or where certain classes are underrepre-
sented. 2) Increasing Model Size Enhances Perfor-
mance: Larger models (moving from 7B to 70B)
tend to have better performance in terms of AUPR
and ROC. Specifically, there’s a general trend of
increasing AUPR and ROC scores as model size
increases from 7B to 13B to 70B for all compar-
ison methods. Some datasets and metrics do not
strictly follow this trend. For instance, in the EMO-

TION dataset, the 70B model sometimes shows a
slight decrease in performance compared to the
13B model. The inconsistencies in performance
improvement with larger models, especially for
EU, hint at the complexity of uncertainty assess-
ment in different contexts and datasets. 3. Treating
all tokens equally can be harmful in uncertainty
quantification: both Likelihood and Entropy Un-
certainty treat all tokens equally. However, some
tokens carry greater relevance and representative-
ness than others, owing to the phenomenon of “lin-
guistic redundancy”. However, most uncertainty
estimation methods treat all tokens with equal im-
portance when estimating uncertainty, disregarding
these inherent generative inequalities.
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0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ROC_EU (AUC = 0.68)
ROC_AU (AUC = 0.55)

(c) ROC by OPT-13B
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(d) ROC by LLAMA-2-13B
Figure 4: The performance of misclassification rate using two backbone LLMs: OPT-13B and LLAMA-2-13B on
EMOTION dataset. (a) and (b) demonstrate the precision-recall curves (x-axis is the recall and y-axis is the precision)
for OPT-13B and LLAMA-2-13B; (c) and (d) demonstrate the ROC curve (x-axis is the false positive rate and
y-axis is the true positive rate) for OPT-13B and LLAMA-2-13B, respectively.

4.3 Generalization Capability

In this work, we also show how our method per-
forms when applied to different LLMs. We com-
pare the performance of misclassification rate when
using OPT-13B and LLAMA-2-13B. We com-
pute the precision-recall (PR) curve and ROC
curve using two backbone LLMs on the EMOTION

dataset, and the results are shown in Figure 4.
As shown in Figure 4, our method exhibits con-

sistent trends across different LLMs. The precision-
recall curves of both uncertainties (Figure 4 (a) and
4 (b)) between the two methods are almost identi-
cal, and the model’s capability between two LLMs
is also reflected in the PR curves of EU. Further-
more, by comparing Figure 4 (c) and 4 (d), the ROC
curves of both LLMs show a similar pattern, with
the AUC scores not deviating significantly. Specifi-
cally, both OPT-13B and LLAMA-2-13B exhibit
the same Area Under ROC (AUROC) curve= 0.68
for AU. Since LLAMA-2-13B is a more powerful
LLM than OPT-13B, our method can quantify that
EU of LLAMA-2-13B (AUROC = 0.59) is better
than OPT-13B (AUROC = 0.55). This finding
further supports our method maintains its perfor-
mance irrespective of the underlying model and its
robust generalization capability.

4.4 Misclassification Rate with Out of Domain
Demonstration

Out-of-domain in-context Demonstration refers to
the test instance being coupled with less relevant
or out-of-domain demonstrations, which the model
may be misled and not handle the test instance
reliably. In this work, we analyze the misclassi-
fication rate of out-of-domain Demonstration in
the EMOTION dataset (six-class sentiment analysis
task) by providing LLMs with relevant demonstra-
tions (sampled from Finance Phrasebank which
is a three-class sentiment analysis task) and com-
plete out-of-domain demonstrations (sampled from

COLA which is a binary linguistic acceptability
task). We conduct the task with two demonstration
selection strategies, and the results are provided in
Table 2.

LLaMA-13B-Random LLaMA-13B-Class

EU AU EU AU

Original
Demo

0.681 0.585 0.686 0.599

Relevant
Demo

0.688
(+1.0%)

0.541
(−7.5%)

0.671
(−2.2%)

0.524
(−12.5%)

OOD
Demo

0.671
(−1.4%)

0.501
(−13.3%)

0.673
(−1.8%)

0.497
(−17.0%)

Table 2: Comparison of AUROC in misclassificatin rate
on EMOTION dataset, where “Original Demo” indicates
we sample demonstrations from its original training set,
“Relevant Demo” indicates we sample demonstrations
from Finance Phrasebank Dataset (a relevant sentiment
analysis task, and “OOD Demo” indicates we sample
demonstrations from an irrelevant dataset: COLA.

As shown in the table, changes in the perfor-
mance of the EU are relatively minor under all con-
ditions, suggesting that the model is more stable or
less sensitive to the changes in demonstration data
within this metric. In contrast, the AU shows more
significant fluctuations, which implies that the AU
is more sensitive to the quality and relevance of
demonstration data. When relevant demonstrations
from the Finance Phrasebank sentiment analysis
dataset are used, there’s a slight improvement or a
minor decrease in EU, but a notable decrease in AU.
This suggests that even relevant but not identical
data can confuse the model, especially for the AU.
With out-of-domain demonstrations from COLA,
the model’s performance drops more significantly,
with the AU metric showing a dramatic decrease of
up to 17.0%, which indicates that the model strug-
gles significantly when the demonstrations are not
relevant to the task it’s being tested on.
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Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

Relevant
Demo

0.702 0.644 0.742 0.935 0.657 0.682

OOD
Demo

0.698 0.712 0.784 0.941 0.773 0.607

Table 3: Out-of-domain demonstration detection con-
ducted with LLAMA-2-13B on EMOTION Dataset.

4.5 Out-of-domain Demonstration Detection

Out-of-domain (OOD) demonstration refers to cou-
pling a test instance with less relevant or OOD
demonstrations, potentially leading the model to
be misled and handle the test instance unreli-
ably. In this study, we investigate whether uncer-
tainty scores can effectively distinguish between
in-domain and OOD demonstrations. In our label-
ing scheme, in-domain demonstrations are labeled
as 0, while OOD demonstrations are labeled as
1. AUPR and ROC analyses are performed based
on the labels and uncertainty scores, with results
summarized in Table 3. Specifically, we conduct
experiments on the EMOTION dataset, involving
two scenarios: in-domain demonstrations (sam-
pled from its training set) and relevant demonstra-
tions (sampled from Finance Phrasebank, a three-
class sentiment analysis task). Additionally, we
compare in-domain demonstrations with complete
OOD demonstrations (sampled from COLA, a bi-
nary linguistic acceptability task).
As shown in Table 3, compared to the state-of-

the-art Semantic Uncertainty and the AU, the EU
demonstrates the best indicator to detect both less
relevant and OOD demonstrations. Intuitively, the
model’s predictions would be impacted by irrele-
vant and OOD demonstrations and exhibit large
variance. AU is less effective than EU in detect-
ing OOD demonstrations since the demonstrations
already have large inherent variability. Semantic
Uncertainty instead cannot really distinguish what
is the root cause of the predictive uncertainty.

4.6 Semantic Out-of-distribution Detection

Semantic out-of-distribution (SOOD) detection
refers to distinguishing test samples with seman-
tic shifts from the given demonstrations and the
prompt. In this study, we mask out a few classes
and ask LLMs to classify test samples into the rest
of the classes. The method is expected to return
a higher uncertainty score of SOOD test samples.
Specifically, we mask two classes 1: sadness and 2:
anger out of six classes from the EMOTION dataset

Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

7B 0.477 0.532 0.548 0.658 0.461 0.570
13B 0.417 0.468 0.525 0.592 0.414 0.437

Table 4: Semantic out-of-distribution detection using
LLAMA-2 7B and 13B on EMOTION Dataset.
and ask LLM to categorize a given test sample only
into the rest four classes. The SOOD samples are
labeled as 1 and in-distribution samples are labeled
as 0. Results of AUPR and ROC are recorded in
Table 4 in terms of different model sizes.

As shown in the table, EU still performs the best
as a better indicator to recognize SOOD samples
across different model sizes. SOOD samples are
semantically different from the provided demon-
strations, and the task description also masks out
the correct class of these SOOD samples, lead-
ing to higher uncertainty in the model’s predic-
tions. Given the inappropriate task description and
demonstrations, AU may not necessarily perform
better in the presence of SOOD samples.

5 Conclusion

We provide a novel approach to decompose the pre-
dictive uncertainty of LLMs into its aleatoric and
epistemic perspectives from the Bayesian perspec-
tive. We also design novel approximation methods
to quantify different uncertainties based on the de-
composition. Extensive experiments are conducted
to verify the effectiveness and better performance
of the proposed method than others. We believe
this research stands as a significant stride toward
harnessing the full potential of LLMs while being
acutely aware of their performance boundaries. For
future works, we plan to extend our method to other
forms of data (Chen et al., 2022) and tasks (Zhang
et al., 2024) to quantify the uncertainty.

Limitations

The proposed work aims at quantifying predictive
uncertainty and decomposing the value into its
aleatoric and epistemic components. While we can
achieve the best result compared to other methods,
the proposed framework may only be applied in nat-
ural language understanding tasks (e.g., multiple-
choice QA, text classification, linguistics accept-
ability, etc.). The proposed uncertainty estimation
algorithm may have limited usage in quantifying
uncertainties of generation tasks since we cannot
tell which part of the generated sequence is seman-
tically important.
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A Appendix

A.1 Variance-based Decomposition
Alternatively, we can use the variance as a measure
of uncertainty. Let σ2(·) compute the variance of
a probability distribution, and the total uncertainty
present in Eq. (1) is then σ2(yT |x1:T ). This quan-
tity can then be decomposed using the law of total
variance:

σ2(yT |x1:T ) =σ2
q(Θ) (E[yT |x1:T ,Θ]) (4)

+ Eq(Θ)

[
σ2(yT |x1:T ,Θ)

]
.

where E[yT |x1:T ,Θ] and σ2(yT |x1:T ,Θ) are
mean and variance of yT given p (yT |x1:T ,Θ).
σ2
q(Θ) (E[yT |x1:T ,Θ]) represents the variance of

E[yT |x1:T ,Θ] when Θ ∼ q(Θ), which indicates
the epistemic uncertainty since it ignores the contri-
bution of z. In contrast, Eq(Θ)

[
σ2(yT |x1:T ,Θ)

]
in

Eq. (4) represents the aleatoric uncertainty since it
denotes the average value of σ2(yT |x1:T ,Θ) with
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Θ ∼ p(Θ) and ingores the contribution of Θ to
yT . Note that variance-based uncertainty decom-
position does not involve the probability of the
generated tokens, which is applicable to black-box
LLMs (e.g., GPT models).

Variance Approximation. In practice, when we
are dealing with black-box LLMs (e.g., Chat-
GPT), there are multiple hyperparameters (e.g.,
temperature and top_p) allowing to return
different responses. Specifically, [y1

T , . . . ,y
L
T ] can

be obtained through querying the LLM with differ-
ent demonstrations [x1

1:T−1, . . . ,x
L
1:T−1] L times.

The different set of parameter configurations are
denoted as [Θ1, . . . ,ΘM ]. The E[yT |x1:T ,Θ] can
then be calculated as the expected model output
given the input data and the model parameters Θ.
Calculate the variance of this expectation with re-
spect to a set of model configurations over all sets
of demonstrations gives the epistemic uncertainty.
The variance σ2(yT ) can also be obtained given
a set of few-shot demonstrations over all model
parameters. Finally, average this variance over the
certain model configuration to obtain the aleatoric
uncertainty.

A.2 Dataset Description

Sentiment Analysis. 1) EMOTION (Saravia et al.,
2018) contains 2, 000 test cases, where LLMs are
asked to classify a given sentence with six cate-
gories: sadness, joy, love, anger, fear, surprise.
2) Financial Phrasebank (Financial) (Malo et al.,
2014) contains 850 test cases, where LLMs are
asked to classify a given financial news with three
categories: negative, neutral, positive. 3) Stanford
Sentiment Treebank v2 (SST2) (Socher et al., 2013)
consists of 872 sentences from movie reviews and
human annotations of their sentiment, where the
language model is asked to predict the sentiment
from two classes: positive and negative.
Linguistic Acceptability. 1) The Corpus of Lin-
guistic Acceptability (COLA) (Warstadt et al.,
2019) is about English acceptability judgments
drawn from books and journal articles on linguistic
theory. Each example is a sequence of words an-
notated with whether it is a grammatical English
sentence, and there are 1, 040 test cases in total.
Topic Classification. TC aims at categorizing the
given sentence into predefined topics. We adopt
AG_News (Zhang et al., 2015) is a dataset that
collects more than 1 million news articles, where
LLMs are asked to classify a given news into four

categories: World, Sports, Business, and Sci/Tech.
There are 1, 160 test cases in total.

A.3 Experiment Setup

We conduct experiments primarily on LLAMA-
2-7B-CHAT-HF, LLAMA-2-13B-CHAT-HF, and
LLAMA-2-70B-CHAT-HF, where the model
weights are downloaded from the website1. Since
we cannot actually “sample” model weights as
Bayesian Neural Networks, in order to let LLMs
return different outputs, we leverage Beam Search
since it considers multiple best options based on
beam width using conditional probability, which
is better than the sub-optimal Greedy search. The
beam search is conducted with the beam size 10
and the max number of new tokens is set to be
16 uniformly across all datasets. We choose a
different number of demonstrations (details are
recorded in Table 5) to allow the LLM to achieve
the best performance on each dataset, and we
sample demonstrations four times uniformly across
all datasets.

Random Class

Emotion 6 1 per class
Financial 6 2 per class
SST2 4 2 per class
COLA 2 1 per class
AG_News 4 1 per class

Table 5: Number of demonstrations selected in each
dataset.

A.4 Prompt Template

In this work, we uniformly apply the following
prompt template for all datasets. Take the EMO-
TION dataset as an example, we summarize the
prompt in Table 6. Note that all datasets use the
same template, small modifications are made on
the actual label information and different demon-
stration numbers of different datasets.

A.5 Case Study

Table 7 demonstrates the actual changes in AU
and EU when presenting LLMs with different sizes
and different demonstrations. Given the test query
is: I had stated to her the reason I feel so fearful
is that I feel unsafe with the ground truth label
is (4: fear), which is a sentence with a negative

1https://ai.meta.com/resources/models-and-
libraries/llama-downloads/
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System Prompt ### Below is an instruction that describes a task. Clearly follow the instruction and write a short
response to answer it.

Task Description
### Instruction: Classify the sentiment in the following text based on the six categories:
[0: Sadness; 1: Joy, 2: Love; 3: Anger; 4: Fear, 5: Surprise]. Provide the information in a
structured format WITHOUT additional comments, I just want the numerical label for each text.

Demonstrations

### Here are some examples:
Example 1: Sentence: {i didnt feel humiliated} Category: {0: Sadness}
Example 2: Sentence: {im grabbing a minute to post i feel greedy wrong} Category: {3: anger}
Example 3: Sentence: {i have the feeling she was amused and delighted} Category: {1: joy}
Example 4: Sentence: {i feel more superior dead chicken or grieving child} Category: {1: joy}
Example 5: Sentence: {i get giddy over feeling elegant in a pencil skirt} Category: {1: joy}
...

Test Query ### Test
Sentence: {} Category:

Table 6: Prompt Template consists of four parts: 1) System Prompt aims at providing a basic hint of the task; 2) Task
Description provides some details of the task, e.g., if it is a sentiment analysis task or how many labels are there; 3)
Few-shot Demonstrations are leveraged to give LLMs some basic formats of how the returned responses can be
constructed; and 4) Test Query is the final test query that we want LLMs to classify/categorize, and the LLM is only
expected to return an exact answer to solve the given question.

feeling. For LLAMA-2-7B, by presenting LLMs
with more diverse demonstrations (containing both
positive and negative sentences), the results would
be more diverse between different beam search
returned sequences, leading to a relatively higher
AU than EU. For LLAMA-2-70B with a larger
parameter space and model capability, the EU and
AU are significantly reduced, which indicates the
model is more confident in the generated output
and the variation of data may not influence much
to the prediction.
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Testing Query:
I had stated to her the reason I feel so fearful is because I feel unsafe (4: fear)

Extracted
Predictions

EU AU

LLaMA-2-7B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

0, 0, 0, 1, 3
4, 3, 4, 4, 4

0.171 0.372

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 1, 3, 4
4, 4, 4, 5, 4

0.163 0.189

LLaMA-2-70B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

4, 3, 4, 3, 4
4, 4, 2, 4, 4

0.012 0.079

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 4, 4, 4
4, 4, 4, 4, 4

0.004 0.009

Table 7: Case study on the actual EU and AU decomposed from the predictive uncertainty
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