Neural Networks 180 (2024) 106649

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Check for

Deep graph representation learning for influence maximization with e
accelerated inference
Tanmoy Chowdhury !, Chen Ling >!, Junji Jiang ¢, Junxiang Wang ¢, My T. Thai ¢, Liang Zhao >

aRichland County Government, Columbia, SC, USA
Y Emory University, Atlanta, GA, USA

¢ Fudan University, Shanghai, China

d NEC Laboratories America, Princeton, NJ, USA

¢ University of Florida, Gainesville, FL, USA

ARTICLE INFO ABSTRACT

Keywords: Selecting a set of initial users from a social network in order to maximize the envisaged number of influenced
Influence maximization users is known as influence maximization (IM). Researchers have achieved significant advancements in the
Diffusion model theoretical design and performance gain of several classical approaches, but these advances are almost reaching

Combinatorial optimization
Deep learning

Supervised learning
Unsupervised learning

their pinnacle. Learning-based IM approaches have emerged recently with a higher generalization to unknown
graphs than conventional methods. The development of learning-based IM methods is still constrained by
a number of fundamental hardships, including (1) solving the objective function efficiently, (2) struggling
to characterize the diverse underlying diffusion patterns, and (3) adapting the solution to different node-
centrality-constrained IM variants. To address the aforementioned issues, we design a novel framework DeepIM
for generatively characterizing the latent representation of seed sets, as well as learning the diversified
information diffusion pattern in a data-driven and end-to-end way. Subsequently, we design a novel objective
function to infer optimal seed sets under flexible node-centrality-based budget constraints. Extensive analyses
are conducted over both synthetic and real-world datasets to demonstrate the overall performance of DeepIM.

1. Introduction curbing misinformation (Yang, Li, & Giua, 2020), and enhancing friend
recommendations (Ye, Liu, & Lee, 2012).

In the realm of network analysis, Influence Maximization (IM) IM poses a classic combinatorial optimization challenge, involving
stands as a foundational research problem. Its core objective is to the identification of an optimal or near-optimal seed set to maximize
discover a set of seed nodes that can maximize the diffusion of influence influence in a network. This task is intricate due to the stochastic
throughout a social network. IM has garnered significant attention nature of information propagation and the inherent complexity of the

in recent times due to its substantial commercial implications. For
instance, consider the context of viral marketing (Chen, Wang, & Wang,
2010) for promoting a commercial product. In this scenario, a company
aims to spread the adoption of a new product through a selected group
of initial users. These users are expected to propagate information
about the product within their social circles, leading to a cascading

problem. Traditional IM methods (Kempe, Kleinberg, & Tardos, 2003;
Leskovec et al.,, 2007; Nguyen, Thai, & Dinh, 2016; Saito, Kimura,
Ohara, & Motoda, 2012; Tang, Shi, & Xiao, 2015; Tang, Xiao, & Shi,
2014) have made remarkable strides, even achieving exact solutions
under specific diffusion models (Li, Smith, Dinh, & Thai, 2019). These

effect and ultimately a considerable portion of users trying the product. approaches usually demand an explicit information diffusion model as
Beyond viral marketing, IM holds pivotal importance in various appli- input, yet real-world diffusion processes are multifaceted and cannot
cations including network monitoring (Wang, Fan, Li, & Tan, 2017), be encapsulated by fixed models. With the emergence of machine and

* Corresponding author.

E-mail addresses: tchowdh6@gmu.edu (T. Chowdhury), chen.ling@emory.edu (C. Ling), junji.anjou@gmail.com (J. Jiang),
junxiang.wang@alumni.emory.edu (J. Wang), mythai@cise.ufl.edu (M.T. Thai), liang.zhao@emory.edu (L. Zhao).

URLs: https://www.tanmoychowdhury.com (T. Chowdhury), https://www.lingchen0331.github.io/ (C. Ling),
https://xianggebenben.github.io/Junxiang Wang.github.io/ (J. Wang), https://www.cise.ufl.edu/ythai (M.T. Thai), https://www.cs.emory.edu/Izhao41/
(L. Zhao).

1 Authors contributed equally.

https://doi.org/10.1016/j.neunet.2024.106649

Available online 31 August 2024
0893-6080/Published by Elsevier Ltd.

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:tchowdh6@gmu.edu
mailto:chen.ling@emory.edu
mailto:junji.anjou@gmail.com
mailto:junxiang.wang@alumni.emory.edu
mailto:mythai@cise.ufl.edu
mailto:liang.zhao@emory.edu
https://www.tanmoychowdhury.com
https://www.lingchen0331.github.io/
https://xianggebenben.github.io/Junxiang_Wang.github.io/
https://www.cise.ufl.edu/~mythai
https://www.cs.emory.edu/~lzhao41/
https://doi.org/10.1016/j.neunet.2024.106649
https://doi.org/10.1016/j.neunet.2024.106649
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106649&domain=pdf

T. Chowdhury et al.

deep learning, a learning-based approach appears promising to capture
the underlying diffusion dynamics.

Despite notable progress in the field, learning-based solutions for IM
are still nascent due to several fundamental challenges. First, the effi-
cient optimization of the objective function remains a hurdle. Learning-
based methods attempt to tackle the discrete problem within a continu-
ous space, predominantly leveraging deep network representations (Ku-
mar, Mallik, Khetarpal, & Panda, 2022; Zhang, Li, Wei, Liu, & Li,
2022) and deep reinforcement learning (Li et al., 2022; Tian, Mo,
Wang, & Peng, 2020). Even though they could attain a competitive
performance with traditional methods, their scalability and execution
efficiency are problematic due to (a) the need to iteratively update all
node embeddings at each action and (b) the #P-hardness of computing
the influence spread (Lin, Chen, & Lui, 2017). Second, the automatic
identification and modeling of actual diffusion processes pose difficul-
ties. The underlying diffusion pattern profoundly influences the spread
of information in a network. However, both traditional and learning-
based methods lack the ability to characterize these processes without
resorting to heuristics. They typically rely on predefined diffusion mod-
els (e.g., Linear Threshold and Independent Cascade) as inputs, which
are limited in capturing the complexity of real-world scenarios. Third,
adapting solutions to diverse node-centrality-constrained IM problems
remains a challenge. Variants of IM that involve node centrality con-
straints (such as seed node count or total degree constraints) lack a
unified approach in current learning-based methods, posing adaptivity
challenges.

To address these challenges, we propose an innovative framework
- DeepIM. Our primary contribution is to develop a novel objective
function that allows for efficient optimization within a continuous
space, diverging from traditional discrete approaches that often face
scalability and local optima issues. This framework introduces a novel
strategy of embedding the discrete optimization domain into a larger
continuous space. Notably, it advocates learning the latent represen-
tation of seed sets and optimizing directly in this continuous space
to alleviate computational complexity. To jointly consider the opti-
mization with the information diffusion modeling, we introduced a
learning-based diffusion model that adapts to various real-world scenar-
ios without the need for predefined models. Moreover, our framework
enhances adaptability through its ability to handle different node-
centrality constraints, which is crucial for applying IM across diverse
network structures and requirements. Finally, our proposed method
significantly reduces the computational overhead compared to existing
solutions and highlights the practical applicability of our approach in
real-world scenarios where computational resources are a constraint. In
summary, our contributions encompass:

Problem Formulation: We cast the learning-based IM challenge as
the embedding of the initial discrete optimization domain into a
continuous space, highlighting the challenges intrinsic to real-world
applications.

Framework Development: We propose a joint approach involving
the latent space representation of seed sets and a model that learns
graph diffusion processes in an end-to-end fashion.

Adaptivity Enhancement: Our novel constrained optimization ob-
jective leverages deep graph embeddings, facilitating optimal seed set
inference under diverse node-centrality-related constraints.
Evaluation: Through extensive experimentation on four real-world
datasets, we showcase DeepIM’s performance. It outperforms state-
of-the-art methods across various application scenarios in the pursuit
of identifying seed sets for maximal influence.

2. Related work
2.1. Learning-based influence maximization

Most conventional approaches to Influence Maximization (IM) can
be classified into simulation-based, proxy-based, and heuristic-based

Neural Networks 180 (2024) 106649

categories. These traditional methods have achieved nearly exact or
precise solutions within specific diffusion models, demonstrating effi-
ciency. It is worth noting that while there have been indications of
learning influence from cascade data in works such as (Du, Liang,
Balcan, & Song, 2014; Vaswani et al., 2017), they still assumed the
guidance of a predefined model for diffusion patterns, specifically the
Coverage function. For a more comprehensive overview of traditional
methods, readers can refer to recent surveys like (Banerjee, Jenamani,
& Pratihar, 2020; Li, Fan, Wang, & Tan, 2018).

In contrast, learning-based approaches harness the power of deep
learning to address the limitations of traditional IM methods, primarily
their lack of generalization capabilities. Pioneering efforts such as Ali,
Wang, and Chen (2018), Lin, Lin, and Chen (2015) initially combined
reinforcement learning with IM, igniting a wave of research that utilizes
deep reinforcement learning to tackle the IM challenge. Modern state-
of-the-art solutions like Chen, Yan, Guo, and Wu (2022), Li et al.
(2022), Li, Xu, et al. (2019), Tian et al. (2020) adhere to a similar
framework: learning latent embeddings for nodes or networks, treating
the current node embedding as the agent’s state to select the next seed
node as an action, with the reward being its incremental influence gain.

Apart from reinforcement learning-based IM methods, there are
also techniques like Kamarthi, Vijayan, Wilder, Ravindran, and Tambe
(2019), Kumar et al. (2022), Panagopoulos, Malliaros, and Vazirgiannis
(2020) that exclusively employ graph neural networks to encode social
influence into node embeddings and steer the node selection process.
Nevertheless, the current learning-based IM methods share a common
challenge: their model complexity and adaptability still lag behind
traditional methods. Specifically, existing ML-based algorithms struggle
to handle diverse diffusion patterns and cannot ensure solution quality
and model scalability as effectively as traditional methods do.

2.2. Graph neural network

Graph Neural Networks (GNNs) (Wu et al., 2020) belong to a cate-
gory of deep learning techniques designed to handle data represented as
graphs. The fundamental approach of GNNs involves iteratively trans-
forming node features and aggregating information from neighboring
nodes. For a GNN with K layers, each node gathers information within
its K-hop neighborhood. Concretely, the transformation at the kth layer
is as follows:

a* = AF(hF1, 0%, hF = CF (¥ 0%),v1 <k < K. ¢

Here, a* represents the aggregated features, and h* corresponds to the
node features at the kth layer. The choice of aggregation function .A(-)
and combination function C(-) gives rise to distinct GNN models (Kipf
& Welling, 2016; Velickovi¢ et al., 2017; Xu, Hu, Leskovec, & Jegelka,
2018). These high-level node or graph representations find applications
in diverse tasks. GNNs have been effectively used in various domains
such as estimating information diffusion and source localization (Ling,
Jiang, et al., 2023; Ling, Jiang, Wang, & Zhao, 2022; Wang, Jiang, &
Zhao, 2022; Xia, Li, Wu, & Li, 2021), generating complex graphs (Guo,
Wang, & Zhao, 2022; Ling, Cao, & Zhao, 2023; Ling, Yang, & Zhao,
2021, 2023; Wang, Guo, & Zhao, 2022), and addressing reasoning
challenges (Chowdhury et al., 2023; Ling, Chowdhury, et al., 2022). In
our endeavor, GNNs serve as a tool to characterize underlying diffusion
patterns and construct an end-to-end model for estimating influence.

2.3. Combinatorial optimization with GNNs

Observational data is frequently required to address uncertainty in
real-world decision-making systems. As a result, combinatorial opti-
mization (CO) issues where the objective function is unknown com-
monly arise and require being refuted using actual data. Graphs are
a major topic of research in the CO area due to the discrete structure
of most CO problems and the abundance of network data in the actual
world. Because there is no unique representation in the graph; machine

T. Chowdhury et al.

learning algorithms have extra hurdles, such as being invariant to node
permutation, expressiveness, scalability, leveraging new information,
and, most importantly, achieving data-efficient generalization. The
parameterized aggregation stage of GNNs, on the other hand, offers
representation by learning the crucial graph topologies and scaling
linearly with the number of edges and parameters. Because of its
invariance to permutations and awareness of input sparsity, GNNs’
inductive bias effectively encodes combinatorial and relational data. As
a result, GNNs have evolved into an end-to-end solution (Nowak, Villar,
Bandeira, & Bruna, 2018) or integrated component either in traditional
optimization algorithms (Li, Chen, & Koltun, 2018) or with other ma-
chine learning algorithms (Khalil, Dai, Zhang, Dilkina, & Song, 2017).
There are a lot of applications of combinatorial optimization by GNNs
for solving NP-hard problems like satisfiability (SAT), Maximal Inde-
pendent Set (MIS), Minimum Vertex Cover (MVC), and Maximal Clique
(MC), Minimum Coverage Problem (MCP), and etc. For example, Li,
Chen, and Koltun (2018) utilized GCN to direct tree search operations
for solving NP-hard problems like SAT, MIS, MVC, MC. Influence
Maximization (IM) was first formulated as a combinatorial optimization
problem by Kempe et al. (2003), which has inspired extensive research
and applications in the next decade. Sahil et al. (Manchanda et al.,,
2019) solve IM problem on billion-size graphs with GCN assisting in
encoding the influence of a node on the solution set. The minimum
dominating set problem (MDSP), a variant of IM problems, was solved
by the use of a hybrid algorithm that fuses a biased random key
genetic algorithm with a graph neural network (Sartori & Blum, 2022).
To produce high-quality solutions, deep Q-learning (DQN) has made
extensive use of a variety of GNNs, including the graph convolution
network (GCN) (Li, Chen, & Koltun, 2018), message-passing neural
network (MPNN) (Barrett, Clements, Foerster, & Lvovsky, 2020), and
graph attention network (GAT) (Cappart, Moisan, Rousseau, Prémont-
Schwarz, & Cire, 2021). However, utilizing GNNs can still present
issues like over-smoothing and information squashing (Wang, Li, et al.,
2022; Zhou et al., 2020), particularly in unsupervised tasks (Yang, Gu,
et al., 2020; Zhang & Zhao, 2022). We quote recent surveys (Cappart
et al., 2023; Vesselinova, Steinert, Perez-Ramirez, & Boman, 2020) as
additional in-depth analysis sources.

3. Problem formulation

Given a graph G = {V, E}, the primary goal of Influence Maximiza-
tion (IM) is to strategically choose an optimal seed node set x C V' in
order to maximize the number of nodes influenced within the graph
G. The effectiveness of IM is evaluated through an influence diffusion
model, characterized by parameter 0: y = M (x, G;0). In the case of an
independent cascade model, # may represent the set of infection proba-
bilities associated with each node. Alternatively, if M(-) is GNN-based,
0 could encompass parameters related to aggregation and combination
functions. We denote x € {0,1}V! as the vector representation of the
source node set, where the ith element x; = 1,x; e xif vy, exand x; =0
otherwise. The output y € R, denotes the total count of infected nodes
in the graph (Li, Fan, et al., 2018). Building upon this conceptualization
of influence spread, the IM problem is formally defined as follows:

Definition 1 (Influence Maximization). The generic IM problem requires

selecting a set of k users from V as the seed set to maximize the

influence spread:

X = argmax M (x, G, 6), 2)
Ix|<k

where x is the optimal seed node set that can produce a maximal

influence spread in G.

Certainly, the process of selecting X is intricately tied to the nuances
of the underlying diffusion dynamics. Over time, numerous endeavors
have emerged that employ GNNs and reinforcement learning algo-
rithms to address this challenge. Nonetheless, the potential of existing

Neural Networks 180 (2024) 106649

learning-based IM frameworks is somewhat constrained, predominantly
due to the following challenges: Firstly, a major challenge in existing
learning-based IM frameworks is the computational burden associated
with calculating latent node embeddings for selecting highly influential
nodes. These frameworks typically necessitate the iterative update of
embeddings for each node during every action or optimization step,
regardless of their inclusion in the current x. This scalability issue be-
comes particularly pronounced when dealing with networks comprising
millions of nodes. Secondly, even though deep node and network em-
beddings, along with diverse reward functions, are employed to guide
node selection, current frameworks remain tailored to specific diffusion
models. For instance, they often model M(-) as explicit Independent
Cascade (IC) or Linear Threshold (LT) models. Regrettably, these sim-
plistic diffusion models fall short of meeting the demands of real-world
applications. Moreover, to mitigate the computational overhead of
influence estimation, which is intrinsically #P-hard, learning-based
IM methods often resort to techniques from traditional methods, like
proxy-based and sampling-based estimation. Paradoxically, this ap-
proach exacerbates challenges related to scalability and generalization.
Lastly, the IM problem features various node-centrality-constrained
variants. Beyond merely regulating the seed node budget, scenarios
might necessitate the control of the total cost incurred by selecting
seed nodes. Learning-based IM solutions tend to employ diverse ob-
jective functions tailored to specific application contexts. As a result,
there lacks a unified framework for addressing the wide spectrum of
node-centrality-related constraints. L3t5Pub1!5 h

4. DeepIM

In this section, we introduce the DeepIM framework designed to
mitigate the computational complexities associated with learning-based
IM methods, while also automating the identification of underlying dif-
fusion patterns. This framework is structured into two distinct phases:
The learning phase, utilized to capture the probabilities associated with
the observed seed set and to model the distribution governing the
propagation of information within the network. The inference phase,
employed to optimize the selection of seed nodes within a continu-
ous space, with the ultimate objective of maximizing the spread of
influence. This two-phase structure of the DeepIM framework provides
a systematic approach to address both computational efficiency and
diffusion pattern modeling in the context of IM.

4.1. Learning representation of seed set

To construct an effective and efficient objective function, our ap-
proach involves the characterization of the probability distribution p(x)
across the space of seed node sets x, with respect to the graph G. This
strategic pursuit of learning p(x) serves to uncover the intrinsic charac-
teristics of the seed sets. However, this endeavor is no straightforward
feat, mainly due to the intricate interconnections among nodes within
each seed set and the high degree of correlation influenced by the
topology of the graph G. These intricate interdependencies render the
relationships between nodes exceedingly complex, rendering the task
hard to decipher than other similar combinatorial problems.

4.1.1. Learning probability over seed nodes.

Rather than attempting to model the highly intricate probability
distribution p(x) directly, we introduce a latent variable z to serve
as a representative of x. This latent variable allows us to define a
conditional distribution p(x|z) that quantifies the likelihood of ob-
serving x given z. The latent variables z possess significantly lower
dimensions compared to the observed sub-optimal seed sets, leading to
a more compressed representation. In particular, we perform a process
of marginalization over the latent variables, yielding the expression
p(x) = [p(x,2),dz = [p(x|z)p(z), dz. This integral operation enables us
to compute the posterior likelihood p(z|x) = p(x|z) - p(z)/p(x), allowing

T. Chowdhury et al.

Neural Networks 180 (2024) 106649

. 2z~ p(2)

1-st Iteration

H Knowledge
 Encoder [Decoder Toacher Model. ¥ = M(x, G;6) Distillation
tpeh) | p) @ Infecton Probabi
iR 7/ fixr) /
BRNT 7 g —
e R Ressou ¥ a
H pz)
4 z
x! = 0% CTHm100%)

Fig. 1. DeepIM consists of two parts. (a) we leverage the autoencoder to learn and compress the latent distribution of seed node sets into lower dimension p(z). The lower
dimensional p(z) is then leveraged to learn an end-to-end and monotonic diffusion model M(x,G:6) for accurately predicting the spread. In addition, we employ a knowledge
distillation module to train a lightweight student model to retain efficiency in predicting the influence spread. (b) the seed set inference follows three different types of schemes.
(b.1) iteratively optimizes the proposed objective function by updating the latent variable z, initially sampled from the learned p(z), to maximize the influence spread. (b.2) Utilized
the updated latent variable z’ during the training session so, during inference, it can skip the iterative process of updating z. (b.3) This process trained the network by using the

initial seed node set x and the Graph to get the final seed node set x.

us to infer the latent variable z based on the observed seed sets x. In
our methodology, we adopt an autoencoder architecture to generatively
infer the posterior distribution. This autoencoder employs both an
encoder f, (parameterized by ¢) and a decoder f,, (parameterized by
y) to model the likelihood of both the posterior and the conditional
distribution, respectively. The overarching goal of the autoencoder is
to maximize the joint likelihood, as encapsulated by the following
objective function:

max : E[p, (X|2) - py(z[x)]. (3)
4.1.2. Learning the end-to-end diffusion model

After acquiring knowledge about the latent distribution of seed
nodes, denoted as p(x), the subsequent phase involves updating the seed
node set x to enhance the influence spread’s marginal gain. Existing
learning-based solutions for influence maximization (IM) still depend
on predefined mathematical models to compute the influence spread
(M (x,G;0)). However, real-world information diffusion is intricate,
making it challenging to determine an optimal diffusion model in
practice. A selected model might not accurately capture real-world
data, leading to substantial model bias. Furthermore, the underlying
diffusion network structure can be concealed, necessitating the learning
of both diffusion model parameters and network structure (Du et al.,
2014).

This research introduces a diffusion model based on Graph Neu-
ral Networks (GNNs) denoted as M(-), aimed at precisely modeling
the connection between x and y while considering the global graph
topology. The GNN-based diffusion function M(-) comprises two com-
ponents: (1) r = g,(x,G;0), where g,(-) represents a GNN-based ag-
gregation function, and = € [0, 1]'V! denotes intermediate output after
aggregating multi-hop neighborhood information. 7 signifies the “infec-
tion probability” of each node. (2) y = g.(z; &), where y € R, represents
the final information spread, g,(-) is a normalization function (e.g., /-1
norm), and ¢ serves as the threshold to convert probability into discrete
values. The structure of the GNN-based M (-) is illustrated in Fig. 1(a).

Definition 2 (Score Monotonicity and Infection Monotonicity). For
a GNN-based diffusion model M(-) : 2I¥l — R, and any two subsets
S, T CV, M(-) exhibits score monotonicity if xg < x; (S C T) implies
M(xg,G;6) < M(xy,G;0). Here, xg,xp €0, 1V! denote vector represen-
tations of seed sets S and T, respectively. M(-) demonstrates infection
monotonicity if xg < xp implies 7y < 7, where 74,7 € [0,1]!"]
indicate infection probabilities of seed sets .S and T, respectively. This
ensures that M (-) captures the inherent diffusion network structure and
emulates real-world diffusion patterns (Dolhansky & Bilmes, 2016).

Monotonicity is a crucial property for modeling the overall diffu-
sion network structure. A monotonic diffusion model signifies that the
spread of influence will consistently increase. If a larger community x’
is chosen as the seed set, it naturally infects at least as many nodes
across the network as a smaller seed set x when x < x’. Enforcing
both score and infection monotonicities assists in accurately charac-
terizing the underlying diffusion network structure and mimicking
real-world diffusion behavior (Dolhansky & Bilmes, 2016). To ensure
these properties, constraints are incorporated into the GNN-based diffu-
sion model M (x, G;) to maintain monotonicity during influence spread
estimation.

Theorem 1 (Monotonicity of GNN Models). For any GNN-based
M, G;0) = g,.o0g,(x, G;0), where g,(x,G;0) follows Eq. (1), M(-) is both
score and infection monotonic if A* and C*,k € [1, K], are non-decreasing
according to Eq. (1), and g, is also non-decreasing.

Proof. The GNN model is structured as g,(x,G;0) =
Alo(C'oA%0C? .- 0AKoCK) through recursive iteration of Eq. (1).
Since A* and C* are both non-decreasing, the composition
AloCl...0AKoCK is also non-decreasing, constituting g,. This es-
tablishes the infection monotonicity of M. Additionally, due to the
non-decreasing nature of g, and g,, M itself is non-decreasing, ensuring
score monotonicity. []

Furthermore, the Graph Attention Network (GAT), a well-known
neural network architecture, is demonstrated to exhibit both score and
infection monotonicity under specified constraints, as articulated in
Corollary 2.

Corollary 2 (Monotonicity of GAT). M is score and infection mono-
tonic when g, adopts GAT, assuming 6% > 0 in Eq. (1), and g, is also
non-decreasing.

Proof. In the GAT model k= Ckak 0k = TieN®
softmax(ai, j)0¥n*=j and af i = Ak(hk h" 0%) = 0¥ (kR 1il|05 K1 j).
Because 6% > 0 (i.e., 9 >0and 9" >0), A" and d¥i, j are non-negative.
This property extends to h¥ due to the non-negativity of the softmax op-
erator and Gf . Therefore, the LeakyReLU and max(s, 0) operations in C*
can be removed, simplifying hf‘ to Y, jena) Sof tmax(af.f/.)@’l‘hf’l. Given
the non-decreasing nature of softmax and 9’1‘, C* is non-decreasing. This
complies with the conditions outlined in Theorem 1, establishing score
and infection monotonicity for the GAT model. []

T. Chowdhury et al.

In accordance with Theorem 1 and Corollary 2, the GNN-based
M (x, G; #) maintains monotonicity, and the objective of learning this
GNN-based M(x,G;0) is framed as maximizing the probability below
while adhering to the constraint 6 > 0:

max E[py(yIx, G)]. C))

4.1.3. Knowledge distillation for diffusion estimation efficiency.

In our research, we have successfully acquired a profound un-
derstanding of the latent representations associated with seed nodes.
Moreover, we have developed an end-to-end diffusion model that pro-
vides a strong guarantee of monotonicity. Despite these achievements,
our empirical analysis has revealed that the process of estimating in-
fluence spread, denoted as M (x, G;0), involves a sequence of three key
steps: (1) The initial decoding of a node vector x through the utilization
of the learned posterior distribution p(x|z). (2) The subsequent exe-
cution of the GNN-based diffusion model M (x,G;60) within the graph
G. (3)The normalization of the probabilistic output ¢ generated by
M (x, G;0) to arrive at the final, actual influence spread value denoted
as y. While the accuracy of the prediction outcomes is satisfactory, it is
evident that the computational overhead associated with this procedure
can pose a significant challenge, particularly when dealing with large-
scale networks encompassing millions of nodes. Drawing inspiration
from recent advancements in the field of knowledge distillation, we
introduce an innovative approach aimed at enhancing computational
efficiency while preserving the accuracy of influence spread estima-
tion.Our proposal involves leveraging a compact yet potent “student
model” that operates under the guidance of the original M(x,G;0)
model. This student model, denoted as M(z; A), is a lightweight neural
network that is parameterized by A. It directly accepts the latent vari-
able z sampled from the learned distribution p(z) as input and produces
an estimate of the influence spread, denoted as y,, as its output. To en-
sure effective training of the student model, we introduce a distillation
loss that quantifies the dissimilarity between the predictions generated
by the “teacher model” (y = M(x,G;0)) and those produced by the
student model (y, = M(z;4)). This distillation loss is computed as
the squared Euclidean distance between the predicted influence spread
values, expressed as ||y — ys||§-

In essence, our approach offers a solution to improve the efficiency
of influence spread estimation through knowledge distillation. By in-
troducing a lightweight yet capable student model that operates in
conjunction with the original diffusion model, we aim to reduce the
computational burden associated with large-scale networks, thereby
enabling more efficient and expedited inference processes.

4.1.4. End-to-end learning objective.

To seamlessly integrate representation learning and the acquisition
of the diffusion model, we propose a unified end-to-end objective
function that combines the expressions from Egs. (3) and (4). This
objective function is defined as follows:

Lirain = gngil,xd)lE[pg(ylx, G) - p,(ysl2) - p,(x]2) - py(z[x)], s.t. 0 20. (5)

However, dealing with the optimization of joint probabilities within
the expectation can pose computational challenges. To address this, we
derive the negative logarithm of Eq. (5) and establish a lower bound
for the final learning objective using Jensen’s inequality in Eq. (6). The
overall learning objective comprises three components: (1) Minimizing
the empirical error —log[p,(y|x, G)] associated with predicting y using
the reconstructed x as input. (2) Minimizing the reconstruction error,
encompassing —log[p,, (x|2)], for effective learning of the seed set dis-
tribution. (3) Minimizing the distillation loss — log[p,(y,|2)] to facilitate
the training of the student model in parallel with the comprehensive
training process.

Liain = min —log []E[ps(ylx.G) P12 - p, (x12) - pd,(zlx)]], s.t. §20.

> oT%E[_ log[py(yIx. @) - p,(y,l2) - p,, (x|2) - (p¢(ZIX))]],S-t. 0>0.

Neural Networks 180 (2024) 106649

= min E[~log[p, (41x. G)] = log[p; (3, 1)] ~log[p, (x12) - (pyzlx)] | s.t. 0 > 0.
6)

The overarching framework for training end-to-end diffusion models,
coupled with the autoencoder for seed set distribution learning, is
visualized in Fig. 1(a).

4.2. Seed node set inference

To infer the set of highly influential seed nodes within the testing
domain, we capitalize on the joint utilization of the latent distribution
p(x) pertaining to the seed node set and the end-to-end diffusion model
M(-) as defined in Eq. (6). In this context, two key attributes of the
autoencoder play a crucial role: continuity, where nearby points in the
latent space should yield somewhat similar content upon decoding,
and completeness, which ensures that a point sampled from the latent
space within a chosen distribution produces meaningful content upon
decoding.

Given that the autoencoder in Eq. (3) is well-trained and possesses
both continuity and completeness, it can generate content by leveraging
the latent feature space p(z) learned from all the examples it was
trained on, denoted as p(x). In light of this, we introduce an innovative
approach of searching for the optimal seed node set % within the
lower-dimensional and less-noisy latent space p(z). The ensuing corol-
lary serves to demonstrate the equivalence of estimating the influence
spread utilizing the latent variable z instead of the high-dimensional x,
contingent upon the autoencoder effectively upholding both continuity
and completeness principles.

Corollary 3 (Influence Estimation Consistency). For any
M(f,,(z9),G:0) > M(f,(z9), G:0), we have M(xV,G;0) > M(x, G; 0).

Proof. According to Theorem 1, the GNN-based M (x,G;6) is mono-
tonic. Then for any two x® > x(), we have M(x?, G;0) > M(xY), G; 9).
If the reconstruction error is minimized during the training of f,,(-), we
also have £, (z") > f,,(z). Hence, M(f,,(z"),G:0) > M(f,,(zY)),G:0)
also holds. [

As per the corollary, we are enabled to identify the optimal seed
set that can yield maximal influence by optimizing over the variable z
within the subsequent joint probability expression: max, E[pg(y|x, G) -
PW(XIZ)]-

Adaptation to Different Influence Maximization Variants with
Node Centrality Constraints. Over the years, Influence Maximization
(IM) has been explored in various budget-constrained scenarios on
nodes since its inception in Kempe et al. (2003). To enhance the
versatility of DeepIM, we introduce a unified constraint framework
capable of inferring seed sets across diverse node budgets. Specifically,
the objective L4 is defined as follows:

14
st Y F©,6)-x; <k)
i=0

Lpreq = maxE|py(y|x. G) - p,, (x|2)]

Here, Z‘V‘ i = 0F(v;, G) - x; represents a generalized node-wise bud-
get constraint, and k is the actual budget available. For the stan-
dard IM problem that entails selecting a given count of seed nodes,
S = 0F(v,,G) - x; can be computed as ||x - 1]|1, where 1 € 1NX!
denotes an all-one vector, reflecting uniform selection costs for each
node. Additionally, in the context of IM problems involving node
degree constraints (Leskovec et al., 2007; Nguyen, Thai, & Dinh, 2017),
Z'Vl i = 0F(v;,G) - x; can be formulated as ||x- Al|;, with A € 0, 1"V as
the adjacency matrix of network G, and ||x - A’||; < k representing an
upper limit on the total seed node degree indicated by the /1-norm and
constrained by budget k. This budget constraint F(v;,G) - x; < k can
further be conveniently adapted and integrated to tackle IM variants
encompassing varying node costs. Through this versatile constraint

T. Chowdhury et al.

formulation, the adaptability challenges faced by IM methods can be
effectively tackled.

4.2.1. Implementation by iterative process. (DeepIM-I)

We present our inference procedure through the schematic shown in
Fig. 1(b). In this framework, the inference process begins by sampling a
latent variable z from the learned distribution p(z). This latent variable
z is then progressively optimized based on the inference objective
function, Eq. (7), to maximize the marginal gain in influence spread.
It is important to note that the diffusion model for learning p,(y|x, G)
can be switched between the student diffusion model M (z; A) and the
GNN-based diffusion model M(x,G;0) to prioritize either efficiency
or effectiveness. Additionally, since the constrained objective function
in Eq. (7) is not directly computable, we offer a practical variant of
the inference objective function. Given that the observed influence
y follows a Gaussian distribution and the seed set x conforms to a
Bernoulli distribution, we can simplify Eq. (7) as follows:

| 14
Lpreq = min| - log[ﬁ Fo@ a=fpe =+]l st ﬁ‘, F(0,,G)-x; < k.
i=0 i=0

(8)

Here, y is set to the optimal influence spread (3 = |V'|). The derivation
for Eq. (8) is provided below:

v
st Y F,G)-x; <k
i=0

Lpreq = min E[log py(ylx. G) — log p,, (x|2)].

©)]

Since we consider § = |V| as optimal and y is predicted in the
range [0, |V|], the optimization goal is to maximize y until complete
infection is reached. Consequently, the first term in Eq. (8) can be
expressed as Mean Squared Loss (MSE): ||j — M(x,G:6)|2%. As for
the second term in Eq. (8), the value range of x after the autoen-
coder transforms to [0, 1], representing the probability of node selec-
tion. Since x € [0,1] conforms to the binomial distribution, min-
imizing the negative log-likelihood is equivalent to minimizing the
probability mass function. Thus, the second term can be reduced to
~log[[T"! fw(z)®(- f,)(z)'~%]. The combination of both terms
yields the final form of Eq. (8):

V1
st. Y F,G) < k. (10

i=0

£pred = mzax E[PG(J"x’ G)- P.,,(X|Z)]

Furthermore, we employ Projected Gradient Descent and introduce
a regularization function @(x) to keep the predicted seed set x within
a valid region, considering various constraints. For instance, when
dealing with Eq. (7), ®@(x) can be defined as selecting the top-k nodes
with the highest probabilities. For problems involving non-uniform
node costs, @(x) can be designed to cost-efficiently select the top-k
nodes from x/c(x), where c(x) signifies the cost of selecting one node
(e.g., node degree). In Algorithm 1, we outline the optimization proce-
dure. The algorithm initializes by sampling an initial latent variable z
(Line 1) and subsequently iteratively solves the optimization problem
from Eq. (7) using a gradient descent optimizer (e.g., Adam) while
ensuring the predicted seed set is constrained within valid bounds
through @(-) (Line 2-6). Specifically, in order to ensure the validity
of the predicted x during optimization, we regulate the value of x in
the range of [0, 1] by using trim(x, 0, 1) on Line 4. The overall process of
learning the inference objective is depicted in Fig. 1(b).

4.2.2. Implementation by supervised manner (DeepIM-II)

In the iterative process outlined in Section 4.2.1, we obtain an
updated representation of z in Line 5 of Algorithm 1, which is also
illustrated in Fig. 1 (b.1) and denoted as z’. Despite achieving accurate
prediction results, the computational overhead remains significant due

Neural Networks 180 (2024) 106649

Algorithm 1: DeepIM-I Prediction Framework

Input: Lp.q; f,,(); DC); number of training instances N; the number
of iteration #; learning rate a.
tz=1/N Z,]i o fy(X) {x sampled from training set.}
fori=0,..,n do
x < f,(2) {seed set x.}
x < @(x) {Regularize x into valid regions.}
zez—a - VLeq(X,2)
: end for
PR D/, (2)

Noahwbdbd

to the iterative nature of the process. To address this challenge, we
draw inspiration from recent advances in knowledge distillation. We
introduce a compact yet potent student model M;(z;p), which is a
lightweight neural network parameterized by g. This model takes the
latent variable z sampled from the learned distribution p(z) as input and
directly produces the updated latent representation z” as output. The
distillation loss, in this context, can be elegantly formulated as follows:

miny 12" — My(z; B)II3 an

Here, the objective is to minimize the squared Euclidean distance
between the original updated latent representation z’ and the one pro-
duced by the student model z”. This approach captures the essence of
the iterative process within a lightweight and efficient neural network
model, effectively reducing the computational burden while retaining
the benefits of accurate prediction.

4.2.3. Implementation by unsupervised manner (DeepIM-III)

In the preceding Section 4.2.1, we utilized the latent distribution
p(x) of the seed node-set and the end-to-end diffusion model M(-)
to formulate the function @(-) for searching the optimal node set x.
However, due to the iterative nature of this process (®(-)), testing be-
comes time-consuming and computationally intensive, especially when
dealing with large-scale networks. To overcome the issue, we proposed
another inference technique in 4.2.2. It helped us to eradicate the
iteration process during the testing inference phase. But, The training of
M;(z; p) is supervised learning which depends highly on the updated z’
from the iteration process. Moreover, we need to depend on M,(z; §) to
update the latent distribution z ~ p(x), and the decoder fy to update the
seed node during testing inference. We introduce a new function @’'(-)
that not only eliminates the need for iteration (&(-)) during the testing
phase but also addresses the dependency on the latent distribution p(x).
Instead of depending on two functions namely @(), f,, in Section 4.2.1,
or M;(z; f), f,, in Section 4.2.2; it depends on only @'(-) during testing
inference.

This function, @'(-) utilizes the initial vector representation of the
source node set x and the graph G to capture the latent distribution
p(x, G). @'(-) is trained in an unsupervised manner, effectively replacing
the iterative process for selecting the optimal seed node % during test-
ing. To achieve this, we replace the supervised loss in Eq. (11) with the
direct goal of our influence maximization, whose gradient can always
guide the solution X toward local optima. We train a network of the
form p(y|x, G) = p(y|r[®’ (x; @), M (X, G; 0)]), where ¥ = @' (x;). Here, y
represents the total number of infected nodes, capturing the relation-
ship between x and (%, G) predicted by r(®' ¢, My). The term M (%, G;6)
denotes a controlled transformation of % through the diffusion model.

The objective function L, is given as follows:
Eproxy = T’%XE[Pw(X) - pp(VI%, G)]

Vi
= mgn[— log [ﬁ @/, (x)(1 = @), (1 = x)] + |7 - y”z] (12)
i=0

T. Chowdhury et al.

In Eq. (12), 7 represents the optimal influence spread, which in this
case is |V|. The objective is to maximize the relationship between
x and (%,G) as predicted by the combined network r(®'¢p, M6). The
first term in Eq. (12) represents the negative log-likelihood of dbﬁp(xl-),
which captures the probability distribution of selecting nodes. The
second term involves minimizing the mean squared error between
the predicted influence spread (y) and the optimal influence spread
(). This approach effectively eliminates the need for iterative testing,
making the process more efficient and scalable.

Algorithm 2: DeepIM-III Prediction Framework

Input: Loy @, (); Mo(); number of training instances N; Graph G;
learning rate a.

£=1/N Zf\:' o @;”me(x) {x sampled from training set.}

y « My(%) {infected node set y.}

if fine tuning then

X¥eX—a-VLy(x,G)

X < ol"(x))

g oRw e

5. Experiment

In this section, we conduct a comprehensive evaluation of the
performance of our proposed DeepIM framework across six real-world
networks, aiming to maximize the influence under various application
scenarios. We also present case studies to qualitatively demonstrate
the effectiveness of DeepIM. We provided experiments with budget
constraints and graph diffusion visualization.

5.1. Datasets

We compare the performance of DeepIM with other existing ap-
proaches using six real-world datasets: Cora-ML, Network Science,
Power Grid, Jazz, Digg, and Weibo. Additionally, we employ a syn-
thetic dataset generated using the Erdos-Renyi algorithm with 50,000
nodes. Dataset statistics are presented in Table 1, along with detailed
descriptions of each dataset: Jazz (Rossi & Ahmed, 2015): This dataset
represents a collaboration network among Jazz musicians, where nodes
correspond to musicians and edges indicate collaborative performances.
Cora-ML (McCallum, Nigam, Rennie, & Seymore, 2000): A network of
computer science research papers, nodes represent papers, and edges
represent citations between papers. Power Grid (Rossi & Ahmed, 2015):
A topology network of the US Western States Power Grid, where nodes
represent generators, transformers, or substations, and edges represent
power supply lines. Network Science (Rossi & Ahmed, 2015): A coau-
thorship network of scientists in network theory, with nodes represent-
ing scientists and edges indicating collaboration. Digg (Panagopoulos
et al.,, 2020): A directed social media network, where users follow
each other and vote on posts to share them. Weibo (Panagopoulos
et al., 2020): A directed follower network on a microblogging platform,
where a cascade is initiated by the first tweet and subsequent retweets
contribute to the spread. In our experiments, we randomly sample seed
node sets x, with the seed size proportional to the total number of nodes
|V] in each network. We employ the IC, LT, and SIS models to calculate
the influence spread y. The resulting set of pairs (x,y) serves as the
training set for our DeepIM.

5.2. Experimental setup

Our main objective is to assess the expected influence spread, as
defined in Eq. (2), across various scenarios in the context of Influence
Maximization (IM). DeepIM is designed to be versatile and adaptable to
different diffusion patterns. To illustrate this adaptability, we consider
two widely used IM models, namely the Linear Threshold (LT) model
and the Independent Cascade (IC) model. Additionally, we evaluate
the IM problem under the susceptible-infectious—susceptible (SIS) epi-
demic model (Kermack & McKendrick, 1927), which allows activated

Neural Networks 180 (2024) 106649

Table 1
The overview of dataset.
Digg Weibo Power Network Cora-ML Jazz Synthetic
grid science
Nodes 279,613 2,251,166 4,941 1,565 2,810 198 50,000

Edges 1,170,689 225,877,808 6,594 13,532 7,981 2,742 250,000

nodes to become de-activated over time. In our experimentation, we
meticulously set hyperparameters based on the original papers of each
baseline method. We further fine-tune these hyperparameters on each
individual dataset to ensure optimal performance. Below, we provide
details about the configurations of different diffusion models used in
our evaluations:

+ IC Model: We employ a weighted cascade version of the Indepen-
dent Cascade (IC) model. Specifically, the propagation probability
P, for each edge e = (u,v) on graph G is set to 1/d™, where d'"
signifies the in-degree of node v.

e LT Model: For the Linear Threshold (LT) model, we set the thresh-
old 0 to be uniformly sampled from the interval [0.3,0.6] for each
node v.

» SIS Model: In the Susceptible-Infectious-Susceptible (SIS) epi-
demic model, we establish the infection probability and recovery
probability as 0.001.

As for DeepIM, we utilize a 2-layer Graph Attention Network (GAT)-
structured diffusion estimation model. Each layer comprises 4 attention
heads, with a dimension of 64 for each attention channel. Both the
encoder and decoder are symmetric 4-layer Multi-Layer Perceptrons
(MLPs), with hidden sizes of 512, 1024, 1024, and 1024 for each
respective layer. We employ the Adam optimizer, setting learning rates
of 0.001 for optimizing Eq. (6) and 0.0001 for optimizing Eq. (7). Our
hyperparameter choices are guided by both the specific characteristics
of each dataset and the requirements of the respective models. This
approach ensures that we achieve the most effective and optimal
performance for each experimental scenario.

5.3. Comparison method.

In our comparative analysis, we assess the performance of our
proposed models against a comprehensive set of baseline methods,
which are categorized as: Traditional IM: IMM (Tang et al., 2015)
OPIM-C (Tang, Tang, Xiao, & Yuan, 2018) SubSIM (Guo, Wang, Wei,
& Chen, 2020) Learning-based IM: IMINFECTOR (Panagopoulos et al.,
2020) PIANO (Li et al., 2022) ToupleGDD (Chen et al., 2022) Online
IM: OIM (Lei, Maniu, Mo, Cheng, & Senellart, 2015) Budget-constraint
IM: CELF (Leskovec et al., 2007) In our evaluations, we compare the
performance of four variants of our proposed DeepIM model: DeepIM-I,
which employs the GNN-based diffusion model M(x, G;#) with itera-
tive inference. DeepIM;-I, which utilizes the student diffusion model
M (z; 4) with iterative inference. DeepIM-II, which employs the GNN-
based diffusion model M (x, G;0) with knowledge distillation inference.
DeepIM-III, which employs the GNN-based diffusion model M (x,G;)
with proxy task inference. This comprehensive comparison allows us to
assess the effectiveness and efficiency of our proposed methods across a
diverse range of scenarios, spanning traditional, learning-based, online,
and budget-constraint influence maximization problems. By including
both the GNN-based and student diffusion models, we can capture a
comprehensive understanding of the trade-offs between accuracy and
computational efficiency.

5.4. Quantitative analysis

We conduct a thorough evaluation of DeepIM’s influence maximiza-
tion performance in comparison to other approaches across various

T. Chowdhury et al.

Neural Networks 180 (2024) 106649

Table 2

Performance comparison under IC diffusion pattern. — indicates out-of-memory error.
Methods Cora-ML Network Science Power Grid Jazz. Synthetic Digg Weibo

1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

IMM 8.1 262 373 502 52 168 27.0 457 43 17.4 315 511 26 201 314 428 92 262 363 516 7.4 184 328 496 9.5 238 36.4 505
OPIM 134 269 374 509 6.6 194 289 486 57 17.7 29.7 50.1 24 201 344 468 9.6 253 366 517 7.6 185 329 489 9.7 237 36.6 503
SubSIM 10.1 257 36.8 51.1 48 154 279 448 46 19.2 317 502 36 188 376 447 95 267 365 515 7.5 189 333 494 93 231 365 506
OIM 8.9 276 380 513 42 167 265 482 57 175 319 508 20 185 363 422 96 262 367 513 7.8 182 331 496 - - - -
IMINFECTOR 9.6 268 377 506 54 179 278 476 54 182 316 509 3.6 197 375 459 91 262 361 515 7.9 186 335 498 94 235 369 503
PIANO 98 252 374 511 47 163 271 472 53 181 317 502 22 192 366 432 91 264 362 516 - - - - - - - -
ToupleGDD 106 275 385 515 63 178 283 505 54 19.3 316 51.3 33 204 372 457 95 268 37.1 51.4 - - - - - - - -
DeepIM;-1 136 277 385 518 69 191 293 505 59 202 317 515 38 214 389 471 102 268 375 51.8 79 188 337 503 101 247 368 50.8
DeepIM-I 141 281 39.6 524 7.8 209 315 512 63 21.0 325 524 49 233 415 499 116 274 387 521 84 193 342 513 11.2 265 379 51.8
DeepIM-II 14.08 30.71 3554 50.53 6.75 18.89 29.74 44.16 10.03 21.96 32.62 49.56 5.01 26.21 33.03 49.95 11.82 27.23 3891 5215 8.6 19.5 34.2 51.7 115 26.8 38.1 51.8
DeepIM-III 11.22 26.05 35.84 49.47 7.51 17.90 30.15 43.98 10.87 21.21 32.27 49.59 6.52 20.96 35.45 51.01 11.91 28.10 39.58 53.43 81 19.3 33.7 508 11.8 26.8 379 51.6

influence maximization scenarios. For each dataset, we consider differ-
ent seed node percentages: 1%, 5%, 10%, and 20% of the total nodes.
We allow each diffusion model to simulate until the diffusion process
naturally halts, and we record the average influence spread over 100
simulation runs. The performance metric we use is the percentage of
final infected nodes, which is calculated as the ratio of the number of
infected nodes to the total number of nodes in the network. This metric
provides insight into the effectiveness of each approach in propagating
influence within the network.

5.4.1. IM under IC model.

We begin by examining the effectiveness of DeepIM compared to
other baseline methods under the IC diffusion pattern. The results in
Table 2 illustrate that DeepIM consistently outperforms other meth-
ods across all datasets. Among the traditional methods, IMM, OPIM,
and SubSIM employ reserve-set sampling and various approximation
techniques, yielding similar results across datasets. However, these
methods rely on heuristics for guiding node selection, which may
hinder their ability to decode the underlying distribution of seed sets.
OIM achieves superior performance compared to traditional methods
in most datasets, owing to its automatic iterative edge weight updating
mechanism. Nonetheless, OIM’s drawback is evident: it is tailored to
the specific IC diffusion model, limiting its applicability in real-world
scenarios. Learning-based IM methods (IMINFECTOR, PIANO, and Tou-
pleGDD) achieve competitive and often superior results compared to
traditional approaches due to their larger model sizes and enhanced
generalization capabilities. However, learning-based methods that rely
on reinforcement learning encounter scalability challenges and struggle
to handle billion-scale networks (e.g., Digg and Weibo). Consequently,
these methods are less feasible for real-world applications. In contrast,
DeepIM-I offers a robust approach by learning the end-to-end diffusion
model and directly searching for high-influential node sets in the
latent space. This enables DeepIM-I to better capture underlying diffu-
sion dynamics and address scalability issues. Additionally, DeepIM;-I
introduces a lightweight end-to-end diffusion model and DeepIM-II,
DeepIM-III introduce two more inference approach for DeepIM-1. These
strike a balance between efficacy and efficiency that surpasses other
learning-based methods.

5.4.2. IM under LT model.

Next, we evaluate the final influence spread while varying the
initial seed set size, assuming the LT diffusion model. The results in
Table 3 highlight that DeepIM consistently outperforms other methods,
achieving a significant advantage across all datasets. Notably, DeepIM’s
superiority is especially evident in the Synthetic dataset, where select-
ing 20% of nodes as the initial seed set results in spreading influence
to the entire network. In contrast, other methods achieve infection
rates of at most 70% of the nodes in the network. Particularly striking
is DeepIM’s performance in the Jazz dataset, where DeepIM-I and
DeepIM;,-I surpass other methods by an average of 200% in influence
spread. Similarly, in the Synthetic dataset, DeepIM-I and DeepIM;-I
outperform other methods by approximately 30%. On the other hand,

our faster inference approaches introduced in DeepIM-II and DeepIM-
III also provide competitive results. This success can be attributed
to DeepIM’s robust generalization capability across various diffusion
models, setting it apart from other methods that struggle to maintain
effectiveness under diverse diffusion scenarios.

5.4.3. IM under non-progressive diffusion model.

We proceed to demonstrate the performance of each model under
the non-progressive SIS model, as presented in Table 4. A notable
observation is the substantial reduction in performance concerning the
final influence spread when compared to the results in Table 2 and
Table 3. This decrease can be attributed to the inherent complexity
of the SIS diffusion model, which accounts for the possibility of nodes
transitioning from an activated to a deactivated state with a certain
probability. Despite the challenges posed by the SIS diffusion dynamics,
DeepIM maintains its competitive edge. It outperforms other methods
by an average of 10% across all datasets, showcasing its ability to
adapt to intricate diffusion scenarios. This robustness is a result of
DeepIM'’s holistic approach, encompassing the joint learning of seed
set representations and end-to-end diffusion estimation models. DeepIM
can successfully navigate diverse underlying diffusion patterns and
consistently generate competitive and reliable influence spread results.

5.5. Scalability analysis

We conducted an analysis of the runtime for seed set inference
across different node sizes in comparison to other learning-based IM
approaches. The results, as presented in Table 5, showcase that DeepIM
exhibits nearly linear growth in runtime as the graph size increases. Ad-
ditionally, it boasts a shorter inference time, clocking in at an average
of 20% faster compared to the second-fastest method, IMINFECTOR.
Moreover, our DeepIM,-I, which incorporates a lightweight end-to-
end diffusion model, significantly reduces the computational burden
associated with estimating expected influence spread. On average,
DeepIM;-I achieves a remarkable 82.32% improvement in inference
time compared to our DeepIM-I model. On the other hand, DeepIM-II
and DeepIM-III showed on average 89.04% and 87.80% improvement
in inference time compared to our DeepIM-I model. This highlights the
efficiency and effectiveness of our proposed DeepIM frameworks (with
four variants) in handling large-scale networks.

5.6. Timing analysis

In Section 4.2, we introduced three inference methods. A com-
parison of these methods is illustrated in Figs. 2 and 3. Instead of
training from scratch, the supervised approach (DeepIM-II) used trans-
fer learning and an updated variable (z’) to speed up learning. In
contrast, the unsupervised method (DeepIM-III) relied solely on a seed
node (x) and took longer to learn the data distribution. Across all
inference cases, a consistent pattern emerges: DeepIM-I requires more
time compared to the other two inference methods. The most efficient
timing is achieved by the DeepIM-III method. On average, DeepIM-
II yields a 98.63% improvement in inference time, while DeepIM-III

T. Chowdhury et al.

Neural Networks 180 (2024) 106649

Table 3
Performance comparison under LT diffusion pattern. — indicates out-of-memory error.
Methods Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo
1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%
IMM 17 348 522 664 25 119 181 336 46 199 317 569 14 57 134 245 11 52 131 669 24 108 374 556 16 67 193 452
OPIM 23 369 512 715 16 120 188 341 44 216 294 555 14 69 126 209 13 52 126 621 21 113 382 571 18 61 187 46.6
SubSIM 17 336 547 701 18 104 192 341 45 211 312 574 14 59 114 212 14 55 131 696 24 113 379 569 17 67 192 4638
IMINFECTOR 2.1 339 513 706 21 118 187 345 42 213 316 562 14 62 135 228 13 52 129 674 22 11.1 389 587 18 64 186 47.5
PIANO 21 335 533 698 21 113 191 339 43 213 314 571 11 62 121 224 12 52 129 674 - - - - - - - -
ToubleGDD 2.3 362 545 709 28 124 198 346 48 219 326 581 14 65 129 236 13 55 134 702 - - - - - - -
DeepIMj-I 107 656 751 852 35 146 238 378 51 229 403 651 14 65 142 853 15 60 142 903 31 133 392 679 25 7.1 326 684
DeepIM-I 13.4 692 835 941 41 166 267 415 63 244 468 717 19 65 164 991 15 65 155 99.9 3.5 159 413 762 3.1 7.6 393 724
DeepIM-II 1228 6893 81.67 9274 3.40 16.68 27.94 4179 7.73 37.00 66.20 86.64 1.01 556 11.11 81.82 1.5 631 1573 99.9 3.7 164 415 759 3.1 7.5 39.9 74.2
DeepIM-IIl 6.69 64.02 76.44 9274 208 1429 27.63 41.60 8.46 3653 66.20 86.64 0.51 556 13.64 7374 1.5 674 1619 99.9 35 163 402 748 3.1 7.1 381 703
Table 4
Performance over comparison methods under SIS diffusion pattern. (Best is highlighted with bold.)
Methods Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo
1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%
Greedy 16 83 148 261 11 54 116 208 11 50 102 213 174 337 496 642 25 121 195 355 19 86 156 312 15 72 139 287
IMINFECTOR 21 94 161 279 17 58 124 223 13 55 124 231 88 354 548 662 25 124 205 362 23 91 164 324 25 85 155 29.6
IMM 20 95 154 276 13 56 122 221 11 56 11.0 229 76 378 556 671 27 126 209 373 25 94 163 326 23 81 157 294
OPIM 23 93 162 272 14 59 130 221 12 59 112 224 57 447 586 683 28 125 202 361 23 93 165 321 23 85 153 297
SubSIM 23 92 169 288 15 56 122 233 12 56 114 219 29 301 538 670 25 126 202 365 25 95 161 323 23 83 156 294
DeepIM-I 71 161 219 308 27 87 151 251 19 7.6 133 238 271 571 681 741 32 144 245 391 56 11.4 188 363 65 131 17.1 323
DeepIM-II 6.4 1550 2070 294 27 86 149 248 17 756 13.37 2348 3171 56.62 68.64 7318 3.44 139 25.33 39.85 530 102 19.10 3592 570 13.4 1650 3213
DeepIM-III 6.1 153 204 297 25 83 141 243 148 7.11 13.33 23.68 2641 5444 6545 73.08 3.13 1412 2314 3885 49 109 1830 357 62 128 159 31.44
Table 5
The average inference runtime (in seconds) with regard to the increase of node size (10,000, 20,000, 30,000,
and 50,000). We also demonstrate the average training time by using 50,000 nodes graph. We select 10%
of nodes as the seeds uniformly.
10,000 20,000 30,000 50,000 50,000 (Training)
IMINFECTOR 3.478 s 7.842 s 12.376 s 16.492 s 4753.67 s
PIANO 5.948 s 10.532's 16.575 s 28.437 s 14732.63 s
ToupleGDD 10.476 s 19.583 32.792 s 58.985 s -
DeepIM;-1 0.312s 0.616 s 0.847 s 1.275 s 503.12 s
DeepIM-I 1.402 s 2.798 s 5.124 s 12.882 s 1244.56 s
DeepIM-II 0.093 s 0.344 s 0.674 s 1.514 s 1352.64 s
DeepIM-III 0.121 s 0.392 s 0.723 s 1.550 s 2525.174 s
Cora-ML Network Science Power Grid Jazz
S g >
— > E L
o N N N N
£
£ X A v v v]
o> N NJ N
£
£] N N]
5 N N N
o o o oo o oo oo o o oo o o oo oo o o
N 3 N S N 3 N S s N S N 3 N S
—
<L
o o o N o]
£ ® N N RS EE lterative
[} N mmm Unsupervised
e A~] 2o ~ S mm S ised
q‘_) \Q \Q ,\Q \Q upervise:
(] a]
€ a] S a] o
£ K B
N N N
g ge \Q@\o (&o\e g ge \Qe\o '§\° g g \Qe\e (§\° oo ge \6\" q§\°

Fig. 2. Timing analysis for IC.

boasts an even greater improvement of 99.71% when compared to
DeepIM-I. This underscores the enhanced efficiency offered by the
DeepIM-II and DeepIM-III approaches in comparison to the DeepIM-I
method.

5.7. IM with budget constraint.

To further evaluate the quality of seed sets generated by DeepIM
and compare them with those produced by CELF under the IC and LT
models, we introduce a budget constraint defined explicitly as the node
degree. The outcomes of this comparison are depicted in Fig. 4. Across
all networks of varying sizes, it is evident that DeepIM consistently
outperforms CELF. This disparity is particularly pronounced under the

LT model, as shown in Figs. 4(f) to 4(j). Moreover, the influence spread
growth achieved by DeepIM exhibits fewer fluctuations in compari-
son to CELF across all datasets. This result further underscores the
stability of DeepIM, attributing it to the model’s capacity to identify
latent distribution seed sets while accounting for the imposed budget
constraint.

5.8. Case study: Inferred seed analysis

In a separate case study presented in Fig. 5, we examine the spread
of the seed nodes inferred by the three inference methods of DeepIM.
The visualization categorizes nodes into eight different types: Red

T. Chowdhury et al. Neural Networks 180 (2024) 106649

Cora-ML Network Science Power Grid Jazz
S g
—~ o | S 5 L
29 N N N
£
v
= @ 3 v v
XS ® $ $
£
€ N N N
g8 S S 9
N \g\" q/s\" N \@\" {19°\° N \g\" (§\° N \Qe\" (196\0
—_ N o
BN
o o] o] o]
£ N N N BN (terative
8 ~] N N W Unsupervised
QC) g q QO K N I Supervised
=N
2 L A] a2
£ N KN N
gege gr '§\° gege gr {§\e gege gr r§\° g g g
Fig. 3. Timing analysis for LT.
o //'
// e
7 —+—DeepIM | N —e— DeepIM —+—DeepIM —a— DeepIM —eo— DeepIM
7, —=— CELF / —a— CELF 7 CELF | ¥ —=— CELF —a— CELF
1 3 10% 20% I B 10% 20% 1 & 10% 20% 1 5% 10% 20% 1 5 10% 20%
(a) Cora_ML-IC (b) Net Science-IC (c) Power Grid-IC (d) Jazz-IC (e) Synthetic-IC
pIM // __nLA.;m e —e— DeepIM 1 ~—e— DeepIM —— Deepl
—— LF/ CELF —s—CELF / —a— CELE —=— CELF
VA o ///' s o
7 il 7 e
I/
ol ol — e — ———————————————————
1% 5% 10% 20% 1% 5% 10% 20% 1 5% 10% 20% 1% 5 10% 20% 1% 5% 10% 20%
(f) Cora_ ML-LT (g) Net Science-LT (h) Power Grid-LT (i) Jazz-LT (j) Synthetic-LT

Fig. 4. The influence spread (total infected nodes) in the y-axis under the constraint of the budget with the node size growth (x-axis: 1%, 5%, 10%, and 20%). Fig. 4a-e and
Fig. 4f-j are evaluated under the IC and LT model, respectively.

(a) Cora-ML-10% (b) Cora-ML-50% (c) Cora-ML-100%

1A

s

(e) Jazz-10% (f) Jazz-ML-50% (g) Jazz-ML-100% (h) Jazz-ML-200%

Fig. 5. Seed inference by three algorithms.

nodes represent non-seed nodes. Tangelo, flavescent, and eucalyptus- 5.9. Case study: Graph diffusion visualization
colored nodes indicate the seed nodes selected by DeepIM-I, DeepIM-II,
or DeepIM-III exclusively. Lavender-colored nodes represent seed nodes

selected by all three inference methods (I, II, and III). Turquoise, In a case study depicted in Fig. 6, we illustrate the distribution of
blue, and purple nodes denote the overlap selection between the two selected seed nodes as well as the final infection status of all nodes. Blue
inference methods I+II, I+III, and II+IIL, respectively. nodes represent the initial seed nodes, red nodes signify infected nodes

during the influence spread, and grey nodes denote uninfected nodes.

10

T. Chowdhury et al.

‘o<

(c) OPIM-10%

0g o (<

(f) DeeplM-20% (g) OIM-20%

000y o

N

(h) OPIM-20%

Neural Networks 180 (2024) 106649

g ©

(d) SubSIM-10% (e) ToupleGDD-10%

(i) SubSIM-20%

(j) ToupleGDD-20%

Fig. 6. The visualization of influence spread in Jazz dataset: The size of nodes is determined by the node degree, and the color on nodes determines the infection status: blue
means the node is in seed set, red means the node is infected, and grey means the node is not infected.

We compare the influence spread outcomes for different initial seed
set sizes: 10% and 20%. For clarity, we focus on visualizing the results
for the Jazz dataset due to its smaller graph size. The visualization
strongly supports DeepIM’s superior performance in terms of achieving
extensive influence spread. Particularly noteworthy is the observation
in Figs. 6(a) and 6(f) that the final influence spread achieved by DeepIM
with different initial seed set sizes is relatively small. This implies that
DeepIM can achieve better outcomes with lower costs compared to
other methods.

6. Conclusion

This work presents a pioneering framework that addresses the In-
fluence Maximization (IM) problem with enhanced robustness and
generalization compared to existing learning-based methods. In par-
ticular, our approach seeks to comprehensively capture the intricate
characteristics of seed sets by directly characterizing their probability
distribution, thereby enabling the search for more optimal seed sets
within a continuous space. Moreover, we confront the challenge of
modeling the underlying diffusion patterns by introducing two distinct
learning-based diffusion models. These models effectively capture the
diverse dynamics of diffusion with both efficiency and efficacy, offering
a robust solution.

While our model did well at understanding the core qualities of seed
sets, it could be even better if we considered the specific features of
each seed node. These features could also help us handle situations
where some information is missing, protect user privacy, and optimize
influence maximization for groups, among other benefits.

Our framework introduces a novel objective function that accommo-
dates various constraints for seed node set inference. We provided three
different methods for seed node set inference. This versatility enables
adaptation to diverse IM application scenarios. Extensive experiments
and case studies conducted on both synthetic and real-world datasets
showecase the superiority of DeepIM over existing state-of-the-art meth-
ods in terms of maximizing influence spread. Overall, DeepIM emerges
as a promising approach that bridges the gap between traditional
IM methods and the increasingly complex requirements of real-world
influence maximization.

11

CRediT authorship contribution statement

Tanmoy Chowdhury: Investigation, Methodology, Validation, Vi-
sualization, Writing — original draft, Writing — review & editing. Chen
Ling: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Resources, Visualization, Writing — original draft, Writ-
ing — review & editing. Junji Jiang: Methodology. Junxiang Wang:
Methodology. My T. Thai: Conceptualization. Liang Zhao: Concep-
tualization, Funding acquisition, Investigation, Methodology, Project
administration, Supervision, Validation, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.

References

Ali, Khurshed, Wang, Chih-Yu, & Chen, Yi-Shin (2018). Boosting reinforcement
learning in competitive influence maximization with transfer learning. In 2018
IEEE/WIC/ACM international conference on web intelligence (pp. 395-400). IEEE.

Banerjee, Suman, Jenamani, Mamata, & Pratihar, Dilip Kumar (2020). A survey on
influence maximization in a social network. KAIS, 62(9), 3417-3455.

Barrett, Thomas, Clements, William, Foerster, Jakob, & Lvovsky, Alex (2020). Ex-
ploratory combinatorial optimization with reinforcement learning. In Proceedings
of the AAAI conference on artificial intelligence, vol. 34, no. 04 (pp. 3243-3250).

Cappart, Quentin, Chételat, Didier, Khalil, Elias B., Lodi, Andrea, Morris, Christopher,
& Velickovic, Petar (2023). Combinatorial optimization and reasoning with graph
neural networks. Journal of Machine Learning Research, 24, 130-131.

Cappart, Quentin, Moisan, Thierry, Rousseau, Louis-Martin, Prémont-Schwarz, Isabeau,
& Cire, Andre A. (2021). Combining reinforcement learning and constraint pro-
gramming for combinatorial optimization. In Proceedings of the AAAI conference on
artificial intelligence, vol. 35, no. 5 (pp. 3677-3687).

Chen, Wei, Wang, Chi, & Wang, Yajun (2010). Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proc. of the KDD (pp.
1029-1038).

Chen, Tiantian, Yan, Siwen, Guo, Jianxiong, & Wu, Weili (2022). ToupleGDD: A fine-
designed solution of influence maximization by deep reinforcement learning. arXiv
preprint arXiv:2210.07500.

http://refhub.elsevier.com/S0893-6080(24)00573-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb4
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb4
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb4
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb4
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb4
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb6
http://arxiv.org/abs/2210.07500

T. Chowdhury et al.

Chowdhury, Tanmoy, Ling, Chen, Zhang, Xuchao, Zhao, Xujiang, Bai, Guangji, Pei, Jian,
et al. (2023). Knowledge-enhanced neural machine reasoning: A review. arXiv
preprint arXiv:2302.02093.

Dolhansky, Brian W., & Bilmes, Jeff A. (2016). Deep submodular functions: Definitions
and learning. Advances in Neural Information Processing Systems, 29.

Du, Nan, Liang, Yingyu, Balcan, Maria, & Song, Le (2014). Influence function learning
in information diffusion networks. In ICML (pp. 2016-2024).

Guo, Qintian, Wang, Sibo, Wei, Zhewei, & Chen, Ming (2020). Influence maximization
revisited: Efficient reverse reachable set generation with bound tightened. In Proc.
of the SIGMOD (pp. 2167-2181).

Guo, Xiaojie, Wang, Shiyu, & Zhao, Liang (2022). Graph neural networks: Graph
transformation. In Graph neural networks: Foundations, frontiers, and applications (pp.
251-275). Springer.

Kamarthi, Harshavardhan, Vijayan, Priyesh, Wilder, Bryan, Ravindran, Balaraman,
& Tambe, Milind (2019). Influence maximization in unknown social networks:
Learning policies for effective graph sampling. arXiv preprint arXiv:1907.11625.

Kempe, David, Kleinberg, Jon, & Tardos, Eva (2003). Maximizing the spread of
influence through a social network. In Proc. of the KDD.

Kermack, William Ogilvy, & McKendrick, Anderson G. (1927). A contribution to the
mathematical theory of epidemics. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 115(772), 700-721.

Khalil, Elias, Dai, Hanjun, Zhang, Yuyu, Dilkina, Bistra, & Song, Le (2017). Learning
combinatorial optimization algorithms over graphs. Advances in Neural Information
Processing Systems, 30.

Kipf, Thomas N., & Welling, Max (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kumar, Sanjay, Mallik, Abhishek, Khetarpal, Anavi, & Panda, B. S. (2022). Influence
maximization in social networks using graph embedding and graph neural network.
Information Sciences, 607, 1617-1636.

Lei, Siyu, Maniu, Silviu, Mo, Luyi, Cheng, Reynolds, & Senellart, Pierre (2015). Online
influence maximization. In Proc. of the KDD.

Leskovec, Jure, Krause, Andreas, Guestrin, Carlos, Faloutsos, Christos, Van-

Briesen, Jeanne, & Glance, Natalie (2007). Cost-effective outbreak detection in

networks. In Proc. of the KDD.

Zhuwen, Chen, Qifeng, & Koltun, Vladlen (2018). Combinatorial optimization

with graph convolutional networks and guided tree search. Advances in Neural

Information Processing Systems, 31.

Yuchen, Fan, Ju, Wang, Yanhao, & Tan, Kian-Lee (2018). Influence maximization

on social graphs: A survey. TKDE, 30(10), 1852-1872.

Xiang, Smith, J. David, Dinh, Thang N., & Thai, My T. (2019). Tiptop:(almost)

exact solutions for influence maximization in billion-scale networks. IEEE/ACM

Transactions on Networking, 27(2), 649-661.

Hui, Xu, Mengting, Bhowmick, Sourav S., Rayhan, Joty Shafig, Sun, Changsheng,

& Cui, Jiangtao (2022). PIANO: Influence maximization meets deep reinforcement

learning. IEEE Transactions on Computational Social Systems.

Hui, Xu, Mengting, Bhowmick, Sourav S., Sun, Changsheng, Jiang, Zhongyuan, &

Cui, Jiangtao (2019). Disco: Influence maximization meets network embedding and

deep learning. arXiv preprint arXiv:1906.07378.

Lin, Yishi, Chen, Wei, & Lui, John C. S. (2017). Boosting information spread: An
algorithmic approach. In 2017 IEEE 33rd international conference on data engineering
(pp. 883-894).

Lin, Su-Chen, Lin, Shou-De, & Chen, Ming-Syan (2015). A learning-based framework
to handle multi-round multi-party influence maximization on social networks. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 695-704).

Ling, Chen, Cao, Hengning, & Zhao, Liang (2023). Stgen: Deep continuous-time
spatiotemporal graph generation. In Machine learning and knowledge discovery in
databases: European conference, ECML PKDD 2022, Grenoble, France, September
19-23, 2022, proceedings, part III (pp. 340-356).

Ling, C., Chowdhury, T., Jiang, J., Wang, J., Zhang, X., Chen, H., et al. (2022).
DeepGAR: Deep graph learning for analogical reasoning. In 2022 IEEE international
conference on data mining (pp. 1065-1070).

Ling, Chen, Jiang, Junji, Wang, Junxiang, Thai, My T., Xue, Renhao, Song, James,
et al. (2023). Deep graph representation learning and optimization for influence
maximization. In International conference on machine learning (pp. 21350-21361).
PMLR.

Ling, Chen, Jiang, Junji, Wang, Junxiang, & Zhao, Liang (2022). Source localization of
graph diffusion via variational autoencoders for graph inverse problems. In Proc.
of the KDD.

Ling, Chen, Yang, Carl, & Zhao, Liang (2021). Deep generation of heterogeneous
networks. In 2021 IEEE international conference on data mining (pp. 379-388). IEEE.

Ling, Chen, Yang, Carl, & Zhao, Liang (2023). Motif-guided heterogeneous graph deep
generation. Knowledge and Information Systems, 1-26.

Manchanda, Sahil, Mittal, Akash, Dhawan, Anuj, Medya, Sourav, Ranu, Sayan, &
Singh, Ambuj (2019). Learning heuristics over large graphs via deep reinforcement
learning. arXiv preprint arXiv:1903.03332.

Li,

Li,

Li,

Li,

12

Neural Networks 180 (2024) 106649

McCallum, Andrew Kachites, Nigam, Kamal, Rennie, Jason, & Seymore, Kristie (2000).
Automating the construction of internet portals with machine learning. Information
Retrieval, 3(2), 127-163.

Nguyen, Hung T., Thai, My T., & Dinh, Thang N. (2016). Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks. In Proc. of the
SIGMOD.

Nguyen, Hung T., Thai, My T., & Dinh, Thang N. (2017). A billion-scale approximation
algorithm for maximizing benefit in viral marketing. IEEE/ACM Transactions on
Networking, 25(4), 2419-2429.

Nowak, Alex, Villar, Soledad, Bandeira, Afonso S., & Bruna, Joan (2018). Revised note
on learning quadratic assignment with graph neural networks. In 2018 IEEE data
science workshop (pp. 1-5). IEEE.

Panagopoulos, George, Malliaros, Fragkiskos, & Vazirgiannis, Michalis (2020). Multi-
task learning for influence estimation and maximization. IEEE Transactions on
Knowledge and Data Engineering.

Rossi, Ryan A., & Ahmed, Nesreen K. (2015). The network data repository with
interactive graph analytics and visualization. In AAAL

Saito, Kazumi, Kimura, Masahiro, Ohara, Kouzou, & Motoda, Hiroshi (2012). Efficient
discovery of influential nodes for SIS models in social networks. Knowledge and
Information Systems, 30(3), 613-635.

Sartori, Camilo Chacén, & Blum, Christian (2022). Boosting a genetic algorithm with
graph neural networks for multi-hop influence maximization in social networks.
In 2022 17th conference on computer science and intelligence systems (pp. 363-371).
IEEE.

Tang, Youze, Shi, Yanchen, & Xiao, Xiaokui (2015). Influence maximization in
near-linear time: A martingale approach. In Proc. of the SIGMOD.

Tang, Jing, Tang, Xueyan, Xiao, Xiaokui, & Yuan, Junsong (2018). Online processing
algorithms for influence maximization. In Proc. of the SIGMOD (pp. 991-1005).
Tang, Youze, Xiao, Xiaokui, & Shi, Yanchen (2014). Influence maximization: Near-
optimal time complexity meets practical efficiency. In Proc. of the SIGMOD (pp.

75-86).

Tian, Shan, Mo, Songsong, Wang, Liwei, & Peng, Zhiyong (2020). Deep reinforcement
learning-based approach to tackle topic-aware influence maximization. Data Science
and Engineering, 5(1), 1-11.

Vaswani, Sharan, Kveton, Branislav, Wen, Zheng, Ghavamzadeh, Mohammad, Laksh-
manan, Laks V. S., & Schmidt, Mark (2017). Model-independent online learning
for influence maximization. In ICML.

Veli¢kovié, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Lio, Pietro, &
Bengio, Yoshua (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Vesselinova, Natalia, Steinert, Rebecca, Perez-Ramirez, Daniel F., & Boman, Magnus
(2020). Learning combinatorial optimization on graphs: A survey with applications
to networking. IEEE Access, 8, 120388-120416.

Wang, Yanhao, Fan, Qi, Li, Yuchen, & Tan, Kian-Lee (2017). Real-time influence
maximization on dynamic social streams. arXiv preprint arXiv:1702.01586.

Wang, Shiyu, Guo, Xiaojie, & Zhao, Liang (2022). Deep generative model for periodic
graphs. Advances in Neural Information Processing Systems, 35.

Wang, Junxiang, Jiang, Junji, & Zhao, Liang (2022). An invertible graph diffusion
neural network for source localization. In Proceedings of the ACM web conference
2022 (pp. 1058-1069).

Wang, Junxiang, Li, Hongyi, Chai, Zheng, Wang, Yongchao, Cheng, Yue, & Zhao, Liang
(2022). Toward quantized model parallelism for graph-augmented MLPs based on
gradient-free ADMM framework. IEEE Transactions on Neural Networks and Learning
Systems, 1-11.

Wu, Zonghan, Pan, Shirui, Chen, Fengwen, Long, Guodong, Zhang, Chengqi, & Philip, S.
Yu (2020). A comprehensive survey on graph neural networks. IEEE TNNLS, 32(1),
4-24.

Xia, Wenwen, Li, Yuchen, Wu, Jun, & Li, Shenghong (2021). Deepis: Susceptibility
estimation on social networks. In Proc. of the WSDM (pp. 761-769).

Xu, Keyulu, Hu, Weihua, Leskovec, Jure, & Jegelka, Stefanie (2018). How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826.

Yang, Liang, Gu, Junhua, Wang, Chuan, Cao, Xiaochun, Zhai, Lu, Jin, Di, et al. (2020).
Toward unsupervised graph neural network: Interactive clustering and embedding
via optimal transport. In 2020 IEEE international conference on data mining (pp.
1358-1363). IEEE.

Yang, Lan, Li, Zhiwu, & Giua, Alessandro (2020). Containment of rumor spread in
complex social networks. Information Sciences, 506, 113-130.

Ye, Mao, Liu, Xingjie, & Lee, Wang-Chien (2012). Exploring social influence for
recommendation: a generative model approach. In Proc. of the SIGIR (pp. 671-680).

Zhang, Cai, Li, Weimin, Wei, Dingmei, Liu, Yanxia, & Li, Zheng (2022). Network dy-
namic GCN influence maximization algorithm with leader fake labeling mechanism.
IEEE Transactions on Computational Social Systems.

Zhang, Zheng, & Zhao, Liang (2022). Unsupervised deep subgraph anomaly detection.
In 2022 IEEE international conference on data mining (pp. 753-762). IEEE.

Zhou, Jie, Cui, Ganqu, Hu, Shengding, Zhang, Zhengyan, Yang, Cheng, Liu, Zhiyuan,
et al. (2020). Graph neural networks: A review of methods and applications. Al
Open, 1, 57-81.

http://arxiv.org/abs/2302.02093
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb9
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb9
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb9
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb12
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb12
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb12
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb12
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb12
http://arxiv.org/abs/1907.11625
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb16
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb24
http://arxiv.org/abs/1906.07378
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb33
http://arxiv.org/abs/1903.03332
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb35
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb35
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb35
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb35
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb35
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb47
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb49
http://arxiv.org/abs/1702.01586
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb55
http://arxiv.org/abs/1810.00826
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb59
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb59
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb59
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb60
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb60
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb60
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb60
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb60
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb61
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb61
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb61
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb62
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb62
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb62
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb62
http://refhub.elsevier.com/S0893-6080(24)00573-2/sb62

	Deep graph representation learning for influence maximization with accelerated inference
	Introduction
	Related Work
	Learning-based Influence Maximization
	Graph Neural Network
	Combinatorial Optimization with GNNs

	Problem Formulation
	DeepIM
	Learning Representation of Seed Set
	Learning Probability over Seed Nodes.
	Learning the End-to-end Diffusion Model
	Knowledge Distillation for Diffusion Estimation Efficiency.
	End-to-end Learning Objective.

	Seed Node Set Inference
	Implementation by Iterative Process. (DeepIM-I)
	Implementation by supervised manner (DeepIM-II)
	Implementation by unsupervised manner (DeepIM-III)

	Experiment
	Datasets
	Experimental Setup
	Comparison Method.
	Quantitative Analysis
	IM under IC Model.
	IM under LT Model.
	IM under Non-progressive Diffusion Model.

	Scalability Analysis
	Timing Analysis
	IM with Budget Constraint.
	Case Study: Inferred Seed Analysis
	Case Study: Graph Diffusion Visualization

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

