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ABSTRACT
Time series domain adaptation stands as a pivotal and intricate

challenge with diverse applications, including but not limited to

human activity recognition, sleep stage classification, and machine

fault diagnosis. Despite the numerous domain adaptation tech-

niques proposed to tackle this complex problem, they primarily

focus on domain adaptation from a single source domain. Yet, it is

more crucial to investigate domain adaptation from multiple do-

mains due to the potential for greater improvements. To address

this, three important challenges need to be overcome: 1). The lack

of exploration to utilize domain-specific information for domain

adaptation, 2). The difficulty to learn domain-specific information

that changes over time, and 3). The difficulty to evaluate learned

domain-specific information. In order to tackle these challenges

simultaneously, in this paper, we introduce PrOmpt-based domaiN

Discrimination (POND), the first framework to utilize prompts for

time series domain adaptation. Specifically, to address Challenge

1, we extend the idea of prompt tuning to time series analysis and

learn prompts to capture common and domain-specific information

from all source domains. To handle Challenge 2, we introduce a con-

ditional module for each source domain to generate prompts from

time series input data. For Challenge 3, we propose two criteria to

select good prompts, which are used to choose the most suitable

source domain for domain adaptation. The efficacy and robustness

of our proposed POND model are extensively validated through

experiments across 50 scenarios encompassing four datasets. Ex-

perimental results demonstrate that our proposed POND model

outperforms all state-of-the-art comparison methods by up to 66%

on the F1-score.
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1 INTRODUCTION
Due to the prevalence of time series sensor data, time series analysis

has found applications in various real-world scenarios, including

human activity recognition [1], sleep stage classification [48], and

machine fault diagnosis [18, 38, 39]. In these applications, time

series data are measured under different subjects, operating con-

ditions, or sensor configurations (i.e., domains). In other words,

time series analysis should be conducted across different domains.

Unfortunately, the labels of time series data are difficult to collect

due to the expensive costs of the labeling process [42]. To mitigate

labeling costs, researchers aim to leverage labeled data from some

domains (i.e., source domains) to infer labels for unlabeled data

in other domains (i.e., target domains) [40], which is defined as a

time series domain adaptation problem. For example, the goal of

the transponder fault diagnosis problem is to detect the working

statuses of transponders (i.e., normal or abnormal) based on fiber-

optic signals. In this problem, the model is trained under certain

working modes (e.g., single mode) using labeled time series data,

and then this trained model is applied to other working modes (e.g.,
multimode).

However, the time series domain adaptation problem is highly

challenging due to complex dynamic time series patterns, distri-

bution shift (i.e., different distributions of inputs among different

domains), and possible label shift (i.e., different distributions of
labels among different domains) [2, 5, 12]. These challenges have

been extensively investigated by researchers, leading to the pro-

posal of various methods to address the domain gap, such as kernel

matching [22], context information alignment [17], and temporal-

spectral fusion [45]. Most existing methods, however, primarily

focus on domain adaptation from a single source domain. Yet, it

is more crucial to investigate it from multiple sources. This is be-

cause the more source domains are utilized, the greater potential

improvements it can achieve. For instance, the collection of labeled
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Figure 1: Pipeline of our proposed POND model: Step 1 pre-
trains the proposed POND model; Step 2 learns prompts of
all source domains and the target domain; Step 3 utilizes
learned prompts to select the most similar source domain to
the target domain for domain adaptation.

signal data from more modes facilitates a better understanding of

transponder statuses. Despite the importance of the multi-source

domain adaptation problem, it is rarely explored in previous lit-

erature and requires attention and extensive investigations from

researchers.

In order to effectively handle the multi-source time series do-

main adaptation problem, three important challenges need to be

overcome: 1. The lack of exploration to utilize domain-specific
information for domain adaptation. Existing domain adaptation

methods primarily focus on learning a common feature extractor

to encode time series inputs from different source domains into

domain-invariant representations, and then apply this feature ex-

tractor to the target domain [15, 20, 23, 27, 42]. While this strategy

has its rationale, it often overlooks domain-specific information (i.e.,
information unique to a specific time series domain), such as global

trends, local trends, and temporal patterns. Such domain-specific

information is valuable to evaluate which source domains are more

suitable for adaptation to the target domain. 2. The difficulty to
learn domain-specific information that changes over time.
While it is important to capture domain-specific information for

better domain adaptation, such information can be dynamically

changing, which is extremely difficult to capture. In the example of

the transponder fault diagnosis problem, different domains generate

different distributions of fiber-optic signals, which are important

domain-specific information to capture. However, such distribu-

tions can be shifted drastically when the transponder suddenly suf-

fers from a failure. 3. The difficulty to evaluate learned domain-
specific information. Not only is learning domain-specific in-

formation difficult, but it is also challenging to evaluate learned

domain-specific information. In other words, it is unclear whether

learned domain-specific information accurately reflects the true

one. This ambiguity arises because domain-specific information is

often associated with unique but inexplicable underlying patterns.

Unlike images and languages with human-recognizable features,

such time series patterns are difficult for humans to understand

[24]. Consequently, it becomes challenging, if not impossible, for

humans to evaluate whether learned domain-specific information

matches such time series patterns.

In order to tackle these three challenges simultaneously, we

propose PrOmpt-based domaiN Discrimination (POND), the first

framework to utilize prompts for time series domain adaptation to

our knowledge. Its pipeline is shown in Figure 1, which consists

of three steps: model pertaining, prompt tuning, and prompt adap-

tation. Specifically, to address Challenge 1, we extend the idea of

prompt tuning to time series analysis and learn prompts to capture

common and domain-specific information. To handle Challenge

2, we introduce a conditional module for each source domain to

generate prompts from time series input data. For Challenge 3,

we propose two criteria to choose good prompts, which are used

to select the most suitable source domain for domain adaptation

(i.e., prompt adaptation). Our contributions can be summarized as

follows:

• Propose a flexible prompt generator to learn domain-
specific information.We extend the idea of prompt tun-

ing to time series analysis to capture information specific

to source domains. However, traditional prompts have lim-

ited flexibility in learning domain-specific information that

evolves over time. To address this limitation, we introduce a

conditional module that generates prompts parameterized

by a neural network to capture domain-specific information.

Theoretical analysis also demonstrates the superiority of our

proposed prompt generator over traditional prompt tuning.

• Develop two criteria for selecting good prompts. We

propose two criteria, fidelity and distinction, to ensure that

prompts accurately capture domain-specific information

from all source domains. Fidelity is achieved by maximiz-

ing the mutual information between prompts and labels,

while distinction is achieved by minimizing the mutual in-

formation between prompts from different source domains.

Theoretical guarantees establish that our generated prompts

maintain fidelity and introduce new information.

• Present an efficient algorithm with a robust architec-
ture. We introduce a simple yet effective optimization algo-

rithm based on meta-learning to efficiently learn the objec-

tive. Additionally, we leverage the Mixture of Experts (MoE)

technique to enhance the robustness of our proposed POND

model.

• Conduct comprehensive experiments onmultiple bench-
mark datasets. Extensive experiments across 50 scenarios

on four benchmark datasets demonstrate the effectiveness

and robustness of our proposed POND model. Experimental

results indicate that our proposed POND model outperforms

all state-of-the-art comparison methods by up to 66% on the

F1-score.

2 RELATED WORK
Previous research related to this study can be categorized into two

main areas: time series domain adaptation and Large Language

Models (LLMs) for time series.

Time Series Domain Adaptation:Works in this domain can

be classified into Unsupervised Domain Adaptation (UDA) and su-

pervised methods.

UDA is a common approach, particularly beneficial as it does

not rely on labels in the target domain. For example, Liu and Xue

introduced the Adversarial Spectral Kernel Matching (AdvSKM) ap-

proach, employing a specialized hybrid spectral kernel network to

redefine the Maximum Mean Discrepancy (MMD) metric [22]. Lai

et al. aligned context information between different time series do-

mains using a Markov decision process formulation and employed

deep reinforcement learning for anomaly detection [17]. He et al.

addressed feature and label shifts between the source and target

domains using temporal and frequency features [12]. Other notable
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approaches include autoregressive models [30], sparse associative

structure alignment [4], variational methods [20, 29], contrastive

learning [47], and temporal-spectral fusion [45].

In addition to UDA, other methods transfer time series knowl-

edge in a supervised manner. For instance, Jin et al. proposed an

attention-based shared module to learn common latent features,

incorporating a domain discriminator retaining domain-specific

features across multiple domains [15].Wilson et al. leveraged target-

domain label distributions to enhance model performance with

benefits from multi-source time series data [42]. However, to our

knowledge, all existing time series domain adaptation methods ne-

glect domain-specific information such as unique temporal patterns,

which could potentially be utilized for better domain adaptation.

LLMs for Time Series: Large Language Models (LLMs) have

shown excellent performance in various Natural Language Pro-

cessing (NLP) tasks such as natural language inference, question

answering, and named entity recognition [50]. Recent research has

extended LLMs to address time series problems, generally falling

into two classes: prompt tuning and fine-tuning.

In prompt tuning methods, pretrained LLMs use prompts (i.e.,
a sequence of tokens prepended to the time series input) to learn

specific downstream tasks. For example, Xue and Salim proposed

PromptCast, a novel approach that transforms numerical input

and output into prompts and frames the time series forecasting

task in a sentence-to-sentence manner [44]. Cao et al. presented

the TEMPO framework, which decomposed complex interactions

between trend, seasonal, and residual components, introducing

selection-based prompts to facilitate distribution adaptation in non-

stationary time series [6]. Jin et al. proposed the TIME-LLM frame-

work, reprogramming the input time series with text prototypes

before feeding it into a frozen LLM to align the two modalities,

with Prompt-as-Prefix (PaP) introduced to enrich the input con-

text and guide the transformation of the reprogrammed input [13].

LLMTime highlighted the efficacy of LLMs as zero-shot learners

by encoding numbers into texts as prompts and sampling possible

extrapolations as prompt completions [11]. Sun et al. proposed the

TEST model, training an encoder to embed time series tokens with

contrastive learning and aligning text prototypes with time series,

utilizing prompts to adapt LLMs to different time series tasks [36].

In contrast, fine-tuning is the other type of method to adapt

LLMs to time series, adjusting some components while keeping

others frozen. For example, Zhou et al. presented the OFA frame-

work, where only the embedding and normalization layers of LLMs

were fine-tuned, while self-attention and feed-forward layers re-

mained frozen [51]. Chang et al. proposed the Llm4ts framework,

fine-tuning in two stages: first, supervised fine-tuning to orient

the LLM towards time series data, followed by task-specific down-

stream fine-tuning [7]. For more information, please refer to the

recent survey paper by Jin et al. [14]. While these methods transfer

knowledge from LLMs to the time series domain, they do not ad-

dress the time series domain adaptation problem, where knowledge

from the source time series domain, rather than text, is transferred

to the target domain.

3 PROBLEM SETUP
In this section, we mathematically formulate the multi-source time

series domain adaptation problem. Important notations are shown

Table 1: Important notations and Descriptions.

Notations Descriptions

𝑆𝑖 The 𝑖-th source domain

𝑇 Target domain

𝐶 Class set

(𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) The 𝑗-th time series pair for 𝑆𝑖

(𝑋 (𝑇 )
𝑗
, 𝑌
(𝑇 )
𝑗
) The 𝑗-th time series pair for𝑇

𝑌 (𝑆𝑖 ) , 𝑌 (𝑇 ) Label sets for 𝑆𝑖 and𝑇

𝑃 Common prompt

Δ𝑃 (𝑆𝑖 ) Domain-level prompt for 𝑆𝑖

Δ𝑃 (𝑆𝑖 )
𝑗

Instance-level prompt generated by 𝑋
(𝑆𝑖 )
𝑗

for 𝑆𝑖

in Table 1. Given 𝑀 source time series domains 𝑆𝑖 (𝑖 = 1, · · · , 𝑀)
and a target domain 𝑇 , their 𝑗-th time series inputs are denoted

as 𝑋
(𝑆𝑖 )
𝑗
∼ 𝑝 (𝑋 |𝑌 (𝑆𝑖 )

𝑗
) and 𝑋 (𝑇 )

𝑗
∼ 𝑝 (𝑋 |𝑌 (𝑇 )

𝑗
), respectively, where

𝑌
(𝑆𝑖 )
𝑗

and 𝑌
(𝑇 )
𝑗

are corresponding labels of 𝑋
(𝑆𝑖 )
𝑗

and 𝑋
(𝑇 )
𝑗

, re-

spectively. Here, 𝑋
(𝑆𝑖 )
𝑗

, 𝑋
(𝑇 )
𝑗
∈ R𝑛×𝐿 , where 𝑛 is the number of

channels and 𝐿 is the sequence length. The labels 𝑌
(𝑆𝑖 )
𝑗

, 𝑌
(𝑇 )
𝑗
∈ 𝐶 =

{𝑐1, 𝑐2, · · · , 𝑐𝐾 }, where 𝑐𝑖 (𝑖 = 1, · · · , |𝐶 |) represents a label class,

and the number of classes is |𝐶 |.𝑌 (𝑆𝑖 ) = {𝑌 (𝑆𝑖 )
𝑗
} and𝑌 (𝑇 ) = {𝑌 (𝑇 )

𝑗
}

are the label sets for the source domain 𝑆𝑖 and the target domain

𝑇 , respectively. Sets 𝑋 (𝑆𝑖 ) = {𝑋 (𝑆𝑖 )
𝑗
} and 𝑋 (𝑇 ) = {𝑋 (𝑇 )

𝑗
} represent

the input sets for the source domain 𝑆𝑖 and the target domain 𝑇 ,

respectively. We assume that the labeled time series of all source

domains 𝑆𝑖 (𝑖 = 1, · · · , 𝑀) are abundant, but the labeled time series

are limited in the target domain 𝑇 . Then the multi-source time

series domain adaptation problem is formulated as follows:

Problem Formulation: Given the time series input sets 𝑋 (𝑆𝑖 )

and label sets 𝑌 (𝑆𝑖 ) (𝑖 = 1, 2, . . . , 𝑀) of𝑀 source domains, and the

time series input set 𝑋 (𝑇 ) of the target domain 𝑇 , the goal of the

problem is to predict the label set 𝑌 (𝑇 ) by learning the mapping 𝐹 :

𝐹 : 𝑋
(𝑇 )
𝑖
→ 𝑌

(𝑇 )
𝑖

Our problem formulation is very flexible: the time series input

can be either univariate (i.e., 𝑁 = 1) or multivariate (i.e., 𝑁 > 1);

the time series domain adaptation can be from a single source (i.e.,
𝑀 = 1) or multiple sources (i.e.,𝑀 > 1); the classification problem

can be either binary (i.e., 𝐾 = 2) or multi-class (i.e., 𝐾 > 2).

4 PROMPT-BASED DOMAIN
DISCRIMINATION

In this section, we present our POND model to address the multi-

source time series domain adaptation problem.

4.1 The Flexible Prompt Generator
The goal of this section is to explore methods for learning infor-

mation that changes over time from different source domains for

domain adaptation (i.e., tackling Challenges 1 and 2). Most existing

papers propose various strategies to extract domain-invariant rep-

resentations from all source domains by making different domains

indistinguishable [15, 20, 27, 42, 49]. However, this idea may discard

domain-specific information from multiple source domains, which
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indicates which source domain is most similar to the target do-

main. To address this, a natural solution is to directly learn domain-

specific information from the labeled time series pair (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
).

This motivates us to utilize prompt tuning to learn domain-specific

information, which was first introduced by the NLP community

and demonstrated impressive success in many NLP tasks [3, 19, 21].

Compared with other domain adaptation techniques, prompt tun-

ing has three advantages: firstly, prompts are adjusted via gradi-

ents by labeled data from multiple source domains, which offer

domain-specific information; secondly, prompt tuning leverages

small amounts of labeled data effectively for adaptation, which is

suitable for the target domain with limited labeled data [19]; thirdly,

prompts can be utilized as a heuristic to select the most similar

source domain to the target domain for adaptation.

The prompt, which is extended from NLP to time series, is de-

fined as a learnable vector that prepends to the time series input to

learn domain-specific information by the labeled pair (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
).

Mathematically, let 𝑃 (𝑆𝑖 ) ∈ R𝑛×𝑚 be the prompt of the source do-

main 𝑆𝑖 , where𝑚 is the prompt length. Then, for the 𝑗-th time series

input𝑋
(𝑆𝑖 )
𝑗

, any time series model takes [𝑃 (𝑆𝑖 ) , 𝑋 (𝑆𝑖 )
𝑗
] (i.e., the con-

catenation of 𝑃 (𝑆𝑖 ) and 𝑋 (𝑆𝑖 )
𝑗

) as its model input. We decompose

𝑃 (𝑆𝑖 ) into two components:

𝑃 (𝑆𝑖 ) = 𝑃 + Δ𝑃 (𝑆𝑖 )

where 𝑃 ∈ R𝑛×𝑚 is a common prompt to learn the common char-

acteristics of all source domains, which can also be directly applied

to the target domain 𝑇 , and Δ𝑃 (𝑆𝑖 ) ∈ R𝑛×𝑚 is a prompt to learn

domain-specific information (i.e., information unique to the source

domain 𝑆𝑖 ), which will be utilized to select the most similar source

domain to the target domain 𝑇 .

While the domain-specific prompt Δ𝑃 (𝑆𝑖 ) is potentially effec-

tive to learn domain-specific information about the source domain

𝑆𝑖 (i.e., address Challenge 1), it cannot directly address Challenge

2. This is because Δ𝑃 (𝑆𝑖 ) is time-independent and has little free-

dom to capture time-dependent domain-specific information (e.g.,
distribution shifts of fiber-optic signals). To tackle this, instead of

using a fixed prompt, we learn such domain-specific information by

prompts generated from the time series input. This is because the

time series input usually contains rich time-dependent information

(e.g., time series distributions and trends). Specifically, we introduce

a conditional module 𝑔 (𝑆𝑖 ) , parameterized by a neural network, to

generate instance-level prompts based on time series instances:

Δ𝑃
(𝑆𝑖 )
𝑗

= 𝑔 (𝑆𝑖 ) (𝑋 (𝑆𝑖 )
𝑗

; 𝜁 ) ∈ R𝑚×𝑛

where Δ𝑃
(𝑆𝑖 )
𝑗

is the instance-level prompt generated by the time

series input 𝑋
(𝑆𝑖 )
𝑗

and a random variable 𝜁 , and the domain-level

prompt Δ𝑃 (𝑆𝑖 ) is the aggregation of all instance-level prompts

Δ𝑃
(𝑆𝑖 )
𝑗

(e.g., Δ𝑃 (𝑆𝑖 ) = 1

|𝑆𝑖 |
∑ |𝑆𝑖 |
𝑗=1

Δ𝑃
(𝑆𝑖 )
𝑗

). For any time series input

𝑋
(𝑆𝑖 )
𝑗

, its corresponding prompt is formulated as 𝑃 + Δ𝑃 (𝑆𝑖 )
𝑗

.

Our proposed prompt generator 𝑔 (𝑆𝑖 ) conditionally generates

instance-level prompts for specific time series inputs, which intu-

itively has more freedom of expression to learn domain-specific

information than the traditional prompt tuning. More theoretical

Figure 2: Illustration of two criteria: high fidelity and high
distinction. Fidelity and distinction are represented as areas
of 𝐴 + 𝐵 and 𝐶, respectively.

investigations are provided to illustrate the power of the common

prompt 𝑃 and the prompt generator 𝑔 (𝑆𝑖 ) in Section 4.4.

4.2 Two Important Criteria for Good Prompts
In the previous section, we extended prompt tuning to capture

information on specific time series domains. While prompts are

easy to recognize in computer vision and natural language fields,

the learned prompts of time series data are not recognizable to

humans, making it hard, if not impossible, to evaluate whether

prompts are good enough to learn information for time series data.

For example, a hard prompt consists of natural language that clearly

describes the task at hand, explicitly asks the model for some result

or action, and makes it easy to understand why the prompt elicited

such behavior from the model [19]. In contrast, the learned prompts

of specific time series domains are visualized as extra time segments,

which are difficult to understand by humans. Moreover, there is a

lack of exploration on what constitutes a good prompt that captures

domain-specific information without human-engineering priors.

From our perspective, ideal prompts to capture domain-specific

information should maintain high fidelity and high distinction, as

illustrated in Figure 2: high fidelity suggests large overlaps between

the learned domain-specific prompts and label information (i.e.,
large 𝐴 + 𝐵 in Figure 2), and high distinction implies small overlaps

among domain-specific prompts of different source domains (i.e.,
small 𝐶 in Figure 2). They are introduced in details as follows:

High Fidelity.One important criterion for the prompt generator

𝑔 (𝑆𝑖 ) is fidelity (i.e., the generated prompt Δ𝑃
(𝑆𝑖 )
𝑗

preserves the

domain-specific information of the source domain 𝑆𝑖 ). Motivated

by the theory of information bottleneck [37], high fidelity is defined

as the large mutual information between Δ𝑃
(𝑆𝑖 )
𝑗

and 𝑌
(𝑆𝑖 )
𝑗

, which

should be maximized:

max

𝑀∑︁
𝑖=1

|𝑆𝑖 |∑︁
𝑗=1

𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
), (1)

where𝑀𝐼 (•, •) denotes the operator of mutual information. Based

on the definition of mutual information, we have:

𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) = 𝐻 (𝑌 (𝑆𝑖 )

𝑗
) − 𝐻 (𝑌 (𝑆𝑖 )

𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
),

where𝐻 (𝑌 (𝑆𝑖 )
𝑗
) represents the entropy of𝑌 (𝑆𝑖 )

𝑗
and𝐻 (𝑌 (𝑆𝑖 )

𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
)

is the entropy of 𝑌
(𝑆𝑖 )
𝑗

conditioned on Δ𝑃
(𝑆𝑖 )
𝑗

. Since 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) is

constant, Equation (1) is equivalent to minimizing the conditional
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entropy 𝐻 (𝑌 (𝑆𝑖 )
𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
), which can be expressed as:

min

𝑀∑︁
𝑖=1

|𝑆𝑖 |∑︁
𝑗=1

𝐻 (𝑌 (𝑆𝑖 )
𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
).

Due to the computational complexity of the conditional entropy

𝐻 (𝑌 (𝑆𝑖 )
𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
), it can be approximated by the cross-entropy be-

tween 𝑓 ( [Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑋
(𝑆𝑖 )
𝑗
]) and𝑌 (𝑆𝑖 )

𝑗
[24, 46], where 𝑓 ( [Δ𝑃 (𝑆𝑖 )

𝑗
, 𝑋
(𝑆𝑖 )
𝑗
])

is the prediction obtained by concatenating Δ𝑃
(𝑆𝑖 )
𝑗

and 𝑋
(𝑆𝑖 )
𝑗

as an

input to our proposed POND model, which will be illustrated in

Section 4.4. The fidelity loss is then expressed as:

ℓ𝐹 =

𝑀∑︁
𝑖=1

|𝑆𝑖 |∑︁
𝑗=1

𝑌
(𝑆𝑖 )
𝑗

log 𝑓 ( [Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑋
(𝑆𝑖 )
𝑗
]) . (2)

Now, we theoretically show that the learned prompt Δ𝑃
(𝑆𝑖 )
𝑗

, which

minimizes the fidelity loss (i.e., Equation (2)), possesses the follow-

ing properties:

Property 1 (Preserving Fidelity). If Δ𝑃
(𝑆𝑖 )
𝑗

minimizes Equation

(2), the mutual information between Δ𝑃
(𝑆𝑖 )
𝑗

and the label 𝑌
(𝑆𝑖 )
𝑗

is

equivalent to that between the time series input 𝑋
(𝑆𝑖 )
𝑗

and the label

𝑌
(𝑆𝑖 )
𝑗

, i.e.,𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) = 𝑀𝐼 (𝑋 (𝑆𝑖 )

𝑗
, 𝑌
(𝑆𝑖 )
𝑗
).

Property 2 (Adding New Information). By minimizing Equation

(2), the generated prompt Δ𝑃
(𝑆𝑖 )
𝑗

contains new information com-

pared to the time series input 𝑋
(𝑆𝑖 )
𝑗

, i.e., 𝐻 (Δ𝑃 (𝑆𝑖 )
𝑗
) ≥ 𝐻 (𝑋 (𝑆𝑖 )

𝑗
).

Detailed proofs are provided in Section A.1 in the Appendix.

These properties demonstrate that minimizing Equation (2) ensures

that the generated prompts will not decrease fidelity and may add

new information to the time series input.

High Distinction. In addition to high fidelity, it is essential

that the generated domain-specific prompt Δ𝑃 (𝑆𝑖 ) distinguishes
the unique information of the source domain 𝑆𝑖 from other source

domains. This unique information not only aids in understanding

the differences betweenmultiple time series source domains but also

provides valuable insights for selecting suitable sources for domain

adaptation. To achieve this, from the perspective of information

theory, we define the objective to maintain high distinction as

minimizing the mutual information of domain-specific prompts

between different source domains, which should be minimized as

follows:

min

∑︁
𝑖1≠𝑖2

𝑀𝐼 (Δ𝑃 (𝑆𝑖1 ) ,Δ𝑃 (𝑆𝑖2 ) ), (3)

where Δ𝑃 (𝑆𝑖1 ) and Δ𝑃 (𝑆𝑖2 ) represent the domain-specific prompts

of any two source domains 𝑆𝑖1 and 𝑆𝑖2 . Equation (3) is computa-

tionally infeasible to minimize directly, but it can be achieved by

minimizing the leave-one-out upper bound [24, 28]. Other mutual

information upper bounds, such as the contrastive log-ratio bound

[8], can also conveniently be incorporated into our framework.

Therefore, the objective to encourage high distinction is formulated

as minimizing the leave-one-out bound (i.e., discrimination loss):

ℓ𝐷 =
∑︁
𝑖1≠𝑖2

E log
exp(sim(Δ𝑃 (𝑆𝑖1 ) ,Δ𝑃 (𝑆𝑖2 ) ))∑

𝑖≠𝑖1,𝑖≠𝑖2 exp(sim(Δ𝑃
(𝑆𝑖

1
) ,Δ𝑃 (𝑆𝑖 ) ))

, (4)

where sim(Δ𝑃 (𝑆𝑖1 ) ,Δ𝑃 (𝑆𝑖2 ) ) = 𝑡𝑟 ((Δ𝑃 (𝑆𝑖1 ) )𝑇Δ𝑃 (𝑆𝑖2 ) ) denotes the
inner product of the two domain-specific prompts Δ𝑃 (𝑆𝑖1 ) and
Δ𝑃 (𝑆𝑖2 ) , and 𝑡𝑟 (𝐴) represents the trace of any matrix 𝐴.

4.3 The Learning Objective
After introducing two criteria for selecting good prompts, we present

our learning objective in this section.

Combining the fidelity loss ℓ𝐹 in Equation (2) and the discrimi-

nation loss ℓ𝐷 in Equation (4), our learning objective is expressed

as follows:

min𝑃,𝑔 (𝑆𝑖 ) 𝐺 (𝑃,𝑔
(𝑆𝑖 ) ) = ℓ𝑅 + 𝜆1ℓ𝐷 + 𝜆2ℓ𝐹 , (5)

where ℓ𝑅 = 1

𝑀

∑𝑀
𝑖=1

1

|𝑆𝑖 |
∑ |𝑆𝑖 |
𝑗=1

𝑅(𝑓 ( [𝑃 + Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑋
(𝑆𝑖 )
𝑗
]), 𝑌 (𝑆𝑖 )

𝑗
) is

the training loss that measures the performance of prompt tuning.

Here, 𝑅(·, ·) is the loss function, and [𝑃 + Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑋
(𝑆𝑖 )
𝑗
] is the con-

catenation of the overall prompt 𝑃 + Δ𝑃 (𝑆𝑖 )
𝑗

and the time series

input 𝑋
(𝑆𝑖 )
𝑗

. Two tuning parameters 𝜆1, 𝜆2 > 0 control the trade-off

among the training loss, the fidelity loss, and the discrimination

loss.

To optimize Equation (5), we need to enumerate all source do-

mains, which may be inefficient and unscalable [24]. To address

this, we propose a simple yet effective learning algorithm based on

the classic Reptile meta-learning framework [25], which randomly

picks a source domain each time and conducts standard steps of

gradient descent without the need for calculating second deriva-

tives. The learning process is outlined in Algorithm 1. Specifically,

Line 3 updates the prompt generator 𝑔 (𝑆𝜏 ) , and Lines 4-5 update the
common prompt 𝑃 through extrapolation. Here, the local learning

rate 𝜂 performs the gradient descent step, and the global learning

rate 𝛿 performs the extrapolation step.

Algorithm 1 Reptile-based meta-learning for Prompt Tuning

Require: (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) , the global learning rate 𝛿 ∈ (0, 1], the local

learning rate 𝜂 > 0, the number of global steps 𝑁 .

Ensure: the common prompt 𝑃 , the prompt generator 𝑔 (𝑆𝑖 ) .
1: for 𝑖 = 1 to 𝑁 do
2: Randomly pick a source time series domain 𝑆𝜏 .

3: 𝑔 (𝑆𝜏 ) ← 𝑔 (𝑆𝜏 ) − 𝜂∇
𝑔 (𝑆𝜏 )𝐺 .

4: 𝑄 ← 𝑃 − 𝜂∇𝑃 ℓ𝑇 .
5: 𝑃 ← 𝑃 + 𝛿 (𝑄 − 𝑃 ) .
6: end for

After learning the common prompt 𝑃 and the prompt generator

𝑔 (𝑆𝑖 ) , they can be utilized for target domain transfer. Specifically,

the prompt generator 𝑔 (𝑇 ) is optimized by the labeled time series

pairs (𝑋 (𝑇 )
𝑖

, 𝑌
(𝑇 )
𝑖
) in the target domain 𝑇 as follows:

min𝑔 (𝑇 )
1

|𝑇 |

|𝑇 |∑︁
𝑖=1

𝑅(𝑓 ( [𝑃 + Δ𝑃 (𝑇 )
𝑖

, 𝑋
(𝑇 )
𝑖
]), 𝑌 (𝑇 )

𝑖
), (6)
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where Δ𝑃
(𝑇 )
𝑖

= 𝑔 (𝑇 ) (𝑋 (𝑇 )
𝑖
) ∈ R𝑚×𝑛 is the instance-level domain-

specific prompt of the time series input 𝑋
(𝑇 )
𝑖

, and the domain-

level domain-specific prompt of the target domain 𝑇 is Δ𝑃 (𝑇 ) =
1

|𝑇 |
∑ |𝑇 |
𝑗=1

Δ𝑃
(𝑇 )
𝑗

. However, 𝑔 (𝑇 ) may not be reliable for prediction

due to the limited labeled data involved. To handle this, Δ𝑃 (𝑇 ) is
utilized as a heuristic to find the most similar source domain by the

simple nearest neighbor rule (i.e., prompt adaptation):

𝑆𝑖 = argmax𝑆𝑖 sim(Δ𝑃
(𝑆𝑖 ) ,Δ𝑃 (𝑇 ) ), (7)

where sim(Δ𝑃 (𝑆𝑖 ) ,Δ𝑃 (𝑇 ) ) is a similarity function (e.g., cosine sim-

ilarity) between the domain-specific prompts Δ𝑃 (𝑆𝑖 ) and Δ𝑃 (𝑇 ) .
Then, we utilize the prompt generator 𝑔 (𝑆𝑖 ) for prediction in the

target domain 𝑇 : 𝑓 ( [𝑃 + 𝑔 (𝑆𝑖 ) (𝑋 (𝑇 )
𝑗
), 𝑋 (𝑇 )

𝑗
]).

4.4 Discussion
In this section, we discuss the model architecture and implementa-

tion, the theoretical aspects of our proposed POND model, and its

comparison with previous papers.

4.4.1 Model Architecture and Implementation. For the model ar-

chitecture of our proposed POND model, we employ the popular

Mixture of Expert (MoE) technique to enhance performance [9]:

each expert makes an independent prediction, and the router is re-

sponsible for learning probability distributions over all predictions.

The overall output of our POND model is a linear combination of

all predictions.

For the architecture of a single expert, the time series input is

fed into “a patching layer” (i.e., splitting a timeseries input into

subseries-level patches [26]), a projection layer, a position embed-

ding layer, a transformer layer, and a linear head sequentially.

The model implementation is illustrated in the following steps:

(1) Model Pretraining: All experts of our POND model are

pretrained by combining some labeled data from all source

domains (e.g. 60%), and the router, which aggregates outputs

from all experts to make final predictions, is pretrained using

the same labeled data.

(2) Prompt Tuning: Given the pretrained POND model, other

labeled time series data from all source domains (e.g. 40%)

are utilized to learn the common prompt 𝑃 and the prompt

generator 𝑔 (𝑆𝑖 ) by Equation (5) (i.e., Algorithm 1), and the

prompt generator of the target domain 𝑔 (𝑇 ) is optimized by

Equation (6).

(3) Prompt Adaptation: The most similar source domain is

selected by Equation (7), whose prompt generator will be

used in the target domain for prediction.

4.4.2 Theoretical Analysis. We demonstrate the commonality and

differences of our proposed POND model compared with tradi-

tional prompt-tuning from the theoretical perspective. Specifically,

we prove that our proposed POND model shares the universal ap-

proximation with prompt tuning, and then we illustrate that our

proposed POND model overcomes the limitation of prompt tun-

ing. Without loss of generality, we assume that only one expert

model is available, and 𝜁 is removed (i.e., Δ𝑃 (𝑆𝑖 )
𝑗

= 𝑔 (𝑆𝑖 ) (𝑋 (𝑆𝑖 )
𝑗

; 𝜁 ) =
𝑔 (𝑆𝑖 ) (𝑋 (𝑆𝑖 )

𝑗
)). Proofs of all theorems below are shown in Section

A.2 in the Appendix due to space limitations.

One recent paper theoretically proves the universality of prompt

tuning [41], and it can be extended to our proposed POND model.

Specifically, for any L-Lipschitz function F : [0, 1]𝑛×𝐿 → [0, 1] |𝐶 |
under norm𝑞, it satisfies the following:∀𝑥1, 𝑥2 ∈ [0, 1]𝑛×𝐿, ∥F (𝑥1)−
F (𝑥2)∥𝑞 ≤ L∥𝑥1 −𝑥2∥𝑞 . The approximation error under 𝑞 norm is

defined as 𝑑𝑞 (F1, F2) = (
∫
∥F1 (𝑥) − F2 (𝑥)∥𝑞𝑞𝑑𝑥)

1

𝑞
. Then Theorem

1 states that our proposed POND model can approximate any time

series classifier, which are trained from specific source domains.

Theorem 1 (Universality of our POND Model). Let 1 ≤ 𝑞 < ∞
and 𝜀 > 0, and F (𝑆𝑖 ) : [0, 1]𝑛×𝐿 → [0, 1] |𝐶 | is a time series classifer,
which is trained from source domain 𝑆𝑖 and is L-Lipschitz, there exist
a prompt length𝑚 and a POND model 𝑓 such that for any F (𝑆𝑖 ) ,
we can find a domain-specific prompt generator 𝑔 (𝑆𝑖 ) : [0, 1]𝑛×𝐿 →
R𝑛×𝑚 from source domain 𝑆𝑖 with 𝑑𝑞 (𝑓 ( [𝑃 +𝑔 (𝑆𝑖 ) (·), ·]), F (𝑆𝑖 ) ) < 𝜀
for all 𝑆𝑖 (𝑖 = 1, 2, · · ·𝑀).

Not only our proposed POND model shares the universality, it

also overcomes the limitations of prompt tuning. The following

theorem states that while prompt tuning may not be flexible enough

to learn some labeled time series pairs, our proposed POND model

can overcome this limitation.

Theorem 2 (Flexibility of of our POND Model). Consider two
labeled time series pairs (𝑋 (𝑆1 )

1
= [X1,X0], 𝑌 (𝑆1 )

1
) and (𝑋 (𝑆2 )

1
=

[X2,X0], 𝑌 (𝑆2 )
1
) from two source domains 𝑆1 and 𝑆2, respectively,

where 𝑌 (𝑆1 )
1

≠ 𝑌
(𝑆1 )
2

. For some proposed POND model 𝑓 :
(a).[The limitation of prompt tuning]There exists no prompt 𝑃 such
that 𝑓 ( [𝑃,𝑋 (𝑆𝑖 )

1
]) = 𝑌 (𝑆𝑖 )

1
(𝑖 = 1, 2).

(b).[Our PONDmodel handles this limitation] There exist the common
prompt 𝑃 and the prompt generators 𝑔 (𝑆𝑖 ) (𝑖 = 1, 2) such that
𝑓 ( [𝑃 + 𝑔 (𝑆𝑖 ) (𝑋 (𝑆𝑖 )

1
), 𝑋 (𝑆𝑖 )

1
]) = 𝑌 (𝑆𝑖 )

1
(𝑖 = 1, 2).

4.4.3 Comparison and Relation with Previous Methods. Finally, we
compare our proposed POND model with existing multi-source do-

main adaptation approaches, which have the following drawbacks:

(1). Neglection of domain-specific information. The common goal

of existing methods is to make different domains indistinguishable

[49]. However, domain-specific information may be eliminated,

which is important to select which source is the most similar to the

target for adaptation. Our proposed POND model can address this

by prompt tuning: the value of a prompt is updated by the gradient

based on labeled data, which provides domain-specific information.

(2). Inability to capture time-dependent information. Most exist-

ing methods are designed to address domain adaptation problems in

the fields of computer vision and NLP whose information is static,

and they are not able to capture time-dependent information such

as trends and distribution shifts of the time series. Our proposed

POND model can address this by our proposed novel conditional

module: it is learned to generate a prompt for each time series input,

which is flexible to learn time-dependent information.

we show that several classic methods are special cases of our

proposed POND model.

1. Generalization of Prompt Tuning. Let 𝜆1 = 𝜆2 = 0, and

𝑔 (𝑆𝑖 ) = 0, then our proposed POND model is reduced to the classic

prompt tuning [19].
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Table 2: Statistics of four datasets.

Dataset # Domain # Channel # Class Seq Len # Train # Test

HAR 30 9 6 128 2300 990

WISDM 36 3 6 128 1350 720

HHAR 9 3 6 128 12716 5218

SSC 20 1 5 3000 14280 6130

2. Generalization of Information Bottleneck. Let 𝜆1 = 0 and

𝑃 = 0, then our proposed POND is reduced to the famous informa-

tion bottleneck [37].

3. Generalization of IDPG. Let 𝜆1 = 𝜆2 = 0, and 𝑃 = 0. Then our

proposed POND model is reduced to Instance-Dependent Prompt

Generation (IDPG) [43].

5 EXPERIMENTS
In this section, we employ four benchmark datasets to evaluate

our proposed POND model in comparison with six state-of-the-

art methods. All experiments were conducted on a Linux server

equipped with an Intel(R) Xeon(R) Silver 4214 CPU and an NVIDIA

GPU running version 510. More experiments are included in the

supplementary materials
1
due to space limitations.

5.1 Experimental Settings
BenchmarkDataset:We evaluated the performance of all methods

on four benchmark datasets, HAR, WISDM, HHAR and SSC [31].

The statistics of all benchmark datasets are shown in Table 2, which

are introduced as follows:

1. HAR [1]: The Human Activity Recognition (HAR) dataset

incorporates data collected from three sensors—accelerometer, gy-

roscope, and body sensors—deployed on 30 subjects (i.e., domains)

engaged in six distinct activities.

2. WISDM [16]: The WIreless Sensor Data Mining (WISDM)

dataset, using accelerometer sensors, involves 36 subjects partic-

ipating in activities similar to the HAR dataset, with additional

challenges due to class distribution imbalances among different

subjects.

3. HHAR [34]: The Heterogeneity Human Activity Recognition

(HHAR) dataset was collected from 9 subjects using sensor readings

from smartphones and smartwatches.

4. SSC [10]: The Sleep Stage Classification (SSC) problem aims

to categorize electroencephalography (EEG) signals into five stages.

We utilize the Sleep-EDF dataset [10], including EEG recordings

from 20 healthy subjects.

Comparison Methods: We compared our proposed POND

method with six state-of-the-art time series domain adaptation

approaches: Raincoat [12], CoDATs [42], Deep Coral [35], MMDA

[32], DIRT-T [33] and DSAN [52]. All comparison methods are

introduced as follows:

1. Raincoat [12]: it is an unsupervised domain adaptation method

addressing both feature and label shifts.

2. CoDATs [42]: it is the first method to handle multi-source

domain adaptation through adversarial training with weak super-

vision.

3. Deep Coral [35]: it minimizes domain shift by aligning second-

order statistics of source and target distributions.

1
Link of supplementary materials: https://github.com/xianggebenben/

Junxiang_Wang.github.io/blob/master/supplementary_material/KDD2024/supp.pdf.

4. MMDA [32]: it integrates MaximumMean Discrepancy (MMD)

and CORrelation ALignment (CORAL) along with conditional en-

tropy minimization to address domain shift.

5. DIRT-T [33]: it utilizes adversarial training, conditional en-

tropy, and a teacher model to align source and target domains.

6. DSAN [52]: it minimizes the discrepancy between source and

target domains via a Local Maximum Mean Discrepancy (LMMD)

that aligns relevant subdomain distributions.

Metrics: Two performance metrics were employed: Macro-F1

score and Accuracy. Macro-F1 is the unweighted mean of per-class

F1 scores, treating all classes equally. Accuracy is the ratio of accu-

rately predicted samples to all samples.

Hyperparameter Settings: We adapted the setting of super-

vised domain adaptation, where ten samples in the target domain

were used for domain transfer. All source-target scenarios were

selected randomly to ensure the fairness of the performance eval-

uation. Single-source domain adaptation methods (e.g. Raincoat)

were trained by combining all source domains. For the training

set of all time series source domains, 60% was used for pretraining

our POND model, 20% for prompt tuning, and 20% for validation

sets. The batch size was set to 16. The number of global steps 𝑁 ,

global learning rate 𝛿 and the local learning rate 𝜂 were set to 50,

0.01 and 0.001, respectively. The number of experts was set to three.

The prompt generator is a two-layer Multi-Layer Perceptron (MLP)

with Tanh activation. For the transformer model, the numbers of

encoder layers, decoder layers, and heads in the multi-head atten-

tion were set to 2, 1, and 4, respectively. The dimensions of the

multi-head attention and the feed-forward layer were set to 16

and 128, respectively. The hyperparameters 𝜆1 and 𝜆2 were chosen

based on performance on the validation set. 𝜆1 and 𝜆2, along with

other hyperparameters such as the number of epochs, are provided

in Table 3. All methods were averaged by ten times.

Table 3: Hyperparameters of all datasets.

Dataset #Epochs Prompt Length 𝜆1 𝜆2

HAR 50 5 1 1

WISDM 200 3 1 1

HHAR 200 5 1 1

SSC 100 10 0.1 0.1

5.2 Experimental Results
Performance Evaluation: We conducted a comprehensive per-

formance evaluation to test all methods across approximately 50

scenarios on four datasets. Figure 3 displays the F1-score and accu-

racy of all methods on these datasets. Our proposed POND method

consistently outperforms others across all four datasets. Specifi-

cally, on the HAR dataset, the F1-score of POND is approximately

0.9, only 2% lower than the top-performing comparison method,

Raincoat. The F1-score gaps on the HHAR, and SSC datasets are 5%

and 4.4%, respectively. The largest gap is observed in the WISDM

dataset, where the F1-score and accuracy of POND hover around

0.6 and 0.7, while all comparison methods score below 0.35 and 0.6,

respectively. Considering the inherent difficulty of training on the

WISDM dataset due to class imbalance, this highlights the effective-

ness of our proposed POND, especially on challenging datasets.

Among the comparison methods, Raincoat emerges as the best

overall. In terms of F1-score, Raincoat outperforms MMDA by 5%
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(a). HAR. (b). WISDM.

(c). HHAR. (d). SSC.

Figure 3: The F1-score and accuracy of all methods on four
benchmark datasets: the proposed POND outperforms com-
parison methods consistently.

on the HAR dataset and shows an 8% superiority over CoDATs

on the HHAR dataset. For accuracy, Raincoat performs 7% bet-

ter than DIRT on the HHAR dataset and surpasses Deep Coral

by 3% on the SSC dataset. CoDATs and Deep Coral also demon-

strate competitive performance, achieving around 55% accuracy on

the WISDM dataset, while DSAN lags behind at 45%. On the other

hand, MMDA, DIRT, and DSAN exhibit varying performance across

datasets. For instance, DSAN performs comparably to Raincoat on

the SSC dataset but ranks the lowest on the WISDM dataset.

Table 4 presents the performance of all methods across various

scenarios in four datasets, including the upper bound achieved by

training and testing on the target domain. The reported values

include means and standard deviations from ten implementations,

with the best results highlighted in bold. The complete performance

evaluation is available in the supplementary materials
1
. Overall,

our proposed POND model consistently outperforms all methods,

aligning with the observations in Figure 3. Notably, POND exhibits

superior performance on the challenging WISDM dataset, as indi-

cated by Figure 3. For instance, POND outperforms all comparison

methods by at least 23% when transferring from domains 0-17 to

domain 18. While POND excels overall, there are instances where

comparison methods outperform it. For example, Deep Coral per-

forms better than POND by 2% when transferring domains 1-15 to

domain 28 on the HAR dataset, and MMDAmarginally outperforms

POND when transferring domains 1-15 to domain 21 on the HAR

dataset.

In addition to superior performance, our proposed POND model

demonstrates greater stability compared to all comparison meth-

ods, as indicated by lower standard deviations. For instance, the

standard deviation of POND is 0.006 when transferring domains

0-9 to domain 17 on the SSC dataset, while the standard deviations

of all comparison methods range between 0.024 and 0.118, being at

least 3 times larger than that of POND. Importantly, POND achieves

results close to the upper bound in many scenarios, such as "HAR

1-15→ 16", "SSC 0-9→ 18", and "HHAR 0-6→ 7".

Ablation Study: Next, we demonstrate the ablation study of

the proposed POND method, whose goal is to identify whether all

components of our proposed POND model contribute to the perfor-

mance. Specifically, we explore the necessity of the MoE technique,

common prompt, and prompt generator. The challenging WISDM

(a). F1-score. (b). Accuracy.

Figure 4: The F1-score and accuracy of the proposed POND
model with different source domains: the performance grows
with the increase of source domains. (The HHAR dataset has
less than 10 domains.)

dataset was utilized to test the performance. Table 5 illustrates the

performance of different scenarios, all of which were averaged by

10 times. The first two rows show the performance with the com-

mon prompt, and the prompt generator available only, respectively.

The fourth to sixth rows demonstrate the performance without the

MoE, common prompt, and prompt generator, respectively, and

the last row shows the performance of the complete POND model.

Overall, our proposed POND model performs best when the MoE,

common prompt, and prompt generator are all available, which

suggests that all components are necessary for the outstanding

performance of our proposed POND model. For example, in the sce-

nario of “18-23→ 6”, the best performance without any component

only achieves a performance no more than 0.58, whereas that of

the complete POND model is 5% better. The gap is widened to 7%

for the scenario “0-17→ 25”.

Sensitivity Analysis: In this section, we explore how source

domains influence performance on the target domain. Figure 4 illus-

trates the relationship between performance metrics (F1-score and

accuracy) and the number of source domains, averaged over 10 im-

plementations. Generally, our proposed POND model demonstrates

improved performance with an increasing number of source do-

mains. For instance, POND achieves 50% accuracy with two source

domains for training, but this figure rises by 30%when an additional

8 source domains are included. Similarly, the F1-score of POND

increases by 20% when the number of source domains changes

from 2 to 6. However, some exceptions exist. For example, there

is a notable 25% drop in F1-score when increasing the number of

source domains from 6 to 7 on the WISDM dataset. Another in-

stance involves a 5% performance drop when increasing the source

domains from 4 to 5 on the SSC dataset.

Visualization of Discrimination Loss: Finally, we present
a visualization of the discrimination loss ℓ𝐷 for pairwise source

domains. Figure 5 illustrates the exponents of discrimination losses

for all pairs of source domains across four datasets. Both the X-axis

and Y-axis represent the indexes of source domains. Darker colors

indicate smaller discrimination losses, reflecting better domain dis-

crimination. The diagonals are left blank. Overall, our proposed

POND model effectively discriminates most source domains, as

evidenced by the predominance of dark squares. For instance, do-

mains 3-5 and domains 6-7 exhibit clear discrimination with losses

below 0.05. Similar effective discrimination is observed for domain

pairs 6 and 0 on the WISDM dataset, domain pairs 1 and 5 on the

HHAR dataset, and domains 5-7 and 0 in the SSC dataset. However,
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Table 4: F1-score on different scenarios of four datasets: the proposed POND model outperforms all comparison methods.

Scenario Raincoat CoDATs Deep_Coral MMDA DIRT DSAN POND Target Only

HAR 1-15→ 16 0.823 ± 0.094 0.767 ± 0.093 0.773 ± 0.082 0.679 ± 0.084 0.612 ± 0.135 0.738 ± 0.095 0.849 ± 0.021 0.856 ± 0.027

HAR 1-15→ 20 0.872 ± 0.142 0.932 ± 0.025 0.923 ± 0.023 0.921 ± 0.034 0.848 ± 0.101 0.929 ± 0.033 0.968 ± 0.021 0.983 ± 0.018

HAR 1-15→ 21 0.867 ± 0.141 0.903 ± 0.070 0.882 ± 0.028 0.974 ± 0.039 0.921 ± 0.090 0.909 ± 0.110 0.972 ± 0.021 1.000 ± 0.000

HAR 1-15→ 28 0.766 ± 0.107 0.775 ± 0.166 0.852 ± 0.044 0.778 ± 0.085 0.671 ± 0.175 0.783 ± 0.046 0.829 ± 0.018 0.853 ± 0.019

HAR 16-20→ 1 0.792 ± 0.072 0.744 ± 0.053 0.667 ± 0.077 0.654 ± 0.074 0.546 ± 0.060 0.698 ± 0.037 0.883 ± 0.017 0.986 ± 0.010

HAR 16-20→ 2 0.825 ± 0.048 0.821 ± 0.151 0.796 ± 0.055 0.651 ± 0.045 0.509 ± 0.050 0.652 ± 0.057 0.936 ± 0.017 0.943 ± 0.024

HAR 16-20→ 3 0.814 ± 0.028 0.746 ± 0.078 0.741 ± 0.058 0.657 ± 0.033 0.605 ± 0.056 0.565 ± 0.043 0.878 ± 0.018 0.978 ±0.013
HAR 16-20→ 4 0.679 ± 0.084 0.605 ± 0.082 0.479 ± 0.110 0.513 ± 0.058 0.336 ± 0.110 0.436 ± 0.032 0.754 ± 0.033 0.921 ± 0.018

WISDM 0-17→ 18 0.379 ± 0.061 0.384 ± 0.049 0.346 ± 0.023 0.297 ± 0.016 0.300 ± 0.041 0.287 ± 0.045 0.606 ± 0.020 0.705 ± 0.046

WISDM 0-17→ 20 0.354 ± 0.040 0.368 ± 0.039 0.376 ± 0.031 0.452 ± 0.098 0.347 ± 0.071 0.269 ± 0.064 0.570 ± 0.023 0.704 ± 0.051

WISDM 0-17→ 21 0.355 ± 0.057 0.310 ± 0.088 0.259 ± 0.018 0.250 ± 0.000 0.276 ± 0.055 0.245 ± 0.046 0.450 ± 0.026 0.636 ± 0.095

WISDM 0-17→ 23 0.306 ± 0.015 0.327 ± 0.075 0.318 ± 0.031 0.327 ± 0.023 0.271 ± 0.016 0.277 ± 0.044 0.482 ± 0.017 0.538 ± 0.034

WISDM 0-17→ 25 0.365 ± 0.030 0.540 ± 0.125 0.435 ± 0.043 0.436 ± 0.094 0.314 ± 0.107 0.353 ± 0.120 0.559 ± 0.050 0.672 ± 0.039

WISDM 0-17→ 28 0.399 ± 0.028 0.431 ± 0.033 0.418 ± 0.032 0.454 ± 0.064 0.304 ± 0.044 0.339 ± 0.030 0.656 ± 0.046 0.689 ± 0.048

WISDM 0-17→ 30 0.314 ± 0.020 0.305 ± 0.028 0.298 ± 0.023 0.359 ± 0.072 0.266 ± 0.035 0.246 ± 0.076 0.670 ± 0.039 0.791 ± 0.028

WISDM 18-23→ 5 0.648 ± 0.001 0.558 ± 0.129 0.534 ± 0.102 0.510 ± 0.020 0.549 ± 0.097 0.484 ± 0.055 0.652 ± 0.035 0.734 ± 0.095

WISDM 18-23→ 6 0.544 ± 0.074 0.565 ± 0.143 0.437 ± 0.078 0.543 ± 0.160 0.405 ± 0.089 0.454 ± 0.112 0.628 ± 0.033 0.872 ± 0.049

WISDM 18-23→ 7 0.588 ± 0.070 0.404 ± 0.117 0.530 ± 0.094 0.477 ± 0.060 0.518 ± 0.120 0.476 ± 0.127 0.672 ± 0.029 0.888 ± 0.035

HHAR 0-6→ 7 0.765 ± 0.142 0.652 ± 0.108 0.815 ± 0.105 0.641 ± 0.050 0.649 ± 0.005 0.730 ± 0.164 0.834 ± 0.014 0.861 ± 0.016

HHAR 5-8→ 2 0.321 ± 0.023 0.347 ± 0.082 0.309 ± 0.032 0.216 ± 0.032 0.276 ± 0.021 0.314 ± 0.095 0.352 ± 0.014 0.881 ± 0.018

SSC 0-9→ 16 0.578 ± 0.028 0.510 ± 0.044 0.537 ± 0.024 0.559 ± 0.027 0.523 ± 0.019 0.515 ± 0.044 0.568 ± 0.012 0.601 ± 0.018

SSC 0-9→ 17 0.511 ± 0.024 0.413 ± 0.118 0.452 ± 0.077 0.504 ± 0.060 0.530 ± 0.053 0.463 ± 0.081 0.559 ± 0.006 0.602 ± 0.014

SSC 0-9→ 18 0.605 ± 0.016 0.548 ± 0.037 0.544 ± 0.046 0.597 ± 0.032 0.574 ± 0.021 0.569 ± 0.046 0.604 ± 0.014 0.602 ± 0.013

SSC 0-9→ 19 0.562 ± 0.024 0.540 ± 0.052 0.531 ± 0.055 0.570 ± 0.044 0.565 ± 0.028 0.568 ± 0.080 0.570 ± 0.010 0.613 ± 0.019

SSC 10-12→ 8 0.294 ± 0.028 0.380 ± 0.066 0.379 ± 0.076 0.398 ± 0.060 0.322 ± 0.048 0.411 ± 0.046 0.470 ± 0.010 0.531 ± 0.019

Table 5: Ablation study on the WISDM dataset: all components of our proposed POND model contribute to the outstanding
performance.

MoE

Common

Prompt

Prompt

Generator
0-17→ 22 0-17→ 23 0-17→ 24 0-17→ 25 18-23→ 5 18-23→ 6 Overall

✓ 0.622±0.057 0.415±0.015 0.510±0.030 0.581±0.036 0.623±0.058 0.516±0.038 0.545±0.039
✓ 0.646±0.064 0.396±0.048 0.527±0.030 0.573±0.034 0.628±0.051 0.512±0.057 0.547±0.047

✓ ✓ 0.632±0.069 0.384±0.041 0.498±0.032 0.572±0.045 0.611±0.055 0.514±0.025 0.535±0.045
✓ ✓ 0.575±0.043 0.349±0.029 0.517±0.032 0.584±0.030 0.621±0.056 0.578±0.035 0.537±0.038
✓ ✓ 0.719±0.062 0.405±0.052 0.529±0.042 0.588±0.034 0.616±0.050 0.565±0.049 0.570±0.048
✓ ✓ ✓ 0.725±0.031 0.482±0.017 0.559±0.050 0.695±0.035 0.652±0.035 0.628±0.033 0.624±0.034

(a). HAR. (b). WISDM.

(c). HHAR. (d). SSC.

Figure 5: The visualization of the exponent of discrimination
loss: most pairs of source domains are well discriminated.

discrimination losses for some domain pairs are larger than others.

For instance, on the HAR dataset, the discrimination loss between

domains 0 and 6 is the largest, approximately 0.30, but still within

an acceptable range. It’s worth noting that domain discrimination

may not adhere to the transitive property. For example, domains

3 and 9, as well as domains 4 and 9, are well-discriminated, but

domains 3 and 4 are relatively poor-discriminated.

6 CONCLUSION
Time series domain adaptation is an important problem with wide-

ranging applications. Existing techniques primarily address single-

source domain adaptation, yet exploring adaptation from multiple

domains holds promise for greater improvements. In this paper, we

introduce POND, the first framework to utilize prompts for time

series domain adaptation. We extend prompt tuning to time series

analysis to capture common and domain-specific information from

all source domains, introduce conditionalmodules for prompt gener-

ation, and propose criteria for selecting effective prompts. Through

extensive experiments across 50 scenarios on four datasets, we

demonstrate the efficacy and robustness of POND, outperforming

all state-of-the-art methods by up to 66% on the F1-score.
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Appendix

A MATHEMATICAL PROOFS
A.1 Proofs of Properties 1 and 2
Property 1 (Preserving Fidelity). If Δ𝑃

(𝑆𝑖 )
𝑗

minimizes Equation

(2), the mutual information between Δ𝑃
(𝑆𝑖 )
𝑗

and the label 𝑌
(𝑆𝑖 )
𝑗

is

equivalent to that between the time series input 𝑋
(𝑆𝑖 )
𝑗

and the label

𝑌
(𝑆𝑖 )
𝑗

, i.e.,𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) = 𝑀𝐼 (𝑋 (𝑆𝑖 )

𝑗
, 𝑌
(𝑆𝑖 )
𝑗
).

Proof. From the definition of mutual information, we have:

𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

= 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) − 𝐻 (𝑌 (𝑆𝑖 )

𝑗
|Δ𝑃 (𝑆𝑖 )

𝑗
)

= 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) +
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𝑗
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𝑗
) log
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(𝑆𝑖 )
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)
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)
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𝑗
)+
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(𝑆𝑖 )
𝑗
)

log

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
)

.

where V(𝑋 (𝑆𝑖 )
𝑗
) is the set of generated prompts of a time series

input 𝑋
(𝑆𝑖 )
𝑗

. Because Δ𝑃
(𝑆𝑖 )
𝑗

is a function of 𝑋
(𝑆𝑖 )
𝑗

only, this means

that 𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
|𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) = 𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
|𝑋 (𝑆𝑖 )
𝑗
). Since the mapping

between𝑋
(𝑆𝑖 )
𝑗

andΔ𝑃
(𝑆𝑖 )
𝑗

is one tomany, for eachΔ𝑃
(𝑆𝑖 )
𝑗
∈ V(𝑋 (𝑆𝑖 )

𝑗
),

we have𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) = 𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
, 𝑋
(𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
), and 𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
) =

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
|𝑋 (𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
). Therefore, we have

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
)

=
𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
, 𝑋
(𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
|𝑋 (𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
)

=
𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
|𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
|𝑋 (𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
)

=
𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
|𝑋 (𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
|𝑋 (𝑆𝑖 )
𝑗
)𝑝 (𝑋 (𝑆𝑖 )

𝑗
)

=
𝑝 (𝑋 (𝑆𝑖 )

𝑗
, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (𝑋 (𝑆𝑖 )
𝑗
)

.

𝑀𝐼 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

= 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) +

∑︁
𝑋
(𝑆𝑖 )
𝑗

,𝑌
(𝑆𝑖 )
𝑗

∑︁
Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

log

𝑝 (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (𝑋 (𝑆𝑖 )
𝑗
)

= 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) +

∑︁
𝑋
(𝑆𝑖 )
𝑗

,𝑌
(𝑆𝑖 )
𝑗

[
∑︁

Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)]

log

𝑝 (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (𝑋 (𝑆𝑖 )
𝑗
)

= 𝐻 (𝑌 (𝑆𝑖 )
𝑗
) +

∑︁
𝑋
(𝑆𝑖 )
𝑗

,𝑌
(𝑆𝑖 )
𝑗

𝑝 (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) log

𝑝 (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
)

𝑝 (𝑋 (𝑆𝑖 )
𝑗
)

= 𝑀𝐼 (𝑋 (𝑆𝑖 )
𝑗

, 𝑌
(𝑆𝑖 )
𝑗
) .

□

Property 2 (Adding New Information). By minimizing Equation

(2), the generated prompt Δ𝑃
(𝑆𝑖 )
𝑗

contains new information com-

paring to the time series input 𝑋
(𝑆𝑖 )
𝑗

, i.e., 𝐻 (Δ𝑃 (𝑆𝑖 )
𝑗
) ≥ 𝐻 (𝑋 (𝑆𝑖 )

𝑗
).

Proof. Without loss of generality, we assume that a finite num-

ber of prompts are generated for each time series input, and each

prompt is generated independently. Then we have 𝑝 (𝑋 (𝑆𝑖 )
𝑗
) =∑

Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
) 𝑝 (Δ𝑃

(𝑆𝑖 )
𝑗
). It follows that

𝐻 (𝑋 (𝑆𝑖 )
𝑗
)

= −
∑︁
𝑋
(𝑆𝑖 )
𝑗

𝑝 (𝑋 (𝑆𝑖 )
𝑗
) log(𝑝 (𝑋 (𝑆𝑖 )

𝑗
))

= −
∑︁
𝑋
(𝑆𝑖 )
𝑗

[
∑︁

Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
)] log( [

∑︁
Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
)])

= −
∑︁
𝑋
(𝑆𝑖 )
𝑗

∑︁
Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
) log( [

∑︁
Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
)])

≤ −
∑︁
𝑋
(𝑆𝑖 )
𝑗

∑︁
Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
) log(𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
)) (Jensen’s Inequality)

= −
∑︁

Δ𝑃
(𝑆𝑖 )
𝑗
∈V(𝑋 (𝑆𝑖 )

𝑗
)

𝑝 (Δ𝑃 (𝑆𝑖 )
𝑗
) log(𝑝 (Δ𝑃 (𝑆𝑖 )

𝑗
)) = 𝐻 (Δ𝑃 (𝑆𝑖 )

𝑗
)

□

A.2 Proofs of Theorems 1 and 2
To prove Theorems 1 and 2, we follow the similar procedure of

[41]. To make proofs self-contained, we first mathematically for-

mulate our simplified POND model 𝑓 . Without loss of generality,

we assume that 𝑓 has only one expert transformer network, and it

consists of an attention layer and an MLP layer. The attention layer

and the transformer layer are defined as follows [41]:
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Definition 1 (Attention Layer). The h-head attention layer be-

tween a time-stamp x and a time series X is defined as follows:

𝐴𝑡𝑡 (x,X) =
h∑︁
𝑖=1

W𝑖
𝑜W

𝑖
𝑣X𝜎 ((W𝑖

𝑘
X)𝑇W𝑖

𝑞x)

where W𝑖
𝑞 , W𝑖

𝑘
, W𝑖

𝑣 and W𝑖
𝑜 (𝑖 = 1, · · · ,h) are parameterized

weights, and 𝜎 is a softmax operator. The normalizing factor of

1√
d𝑘𝑞

is subsumed in the weight matricesW𝑖
𝑘
for notational sim-

plicity.

We then define the cross-attention between two time series

X ∈ R𝑛×𝐿 and X
′ ∈ R𝑛×𝐿 :

𝐴𝑡𝑡 (X,X
′
) = [𝐴𝑡𝑡 (X:,1,X

′
), 𝐴𝑡𝑡 (X:,2,X

′
), · · · , 𝐴𝑡𝑡 (X:,𝐿,X

′
)]

where W:, 𝑗 is the 𝑗-th column of W.

Definition 2 (Simplified POND Model). The simplified POND

model 𝑓 is shown as follows:

𝑀𝐿𝑃 (X) = [W2𝑅𝐸𝐿𝑈 (W1X:,1) + b1 + b2 + X:,1, · · · ,
W2𝑅𝐸𝐿𝑈 (W1X:,𝑛) + b1 + b2 + X:,𝑛]

𝑓 (X) = 𝑀𝐿𝑃 (𝐴𝑡𝑡 (X,X) + X).
where 𝑅𝐸𝐿𝑈 (·) is the ReLU activation function.

Theorem 1 (Universality of our POND Model). Let 1 ≤ 𝑞 < ∞
and 𝜀 > 0, and F (𝑆𝑖 ) : [0, 1]𝑛×𝐿 → [0, 1] |𝐶 | is a time series classifer,
which is trained from source domain 𝑆𝑖 and is L-Lipschitz, there exist
a prompt length𝑚 and a POND model 𝑓 such that for any F (𝑆𝑖 ) ,
we can find a domain-specific prompt generator 𝑔 (𝑆𝑖 ) : [0, 1]𝑛×𝐿 →
R𝑛×𝑚 from source domain 𝑆𝑖 with 𝑑𝑞 (𝑓 ( [𝑃 +𝑔 (𝑆𝑖 ) (·), ·]), F (𝑆𝑖 ) ) < 𝜀
for all 𝑆𝑖 (𝑖 = 1, 2, · · ·𝑀).

Proof. Let the common prompt 𝑃 = 0, the prompt generator

𝑔 (𝑆𝑖 ) be constant 𝑃 (𝑆𝑖 ) , and 𝑓 be a transformer with two heads of

size one and four hidden units, then this theorem can be directly

derived from Theorem 1 in [41]. □

To prove Theorem 2, we need two assumptions on our simplified

POND model 𝑓 , which are shown as follows:

Assumption 1 (Assumption on theAttention Layer). 𝐴𝑡𝑡 (𝑋 (𝑆1 )
1

, 𝑋
(𝑆1 )
1
)+

𝑋
(𝑆1 )
1

≠ 𝐴𝑡𝑡 (𝑋 (𝑆2 )
1

, 𝑋
(𝑆2 )
1
) +𝑋 (𝑆2 )

1
in Theorem 2, andW𝑜 ,W𝑘 ,W𝑞 ,

and W𝑣 are full rank.

Assumption 2 (Assumption on the MLP Layer). 𝑌 (𝑆𝑖 )
1
(𝑖 = 1, 2) in

Theorem 2 are in the range set of𝑀𝐿𝑃 . Moreover, the number of

channels𝑛 ≥ 2+𝑑𝑖𝑚((𝑀𝐿𝑃−1 (𝑌 (𝑆1 )
1
)−X1)∪(𝑀𝐿𝑃−1 (𝑌 (𝑆2 )

1
)−X2))

in Theorem 2. Here 𝑑𝑖𝑚(S) measures the dimension of the subspace

spanned by vectors in a set S and𝑀𝐿𝑃−1 (y) = {x : 𝑀𝐿𝑃 (x) = y}.
Aside from two assumptions, the following Lemma is also useful

to prove Theorem 2.

Lemma1. (Lemma 7 in [41]) Given c ∈ R𝑛×𝐿 and full-rank attention
weights W𝑞 , W𝑘 , and W𝑣 , there are x0 almost everywhere for which
there exists x1 ∈ R𝑛×𝐿 such that 𝐴𝑡𝑡 (x0, [x0, x1]) | |c.
Theorem 2 (Flexibility of of our POND Model). Consider two
labeled time series pairs (𝑋 (𝑆1 )

1
= [X1,X0], 𝑌 (𝑆1 )

1
) and (𝑋 (𝑆2 )

1
=

[X2,X0], 𝑌 (𝑆2 )
1
) from two source domains 𝑆1 and 𝑆2, respectively,

where 𝑌 (𝑆1 )
1

≠ 𝑌
(𝑆1 )
2

. For some proposed POND model 𝑓 :
(a).[The limitation of prompt tuning]There exists no prompt 𝑃 such
that 𝑓 ( [𝑃,𝑋 (𝑆𝑖 )

1
]) = 𝑌 (𝑆𝑖 )

1
(𝑖 = 1, 2).

(b).[Our PONDModel handles this limitation] There exist the common
prompt 𝑃 and the prompt generators 𝑔 (𝑆𝑖 ) (𝑖 = 1, 2) such that
𝑓 ( [𝑃 + 𝑔 (𝑆𝑖 ) (𝑋 (𝑆𝑖 )

1
), 𝑋 (𝑆𝑖 )

1
]) = 𝑌 (𝑆𝑖 )

1
(𝑖 = 1, 2).

Proof. (a). Firstly, we consider the prompt 𝑃 only (i.e., with-
out the prompt generator 𝑔 (𝑆𝑖 ) ), we pass 𝑋 (𝑆1 )

1
and 𝑋

(𝑆2 )
1

to the

attention layer to obtain:

𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆1 )
1
]) = 𝜆(𝑋 (𝑆1 )

1
,X0, [𝑃,𝑋 (𝑆1 )

1
])𝐴𝑡𝑡 (X0, 𝑋 (𝑆1 )

1
)

+ 𝜆(𝑃,X0, [𝑃,𝑋 (𝑆1 )
1
])𝐴𝑡𝑡 (X0, 𝑃) (8)

𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆2 )
1
]) = 𝜆(𝑋 (𝑆2 )

1
,X0, [𝑃,𝑋 (𝑆2 )

1
])𝐴𝑡𝑡 (X0, 𝑋 (𝑆2 )

1
)

+ 𝜆(𝑃,X0, [𝑃,𝑋 (𝑆2 )
1
])𝐴𝑡𝑡 (X0, 𝑃) (9)

where 𝜆(X,X′ ,X′′ = [X1,X2]) ∈ (0, 1) is a positive scalar defined
as:

𝜆(X1,X
′
,X
′′
) =

∑
𝑗 exp ((W𝑘X:, 𝑗 )𝑇 (W𝑞X

′ ))∑
𝑗 exp ((W𝑘X

′′
:, 𝑗
)𝑇 (W𝑞X

′ ))

Based on Equations (8) and (9), we learn that 𝐴𝑡𝑡 (X0, 𝑃) is the in-
tersection of 𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆1 )

1
]), 𝐴𝑡𝑡 (X0, 𝑋 (𝑆1 )

1
)) and

𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆2 )
1
], 𝐴𝑡𝑡 (X0, 𝑋 (𝑆2 )

1
)), where 𝐶𝑜𝑛𝑒 (a1, ·, a𝑘 ) =

{𝑥 |𝑥 =
∑𝑘
𝑖=1 𝑐𝑖a𝑖 , 𝑐𝑖 > 0(𝑖 = 1, · · · , 𝑘)} is a convex cone formed by

a𝑖 (𝑖 = 1, · · · , 𝑘). However, due to the same deduction by the proof of

Theorem 2 in [41], 𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆1 )
1
]), 𝐴𝑡𝑡 (X0, 𝑋 (𝑆1 )

1
)) and

𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃,𝑋 (𝑆2 )
1
], 𝐴𝑡𝑡 (X0, 𝑋 (𝑆2 )

1
)) have no intersection based

on Assumption 2, which contradicts the existence of 𝐴𝑡𝑡 (X0, 𝑃).
Therefore, there exists no common prompt 𝑃 such that 𝑓 ( [𝑃,𝑋 (𝑆𝑖 )

1
]) =

𝑌
(𝑆𝑖 )
1
(𝑖 = 1, 2).

(b). Secondly, we illustrate the case when both the common prompt

𝑃 and prompt generators 𝑔 (𝑆𝑖 ) are available. In this case, Equations

(8) and (9) become the following:

𝐴𝑡𝑡 (X0, [𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
), 𝑋 (𝑆1 )

1
])

= 𝜆(𝑋 (𝑆1 )
1

,X0, [𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
), 𝑋 (𝑆1 )

1
])𝐴𝑡𝑡 (X0, 𝑋 (𝑆1 )

1
)

+ 𝜆(𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
),X0, [𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )

1
), 𝑋 (𝑆1 )

1
])

𝐴𝑡𝑡 (X0, 𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
)) (10)

𝐴𝑡𝑡 (X0, [𝑃 + 𝑔 (𝑆2 ) (𝑋 (𝑆2 )
1
), 𝑋 (𝑆2 )

1
])

= 𝜆(𝑋 (𝑆2 )
1

,X0, [𝑃 + 𝑔 (𝑆2 ) (𝑋 (𝑆2 )
1
), 𝑋 (𝑆2 )

1
])𝐴𝑡𝑡 (X0, 𝑋 (𝑆2 )

1
)

+ 𝜆(𝑃 + 𝑔 (𝑆2 ) (𝑋 (𝑆2 )
1
),X0, [𝑃 + 𝑔 (𝑆2 ) (𝑋 (𝑆2 )

1
), 𝑋 (𝑆2 )

1
])

𝐴𝑡𝑡 (X0, 𝑃 + 𝑔 (𝑆2 ) (𝑋 (𝑆2 )
1
)) (11)

Obviously, the role of 𝑔 (𝑆𝑖 ) is to find 𝐴𝑡𝑡 (X0, 𝑃 + 𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
)) ∈

𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃+𝑔 (𝑆1 ) (𝑋 (𝑆1 )
1
), 𝑋 (𝑆1 )

1
]), 𝐴𝑡𝑡 (X0, 𝑋 (𝑆1 )

1
)) and𝐴𝑡𝑡 (X0, 𝑃+

𝑔 (𝑆2 ) (𝑋 (𝑆2 )
1
)) ∈ 𝐶𝑜𝑛𝑒 (𝐴𝑡𝑡 (X0, [𝑃+𝑔 (𝑆2 ) (𝑋 (𝑆2 )

1
), 𝑋 (𝑆2 )

1
]), 𝐴𝑡𝑡 (X0, 𝑋 (𝑆2 )

1
))

so that these two cones have no intersections, and therefore the

contradiction mentioned in (a) can be addressed. □
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