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A B S T R A C T

Selecting a set of initial users from a social network in order to maximize the envisaged number of influenced
users is known as influence maximization (IM). Researchers have achieved significant advancements in the
theoretical design and performance gain of several classical approaches, but these advances are almost reaching
their pinnacle. Learning-based IM approaches have emerged recently with a higher generalization to unknown
graphs than conventional methods. The development of learning-based IM methods is still constrained by
a number of fundamental hardships, including (1) solving the objective function efficiently, (2) struggling
to characterize the diverse underlying diffusion patterns, and (3) adapting the solution to different node-
centrality-constrained IM variants. To address the aforementioned issues, we design a novel framework DeepIM
for generatively characterizing the latent representation of seed sets, as well as learning the diversified
information diffusion pattern in a data-driven and end-to-end way. Subsequently, we design a novel objective
function to infer optimal seed sets under flexible node-centrality-based budget constraints. Extensive analyses
are conducted over both synthetic and real-world datasets to demonstrate the overall performance of DeepIM.
1. Introduction

In the realm of network analysis, Influence Maximization (IM)
stands as a foundational research problem. Its core objective is to
discover a set of seed nodes that can maximize the diffusion of influence
throughout a social network. IM has garnered significant attention
in recent times due to its substantial commercial implications. For
instance, consider the context of viral marketing (Chen, Wang, & Wang,
2010) for promoting a commercial product. In this scenario, a company
aims to spread the adoption of a new product through a selected group
of initial users. These users are expected to propagate information
about the product within their social circles, leading to a cascading
effect and ultimately a considerable portion of users trying the product.
Beyond viral marketing, IM holds pivotal importance in various appli-
cations including network monitoring (Wang, Fan, Li, & Tan, 2017),
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curbing misinformation (Yang, Li, & Giua, 2020), and enhancing friend
recommendations (Ye, Liu, & Lee, 2012).

IM poses a classic combinatorial optimization challenge, involving
the identification of an optimal or near-optimal seed set to maximize
influence in a network. This task is intricate due to the stochastic
nature of information propagation and the inherent complexity of the
problem. Traditional IM methods (Kempe, Kleinberg, & Tardos, 2003;
Leskovec et al., 2007; Nguyen, Thai, & Dinh, 2016; Saito, Kimura,
Ohara, & Motoda, 2012; Tang, Shi, & Xiao, 2015; Tang, Xiao, & Shi,
2014) have made remarkable strides, even achieving exact solutions
under specific diffusion models (Li, Smith, Dinh, & Thai, 2019). These
approaches usually demand an explicit information diffusion model as
input, yet real-world diffusion processes are multifaceted and cannot
be encapsulated by fixed models. With the emergence of machine and
https://doi.org/10.1016/j.neunet.2024.106649

vailable online 31 August 2024 
893-6080/Published by Elsevier Ltd. 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:tchowdh6@gmu.edu
mailto:chen.ling@emory.edu
mailto:junji.anjou@gmail.com
mailto:junxiang.wang@alumni.emory.edu
mailto:mythai@cise.ufl.edu
mailto:liang.zhao@emory.edu
https://www.tanmoychowdhury.com
https://www.lingchen0331.github.io/
https://xianggebenben.github.io/Junxiang_Wang.github.io/
https://www.cise.ufl.edu/~mythai
https://www.cs.emory.edu/~lzhao41/
https://doi.org/10.1016/j.neunet.2024.106649
https://doi.org/10.1016/j.neunet.2024.106649
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106649&domain=pdf


T. Chowdhury et al.

2
W
p
e
n
t
i
t
o
b
r
e
a
a
r
s
u
c

-
f
s
s
s
c
t
t
m
l
i
e
c
n
s
s
r
s

•

•

•

•

2

2

b

c
p
c
l
B
g
C
m
&

l
t
W
r
d
o
(
f
t
n

a
(
(
i
N
c
t
t
a

2

g
g
f
n
i
i

𝑎

H
n
a
&
2
i
s
J
Z
W
2
c
o
p

2

r
m
m
a
o
w

Neural Networks 180 (2024) 106649 
deep learning, a learning-based approach appears promising to capture
the underlying diffusion dynamics.

Despite notable progress in the field, learning-based solutions for IM
are still nascent due to several fundamental challenges. First, the effi-
cient optimization of the objective function remains a hurdle. Learning-
based methods attempt to tackle the discrete problem within a continu-
ous space, predominantly leveraging deep network representations (Ku-
mar, Mallik, Khetarpal, & Panda, 2022; Zhang, Li, Wei, Liu, & Li,
022) and deep reinforcement learning (Li et al., 2022; Tian, Mo,
ang, & Peng, 2020). Even though they could attain a competitive
erformance with traditional methods, their scalability and execution
fficiency are problematic due to (a) the need to iteratively update all
ode embeddings at each action and (b) the #P-hardness of computing
he influence spread (Lin, Chen, & Lui, 2017). Second, the automatic
dentification and modeling of actual diffusion processes pose difficul-
ies. The underlying diffusion pattern profoundly influences the spread
f information in a network. However, both traditional and learning-
ased methods lack the ability to characterize these processes without
esorting to heuristics. They typically rely on predefined diffusion mod-
ls (e.g., Linear Threshold and Independent Cascade) as inputs, which
re limited in capturing the complexity of real-world scenarios. Third,
dapting solutions to diverse node-centrality-constrained IM problems
emains a challenge. Variants of IM that involve node centrality con-
traints (such as seed node count or total degree constraints) lack a
nified approach in current learning-based methods, posing adaptivity
hallenges.
To address these challenges, we propose an innovative framework

DeepIM. Our primary contribution is to develop a novel objective
unction that allows for efficient optimization within a continuous
pace, diverging from traditional discrete approaches that often face
calability and local optima issues. This framework introduces a novel
trategy of embedding the discrete optimization domain into a larger
ontinuous space. Notably, it advocates learning the latent represen-
ation of seed sets and optimizing directly in this continuous space
o alleviate computational complexity. To jointly consider the opti-
ization with the information diffusion modeling, we introduced a
earning-based diffusion model that adapts to various real-world scenar-
os without the need for predefined models. Moreover, our framework
nhances adaptability through its ability to handle different node-
entrality constraints, which is crucial for applying IM across diverse
etwork structures and requirements. Finally, our proposed method
ignificantly reduces the computational overhead compared to existing
olutions and highlights the practical applicability of our approach in
eal-world scenarios where computational resources are a constraint. In
ummary, our contributions encompass:

Problem Formulation: We cast the learning-based IM challenge as
the embedding of the initial discrete optimization domain into a
continuous space, highlighting the challenges intrinsic to real-world
applications.
Framework Development: We propose a joint approach involving
the latent space representation of seed sets and a model that learns
graph diffusion processes in an end-to-end fashion.
Adaptivity Enhancement: Our novel constrained optimization ob-
jective leverages deep graph embeddings, facilitating optimal seed set
inference under diverse node-centrality-related constraints.
Evaluation: Through extensive experimentation on four real-world
datasets, we showcase DeepIM’s performance. It outperforms state-
of-the-art methods across various application scenarios in the pursuit
of identifying seed sets for maximal influence.

. Related work

.1. Learning-based influence maximization

Most conventional approaches to Influence Maximization (IM) can
e classified into simulation-based, proxy-based, and heuristic-based
2 
ategories. These traditional methods have achieved nearly exact or
recise solutions within specific diffusion models, demonstrating effi-
iency. It is worth noting that while there have been indications of
earning influence from cascade data in works such as (Du, Liang,
alcan, & Song, 2014; Vaswani et al., 2017), they still assumed the
uidance of a predefined model for diffusion patterns, specifically the
overage function. For a more comprehensive overview of traditional
ethods, readers can refer to recent surveys like (Banerjee, Jenamani,
Pratihar, 2020; Li, Fan, Wang, & Tan, 2018).
In contrast, learning-based approaches harness the power of deep

earning to address the limitations of traditional IM methods, primarily
heir lack of generalization capabilities. Pioneering efforts such as Ali,
ang, and Chen (2018), Lin, Lin, and Chen (2015) initially combined
einforcement learning with IM, igniting a wave of research that utilizes
eep reinforcement learning to tackle the IM challenge. Modern state-
f-the-art solutions like Chen, Yan, Guo, and Wu (2022), Li et al.
2022), Li, Xu, et al. (2019), Tian et al. (2020) adhere to a similar
ramework: learning latent embeddings for nodes or networks, treating
he current node embedding as the agent’s state to select the next seed
ode as an action, with the reward being its incremental influence gain.
Apart from reinforcement learning-based IM methods, there are

lso techniques like Kamarthi, Vijayan, Wilder, Ravindran, and Tambe
2019), Kumar et al. (2022), Panagopoulos, Malliaros, and Vazirgiannis
2020) that exclusively employ graph neural networks to encode social
nfluence into node embeddings and steer the node selection process.
evertheless, the current learning-based IM methods share a common
hallenge: their model complexity and adaptability still lag behind
raditional methods. Specifically, existing ML-based algorithms struggle
o handle diverse diffusion patterns and cannot ensure solution quality
nd model scalability as effectively as traditional methods do.

.2. Graph neural network

Graph Neural Networks (GNNs) (Wu et al., 2020) belong to a cate-
ory of deep learning techniques designed to handle data represented as
raphs. The fundamental approach of GNNs involves iteratively trans-
orming node features and aggregating information from neighboring
odes. For a GNN with 𝐾 layers, each node gathers information within
ts 𝐾-hop neighborhood. Concretely, the transformation at the 𝑘th layer
s as follows:
𝑘 = 𝑘(ℎ𝑘−1; 𝜃𝑘), ℎ𝑘 = 𝑘(𝑎𝑘; 𝜃𝑘),∀1 ≤ 𝑘 ≤ 𝐾. (1)

ere, 𝑎𝑘 represents the aggregated features, and ℎ𝑘 corresponds to the
ode features at the 𝑘th layer. The choice of aggregation function (⋅)
nd combination function (⋅) gives rise to distinct GNN models (Kipf
Welling, 2016; Veličković et al., 2017; Xu, Hu, Leskovec, & Jegelka,
018). These high-level node or graph representations find applications
n diverse tasks. GNNs have been effectively used in various domains
uch as estimating information diffusion and source localization (Ling,
iang, et al., 2023; Ling, Jiang, Wang, & Zhao, 2022; Wang, Jiang, &
hao, 2022; Xia, Li, Wu, & Li, 2021), generating complex graphs (Guo,
ang, & Zhao, 2022; Ling, Cao, & Zhao, 2023; Ling, Yang, & Zhao,
021, 2023; Wang, Guo, & Zhao, 2022), and addressing reasoning
hallenges (Chowdhury et al., 2023; Ling, Chowdhury, et al., 2022). In
ur endeavor, GNNs serve as a tool to characterize underlying diffusion
atterns and construct an end-to-end model for estimating influence.

.3. Combinatorial optimization with GNNs

Observational data is frequently required to address uncertainty in
eal-world decision-making systems. As a result, combinatorial opti-
ization (CO) issues where the objective function is unknown com-
only arise and require being refuted using actual data. Graphs are
major topic of research in the CO area due to the discrete structure
f most CO problems and the abundance of network data in the actual
orld. Because there is no unique representation in the graph; machine
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learning algorithms have extra hurdles, such as being invariant to node
permutation, expressiveness, scalability, leveraging new information,
and, most importantly, achieving data-efficient generalization. The
parameterized aggregation stage of GNNs, on the other hand, offers
representation by learning the crucial graph topologies and scaling
linearly with the number of edges and parameters. Because of its
invariance to permutations and awareness of input sparsity, GNNs’
inductive bias effectively encodes combinatorial and relational data. As
a result, GNNs have evolved into an end-to-end solution (Nowak, Villar,
Bandeira, & Bruna, 2018) or integrated component either in traditional
ptimization algorithms (Li, Chen, & Koltun, 2018) or with other ma-
chine learning algorithms (Khalil, Dai, Zhang, Dilkina, & Song, 2017).
here are a lot of applications of combinatorial optimization by GNNs
or solving NP-hard problems like satisfiability (SAT), Maximal Inde-
endent Set (MIS), Minimum Vertex Cover (MVC), and Maximal Clique
MC), Minimum Coverage Problem (MCP), and etc. For example, Li,
hen, and Koltun (2018) utilized GCN to direct tree search operations
or solving NP-hard problems like SAT, MIS, MVC, MC. Influence
aximization (IM) was first formulated as a combinatorial optimization
roblem by Kempe et al. (2003), which has inspired extensive research
nd applications in the next decade. Sahil et al. (Manchanda et al.,
019) solve IM problem on billion-size graphs with GCN assisting in
ncoding the influence of a node on the solution set. The minimum
ominating set problem (MDSP), a variant of IM problems, was solved
y the use of a hybrid algorithm that fuses a biased random key
enetic algorithm with a graph neural network (Sartori & Blum, 2022).
o produce high-quality solutions, deep Q-learning (DQN) has made
xtensive use of a variety of GNNs, including the graph convolution
etwork (GCN) (Li, Chen, & Koltun, 2018), message-passing neural
etwork (MPNN) (Barrett, Clements, Foerster, & Lvovsky, 2020), and
raph attention network (GAT) (Cappart, Moisan, Rousseau, Prémont-
chwarz, & Cire, 2021). However, utilizing GNNs can still present
ssues like over-smoothing and information squashing (Wang, Li, et al.,
022; Zhou et al., 2020), particularly in unsupervised tasks (Yang, Gu,
t al., 2020; Zhang & Zhao, 2022). We quote recent surveys (Cappart
t al., 2023; Vesselinova, Steinert, Perez-Ramirez, & Boman, 2020) as
dditional in-depth analysis sources.

. Problem formulation

Given a graph 𝐺 = {𝑉 ,𝐸}, the primary goal of Influence Maximiza-
ion (IM) is to strategically choose an optimal seed node set 𝐱 ⊆ 𝑉 in
rder to maximize the number of nodes influenced within the graph
. The effectiveness of IM is evaluated through an influence diffusion
odel, characterized by parameter 𝜃: 𝐲 = 𝑀(𝐱, 𝐺; 𝜃). In the case of an
ndependent cascade model, 𝜃 may represent the set of infection proba-
ilities associated with each node. Alternatively, if 𝑀(⋅) is GNN-based,
could encompass parameters related to aggregation and combination
unctions. We denote 𝐱 ∈ {0, 1}|𝑉 | as the vector representation of the
ource node set, where the 𝑖th element 𝑥𝑖 = 1, 𝑥𝑖 ∈ 𝐱 if 𝑣𝑖 ∈ 𝐱 and 𝑥𝑖 = 0
therwise. The output 𝑦 ∈ R+ denotes the total count of infected nodes
n the graph (Li, Fan, et al., 2018). Building upon this conceptualization
f influence spread, the IM problem is formally defined as follows:

efinition 1 (Influence Maximization). The generic IM problem requires
electing a set of 𝑘 users from 𝑉 as the seed set to maximize the
nfluence spread:

̃ = argmax
|𝐱|≤𝑘

𝑀(𝐱, 𝐺; 𝜃), (2)

here 𝐱̃ is the optimal seed node set that can produce a maximal
nfluence spread in 𝐺.

Certainly, the process of selecting 𝐱̃ is intricately tied to the nuances
f the underlying diffusion dynamics. Over time, numerous endeavors
ave emerged that employ GNNs and reinforcement learning algo-

ithms to address this challenge. Nonetheless, the potential of existing t

3 
earning-based IM frameworks is somewhat constrained, predominantly
ue to the following challenges: Firstly, a major challenge in existing
earning-based IM frameworks is the computational burden associated
ith calculating latent node embeddings for selecting highly influential
odes. These frameworks typically necessitate the iterative update of
mbeddings for each node during every action or optimization step,
egardless of their inclusion in the current 𝐱. This scalability issue be-
omes particularly pronounced when dealing with networks comprising
illions of nodes. Secondly, even though deep node and network em-
eddings, along with diverse reward functions, are employed to guide
ode selection, current frameworks remain tailored to specific diffusion
odels. For instance, they often model 𝑀(⋅) as explicit Independent
ascade (IC) or Linear Threshold (LT) models. Regrettably, these sim-
listic diffusion models fall short of meeting the demands of real-world
pplications. Moreover, to mitigate the computational overhead of
nfluence estimation, which is intrinsically #P-hard, learning-based
M methods often resort to techniques from traditional methods, like
roxy-based and sampling-based estimation. Paradoxically, this ap-
roach exacerbates challenges related to scalability and generalization.
astly, the IM problem features various node-centrality-constrained
ariants. Beyond merely regulating the seed node budget, scenarios
ight necessitate the control of the total cost incurred by selecting
eed nodes. Learning-based IM solutions tend to employ diverse ob-
ective functions tailored to specific application contexts. As a result,
here lacks a unified framework for addressing the wide spectrum of
ode-centrality-related constraints. L3t5Pub1!5 h

. DeepIM

In this section, we introduce the DeepIM framework designed to
itigate the computational complexities associated with learning-based
M methods, while also automating the identification of underlying dif-
usion patterns. This framework is structured into two distinct phases:
he learning phase, utilized to capture the probabilities associated with
he observed seed set and to model the distribution governing the
ropagation of information within the network. The inference phase,
mployed to optimize the selection of seed nodes within a continu-
us space, with the ultimate objective of maximizing the spread of
nfluence. This two-phase structure of the DeepIM framework provides
systematic approach to address both computational efficiency and
iffusion pattern modeling in the context of IM.

.1. Learning representation of seed set

To construct an effective and efficient objective function, our ap-
roach involves the characterization of the probability distribution 𝑝(𝐱)
cross the space of seed node sets 𝐱, with respect to the graph 𝐺. This
trategic pursuit of learning 𝑝(𝐱) serves to uncover the intrinsic charac-
eristics of the seed sets. However, this endeavor is no straightforward
eat, mainly due to the intricate interconnections among nodes within
ach seed set and the high degree of correlation influenced by the
opology of the graph 𝐺. These intricate interdependencies render the
elationships between nodes exceedingly complex, rendering the task
ard to decipher than other similar combinatorial problems.

.1.1. Learning probability over seed nodes.
Rather than attempting to model the highly intricate probability

istribution 𝑝(𝐱) directly, we introduce a latent variable 𝑧 to serve
s a representative of 𝐱. This latent variable allows us to define a
onditional distribution 𝑝(𝐱|𝑧) that quantifies the likelihood of ob-
erving 𝐱 given 𝑧. The latent variables 𝑧 possess significantly lower
imensions compared to the observed sub-optimal seed sets, leading to
more compressed representation. In particular, we perform a process
f marginalization over the latent variables, yielding the expression
(𝐱) = ∫ 𝑝(𝐱, 𝑧), 𝑑𝑧 = ∫ 𝑝(𝐱|𝑧)𝑝(𝑧), 𝑑𝑧. This integral operation enables us

o compute the posterior likelihood 𝑝(𝑧|𝐱) = 𝑝(𝐱|𝑧) ⋅ 𝑝(𝑧)∕𝑝(𝐱), allowing
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Fig. 1. DeepIM consists of two parts. (a) we leverage the autoencoder to learn and compress the latent distribution of seed node sets into lower dimension 𝑝(𝑧). The lower
dimensional 𝑝(𝑧) is then leveraged to learn an end-to-end and monotonic diffusion model 𝑀(𝐱, 𝐺; 𝜃) for accurately predicting the spread. In addition, we employ a knowledge
istillation module to train a lightweight student model to retain efficiency in predicting the influence spread. (b) the seed set inference follows three different types of schemes.
b.1) iteratively optimizes the proposed objective function by updating the latent variable 𝑧, initially sampled from the learned 𝑝(𝑧), to maximize the influence spread. (b.2) Utilized
he updated latent variable 𝑧′ during the training session so, during inference, it can skip the iterative process of updating 𝑧. (b.3) This process trained the network by using the
nitial seed node set 𝐱 and the Graph to get the final seed node set 𝑥̃.
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s to infer the latent variable 𝑧 based on the observed seed sets 𝐱. In
ur methodology, we adopt an autoencoder architecture to generatively
nfer the posterior distribution. This autoencoder employs both an
ncoder 𝑓𝜙 (parameterized by 𝜙) and a decoder 𝑓𝜓 (parameterized by
) to model the likelihood of both the posterior and the conditional
istribution, respectively. The overarching goal of the autoencoder is
o maximize the joint likelihood, as encapsulated by the following
bjective function:

max
𝜙,𝜓

∶ E
[

𝑝𝜓 (𝐱|𝑧) ⋅ 𝑝𝜙(𝑧|𝐱)
]

. (3)

.1.2. Learning the end-to-end diffusion model
After acquiring knowledge about the latent distribution of seed

odes, denoted as 𝑝(𝐱), the subsequent phase involves updating the seed
ode set 𝐱 to enhance the influence spread’s marginal gain. Existing
earning-based solutions for influence maximization (IM) still depend
n predefined mathematical models to compute the influence spread
𝑀(𝐱, 𝐺; 𝜃)). However, real-world information diffusion is intricate,
aking it challenging to determine an optimal diffusion model in
ractice. A selected model might not accurately capture real-world
ata, leading to substantial model bias. Furthermore, the underlying
iffusion network structure can be concealed, necessitating the learning
f both diffusion model parameters and network structure (Du et al.,
014).
This research introduces a diffusion model based on Graph Neu-

al Networks (GNNs) denoted as 𝑀(⋅), aimed at precisely modeling
he connection between 𝐱 and 𝑦 while considering the global graph
opology. The GNN-based diffusion function 𝑀(⋅) comprises two com-
onents: (1) 𝜏 = 𝑔𝑢(𝐱, 𝐺; 𝜃), where 𝑔𝑢(⋅) represents a GNN-based ag-
regation function, and 𝜏 ∈ [0, 1]|𝑉 | denotes intermediate output after
ggregating multi-hop neighborhood information. 𝜏 signifies the ‘‘infec-
ion probability’’ of each node. (2) 𝑦 = 𝑔𝑟(𝜏; 𝜉), where 𝑦 ∈ R+ represents
the final information spread, 𝑔𝑟(⋅) is a normalization function (e.g., 𝑙-1
orm), and 𝜉 serves as the threshold to convert probability into discrete
alues. The structure of the GNN-based 𝑀(⋅) is illustrated in Fig. 1(a).

efinition 2 (Score Monotonicity and Infection Monotonicity). For
GNN-based diffusion model 𝑀(⋅) ∶ 2|𝑉 | → R+ and any two subsets
, 𝑇 ⊆ 𝑉 , 𝑀(⋅) exhibits score monotonicity if 𝑥𝑆 ⪯ 𝑥𝑇 (𝑆 ⊆ 𝑇 ) implies

𝑀(𝐱𝑆 , 𝐺; 𝜃) ≤𝑀(𝐱𝑇 , 𝐺; 𝜃). Here, 𝐱𝑆 , 𝐱𝑇 ∈ 0, 1|𝑉 | denote vector represen-
tations of seed sets 𝑆 and 𝑇 , respectively. 𝑀(⋅) demonstrates infection
monotonicity if 𝑥𝑆 ⪯ 𝑥𝑇 implies 𝜏𝑆 ⪯ 𝜏𝑇 , where 𝜏𝑆 , 𝜏𝑇 ∈ [0, 1]|𝑉 |

indicate infection probabilities of seed sets 𝑆 and 𝑇 , respectively. This
ensures that𝑀(⋅) captures the inherent diffusion network structure and

emulates real-world diffusion patterns (Dolhansky & Bilmes, 2016). a

4 
Monotonicity is a crucial property for modeling the overall diffu-
sion network structure. A monotonic diffusion model signifies that the
spread of influence will consistently increase. If a larger community 𝐱′
is chosen as the seed set, it naturally infects at least as many nodes
across the network as a smaller seed set 𝐱 when 𝐱 ⪯ 𝐱′. Enforcing
both score and infection monotonicities assists in accurately charac-
terizing the underlying diffusion network structure and mimicking
real-world diffusion behavior (Dolhansky & Bilmes, 2016). To ensure
hese properties, constraints are incorporated into the GNN-based diffu-
ion model𝑀(𝐱, 𝐺; 𝜃) to maintain monotonicity during influence spread
stimation.

heorem 1 (Monotonicity of GNN Models). For any GNN-based
(𝐱, 𝐺; 𝜃) = 𝑔𝑟◦𝑔𝑢(𝐱, 𝐺; 𝜃), where 𝑔𝑢(𝐱, 𝐺; 𝜃) follows Eq. (1), 𝑀(⋅) is both

core and infection monotonic if 𝑘 and 𝐶𝑘, 𝑘 ∈ [1, 𝐾], are non-decreasing
ccording to Eq. (1), and 𝑔𝑟 is also non-decreasing.

roof. The GNN model is structured as 𝑔𝑢(𝑥,𝐺; 𝜃) =
1◦(𝐶1◦2◦𝐶2 ⋯◦𝐾◦𝐶𝐾 ) through recursive iteration of Eq. (1).
ince 𝑘 and 𝐶𝑘 are both non-decreasing, the composition
1◦𝐶1 ⋯◦𝐾◦𝐶𝐾 is also non-decreasing, constituting 𝑔𝑢. This es-
ablishes the infection monotonicity of 𝑀 . Additionally, due to the
on-decreasing nature of 𝑔𝑢 and 𝑔𝑟,𝑀 itself is non-decreasing, ensuring
core monotonicity. □

Furthermore, the Graph Attention Network (GAT), a well-known
eural network architecture, is demonstrated to exhibit both score and
nfection monotonicity under specified constraints, as articulated in
orollary 2.

orollary 2 (Monotonicity of GAT ). 𝑀 is score and infection mono-
onic when 𝑔𝑢 adopts GAT, assuming 𝜃𝑘 ≥ 0 in Eq. (1), and 𝑔𝑟 is also
on-decreasing.

roof. In the GAT model, ℎ𝑘𝑖 = 𝐶𝑘(𝑎𝑘, 𝜃𝑘) =
∑

𝑗 ∈ 𝑁(𝑖)
𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑘𝑖, 𝑗)𝜃𝑘1ℎ

𝑘−1𝑗 and 𝑎𝑘𝑖,𝑗 = 𝑘(ℎ𝑘𝑖 , ℎ
𝑘
𝑗 , 𝜃

𝑘) = 𝜃𝑘1 (𝜃
𝑘
2ℎ

𝑘−1𝑖||𝜃𝑘2ℎ
𝑘−1𝑗).

ecause 𝜃𝑘 ≥ 0 (i.e., 𝜃𝑘1 ≥ 0 and 𝜃𝑘2 ≥ 0), 𝑘 and 𝑎𝑘𝑖, 𝑗 are non-negative.
his property extends to ℎ𝑘𝑖 due to the non-negativity of the softmax op-
rator and 𝜃𝑘1 . Therefore, the LeakyReLU and max(∙, 0) operations in 𝐶𝑘
an be removed, simplifying ℎ𝑘𝑖 to

∑

𝑗∈𝑁(𝑖) 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎
𝑘
𝑖,𝑗 )𝜃

𝑘
1ℎ

𝑘−1
𝑗 . Given

he non-decreasing nature of softmax and 𝜃𝑘1 , 𝐶
𝑘 is non-decreasing. This

omplies with the conditions outlined in Theorem 1, establishing score

nd infection monotonicity for the GAT model. □
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In accordance with Theorem 1 and Corollary 2, the GNN-based
𝑀(𝐱, 𝐺; 𝜃) maintains monotonicity, and the objective of learning this
GNN-based 𝑀(𝐱, 𝐺; 𝜃) is framed as maximizing the probability below
while adhering to the constraint 𝜃 ≥ 0:

max
𝜃

E
[

𝑝𝜃(𝑦|𝐱, 𝐺)
]

. (4)

4.1.3. Knowledge distillation for diffusion estimation efficiency.
In our research, we have successfully acquired a profound un-

derstanding of the latent representations associated with seed nodes.
Moreover, we have developed an end-to-end diffusion model that pro-
vides a strong guarantee of monotonicity. Despite these achievements,
our empirical analysis has revealed that the process of estimating in-
fluence spread, denoted as 𝑀(𝐱, 𝐺; 𝜃), involves a sequence of three key
steps: (1) The initial decoding of a node vector 𝐱 through the utilization
of the learned posterior distribution 𝑝(𝐱|𝑧). (2) The subsequent exe-
cution of the GNN-based diffusion model 𝑀(𝐱, 𝐺; 𝜃) within the graph
𝐺. (3)The normalization of the probabilistic output 𝜏 generated by
𝑀(𝐱, 𝐺; 𝜃) to arrive at the final, actual influence spread value denoted
as 𝑦. While the accuracy of the prediction outcomes is satisfactory, it is
evident that the computational overhead associated with this procedure
can pose a significant challenge, particularly when dealing with large-
scale networks encompassing millions of nodes. Drawing inspiration
from recent advancements in the field of knowledge distillation, we
introduce an innovative approach aimed at enhancing computational
efficiency while preserving the accuracy of influence spread estima-
tion.Our proposal involves leveraging a compact yet potent ‘‘student
model’’ that operates under the guidance of the original 𝑀(𝐱, 𝐺; 𝜃)
model. This student model, denoted as 𝑀𝑠(𝑧; 𝜆), is a lightweight neural
network that is parameterized by 𝜆. It directly accepts the latent vari-
able 𝑧 sampled from the learned distribution 𝑝(𝑧) as input and produces
an estimate of the influence spread, denoted as 𝑦𝑠, as its output. To en-
sure effective training of the student model, we introduce a distillation
loss that quantifies the dissimilarity between the predictions generated
by the ‘‘teacher model’’ (𝑦 = 𝑀(𝐱, 𝐺; 𝜃)) and those produced by the
student model (𝑦𝑠 = 𝑀𝑠(𝑧; 𝜆)). This distillation loss is computed as
the squared Euclidean distance between the predicted influence spread
values, expressed as ‖𝑦 − 𝑦𝑠‖22.

In essence, our approach offers a solution to improve the efficiency
of influence spread estimation through knowledge distillation. By in-
troducing a lightweight yet capable student model that operates in
conjunction with the original diffusion model, we aim to reduce the
computational burden associated with large-scale networks, thereby
enabling more efficient and expedited inference processes.

4.1.4. End-to-end learning objective.
To seamlessly integrate representation learning and the acquisition

of the diffusion model, we propose a unified end-to-end objective
function that combines the expressions from Eqs. (3) and (4). This
objective function is defined as follows:

train = max
𝜃,𝜆,𝜓,𝜙

E
[

𝑝𝜃(𝑦|𝐱, 𝐺) ⋅ 𝑝𝜆(𝑦𝑠|𝑧) ⋅ 𝑝𝜓 (𝐱|𝑧) ⋅ 𝑝𝜙(𝑧|𝐱)
]

, s.t. 𝜃 ≥ 0. (5)

However, dealing with the optimization of joint probabilities within
the expectation can pose computational challenges. To address this, we
derive the negative logarithm of Eq. (5) and establish a lower bound
for the final learning objective using Jensen’s inequality in Eq. (6). The
overall learning objective comprises three components: (1) Minimizing
the empirical error − log[𝑝𝜃(𝑦|𝐱, 𝐺)] associated with predicting 𝑦 using
the reconstructed 𝐱 as input. (2) Minimizing the reconstruction error,
encompassing − log[𝑝𝜓 (𝐱|𝑧)], for effective learning of the seed set dis-
tribution. (3) Minimizing the distillation loss − log[𝑝𝜆(𝑦𝑠|𝑧)] to facilitate
the training of the student model in parallel with the comprehensive
training process.

train = min
𝜃,𝜆,𝜓,𝜙

− log
[

E
[

𝑝𝜃 (𝑦|𝐱, 𝐺) ⋅ 𝑝𝜆(𝑦𝑠|𝑧) ⋅ 𝑝𝜓 (𝐱|𝑧) ⋅ 𝑝𝜙(𝑧|𝐱)
]

]

, s.t. 𝜃 ≥ 0.

≥ min E
[

− log
[

𝑝 (𝑦|𝐱, 𝐺) ⋅ 𝑝 (𝑦 |𝑧) ⋅ 𝑝 (𝐱|𝑧) ⋅ (𝑝 (𝑧|𝐱))
]

]

, s.t. 𝜃 ≥ 0.

𝜃,𝜆,𝜓,𝜙 𝜃 𝜆 𝑠 𝜓 𝜙 e

5 
= min
𝜃,𝜆,𝜓,𝜙

E
[

− log
[

𝑝𝜃 (𝑦|𝐱, 𝐺)
]

− log
[

𝑝𝜆(𝑦𝑠|𝑧)
]

− log
[

𝑝𝜓 (𝐱|𝑧) ⋅ (𝑝𝜙(𝑧|𝐱))
]

]

, s.t. 𝜃 ≥ 0.

(6)

The overarching framework for training end-to-end diffusion models,
coupled with the autoencoder for seed set distribution learning, is
visualized in Fig. 1(a).

4.2. Seed node set inference

To infer the set of highly influential seed nodes within the testing
domain, we capitalize on the joint utilization of the latent distribution
𝑝(𝐱) pertaining to the seed node set and the end-to-end diffusion model
𝑀(⋅) as defined in Eq. (6). In this context, two key attributes of the
autoencoder play a crucial role: continuity, where nearby points in the
latent space should yield somewhat similar content upon decoding,
and completeness, which ensures that a point sampled from the latent
space within a chosen distribution produces meaningful content upon
decoding.

Given that the autoencoder in Eq. (3) is well-trained and possesses
oth continuity and completeness, it can generate content by leveraging
he latent feature space 𝑝(𝑧) learned from all the examples it was
rained on, denoted as 𝑝(𝐱). In light of this, we introduce an innovative
pproach of searching for the optimal seed node set 𝑥̃ within the
ower-dimensional and less-noisy latent space 𝑝(𝑧). The ensuing corol-
ary serves to demonstrate the equivalence of estimating the influence
pread utilizing the latent variable 𝑧 instead of the high-dimensional 𝐱,
ontingent upon the autoencoder effectively upholding both continuity
nd completeness principles.

orollary 3 (Influence Estimation Consistency). For any
(𝑓𝜓 (𝑧(𝑖)), 𝐺; 𝜃) > 𝑀(𝑓𝜓 (𝑧(𝑗)), 𝐺; 𝜃), we have𝑀(𝑥(𝑖), 𝐺; 𝜃) > 𝑀(𝑥(𝑗), 𝐺; 𝜃).

roof. According to Theorem 1, the GNN-based 𝑀(𝑥,𝐺; 𝜃) is mono-
onic. Then for any two 𝑥(𝑖) > 𝑥(𝑗), we have 𝑀(𝑥(𝑖), 𝐺; 𝜃) > 𝑀(𝑥(𝑗), 𝐺; 𝜃).
f the reconstruction error is minimized during the training of 𝑓𝜓 (⋅), we
lso have 𝑓𝜓 (𝑧(𝑖)) > 𝑓𝜓 (𝑧(𝑗)). Hence, 𝑀(𝑓𝜓 (𝑧(𝑖)), 𝐺; 𝜃) > 𝑀(𝑓𝜓 (𝑧(𝑗)), 𝐺; 𝜃)
lso holds. □

As per the corollary, we are enabled to identify the optimal seed
et that can yield maximal influence by optimizing over the variable 𝑧
ithin the subsequent joint probability expression: max𝑧 E

[

𝑝𝜃(𝑦|𝐱, 𝐺) ⋅
𝜓 (𝐱|𝑧)

]

.
Adaptation to Different Influence Maximization Variants with

ode Centrality Constraints. Over the years, Influence Maximization
IM) has been explored in various budget-constrained scenarios on
odes since its inception in Kempe et al. (2003). To enhance the
versatility of DeepIM, we introduce a unified constraint framework
capable of inferring seed sets across diverse node budgets. Specifically,
the objective pred is defined as follows:

pred = max
𝑧

E
[

𝑝𝜃(𝑦|𝐱, 𝐺) ⋅ 𝑝𝜓 (𝐱|𝑧)
]

s.t.
|𝑉 |

∑

𝑖=0
 (𝑣𝑖, 𝐺) ⋅ 𝑥𝑖 ≤ 𝑘, (7)

Here, ∑|𝑉 | 𝑖 = 0 (𝑣𝑖, 𝐺) ⋅ 𝑥𝑖 represents a generalized node-wise bud-
get constraint, and 𝑘 is the actual budget available. For the stan-
dard IM problem that entails selecting a given count of seed nodes,
∑

|𝑉 | 𝑖 = 0 (𝑣𝑖, 𝐺) ⋅ 𝑥𝑖 can be computed as ‖𝑥 ⋅ 𝟏‖1, where 𝟏 ∈ 1𝑁×1

denotes an all-one vector, reflecting uniform selection costs for each
node. Additionally, in the context of IM problems involving node
degree constraints (Leskovec et al., 2007; Nguyen, Thai, & Dinh, 2017),

|𝑉 | 𝑖 = 0 (𝑣𝑖, 𝐺) ⋅𝑥𝑖 can be formulated as ‖𝑥 ⋅𝐴‖1, with 𝐴 ∈ 0, 1𝑁×𝑁 as
he adjacency matrix of network 𝐺, and ‖𝐱 ⋅ 𝐴𝑖‖1 ≤ 𝑘 representing an
pper limit on the total seed node degree indicated by the 𝑙1-norm and
onstrained by budget 𝑘. This budget constraint  (𝑣𝑖, 𝐺) ⋅ 𝑥𝑖 ≤ 𝑘 can
urther be conveniently adapted and integrated to tackle IM variants

ncompassing varying node costs. Through this versatile constraint
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formulation, the adaptability challenges faced by IM methods can be
effectively tackled.

4.2.1. Implementation by iterative process. (DeepIM-I)
We present our inference procedure through the schematic shown in

Fig. 1(b). In this framework, the inference process begins by sampling a
latent variable 𝑧 from the learned distribution 𝑝(𝑧). This latent variable
is then progressively optimized based on the inference objective

unction, Eq. (7), to maximize the marginal gain in influence spread.
t is important to note that the diffusion model for learning 𝑝𝜃(𝑦|𝐱, 𝐺)
can be switched between the student diffusion model 𝑀𝑠(𝑧; 𝜆) and the
GNN-based diffusion model 𝑀(𝐱, 𝐺; 𝜃) to prioritize either efficiency
or effectiveness. Additionally, since the constrained objective function
in Eq. (7) is not directly computable, we offer a practical variant of
the inference objective function. Given that the observed influence
𝑦 follows a Gaussian distribution and the seed set 𝐱 conforms to a
Bernoulli distribution, we can simplify Eq. (7) as follows:

pred = min
𝑧

[

− log
[

|𝑉 |

∏

𝑖=0
𝑓𝜓 (𝑧𝑖)𝑥𝑖 (1−𝑓𝜓 )(𝑧𝑖)1−𝑥𝑖

]

+‖

‖

‖

𝑦̃−𝑦‖‖
‖

2

2

]

s.t.
|𝑉 |

∑

𝑖=0
 (𝑣𝑖, 𝐺)⋅𝑥𝑖 ≤ 𝑘,

(8)

ere, 𝑦̃ is set to the optimal influence spread (𝑦̃ = |𝑉 |). The derivation
or Eq. (8) is provided below:

pred = min
𝑧

E
[

− log 𝑝𝜃(𝑦|𝑥,𝐺) − log 𝑝𝜓 (𝑥|𝑧)
]

, s.t.
|𝑉 |

∑

𝑖=0
 (𝑣𝑖, 𝐺) ⋅ 𝑥𝑖 ≤ 𝑘

(9)

Since we consider 𝑦̃ = |𝑉 | as optimal and 𝑦 is predicted in the
range [0, |𝑉 |], the optimization goal is to maximize 𝑦 until complete
infection is reached. Consequently, the first term in Eq. (8) can be
xpressed as Mean Squared Loss (MSE): ‖𝑦̃ − 𝑀(𝑥,𝐺; 𝜃)‖22. As for
the second term in Eq. (8), the value range of 𝑥 after the autoen-
coder transforms to [0, 1], representing the probability of node selec-
tion. Since 𝑥 ∈ [0, 1] conforms to the binomial distribution, min-
imizing the negative log-likelihood is equivalent to minimizing the
probability mass function. Thus, the second term can be reduced to
− log

[
∏

|𝑉 |

𝑖 𝑓𝜓(𝑧𝑖)𝑥𝑖 (1 − 𝑓𝜓 )(𝑧𝑖)1−𝑥𝑖
]

. The combination of both terms
yields the final form of Eq. (8):

pred = max
𝑧

E
[

𝑝𝜃(𝑦|𝑥,𝐺) ⋅ 𝑝𝜓 (𝑥|𝑧)
]

s.t.
|𝑉 |

∑

𝑖=0
 (𝑣𝑖, 𝐺) ≤ 𝑘. (10)

Furthermore, we employ Projected Gradient Descent and introduce
a regularization function 𝛷(𝐱) to keep the predicted seed set 𝐱 within
a valid region, considering various constraints. For instance, when
dealing with Eq. (7), 𝛷(𝐱) can be defined as selecting the top-𝑘 nodes
with the highest probabilities. For problems involving non-uniform
node costs, 𝛷(𝐱) can be designed to cost-efficiently select the top-𝑘
nodes from 𝐱∕𝑐(𝐱), where 𝑐(𝐱) signifies the cost of selecting one node
(e.g., node degree). In Algorithm 1, we outline the optimization proce-
dure. The algorithm initializes by sampling an initial latent variable 𝑧
(Line 1) and subsequently iteratively solves the optimization problem
from Eq. (7) using a gradient descent optimizer (e.g., Adam) while
ensuring the predicted seed set is constrained within valid bounds
through 𝛷(⋅) (Line 2–6). Specifically, in order to ensure the validity
of the predicted 𝑥 during optimization, we regulate the value of 𝑥 in
the range of [0, 1] by using 𝑡𝑟𝑖𝑚(𝑥, 0, 1) on Line 4. The overall process of
learning the inference objective is depicted in Fig. 1(b).

4.2.2. Implementation by supervised manner (DeepIM-II)
In the iterative process outlined in Section 4.2.1, we obtain an

updated representation of 𝑧 in Line 5 of Algorithm 1, which is also
illustrated in Fig. 1 (b.1) and denoted as 𝑧′. Despite achieving accurate

prediction results, the computational overhead remains significant due

6 
Algorithm 1: DeepIM-I Prediction Framework
Input: pred; 𝑓𝜓 (⋅); 𝛷(⋅); number of training instances 𝑁 ; the number

of iteration 𝜂; learning rate 𝛼.
1: 𝑧 = 1∕𝑁

∑𝑁
𝑖=0 𝑓𝜓 (𝐱) {𝐱 sampled from training set.}

2: for 𝑖 = 0, ..., 𝜂 do
3: 𝐱 ← 𝑓𝜓 (𝑧) {seed set 𝐱.}
4: 𝐱 ← 𝛷(𝐱) {Regularize 𝐱 into valid regions.}
5: 𝑧← 𝑧 − 𝛼 ⋅ ∇pred(𝐱, 𝑧)
6: end for
7: 𝐱̃ ← 𝛷(𝑓𝜓 (𝑧))

to the iterative nature of the process. To address this challenge, we
draw inspiration from recent advances in knowledge distillation. We
introduce a compact yet potent student model 𝑀𝑖(𝑧; 𝛽), which is a
lightweight neural network parameterized by 𝛽. This model takes the
latent variable 𝑧 sampled from the learned distribution 𝑝(𝑧) as input and
directly produces the updated latent representation 𝑧′′ as output. The
istillation loss, in this context, can be elegantly formulated as follows:

𝑖𝑛𝑀𝑖
‖𝑧′ −𝑀𝑖(𝑧; 𝛽)‖22 (11)

Here, the objective is to minimize the squared Euclidean distance
etween the original updated latent representation 𝑧′ and the one pro-
uced by the student model 𝑧′′. This approach captures the essence of
he iterative process within a lightweight and efficient neural network
odel, effectively reducing the computational burden while retaining
he benefits of accurate prediction.

.2.3. Implementation by unsupervised manner (DeepIM-III)
In the preceding Section 4.2.1, we utilized the latent distribution

(𝐱) of the seed node-set and the end-to-end diffusion model 𝑀(⋅)
o formulate the function 𝛷(⋅) for searching the optimal node set 𝑥̃.
owever, due to the iterative nature of this process (𝛷(⋅)), testing be-
omes time-consuming and computationally intensive, especially when
ealing with large-scale networks. To overcome the issue, we proposed
nother inference technique in 4.2.2. It helped us to eradicate the
teration process during the testing inference phase. But, The training of
𝑖(𝑧; 𝛽) is supervised learning which depends highly on the updated 𝑧′
rom the iteration process. Moreover, we need to depend on 𝑀𝑖(𝑧; 𝛽) to
update the latent distribution 𝑧 ∼ 𝑝(𝑥), and the decoder 𝑓𝜓 to update the
seed node during testing inference. We introduce a new function 𝛷′(⋅)
hat not only eliminates the need for iteration (𝛷(⋅)) during the testing
hase but also addresses the dependency on the latent distribution 𝑝(𝑥).
nstead of depending on two functions namely 𝛷(⋅), 𝑓𝜓 in Section 4.2.1,
r 𝑀𝑖(𝑧; 𝛽), 𝑓𝜓 in Section 4.2.2; it depends on only 𝛷′(⋅) during testing
nference.
This function, 𝛷′(⋅) utilizes the initial vector representation of the

ource node set 𝑥 and the graph 𝐺 to capture the latent distribution
(𝑥,𝐺). 𝛷′(⋅) is trained in an unsupervised manner, effectively replacing
he iterative process for selecting the optimal seed node 𝑥̃ during test-
ng. To achieve this, we replace the supervised loss in Eq. (11) with the
irect goal of our influence maximization, whose gradient can always
uide the solution 𝑥̃ toward local optima. We train a network of the
orm 𝑝(𝑦|𝑥,𝐺) = 𝑝(𝑦|𝐫[𝛷′(𝑥;𝜑),𝑀(𝑥̃, 𝐺; 𝜃)]), where 𝑥̃ = 𝛷′(𝑥;𝜑). Here, 𝑦
epresents the total number of infected nodes, capturing the relation-
hip between 𝑥 and (𝑥̃, 𝐺) predicted by 𝐫(𝛷′𝜑,𝑀𝜃). The term𝑀(𝑥̃, 𝐺; 𝜃)
enotes a controlled transformation of 𝑥̃ through the diffusion model.
he objective function proxy is given as follows:

proxy = max
𝑥,𝐺

E
[

𝑝𝜑(𝐱) ⋅ 𝑝𝜃(𝑦|𝑥̃, 𝐺)
]

= min
𝑥

[

− log
[

|𝑉 |

∏

𝑖=0
𝛷′
𝜑(𝑥𝑖)(1 −𝛷

′
𝜑(1 − 𝑥𝑖))

]

+ ‖

‖

‖

𝑦̃ − 𝑦‖‖
‖

2

2

]

(12)
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In Eq. (12), 𝑦̃ represents the optimal influence spread, which in this
case is |𝑉 |. The objective is to maximize the relationship between
𝑥 and (𝑥̃, 𝐺) as predicted by the combined network 𝐫(𝛷′𝜑,𝑀𝜃). The
irst term in Eq. (12) represents the negative log-likelihood of 𝛷′

𝜑(𝑥𝑖),
hich captures the probability distribution of selecting nodes. The
econd term involves minimizing the mean squared error between
he predicted influence spread (𝑦) and the optimal influence spread
𝑦̃). This approach effectively eliminates the need for iterative testing,
aking the process more efficient and scalable.

Algorithm 2: DeepIM-III Prediction Framework
Input: proxy; 𝛷𝜑(⋅); 𝑀𝜃(⋅); number of training instances 𝑁 ; Graph 𝐺;

learning rate 𝛼.
1: 𝑥̃ = 1∕𝑁

∑𝑁
𝑖=0𝛷

𝑝𝑟𝑖𝑚𝑒
𝜑 (𝐱) {𝐱 sampled from training set.}

2: 𝑦←𝑀𝜃(𝑥̃) {infected node set 𝐲.}
3: if fine tuning then
4: 𝑥̃ ← 𝑥̃ − 𝛼 ⋅ ∇pred(𝐱, 𝐺)
5: 𝐱̃ ← 𝛷𝑝𝑟𝑖𝑚𝑒

𝜑 (𝐱))

5. Experiment

In this section, we conduct a comprehensive evaluation of the
performance of our proposed DeepIM framework across six real-world
networks, aiming to maximize the influence under various application
scenarios. We also present case studies to qualitatively demonstrate
the effectiveness of DeepIM. We provided experiments with budget
constraints and graph diffusion visualization.

5.1. Datasets

We compare the performance of DeepIM with other existing ap-
proaches using six real-world datasets: Cora-ML, Network Science,
Power Grid, Jazz, Digg, and Weibo. Additionally, we employ a syn-
thetic dataset generated using the Erdos–Renyi algorithm with 50,000
nodes. Dataset statistics are presented in Table 1, along with detailed
descriptions of each dataset: Jazz (Rossi & Ahmed, 2015): This dataset
represents a collaboration network among Jazz musicians, where nodes
correspond to musicians and edges indicate collaborative performances.
Cora-ML (McCallum, Nigam, Rennie, & Seymore, 2000): A network of
computer science research papers, nodes represent papers, and edges
represent citations between papers. Power Grid (Rossi & Ahmed, 2015):
A topology network of the US Western States Power Grid, where nodes
represent generators, transformers, or substations, and edges represent
power supply lines. Network Science (Rossi & Ahmed, 2015): A coau-
thorship network of scientists in network theory, with nodes represent-
ing scientists and edges indicating collaboration. Digg (Panagopoulos
et al., 2020): A directed social media network, where users follow
each other and vote on posts to share them. Weibo (Panagopoulos
et al., 2020): A directed follower network on a microblogging platform,
where a cascade is initiated by the first tweet and subsequent retweets
contribute to the spread. In our experiments, we randomly sample seed
node sets 𝐱, with the seed size proportional to the total number of nodes
|𝑉 | in each network. We employ the IC, LT, and SIS models to calculate
the influence spread 𝑦. The resulting set of pairs (𝐱, 𝑦) serves as the
training set for our DeepIM.

5.2. Experimental setup

Our main objective is to assess the expected influence spread, as
defined in Eq. (2), across various scenarios in the context of Influence
Maximization (IM). DeepIM is designed to be versatile and adaptable to
different diffusion patterns. To illustrate this adaptability, we consider
two widely used IM models, namely the Linear Threshold (LT) model
and the Independent Cascade (IC) model. Additionally, we evaluate
the IM problem under the susceptible–infectious–susceptible (SIS) epi-
demic model (Kermack & McKendrick, 1927), which allows activated
7 
Table 1
The overview of dataset.

Digg Weibo Power
grid

Network
science

Cora-ML Jazz Synthetic

Nodes 279,613 2,251,166 4,941 1,565 2,810 198 50,000
Edges 1,170,689 225,877,808 6,594 13,532 7,981 2,742 250,000

nodes to become de-activated over time. In our experimentation, we
meticulously set hyperparameters based on the original papers of each
baseline method. We further fine-tune these hyperparameters on each
individual dataset to ensure optimal performance. Below, we provide
details about the configurations of different diffusion models used in
our evaluations:

• IC Model: We employ a weighted cascade version of the Indepen-
dent Cascade (IC) model. Specifically, the propagation probability
𝑝𝑢,𝑣 for each edge 𝑒 = (𝑢, 𝑣) on graph 𝐺 is set to 1∕𝑑𝑖𝑛𝑣 , where 𝑑𝑖𝑛𝑣
signifies the in-degree of node 𝑣.

• LT Model: For the Linear Threshold (LT) model, we set the thresh-
old 𝜃 to be uniformly sampled from the interval [0.3, 0.6] for each
node 𝑣.

• SIS Model: In the Susceptible–Infectious–Susceptible (SIS) epi-
demic model, we establish the infection probability and recovery
probability as 0.001.

As for DeepIM, we utilize a 2-layer Graph Attention Network (GAT)-
structured diffusion estimation model. Each layer comprises 4 attention
heads, with a dimension of 64 for each attention channel. Both the
encoder and decoder are symmetric 4-layer Multi-Layer Perceptrons
(MLPs), with hidden sizes of 512, 1024, 1024, and 1024 for each
respective layer. We employ the Adam optimizer, setting learning rates
of 0.001 for optimizing Eq. (6) and 0.0001 for optimizing Eq. (7). Our
hyperparameter choices are guided by both the specific characteristics
of each dataset and the requirements of the respective models. This
approach ensures that we achieve the most effective and optimal
performance for each experimental scenario.

5.3. Comparison method.

In our comparative analysis, we assess the performance of our
proposed models against a comprehensive set of baseline methods,
which are categorized as: Traditional IM : IMM (Tang et al., 2015)
OPIM-C (Tang, Tang, Xiao, & Yuan, 2018) SubSIM (Guo, Wang, Wei,
& Chen, 2020) Learning-based IM : IMINFECTOR (Panagopoulos et al.,
2020) PIANO (Li et al., 2022) ToupleGDD (Chen et al., 2022) Online
IM : OIM (Lei, Maniu, Mo, Cheng, & Senellart, 2015) Budget-constraint
IM : CELF (Leskovec et al., 2007) In our evaluations, we compare the
performance of four variants of our proposed DeepIM model: DeepIM-I,
which employs the GNN-based diffusion model 𝑀(𝑥,𝐺; 𝜃) with itera-
tive inference. DeepIM𝑠-I, which utilizes the student diffusion model
𝑀𝑠(𝑧; 𝜆) with iterative inference. DeepIM-II, which employs the GNN-
based diffusion model𝑀(𝑥,𝐺; 𝜃) with knowledge distillation inference.
DeepIM-III, which employs the GNN-based diffusion model 𝑀(𝑥,𝐺; 𝜃)
with proxy task inference. This comprehensive comparison allows us to
assess the effectiveness and efficiency of our proposed methods across a
diverse range of scenarios, spanning traditional, learning-based, online,
and budget-constraint influence maximization problems. By including
both the GNN-based and student diffusion models, we can capture a
comprehensive understanding of the trade-offs between accuracy and
computational efficiency.

5.4. Quantitative analysis

We conduct a thorough evaluation of DeepIM’s influence maximiza-
tion performance in comparison to other approaches across various
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Table 2
Performance comparison under IC diffusion pattern. − indicates out-of-memory error.
Methods Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo

1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

IMM 8.1 26.2 37.3 50.2 5.2 16.8 27.0 45.7 4.3 17.4 31.5 51.1 2.6 20.1 31.4 42.8 9.2 26.2 36.3 51.6 7.4 18.4 32.8 49.6 9.5 23.8 36.4 50.5
OPIM 13.4 26.9 37.4 50.9 6.6 19.4 28.9 48.6 5.7 17.7 29.7 50.1 2.4 20.1 34.4 46.8 9.6 25.3 36.6 51.7 7.6 18.5 32.9 48.9 9.7 23.7 36.6 50.3
SubSIM 10.1 25.7 36.8 51.1 4.8 15.4 27.9 44.8 4.6 19.2 31.7 50.2 3.6 18.8 37.6 44.7 9.5 26.7 36.5 51.5 7.5 18.9 33.3 49.4 9.3 23.1 36.5 50.6

OIM 8.9 27.6 38.0 51.3 4.2 16.7 26.5 48.2 5.7 17.5 31.9 50.8 2.0 18.5 36.3 42.2 9.6 26.2 36.7 51.3 7.8 18.2 33.1 49.6 – – – –

IMINFECTOR 9.6 26.8 37.7 50.6 5.4 17.9 27.8 47.6 5.4 18.2 31.6 50.9 3.6 19.7 37.5 45.9 9.1 26.2 36.1 51.5 7.9 18.6 33.5 49.8 9.4 23.5 36.9 50.3
PIANO 9.8 25.2 37.4 51.1 4.7 16.3 27.1 47.2 5.3 18.1 31.7 50.2 2.2 19.2 36.6 43.2 9.1 26.4 36.2 51.6 – – – - – – – –
ToupleGDD 10.6 27.5 38.5 51.5 6.3 17.8 28.3 50.5 5.4 19.3 31.6 51.3 3.3 20.4 37.2 45.7 9.5 26.8 37.1 51.4 – – – - – – – –

DeepIM𝑠 -I 13.6 27.7 38.5 51.8 6.9 19.1 29.3 50.5 5.9 20.2 31.7 51.5 3.8 21.4 38.9 47.1 10.2 26.8 37.5 51.8 7.9 18.8 33.7 50.3 10.1 24.7 36.8 50.8
DeepIM-I 14.1 28.1 39.6 52.4 7.8 20.9 31.5 51.2 6.3 21.0 32.5 52.4 4.9 23.3 41.5 49.9 11.6 27.4 38.7 52.1 8.4 19.3 34.2 51.3 11.2 26.5 37.9 51.8
DeepIM-II 14.08 30.71 35.54 50.53 6.75 18.89 29.74 44.16 10.03 21.96 32.62 49.56 5.01 26.21 33.03 49.95 11.82 27.23 38.91 52.15 8.6 19.5 34.2 51.7 11.5 26.8 38.1 51.8
DeepIM-III 11.22 26.05 35.84 49.47 7.51 17.90 30.15 43.98 10.87 21.21 32.27 49.59 6.52 20.96 35.45 51.01 11.91 28.10 39.58 53.43 8.1 19.3 33.7 50.8 11.8 26.8 37.9 51.6
influence maximization scenarios. For each dataset, we consider differ-
ent seed node percentages: 1%, 5%, 10%, and 20% of the total nodes.
We allow each diffusion model to simulate until the diffusion process
naturally halts, and we record the average influence spread over 100
simulation runs. The performance metric we use is the percentage of
final infected nodes, which is calculated as the ratio of the number of
infected nodes to the total number of nodes in the network. This metric
provides insight into the effectiveness of each approach in propagating
influence within the network.

5.4.1. IM under IC model.
We begin by examining the effectiveness of DeepIM compared to

other baseline methods under the IC diffusion pattern. The results in
Table 2 illustrate that DeepIM consistently outperforms other meth-
ods across all datasets. Among the traditional methods, IMM, OPIM,
and SubSIM employ reserve-set sampling and various approximation
techniques, yielding similar results across datasets. However, these
methods rely on heuristics for guiding node selection, which may
hinder their ability to decode the underlying distribution of seed sets.
OIM achieves superior performance compared to traditional methods
in most datasets, owing to its automatic iterative edge weight updating
mechanism. Nonetheless, OIM’s drawback is evident: it is tailored to
the specific IC diffusion model, limiting its applicability in real-world
scenarios. Learning-based IM methods (IMINFECTOR, PIANO, and Tou-
pleGDD) achieve competitive and often superior results compared to
traditional approaches due to their larger model sizes and enhanced
generalization capabilities. However, learning-based methods that rely
on reinforcement learning encounter scalability challenges and struggle
to handle billion-scale networks (e.g., Digg and Weibo). Consequently,
these methods are less feasible for real-world applications. In contrast,
DeepIM-I offers a robust approach by learning the end-to-end diffusion
model and directly searching for high-influential node sets in the
latent space. This enables DeepIM-I to better capture underlying diffu-
sion dynamics and address scalability issues. Additionally, DeepIM𝑠-I
introduces a lightweight end-to-end diffusion model and DeepIM-II,
DeepIM-III introduce two more inference approach for DeepIM-I. These
strike a balance between efficacy and efficiency that surpasses other
learning-based methods.

5.4.2. IM under LT model.
Next, we evaluate the final influence spread while varying the

initial seed set size, assuming the LT diffusion model. The results in
Table 3 highlight that DeepIM consistently outperforms other methods,
achieving a significant advantage across all datasets. Notably, DeepIM’s
superiority is especially evident in the Synthetic dataset, where select-
ing 20% of nodes as the initial seed set results in spreading influence
to the entire network. In contrast, other methods achieve infection
rates of at most 70% of the nodes in the network. Particularly striking
is DeepIM’s performance in the Jazz dataset, where DeepIM-I and
DeepIM𝑠-I surpass other methods by an average of 200% in influence
spread. Similarly, in the Synthetic dataset, DeepIM-I and DeepIM𝑠-I

outperform other methods by approximately 30%. On the other hand,
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our faster inference approaches introduced in DeepIM-II and DeepIM-
III also provide competitive results. This success can be attributed
to DeepIM’s robust generalization capability across various diffusion
models, setting it apart from other methods that struggle to maintain
effectiveness under diverse diffusion scenarios.

5.4.3. IM under non-progressive diffusion model.
We proceed to demonstrate the performance of each model under

the non-progressive SIS model, as presented in Table 4. A notable
observation is the substantial reduction in performance concerning the
final influence spread when compared to the results in Table 2 and
Table 3. This decrease can be attributed to the inherent complexity
of the SIS diffusion model, which accounts for the possibility of nodes
transitioning from an activated to a deactivated state with a certain
probability. Despite the challenges posed by the SIS diffusion dynamics,
DeepIM maintains its competitive edge. It outperforms other methods
by an average of 10% across all datasets, showcasing its ability to
adapt to intricate diffusion scenarios. This robustness is a result of
DeepIM’s holistic approach, encompassing the joint learning of seed
set representations and end-to-end diffusion estimation models. DeepIM
can successfully navigate diverse underlying diffusion patterns and
consistently generate competitive and reliable influence spread results.

5.5. Scalability analysis

We conducted an analysis of the runtime for seed set inference
across different node sizes in comparison to other learning-based IM
approaches. The results, as presented in Table 5, showcase that DeepIM
exhibits nearly linear growth in runtime as the graph size increases. Ad-
ditionally, it boasts a shorter inference time, clocking in at an average
of 20% faster compared to the second-fastest method, IMINFECTOR.
Moreover, our DeepIM𝑠-I, which incorporates a lightweight end-to-
end diffusion model, significantly reduces the computational burden
associated with estimating expected influence spread. On average,
DeepIM𝑠-I achieves a remarkable 82.32% improvement in inference
time compared to our DeepIM-I model. On the other hand, DeepIM-II
and DeepIM-III showed on average 89.04% and 87.80% improvement
in inference time compared to our DeepIM-I model. This highlights the
efficiency and effectiveness of our proposed DeepIM frameworks (with
four variants) in handling large-scale networks.

5.6. Timing analysis

In Section 4.2, we introduced three inference methods. A com-
parison of these methods is illustrated in Figs. 2 and 3. Instead of
training from scratch, the supervised approach (DeepIM-II) used trans-
fer learning and an updated variable (𝑧′) to speed up learning. In
contrast, the unsupervised method (DeepIM-III) relied solely on a seed
node (𝑥) and took longer to learn the data distribution. Across all
inference cases, a consistent pattern emerges: DeepIM-I requires more
time compared to the other two inference methods. The most efficient
timing is achieved by the DeepIM-III method. On average, DeepIM-

II yields a 98.63% improvement in inference time, while DeepIM-III
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Table 3
Performance comparison under LT diffusion pattern. − indicates out-of-memory error.
Methods Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo

1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

IMM 1.7 34.8 52.2 66.4 2.5 11.9 18.1 33.6 4.6 19.9 31.7 56.9 1.4 5.7 13.4 24.5 1.1 5.2 13.1 66.9 2.4 10.8 37.4 55.6 1.6 6.7 19.3 45.2
OPIM 2.3 36.9 51.2 71.5 1.6 12.0 18.8 34.1 4.4 21.6 29.4 55.5 1.4 6.9 12.6 20.9 1.3 5.2 12.6 62.1 2.1 11.3 38.2 57.1 1.8 6.1 18.7 46.6
SubSIM 1.7 33.6 54.7 70.1 1.8 10.4 19.2 34.1 4.5 21.1 31.2 57.4 1.4 5.9 11.4 21.2 1.4 5.5 13.1 69.6 2.4 11.3 37.9 56.9 1.7 6.7 19.2 46.8

IMINFECTOR 2.1 33.9 51.3 70.6 2.1 11.8 18.7 34.5 4.2 21.3 31.6 56.2 1.4 6.2 13.5 22.8 1.3 5.2 12.9 67.4 2.2 11.1 38.9 58.7 1.8 6.4 18.6 47.5
PIANO 2.1 33.5 53.3 69.8 2.1 11.3 19.1 33,9 4.3 21.3 31.4 57.1 1.1 6.2 12.1 22.4 1.2 5.2 12.9 67.4 – – – - – – – –
ToubleGDD 2.3 36.2 54.5 70.9 2.8 12.4 19.8 34.6 4.8 21.9 32.6 58.1 1.4 6.5 12.9 23.6 1.3 5.5 13.4 70.2 – – – - – – – –

DeepIM𝑠 -I 10.7 65.6 75.1 85.2 3.5 14.6 23.8 37.8 5.1 22.9 40.3 65.1 1.4 6.5 14.2 85.3 1.5 6.0 14.2 90.3 3.1 13.3 39.2 67.9 2.5 7.1 32.6 68.4
DeepIM-I 13.4 69.2 83.5 94.1 4.1 16.6 26.7 41.5 6.3 24.4 46.8 71.7 1.9 6.5 16.4 99.1 1.5 6.5 15.5 99.9 3.5 15.9 41.3 76.2 3.1 7.6 39.3 72.4
DeepIM-II 12.28 68.93 81.67 92.74 3.40 16.68 27.94 41.79 7.73 37.00 66.20 86.64 1.01 5.56 11.11 81.82 1.5 6.31 15.73 99.9 3.7 16.4 41.5 75.9 3.1 7.5 39.9 74.2
DeepIM-III 6.69 64.02 76.44 92.74 2.08 14.29 27.63 41.60 8.46 36.53 66.20 86.64 0.51 5.56 13.64 73.74 1.5 6.74 16.19 99.9 3.5 16.3 40.2 74.8 3.1 7.1 38.1 70.3
Table 4
Performance over comparison methods under SIS diffusion pattern. (Best is highlighted with bold.)
Methods Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo

1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

Greedy 1.6 8.3 14.8 26.1 1.1 5.4 11.6 20.8 1.1 5.0 10.2 21.3 17.4 33.7 49.6 64.2 2.5 12.1 19.5 35.5 1.9 8.6 15.6 31.2 1.5 7.2 13.9 28.7
IMINFECTOR 2.1 9.4 16.1 27.9 1.7 5.8 12.4 22.3 1.3 5.5 12.4 23.1 8.8 35.4 54.8 66.2 2.5 12.4 20.5 36.2 2.3 9.1 16.4 32.4 2.5 8.5 15.5 29.6
IMM 2.0 9.5 15.4 27.6 1.3 5.6 12.2 22.1 1.1 5.6 11.0 22.9 7.6 37.8 55.6 67.1 2.7 12.6 20.9 37.3 2.5 9.4 16.3 32.6 2.3 8.1 15.7 29.4
OPIM 2.3 9.3 16.2 27.2 1.4 5.9 13.0 22.1 1.2 5.9 11.2 22.4 5.7 44.7 58.6 68.3 2.8 12.5 20.2 36.1 2.3 9.3 16.5 32.1 2.3 8.5 15.3 29.7
SubSIM 2.3 9.2 16.9 28.8 1.5 5.6 12.2 23.3 1.2 5.6 11.4 21.9 2.9 30.1 53.8 67.0 2.5 12.6 20.2 36.5 2.5 9.5 16.1 32.3 2.3 8.3 15.6 29.4

DeepIM-I 7.1 16.1 21.9 30.8 2.7 8.7 15.1 25.1 1.9 7.6 13.3 23.8 27.1 57.1 68.1 74.1 3.2 14.4 24.5 39.1 5.6 11.4 18.8 36.3 6.5 13.1 17.1 32.3
DeepIM-II 6.4 15.50 20.70 29.4 2.7 8.6 14.9 24.8 1.7 7.56 13.37 23.48 31.71 56.62 68.64 73.18 3.44 13.9 25.33 39.85 5.30 10.2 19.10 35.92 5.70 13.4 16.50 32.13
DeepIM-III 6.1 15.3 20.4 29.7 2.5 8.3 14.1 24.3 1.48 7.11 13.33 23.68 26.41 54.44 65.45 73.08 3.13 14.12 23.14 38.85 4.9 10.9 18.30 35.7 6.2 12.8 15.9 31.44
Table 5
The average inference runtime (in seconds) with regard to the increase of node size (10,000, 20,000, 30,000,
and 50,000). We also demonstrate the average training time by using 50,000 nodes graph. We select 10%
of nodes as the seeds uniformly.

10,000 20,000 30,000 50,000 50,000 (Training)

IMINFECTOR 3.478 s 7.842 s 12.376 s 16.492 s 4753.67 s
PIANO 5.948 s 10.532 s 16.575 s 28.437 s 14732.63 s
ToupleGDD 10.476 s 19.583 32.792 s 58.985 s –

DeepIM𝑠-I 0.312 s 0.616 s 0.847 s 1.275 s 503.12 s
DeepIM-I 1.402 s 2.798 s 5.124 s 12.882 s 1244.56 s
DeepIM-II 0.093 s 0.344 s 0.674 s 1.514 s 1352.64 s
DeepIM-III 0.121 s 0.392 s 0.723 s 1.550 s 2525.174 s
Fig. 2. Timing analysis for IC.
oasts an even greater improvement of 99.71% when compared to
eepIM-I. This underscores the enhanced efficiency offered by the
eepIM-II and DeepIM-III approaches in comparison to the DeepIM-I
ethod.

.7. IM with budget constraint.

To further evaluate the quality of seed sets generated by DeepIM
nd compare them with those produced by CELF under the IC and LT
odels, we introduce a budget constraint defined explicitly as the node
egree. The outcomes of this comparison are depicted in Fig. 4. Across
ll networks of varying sizes, it is evident that DeepIM consistently
utperforms CELF. This disparity is particularly pronounced under the
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LT model, as shown in Figs. 4(f) to 4(j). Moreover, the influence spread
growth achieved by DeepIM exhibits fewer fluctuations in compari-
son to CELF across all datasets. This result further underscores the
stability of DeepIM, attributing it to the model’s capacity to identify
latent distribution seed sets while accounting for the imposed budget
constraint.

5.8. Case study: Inferred seed analysis

In a separate case study presented in Fig. 5, we examine the spread
of the seed nodes inferred by the three inference methods of DeepIM.
The visualization categorizes nodes into eight different types: Red
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Fig. 3. Timing analysis for LT.
Fig. 4. The influence spread (total infected nodes) in the 𝑦-axis under the constraint of the budget with the node size growth (x-axis: 1%, 5%, 10%, and 20%). Fig. 4a–e and
Fig. 4f–j are evaluated under the IC and LT model, respectively.
Fig. 5. Seed inference by three algorithms.
nodes represent non-seed nodes. Tangelo, flavescent, and eucalyptus-
colored nodes indicate the seed nodes selected by DeepIM-I, DeepIM-II,
or DeepIM-III exclusively. Lavender-colored nodes represent seed nodes
selected by all three inference methods (I, II, and III). Turquoise,
blue, and purple nodes denote the overlap selection between the two
inference methods I+II, I+III, and II+III, respectively.
10 
5.9. Case study: Graph diffusion visualization

In a case study depicted in Fig. 6, we illustrate the distribution of
selected seed nodes as well as the final infection status of all nodes. Blue
nodes represent the initial seed nodes, red nodes signify infected nodes
during the influence spread, and grey nodes denote uninfected nodes.
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Fig. 6. The visualization of influence spread in Jazz dataset: The size of nodes is determined by the node degree, and the color on nodes determines the infection status: blue
means the node is in seed set, red means the node is infected, and grey means the node is not infected.
We compare the influence spread outcomes for different initial seed
set sizes: 10% and 20%. For clarity, we focus on visualizing the results
for the Jazz dataset due to its smaller graph size. The visualization
strongly supports DeepIM’s superior performance in terms of achieving
extensive influence spread. Particularly noteworthy is the observation
in Figs. 6(a) and 6(f) that the final influence spread achieved by DeepIM
with different initial seed set sizes is relatively small. This implies that
DeepIM can achieve better outcomes with lower costs compared to
other methods.

6. Conclusion

This work presents a pioneering framework that addresses the In-
fluence Maximization (IM) problem with enhanced robustness and
generalization compared to existing learning-based methods. In par-
ticular, our approach seeks to comprehensively capture the intricate
characteristics of seed sets by directly characterizing their probability
distribution, thereby enabling the search for more optimal seed sets
within a continuous space. Moreover, we confront the challenge of
modeling the underlying diffusion patterns by introducing two distinct
learning-based diffusion models. These models effectively capture the
diverse dynamics of diffusion with both efficiency and efficacy, offering
a robust solution.

While our model did well at understanding the core qualities of seed
sets, it could be even better if we considered the specific features of
each seed node. These features could also help us handle situations
where some information is missing, protect user privacy, and optimize
influence maximization for groups, among other benefits.

Our framework introduces a novel objective function that accommo-
dates various constraints for seed node set inference. We provided three
different methods for seed node set inference. This versatility enables
adaptation to diverse IM application scenarios. Extensive experiments
and case studies conducted on both synthetic and real-world datasets
showcase the superiority of DeepIM over existing state-of-the-art meth-
ods in terms of maximizing influence spread. Overall, DeepIM emerges
as a promising approach that bridges the gap between traditional
IM methods and the increasingly complex requirements of real-world
influence maximization.
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