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Abstract
Semantic trajectories, which enrich spatial-temporal data with tex-
tual information such as trip purposes or location activities, are
key for identifying outlier behaviors critical to healthcare, social
security, and urban planning. Traditional outlier detection relies
on heuristic rules, which requires domain knowledge and limits its
ability to identify unseen outliers. Besides, there lacks a compre-
hensive approach that can jointly consider multi-modal data across
spatial, temporal, and textual dimensions. Addressing the need for
a domain-agnostic model, we propose the Transferable Outlier De-
tection for Human Semantic Trajectories (TOD4Traj) framework.
TOD4Traj first introduces a modality feature unification module to
align diverse data feature representations, enabling the integration
of multi-modal information and enhancing transferability across
different datasets. A contrastive learning module is further pro-
posed for identifying regular mobility patterns both temporally and
across populations, allowing for a joint detection of outliers based
on individual consistency and group majority patterns. Our experi-
mental results have shown TOD4Traj’s superior performance over
existing models, demonstrating its effectiveness and adaptability in
detecting human trajectory outliers across various datasets.
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Figure 1: A semantic trajectory of a user including location
trajectory and semantic information of points of interest.
For each ‘check-in’ location in the figure, there exists an
associated text description of location information.

1 Introduction
A semantic trajectory [36] is a sequence of time-ordered locations
where each location is associated with a semantic label like the
type of place of interest. A stylized example of a semantic trajec-
tory is shown in Figure 1. It shows a one-day trajectory of a single
user starting the day at home and visiting various places of inter-
est (POIs) such as restaurants, a university, and recreational sites.
Knowledge discovery in semantic trajectory data has been stud-
ied in the past [1] with a main focus on location prediction [48].
An important research problem that has received comparatively
little attention, due to a lack of available ground truth data, is the
problem of outlier detection in semantic trajectories. Yet, detecting
semantic trajectory outliers may indicate a change in individual
human behavior which has many important applications such as:
(1) Infectious Disease Monitoring. A sudden change in behavior such
as skipping the sports center or not going to work may indicate
that a person is feeling unwell long before severe symptoms arise,
infectious disease tests may detect a contagion, and even before
the person is consciously aware of feeling unwell themselves. Such
information may be leveraged for an early-warning system in cases
where the person may have been exposed through a contact-tracing
system [23, 32, 37].
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(2) Elderly Monitoring. GPS-enabled smart-watch technology can be
used to monitor the movement of elderly users [42]. In particular,
if the monitored user is showing early signs of dementia, her/his
trajectories could show an abrupt change from her/his movement
history [44]. Detecting outliers in elder trajectories (and underly-
ing behavior) may thus assist in early-detection and progression-
monitoring of dementia.

What makes semantic trajectory outlier detection a challenging
research problem is complexity of humans and their mobility [33,
34] that outliers may have many shapes and forms: Such as spatial
outliers of an individual going to unusually distance POIs, temporal
outliers of having individuals visit places at unusual times (such as
visiting a restaurant in the middle of the night), or semantic outliers
(such as an individual who does not normally drink alcohol visit
a bar). An additional problem is that “one person’s noise could be
another person’s signal” [25]. To illustrate these challenges, Figure 2
shows stylized trajectories of two example users. User 1’s normal
patterns of life including going to a university in addition to going
to his home, nearby restaurants, and a gas station. User 2 lives in a
different area and works at a courthouse. An example of a spatial
outlier for User 2 may be going to a restaurant that is unusually
far away. A semantic outlier for User 1 could be going to the same
courthouse that User 2 works at. But since User 1 does not normally
go to a courthouse, such a visit could be a deviation from the user’s
normal patterns of life while the same POI is normal for User 2.

Traditional methods for trajectory outlier detection [6, 7, 31, 49]
predominantly rely on heuristic-based rules to identify specific
types of outliers, necessitating domain-specific knowledge and
limiting the detect of previously unseen outlier behaviors. An-
other challenge for semantic trajectory outlier detection is a lack of
publicly available datasets. Commonly used (semantic) trajectory
datasets such as GeoLife [55] trajectories and Location-Based Social
Network Check-in Data [26] are very sparse, having very few daily
trajectories for a specific region or city [21] and lack ground truth
outlier labels. Therefore, an open research gap is to transfer an
outlier detection model trained on a data-rich city or region (such
as a simulated city) to new regions where no ground truth data is
available without compromising performance. Current methodolo-
gies frequently employ manually crafted spatial-temporal features,
which are usually domain-dependent and lack transfer ability across
different domains.

To overcome these limitations, we introduce a Transferable
Outlier Detection framework for Human Semantic Trajectories
(TOD4Traj). This framework starts with a modality feature unifi-
cation module designed to align spatial-temporal and textual data
representations. This alignment facilitates the seamless integration
of multi-modal data, and enhancing the model’s applicability across
different datasets. Additionally, we introduce a unique temporal
contrastive learning module designed to represent trajectories by
capturing the repetitive nature of mobility patterns. Consequently,
outlier degrees are determined by considering both the consistency
of an individual’s behavior and the prevalent patterns among the
majority. To enable other researchers to explore the field of seman-
tic trajectory outlier detection, we make available two types of
datasets for benchmarking, including a dataset obtained by system-
atically including outliers in the GeoLife real-world dataset, and

Figure 2: An example of spatial and semantic outliers. A
spatial outlier for User 2 may be going to a restaurant that is
unusually far away. A semantic outlier for User 1 could be
going to the same courthouse that User 2 works at.

many datasets obtained through a city-level agent-based simulation
of patterns of life [57]. Our experimental findings demonstrate that
TOD4Traj substantially surpasses existing models in performance,
thereby proving its effectiveness and adaptability in detecting out-
liers in varied human trajectory datasets.

In general, the contribution of this paper can be summarized
into three main points. (1) We proposed a feature-level contrastive
learning technique to integrate multi-modal information across
spatial, temporal, and semantic dimensions; (2) A trajectory-level
contrastive learning module to model the repetitiveness of human
mobility patterns; (3) An outlier quantification module to simultane-
ously measure cross-time and cross-population abnormal behaviors.
The remainder of this work is organized as follows: We begin by
discussing existing human semantic trajectory outlier detection
algorithms in the Section 2. This is followed by a formal problem
definition and an introduction to the notations in the Section 3.
Subsequently, in the Section 4, we delve into the motivation be-
hind our approach and discuss the specific techniques employed.
A thorough description of the datasets utilized in our experiments
is provided next in the Section 5.1. We conclude with comprehen-
sive experimental results, assessing aspects such as effectiveness,
robustness, sensitivity, and efficiency in Section 5.

2 Related Works
Outlier detection in trajectory data. A crucial aspect of spatio-
temporal data analysis, outlier detection is essential for effectively
analyzing trajectory information [16, 29]. This technique has seen
widespread used in a variety of fields, encompassing applications
in wireless sensor networks [39, 51], climate monitoring, and trans-
portation management [31, 46]. Surveys of traditional trajectory
outlier detection algorithms can be found in [7, 31]. Important ex-
amples of such algorithms include [43] where the authors us a
transfer learning approach to find outliers in areas where only a
small set of trajectories are observed. In [13], the authors propose
an entropy-based method designed specifically for outlier detection
in scenarios where the training data contains only a few positive
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instances. In [41], a real-time urban traffic outlier detection sys-
tem that leverages both individual and group outlier detection was
proposed. However, these approaches all aim at finding outliers
in traditional trajectories defined by sequences of geo-locations
without using any semantic information of the visited locations.

Contrastive learning has emerged as a promising technique in
the field of unsupervised representation learning [17]. The core idea
behind contrastive learning is to exploit the relationships between
samples to learn meaningful representations. By contrasting posi-
tive pairs (similar samples) with negative pairs (dissimilar samples),
it aims to map similar samples closer in the latent space while push-
ing dissimilar samples further apart. This approach obviate the need
for explicit annotations or labels, making it particularly suitable for
scenarios with limited labeled data. Numerous contrastive learning
methods have been proposed, such as InfoNCE [35], SimCLR [10],
and MoCo [19]. These methods have demonstrated impressive re-
sults in various domains, including computer vision and natural
language processing, showcasing that contrastive learning as a pow-
erful tool for unsupervised representation learning. However, the
exploration of contrastive learning in the domain of semantic trajec-
tories remains largely unexplored due to the inherent complexity
and unstructured nature of trajectory data.

Semantic Trajectory Representationmethods can be grouped
into 1) location-level semantic information [9, 11, 52, 53] which
associate each visited point of interest (or staypoint) with semantic
information and 2) trajectory-level semantic information [28, 40]
which associate an entire trajectory with a semantic label. Our
approach uses the more general cases of location-level semantic
information. Existing work on semantic trajectories has tackled
important tasks such as semantic trajectory prediction [47, 48] and
clustering [27]. However, to the best of our knowledge, no work has
tackled the problem of finding outliers in semantic trajectories. One
possible reason for the lack of existing research in this field is the
lack of semantic trajectory data that includes outlier information.
In this work, we fill this gap by 1) creating simulated semantic
trajectory datasets where outlier information is directly included
in the semantic trajectory generation, 2) providing a real-data set
of semantic trajectory outliers based on the existing GeoLife [55]
data, and 3) proposing a first approach towards outlier detection in
semantic trajectories.

3 Preliminaries
A semantic trajectory of an individual user can be represented
as a sequential list of staypoints denoted by T = {p1 → p2 →
· · · → pn}, where each staypoint pi = (𝑠𝑖 ; 𝑡𝑖 ; 𝑐𝑖 ) includes a spatial
coordinate 𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 ), a timestamp 𝑡𝑖 , and a semantic location class
𝑐𝑖 . Here, 𝑛 is the total count of staypoints in a trajectory. The spatial
coordinates 𝑠𝑖 specify the longitude 𝑥𝑖 and latitude 𝑦𝑖 positions,
while the semantic class 𝑐𝑖 identifies the type of location, such as
restaurant or apartment, through descriptive text. A sub-trajectory
ofT , denoted as𝑇 (𝑖, 𝑗 ) ⊆ T , can be formally defined as a contiguous
segment of staypoints from T . This subset is represented as𝑇 (𝑖, 𝑗 ) =
{pi → pi+1 → · · · → pj}, where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and 𝑖, 𝑗 are
indices within the original sequence T . This definition captures
a portion of the user’s trajectory, maintaining the chronological
and spatial integrity of the original sequence. To encompass the
collection of trajectories from multiple users, let U be the set of

all users. We denote the entire set of all users as a database DB =

{T1,T2, . . . ,T|U | }, where |U| denotes the total number of users.
Thus, each T𝑢 ∈ DB represents a sequence of semantic trajectories
of a distinct user 𝑢.

Given the above definitions, here we formally formulate the
semantic trajectory outlier detection problems:
Problem 1. Cross-Time Semantic Trajectory Outlier Detec-
tion. Given a user 𝑢 from the user set U and their set of trajecto-
ries T𝑢 in database DB, the task is to identify outlier trajectories
𝑇𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ⊆ T𝑢 that exhibit significant deviation from the user’s typi-
cal trajectory patterns over different time periods. These deviations
are quantified using a score function 𝑓𝑡 , which measures the degree
of outlierness relative to the user’s historical trajectory data.
Problem 2. Cross-Population Semantic Trajectory Outlier De-
tection. For each user 𝑢 ∈ U, let T𝑢 represent their set of trajectories.
The task involves identifying outlier trajectories 𝑇𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ⊆ T𝑢 that
diverge significantly from the majority pattern set M, derived from
aggregating trajectories across all users in U. Outlier detection is
based on a score function 𝑓𝑝 , which evaluates the extent of deviation
from common patterns observed across the population.

This goal presents several unique challenges: (1) Difficulty in
seamlessly integrating multi-modal information across spa-
tial, temporal, and semantic dimensions. Each modality carries
unique and critical information about user behaviors and patterns.
Considering the interactions among data from various modalities is
essential for a comprehensive identification of complex outliers. (2)
Difficulty in tracking temporal shift in user behaviors. Hu-
man behavior is dynamic and can change due to numerous factors
such as personal preferences, environmental changes, and social in-
fluences. Existing methods typically use rule-based methods, which
is insufficient to handle unseen pattern shifts. Capturing these
evolving patterns over time, especially in a way that accurately
reflects significant shifts, demands advanced modeling techniques.
(3) Difficulty in analyzing varied user behaviors across pop-
ulations. An outlier may also occur when the trajectory pattern
of an individual diverges significantly from the majority pattern
observed across the broader population. The difficulty in detecting
such outliers stems from the variability in behavior patterns and
scalability issues with algorithms.

4 Methodology
In this section, we propose Transferable Outlier Detection for Hu-
man Semantic Trajectories (TOD4Traj) framework. Notably, our
method can identify outlier behaviors without the need for labeled
data. Our framework is composed of three modules: (1) To integrate
the modality features across spatial, temporal and semantic dimen-
sions, we developed a Spatial Temporal-to-Semantic contrastive
learning strategy that aligns representations from disparate sources
into a unified feature space, enhancing the detection of joint anom-
alies. Furthermore, by aligning spatial-temporal information with
semantic data, we facilitate the transferability of spatial-temporal
features across different datasets; (2) To effectively monitor changes
in user behaviors over time, we employ a temporal contrastive learn-
ing approach that identifies the repetitiveness of human mobility
patterns. This technique, produces trajectory-level embeddings,
seamlessly merging spatial-temporal and semantic data from trajec-
tory sequences. (3) To identify abnormal trajectory patterns across
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users’ behaviors, we have implemented a comparative analysis
framework that leverages population-wide mobility trends. This
framework compares individual trajectories with collective popula-
tion behaviors, allowing for the detection of outliers that diverge
from majority patterns.
4.1 Modality Alignment through Spatial

Temporal-to-Semantic Contrastive Learning
In order to fully exploit the compatibility between semantic informa-
tion and spatio-temporal information carried by the semantic infor-
mation, it is crucial to enable cross-modal alignment. In this section,
we developed a Spatial-Temporal to Semantic Contrastive Learn-
ing module, which aimed at integrating various data modalities.
The core concept involves identifying the co-occurrence patterns
within different modalities as observed in semantic spatial-temporal
trajectories. Through this approach, we achieve the alignment of
data across modalities into a unified, semantically-enriched, high-
dimensional embedding feature space.

To effectively align spatio-temporal information with semantic
information into a unified, semantically-enriched, high-dimensional
embedding feature space, we utlize the co-occurrence patterns
within different modalities as observed in trajectories. We adopt nat-
ural language of semantic information as supervision labels, lever-
aging its distinct advantages over other data sources. The primary
aim of this technique is to learn a mapping that converts spatio-
temporal information into natural language semantics embeddings,
thereby harnessing their inherent coexistence pattern. For example,
this technique aims to closely associate time-specific phrases like
“Friday 6PM”with contextually relevant semantic labels, such as “en-
tertainment place”. Similarly, it seeks to connect physical locations
visited with their semantic significance, enhancing the model’s
ability to interpret and utilize the feature embeddings meaningfully.
Specifically, the Spatial-Temporal to Semantic Contrastive Learning
module is designed to align the spatial-temporal representation
with the semantic representation of the same trajectory point, aim-
ing to maximize their mutual information. This process involves
enhancing the similarity between spatial-temporal and semantic
representations of a positive pair relative to that of negative pairs.

Formally, given a user 𝑢 from the user setU and its set of trajec-
tories T𝑢 , we explicitly link each spatial-temporal information 𝑠𝑖 , 𝑡𝑖
with its corresponding semantic class 𝑐𝑖 within the same staypoint
pi. Thus, we define the positive set P as:

P(𝑢) = {(𝑠𝑖 , 𝑡𝑖 ; 𝑐𝑖 ) | 𝑠𝑖 , 𝑡𝑖 , 𝑐𝑖 ∈ pi,∀pi ∈ T𝑢 }, (1)

and the negative set contains the pairing of a spatial-temporal in-
formation 𝑠𝑖 , 𝑡𝑖 with the semantic class 𝑐 𝑗 from a different staypoint,
which can be defined as:

N(𝑢) = {(𝑠𝑖 , 𝑡𝑖 ; 𝑐 𝑗 ) | 𝑠𝑖 , 𝑡𝑖 ∈ pi, 𝑐 𝑗 ∈ pj, 𝑖 ≠ 𝑗, pi, pj ∈ T𝑢 }. (2)

To encourage the similarity between the positive pairs and dis-
similarity between negative pairs, we introduce the following con-
trastive learning objective function:

LAlign = −
∑︁

(𝑠𝑖 ,𝑡𝑖 ;𝑐𝑖 ) ∈P (𝑢 )
log

𝑒sim(dci ,dti )/𝜏∑
(𝑠 𝑗 ,𝑡 𝑗 ;𝑐 𝑗 ) ∈P (𝑢 )∪N(𝑢 ) 𝑒

sim(dci ,dtj )/𝜏

+ log
𝑒sim(dci ,dsi )/𝜏∑

(𝑠 𝑗 ,𝑡 𝑗 ;𝑐 𝑗 ) ∈P (𝑢 )∪N(𝑢 ) 𝑒
sim(dci ,dsj )/𝜏

,

(3)

where dci is the embedding from the text encoder for the semantic
class 𝑐𝑖 , and dsi and dti are the embeddings produced by the spatial-
temporal encoder for the spatial-temporal information 𝑠𝑖 and 𝑡𝑖 ,
respectively. The function sim(·, ·) computes the similarity between
pair embeddings from different modalities, and 𝜏 is a temperature
scaling parameter that controls the separation of distributions.

In more details, a frozen pre-trained language model (e.g. BERT)
is utilized to project textual information 𝑐𝑖 𝑗 into a vectorized text
representation: d𝑐𝑖 = PLM(𝑐𝑖 ), where d𝑐𝑖 𝑗 is the hidden representa-
tion of the [CLS] token computed from the last layer of the PLM
(pretrained language model) encoder.

To align the spatial temporal information to the semantic em-
beddings from PLM encoder, we develop two learnable mapping
modulesM𝑠 andM𝑡 to transform the spatial and temporal infor-
mation to the semantic embedding space. Specifically, the trans-
formed temporal embeddings can be represented as d𝑡𝑖 = M𝑡 (𝑡𝑖 ),
and the transformed spatial embeddings can be represented as
d𝑠𝑖 = M𝑠 (𝑠𝑖 ).

Why adopting natural language embeddings as the super-
vision labels? An advantage of adopting natural language supervi-
sion is because it is inherently scalable and easily interpretable by
humans, unlike spatiotemporal labels. This approach also benefits
from the rapid advancement in languagemodels, enabling the gener-
alization to unseen labels. For example, through our approach, once
the model learns to associate a specific time stamp, such as 6 pm, or
a defined area with certain locations like McDonald’s, it gains the
ability to generalize this knowledge. Consequently, the model can
recognize and associate similar time or region patterns with other
fast-food stores like Burger King without requiring further specific
training. This method not only simplifies the learning process but
also enhances the model’s ability to apply learned concepts to new,
yet related scenarios, thereby increasing its effectiveness in under-
standing and interpreting complex spatiotemporal and semantic
relationships.
4.2 Modeling Semantic Trajectories through

Regular Pattern Contrastive Learning
After aligning the embedding vectors to encapsulate both spatial-
temporal and semantic data, we focus on developing a framework
that aggregates these point-level embeddings into coherent trajectory-
level representations. A key observation in humanmobility patterns
is the temporal consistency in an individual’s activities [15]. This
consistency is evident in the recurring nature of activities and
mobility patterns on specific days of the week, mirroring similar
behaviors on equivalent days in history. For instance, the behavior
of a user on the current workday is often similar to the activities
performed on previous workdays. This self-consistency extends to
other days of the week as well.
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Figure 3: The illustration of our proposedmodel framework. (Top&Bottom) Extraction of spatio-temporal semantic embeddings
from input trajectories; (Middle left) Contrastive learning based on human semantic trajectory periodicity; (Middle right)
Quantification of trajectory anomaly scores based on dissimilarity between train and test embeddings.

Recognizing this consistent nature, we are inspired to incor-
porate two self-supervised learning tasks into our framework: (a)
classifying if two daily trajectories were generated by the same user,
and (b) classifying if two trajectories of the same user were gener-
ated on the same days of the week. The intricacies of this approach
are depicted in Figure 3, which illustrates how the consistency in
trajectories is leveraged to enhance the learning process.

Formally, large trajectories of each user are segmented into in-
dividual daily trajectories. For each user 𝑢 we observe a set of
trajectories T𝑢 = [𝑇𝑢,1, ...,𝑇𝑢,𝐷𝑢

] where each trajectory 𝑇𝑢,𝑑 ∈ T𝑢
corresponds to the 𝑑’th daily trajectory of the user 𝑢 and 𝐷𝑢 de-
notes the number of daily trajectories observed for the user 𝑖 . Each
daily trajectory, denoted by 𝑇𝑢,𝑑 , 𝑑 ∈ [1, 𝐷𝑢 ], is constituted by the
unique locations visited by the user 𝑢 within the date 𝐷𝑢 .

To generate daily-level embeddings from distinct spatial, tempo-
ral, and semantic embeddings, we employ a deep sequential encoder
𝑓 : 𝑇 → z to map each daily trajectory 𝑇𝑢,𝑑 ∈ T𝑢 ∈ DB of the user
𝑢 into latent high-dimensional embeddings. This stage involves
the extraction of sequentially organized spatio-temporal-semantic
information from each daily trajectory, transforming them into
meaningful representations. We present our model as a general
framework, accommodating various commonly employed deep se-
quential models as potential encoders. This flexibility allows for
the incorporation of classical models such as Recurrent Neural Net-
works (RNN) or modern architectures like Transformers. In our
experimental evaluation, we explore different encoder models to
verify the framework generalizability.

Finally, as illustrated in the left (green shade) of Figure 3, consider
a set of daily trajectories T𝑢 belonging to the user 𝑢. For a specific
daily trajectory 𝑇𝑢,𝑑 ∈ T𝑢 , we construct the positive set of samples
with other days corresponding to the same intrinsic pattern (e.g. a
working Monday). For notational simplicity, we denote the set of

days sharing the same pattern as

D(𝑑) = {𝑑 + 𝑓 𝑞 |𝑞 ∈ Z \ {0}, 1 ≤ 𝑑 + 𝑓 𝑞 ≤ 𝐷𝑢 }, (4)

where 𝑓 is the frequency of repeating the same pattern (e.g. 𝑓 = 7
for a weekly repetition). Therefore, the positive pairs set S can be
denoted as

S(𝑇𝑢,𝑑 ) = {𝑇𝑢,𝑑 ′ |𝑑′ ∈ D(𝑑)} (5)
Conversely, for constructing negative pairs, we sample from

other users and weekdays that do not align with the target day,
which is denoted as

I(𝑇𝑢,𝑑 ) = {𝑇𝑣,𝑑∗ |𝑣 ∈ V, 𝑣 ≠ 𝑢,𝑑∗ ∉ D(𝑑)} (6)

To operationalize the contrastive learning, without loss of gen-
erality, the objective function can be written as:

LConsistency = −
∑︁
𝑢∈U

∑︁
𝑑∈[1,𝐷𝑢 ]

log
𝑠pos (𝑇𝑢,𝑑 )

𝑠pos (𝑇𝑢,𝑑 ) + 𝑠neg (𝑇𝑢,𝑑 )
,

𝑠pos (𝑇𝑢,𝑑 ) =
∑︁

𝑇𝑢,𝑑′ ∈S(𝑇𝑢,𝑑 )
𝑒sim(z(𝑇𝑢,𝑑 ),z(𝑇𝑢,𝑑′ ) )/𝜍

𝑠neg (𝑇𝑢,𝑑 ) =
∑︁

𝑇𝑢,𝑑∗ ∈I(𝑇𝑢,𝑑 )
𝑒sim(z(𝑇𝑢,𝑑 ),z(𝑇𝑢,𝑑∗ ) )/𝜍

(7)

where z(·) denotes the daily-level trajectory embeddings, and 𝜍 is
the temperature parameter. The negative samples are chosen from
the embeddings corresponding to different users and different days
of the week, thereby ensuring the maximization of dissimilarity
among the selected negative samples.

We acknowledge that this self-supervised approach which uses
the task of classifyingwhether two trajectories 1) belong to the same
user and 2) from the same day-of-the-week may incur confusion
in for special cases such as holidays, where a holiday-Thursday
may be more similar to a Sunday for some users. However, the
dissimilarity between users should remain high, as different users
will have different home locations, different work locations (during
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work days), and different favorite locations. Thus, there should still
be substantial contrast between a positive sample that suffers from
confusion due to holidays and a negative sample between different
users (and different days-of-the-week).
4.3 Quantification of Outlier Scores
Given the trained contrastive model that can extract human mo-
bility pattern behavior from both spatial-temporal and semantic
information, we now focus on the process of quantifying the degree
of being abnormal. It is important to recognize that outliers may
occur both cross-time or cross-population, as defined in Section 3.
Intuitively, a cross-time outlier is indicated when a user’s current
trajectory pattern significantly deviates from their historical pat-
terns. Conversely, a cross-population outlier is suggested when
this pattern markedly differs from those of whole populations. This
dual-focus analysis allows for a comprehensive understanding of de-
viations in mobility behavior, while existing methods [6, 18, 30, 49]
typically only focus on one kind of the outliers.

To detect both cross-time and cross-population outliers, a straight-
forward approach involves comparing the user’s current trajectory
embedding with their past trajectory embeddings and those of other
users. However, this method faces significant challenges. Measuring
global mismatches comprehensively would necessitate calculating
the pairwise similarity for every user pair, leading to a quadratic
increase in computational complexity. To circumvent this issue,
we suggest leveraging the low-rank properties of human mobility
patterns for measuring outliers. Typically, human mobility patterns
exhibit low-rank characteristics in large user sets, attributed to the
regularity of human behaviors. Individuals generally adhere to a
limited range of routines and visit a restricted set of locations con-
sistently, resulting in repetitive movement patterns across a broad
population. This uniformity means the entire dataset of human
movements can be effectively summarized by a small set of core
factors or dimensions, reflecting its low-rank nature.

Unfortunately, applying traditional low-rank techniques like
Singular Value Decomposition (SVD) directly to this problem in-
troduces generalization issues with new data, making it unsuitable
for online detection methods. Furthermore, SVD demands consid-
erable computational resources, presenting a significant challenge
for efficient implementation.

To effectively harness the low-rank property within the entire
dataset of human movement trajectories, we introduce a soft clus-
tering objective into our overall training objective function. By
optimizing a small set of clustering centroids, we aim to capture the
essence of low-rank movement patterns. Consequently, the prox-
imity of each trajectory to its nearest clustering centroid serves
as a measure of its deviation from the mainstream patterns in the
dataset. This distance becomes a crucial indicator for assessing
the degree of abnormality, with greater distances suggesting more
significant deviations from typical movement behaviors.

Formally, given a set of 𝐾 ≪ |U| learnable centroids {b𝑘 |𝑘 ∈
[1, 𝐾]}, the soft clustering objective function can be written as:

L𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 =
∑︁
𝑢∈U

∑︁
𝑑∈[1,𝐷𝑢 ]

∑︁
𝑘∈[1,𝐾 ]

𝛿
(𝑘 )
𝑢,𝑑

ℓ (z(𝑇𝑢,𝑑 ), b𝑘 ),

𝛿
(𝑘 )
𝑢,𝑑

=
ℓ (z(𝑇𝑢,𝑑 ), b𝑘 )∑

𝑘∈[1,𝐾 ] ℓ (z(𝑇𝑢,𝑑 ), b𝑘 )

(8)

where ℓ represents a distance measurement function, typically se-
lected as ∥ · ∥2. Here 𝛿 (𝑘 )

𝑢,𝑑
signifies the coefficient weight that allo-

cates the current embedding z(𝑇𝑢,𝑑 ) to the 𝑘-th centroid b𝑘 .
Therefore, the overall training objective can be written as:

L = LConsistency + 𝛽LClustering, (9)

where 𝛽 is a hyperparameter to balance between two terms.
Finally, the quantification of outlier scores for both cross-time

and cross-population anomalies is achieved by assessing the dis-
crepancies between (1) the historical and current patterns of an
individual user, and (2) the current pattern of a user and all cen-
troids. To achieve this, we first divide the historical trajectory data
of a user into sets corresponding to each day pattern, using the
notation D(𝑑) as defined earlier. For each day 𝑑 , we compute the
average embedding of the historical trajectories as

h𝑢,𝑑 =
1

|D(𝑑) |
∑︁

𝑑 ′∈D(𝑑 )
z(𝑇𝑢,𝑑 ′ ).

Similarly, we compute the average embeddings ĥ𝑢,𝑑 for each day
pattern from the new incoming trajectory data in the same way.
Then, the cross-time outlier score for the current trajectory data can
be quantified by measuring the dissimilarity between the historical
embedding h𝑢,𝑑 and the current embedding ĥ𝑢,𝑑 :

Cross-Time(𝑢) = 1 − 1
𝑓

∑︁
𝑑∈[1,𝑓 ]

sim(h𝑢,𝑑 , ĥ𝑢,𝑑 ), (10)

where 𝑓 is the total number of days in the considered period (e.g.,
𝑓 = 7 for a week). Similarly, the cross-population outlier score can
be quantified by measuring the dissimilarity between the current
embedding with the closest centroid:

Cross-Population(𝑢) = max{1 − sim(ĥ𝑢,𝑑 , b𝑘 ) |𝑘 ∈ [1, 𝐾]}. (11)

5 Experimental Results
We implemented all the methods, including our proposed method
and competitor methods, through the Pytorch Framework. We have
open-sourced all the code in the supplementary material. For a
fair comparison, we require all models to follow the same exper-
imental settings and data splits. All methods, including our pro-
posed method and those of competitors, were implemented using
the PyTorch Framework. In an effort to support transparency and
reproducibility in the research community, we have provided all
corresponding code at https://github.com/onspatial/transferable-
outlier-detection. For a fair comparison, we maintained consistent
experimental conditions across all models.
5.1 Experimental Datasets
The datasets used for this research include six simulated datasets us-
ing the Agent-Based Patterns-of-Life Simulation [2, 21, 58] and one
real-world dataset based on the GeoLife dataset [55]. Specifications
of the datasets, including details and key attributes, can be found
in Table 1. The source code of the simulation and data processing
of the GeoLife dataset is accessible through the GitHub reposi-
tories: https://github.com/onspatial/pol-outlier-dataset and https:
//github.com/onspatial/geolife-outlier-dataset, respectively. In addi-
tion, all datasets are available for download at https://osf.io/rxnz7/
and described in [4, 50].

https://github.com/onspatial/transferable-outlier-detection
https://github.com/onspatial/transferable-outlier-detection
https://github.com/onspatial/pol-outlier-dataset
https://github.com/onspatial/geolife-outlier-dataset
https://github.com/onspatial/geolife-outlier-dataset
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5.1.1 Agent-Based Simulation of Patterns of Life . The patterns of
life simulation was designed to emulate human needs and behavior
in an urban environment [58]. Within the simulated environment,
virtual entities referred to as agents perform actions that mirror hu-
man activities. These include attending work, forming friendships,
engaging in social gatherings, and more. The agents’ existence is
crafted to resemble human life in a real-world environment (roads,
buildings) obtained from OpenStreetMap [5, 8]. Throughout their
simulated lives, agents navigate to diverse locations, including
restaurants, workplaces, residential apartments, and recreational
venues. A salient feature of the simulation is the generation of com-
prehensive log files. These logs contain extensive data regarding
the agents, including their location and current state information,
thus allowing for in-depth analysis and research.

In our study, we generated data by running simulations over
four distinct maps, namely Fairfax County, Virginia, USA (FVA); the
French Quarter of New Orleans, Louisiana, USA (NOLA); Atlanta,
Georgia, USA (ATL); and Beijing, China (BJNG). The simulations
were conducted over a period of 450 days to replicate normal life,
followed by an additional 14 days to incorporate abnormal behavior
into the regular patterns. We introduced three specific types of
abnormal behavior that define outliers trajectories:
• Hunger outlier:An agent under this category becomes hungry

more quickly. Such agents have to go to restaurants or their
homes much more often.

• Social outlier: This type of agent randomly selects recreational
sites to visit when needed, rather than being guided by their
attributes and social network.

• Work outlier: Agents in this category abstain from going to
work on workdays.

We further divided these abnormalities into three intensity levels:
red, orange, and yellow. Red outliers exhibit extremely abnormal
behavior, orange outliers act moderately abnormal, and yellow
outliers display abnormal behavior less frequently. For example,
a work outlier will decide not to go to work 100%, 50%, or 20% of
the time when classified as red, orange, or yellow, respectively. We
divide the simulation into 450 simulation of days of normal behavior
followed by 14 days of a small number of agents exhibiting outlier
behavior. Details can be found in Table 1 and, an extended version
of the dataset can be found in [3].

5.1.2 Real World Dataset. The real-world dataset for this study
was created using the Microsoft Research Asia’s GPS Trajectory
dataset [55]. Since the original data did not conform to a check-in
format, we employed the method outlined in [54] to extract stay
points, thereby transforming the data to fit the check-in pattern
used in life simulation studies. Next, we utilized OpenStreetMap
to categorize locations into four groups: apartments, workplaces,
pubs, and restaurants. Given that OpenStreetMap encompasses a
broad array of categories and types, we manually classified them
into these four distinct groups. Upon preprocessing the data, we
eliminated agents with fewer than 50 records, resulting in a final
count of 69 agents with a total of 14,080 training trajectories and
3,552 test trajectories. Within the context of the GeoLife dataset,
we introduced a specific outlier type called the “imposter outlier".
An agent acting as an imposter outlier by switching the trajectories
with another agent after a specific time point. The dataset was then

Outlier Type #Agents Source Period #Outliers
hunger 1000 POL 450+14 days 90
work 1000 POL 450+14 days 30
social 1000 POL 450+14 days 30

combined 3000 POL 450+14 days 150
imposter 69 GeoLife 4 years 20

Table 1: Detailed statistical information of the datasets uti-
lized in this paper. Here ‘POL’ donotes Pattern-of-Life data.

divided into two segments: 80% of the stay points for training and
introduced outliers into the remaining 20% for test.

5.2 Experimental Settings
5.2.1 Competitor Methods. We compare with several unsupervised
trajectory outlier detection methods, including three rule-based
non-deep learning methods and two state-of-the-art deep learning
methods:
OMPAD [6] is an outlier detection method that analyzes objects’
movement patterns by counting the types of locations they visit. It
identifies abnormal activities by measuring the deviations in mov-
ing trends compared to established normal patterns.
MoNav-TT [49] is an outlier detection algorithm tailored for urban
human trajectory networks, where it detects outliers by measuring
discrepancies in traffic distances. In particular, a user is identified as
an outlier if the traveled distance significantly deviates from their
previous behavior.
TRAOD [25] is a partition-and-detect framework for trajectory
outlier detection, which partitions a trajectory into a set of line
segments, and then, detects outlying line segments for trajectory
outliers.
DSVDD [38] is a deep one-class classification based outlier de-
tection method. We generalize it to handle the task of semantic
trajectory outlier detection in a most intuitive way. We map the
weekly trajectories of each user to a high dimensional sphere by
a deep neural network encoder. Then the distance of trajectories
from the sphere’s surface is quantified as an outlier score.
DAE [14, 56] is a widely-used outlier detection method that lever-
ages a deep autoencoder. Utilizing an encoder-decoder model archi-
tecture, it reconstructs input trajectories, and the resulting recon-
struction error is used as an outlier indicator, signifying deviations
from the normal pattern.
GM-VSAE [30] introduces a deep generative model called Gaussian
Mixture Variational Sequence AutoEncoder (GM-VSAE) for anoma-
lous trajectory detection. GM-VSAE excels in capturing complex
sequential information within trajectories, representing different
types of normal routes in a continuous latent space, and facilitating
efficient anomaly detection.
DeepTEA [18] is a recently proposed deep learning framework de-
signed for time-dependent trajectory outlier detection by capturing
the dynamics of traffic patterns and the temporal dependencies of
movements. It uses a combination of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) to learn the normal
patterns of trajectories over time. This approach allows DeepTEA
to effectively identify outliers by comparing new trajectory data
against learned patterns, taking into account both spatial and tem-
poral characteristics, thus providing accurate and efficient online
detection of anomalous trajectories.



SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Zhang, Amiri et al.

ATL NOLA

Model Top-10 Hits Top-100 Hits* AP score AUC score Top-10 Hits Top-100 Hits AP score AUC score

OMPAD 0 7 0.0571 0.5257 2 10 0.0776 0.5968
MoNav-TT 1 5 0.0893 0.4863 1 3 0.0503 0.5026
TRAOD 1 10 0.0582 0.5018 0 4 0.0485 0.5011
DSVDD 5 36 0.2601 0.5835 9 28 0.2093 0.5829
DAE 3 17 0.0962 0.5465 1 7 0.0648 0.5885
GM-VSAE 4 29 0.1987 0.5564 5 20 0.1786 0.5672
DeepTEA 5 26 0.2008 0.6012 5 26 0.2186 0.6395

Ours-MLP 10 34 0.2782 0.6824 10 41 0.3376 0.6985
Ours-RNN 10 32 0.2780 0.6233 10 27 0.2325 0.5940
Ours-CNN 10 42 0.3205 0.7215 10 46 0.3631 0.7185
Ours-Transformer 10 34 0.2436 0.6735 10 34 0.2903 0.6970

FVA BJNG

OMPAD 0 4 0.0598 0.5322 1 9 0.0704 0.5655
MoNav-TT 0 0 0.0501 0.5014 1 5 0.0893 0.4863
TRAOD 0 7 0.0515 0.5090 0 6 0.0553 0.5169
DSVDD 5 26 0.2166 0.5995 10 29 0.2155 0.5643
DAE 1 7 0.0569 0.5138 0 10 0.0671 0.5568
GM-VSAE 4 22 0.1534 0.5859 4 16 0.1068 0.5479
DeepTEA 5 30 0.2221 0.6182 6 24 0.2084 0.5873

Ours-MLP 10 32 0.2509 0.6561 10 34 0.2800 0.6587
Ours-RNN 10 27 0.2325 0.5940 10 31 0.2573 0.6065
Ours-CNN 10 40 0.3151 0.6669 10 66 0.4899 0.7513
Ours-Transformer 10 33 0.2171 0.6628 10 33 0.2499 0.6219

Geolife ATL-Large

OMPAD 1 4 0.1665 0.1697 3 20 0.1461 0.6028
MoNav-TT 0 7 0.2849 0.3989 1 5 0.0893 0.4863
TRAOD 4 7 0.1060 0.5498 0 1 0.0030 0.4390
DSVDD 7 15 0.6246 0.7714 1 14 0.1010 0.4911
DAE 5 12 0.4627 0.6234 4 19 0.1466 0.5641
GM-VSAE 4 13 0.4892 0.6034 2 12 0.1243 0.5482
DeepTEA 6 14 0.5290 0.7540 4 22 0.1752 0.6398

Ours-MLP 8 17 0.8512 0.9397 4 28 0.2632 0.6737
Ours-RNN 7 11 0.6359 0.7467 3 12 0.1310 0.5294
Ours-CNN 6 16 0.6756 0.8542 10 40 0.4572 0.7141
Ours-Transformer 7 16 0.6283 0.8889 8 27 0.2783 0.6852

Table 2: Outlier detection performance for all datasets. The best performance for AP and AUC scores is highlighted for each
dataset. *We report Top-25 Hits instead of Top-100 for Geolife dataset due to its size constraint. **For implementation of
comparison methods DSVDD and DAE, we only report the best performance of deep learning based competitive methods
among the choice of four deep encoders (MLP, RNN, CNN and Transformer) for each dataset due to the limitation of the space.

ATL NOLA

Hungry Social Work Total Hungry Social Work Total
Red 5 (30) 1 (10) 10 (10) 16 (50) 8 (30) 0 (10) 10 (10) 18 (50)
Orange 13 (30) 0 (10) 8 (10) 21 (50) 4 (30) 0 (10) 9 (10) 13 (50)
Yellow 3 (30) 0 (10) 2 (10) 5 (50) 7 (30) 1 (10) 7 (10) 15 (50)
Total 21 (90) 1 (30) 20 (30) 42 (150) 19 (90) 1 (30) 26 (30) 46 (150)

Table 3: Detailed detection Top-100 hits for different types of outliers and intensity levels (red, orange, and yellow denotes
100%, 50%, and 20% abnormal behavior rate over time, respectively. The outlier number in parentheses.)
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5.2.2 EvaluationMetrics. To evaluate outlier detection performance,
we employ the Top-K hits metrics, where the agents with the K
highest outlier scores are classified as outliers. The number of hits
reflects the method’s ability to distinguish outliers. Specifically,
we use Top-10 and Top-100 Hits to reflect the method’s ability to
distinguish outliers, which aligns with the size of our datasets. In
addition, we utilize Average Precision (AP) and the area under the
receiver operating characteristic curve (AUC) scores, which are
widely used evaluation metrics for outlier detection tasks.

5.2.3 Implementation Details. Our proposed method serves as a
general framework allowing for the integration of various com-
monly used deep representation learning techniques on trajectory
data as the encoder part. To ensure a rigorous and fair comparison
with competitive deep learning methods, we adopt the same deep
encoders for all methods, including multilayer perceptron (MLP)
[12], recurrent neural networks (RNN) [20], 1-dimensional con-
volutional neural networks (CNN) [24], and transformer encoder
[45]. Additionally, to ensure fairness in our comparison, all deep
models adhere to a uniform architecture, characterized by each
daily trajectory with a cutoff length of 16, 𝐿 = 4 encoder layers, a
hidden dimension of 𝑑 = 64, 200 training epochs, and an adaptive
learning rate starting from 5𝑒−3 with a decay rate of 0.9 for every
50 training epochs. Training is executed through back-propagation
using the Adam optimizer [22], with batch sizes of 128 for regular
size datasets and 32 for the ATL-large dataset. The experimental
process is conducted on four NVIDIA A100-80GB GPUs.
5.3 Outlier Detection Results
5.3.1 Main Detection Results. The outlier detection performance of
both our proposed method and competitive methods are presented
in Table 2. We summarize the following observations:
1. The results demonstrate the superior outlier detection strength of
our proposed contrastive learningmethod by consistently achieving
the best performance across all datasets. It surpasses the second-best
method with an average improvement of 0.148 in AUC scores and
an additional 16.2 in Top-100 Hits. Notably, our approach achieves
a perfect score, with 10 out of 10 hits in the top 10 outlier scores,
on five of the six datasets.
2. We observe performance variations among different encoder
choices. The 1D CNN encoder delivers the best performance in five
out of six datasets, which may be attributed to its simplicity and
effectiveness in extracting sequential patterns. Conversely, the RNN
encoder, although outperforming most competitive methods, ranks
lowest among our encoders, may be explained by its well-known
issue of vanishing gradients in representing long sequences.
3. Deep learning-based methods outperform traditional ones by an
average of 33.47% in AUC scores and an additional 20.42 in Top-100
Hits. This indicates that non-deep learning methods may struggle to
adequately represent complex semantic trajectories, limiting their
outlier detection efficacy.
4. There is worth noting that different encoder models (MLP, RNN,
CNN and Transformer) exhibit relatively diversified performance.
Especially, the Transformer’s performance is nearly on par with
CNNmodels, exhibiting only a 3.5% average gap. This gap in perfor-
mance could be attributed to the limited amount of data available,
as Transformers, with their higher number of trainable parameters,
generally require more data for training. Additionally, the lower

efficacy of RNNs may due to the challenges in the optimization
process, commonly referred to as the issue of vanishing gradients.

5.3.2 Detailed Detection Ratio for Types of Outlier. Besides the
superior performance, it is interesting to understand what kinds of
outliers and to what degree they can be detected by our algorithm.
As previously mentioned that three kinds of outliers (Hunger, Social,
and Work) and three abnormal intensity levels (Red, Orange, and
Yellow) exist in the simulated datasets. Here, we report the detection
rate of each category for Top-100 Hits in Table 3. The designed
model demonstrates the ability to detect most outliers of the “Work"
type but can barely detect those of the “Social" type. This may
suggest that the method at recognizing location pattern changes
but is less sensitive to variations in travel distances. The detection of
social outliers proves to be significantly more challenging compared
to the other two categories, and detecting a YELLOW level outlier
is also more challenging than the other two.
5.3.3 Transfer Ability Analysis. We continue to explore the transfer
capability of our proposed contrastive learning method. In real-
world scenarios, there are often situations where it would be ad-
vantageous to apply a model trained on an existing dataset to a
new, unseen dataset without additional training. This approach
serves two primary objectives: (1) to conserve computational re-
sources, as training a model from scratch can be both time-intensive
and resource-consuming; (2) to mitigate challenges that an unseen
dataset does not contain sufficient data to train a model effectively.
To evaluate the efficacy of transferring our trained model to unseen
datasets, we directly apply the trained model on source datasets un-
der four transfer situations: ATL→FVA, FVA→ATL, ATL→NOLA,
and FVA→NOLA, without any further adjustments. It is notewor-
thy that these source and target datasets comprise different user
sets and different cities.

From the results in Table 4, it is evident that the transfer model,
when applied from the source to the target dataset, can achieve
performance on par with, or in some instances even surpassing,
the model directly trained on the source dataset. Notably, when
employing a CNN as the encoder, we observed even better transfer
performance in three out of four cases compared to the model di-
rectly trained on the target datasets. These results demonstrate our
model’s effective transfer across datasets, addressing computational
and data scarcity challenges.
5.3.4 Ablation Study. Here, we investigate the impact of the pro-
posed components of our method. We consider three variants of
our model No-Semantic, No-Spatial and No-Temporal, which remove
the semantic, spatial or temporal information, separately. We report
the results on ATL dataset with CNN encoder in Table 5, where
the results on other datasets with other encoders are similar. Our
findings indicate that every component is vital for our method’s
success, with performance declining upon the removal of any part.
5.3.5 Parameter Sensitivity Analysis. Here, we further conduct sen-
sitivity analysis on the important parameters involved in our ex-
periments. (1) We first deploy an experiment on extending the test
time periods. The test period with outliers is set as two weeks in
our datasets. However, it is usually difficult to determine the exact
time when anomalous behavior starts. Here, we extend our test pe-
riod to a longer time that includes more days before the time point
anomalous behaviors start. In specific, we extend the 2 weeks test
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Dataset Encoders Top-100 Hits AP Score AUC Score

ATL MLP | original 32 0.2509 0.6561
↓ MLP | transfer 29 0.2346 0.6479

FVA CNN | original 40 0.3151 0.6669
CNN | transfer 41 0.3111 0.6596

FVA MLP | original 32 0.2509 0.6561
↓ MLP | transfer 25 0.2069 0.6345

ATL CNN | original 40 0.3151 0.6669
CNN | transfer 38 0.3051 0.7021

ATL MLP | original 41 0.3376 0.6985
↓ MLP | transfer 33 0.2461 0.6593

NOLA CNN | original 46 0.3631 0.7185
CNN | transfer 48 0.3718 0.7227

FVA MLP | original 41 0.3376 0.6985
↓ MLP | transfer 37 0.2945 0.6622

NOLA CNN | original 46 0.3631 0.7185
CNN | transfer 47 0.3657 0.7134

Table 4: Transfer learning ability results for ATL to FVA and
NOLA, and FVA to ATL and NOLA datasets. Here ‘original’
denotes training the model on target dataset from scratch,
while ‘transfer’ denotes to apply the trained model on source
dataset to target dataset without further tuning.
Category Top-10 Hits Top-100 Hits AP Score AUC Score

Full 10 42 0.3205 0.7215
No-Semantic 9 32 0.2532 0.6262
No-Spatial 10 39 0.3017 0.7000
No-Temporal 10 35 0.2908 0.6897

Table 5: Ablation studies. Comparison with the full model.

Test period AP ROC # epochs AP ROC
2 weeks 0.3205 0.7215 50 0.2715 0.6321
4 weeks 0.3084 0.7084 100 0.2698 0.6753
6 weeks 0.2768 0.6875 200 0.2783 0.6852
8 week 0.2433 0.6675 500 0.3046 0.6554

Table 6: Parameter sensitivity analysis on comparison of test
period spans and number of epochs.

period to 4,6 and 8 weeks. We report the results on ATL dataset with
CNN encoder in Table 6. We can observe that the model maintains
strong detection ability, with only a small drop in performance,
even when extending the test period fourfold to 8 weeks. The find-
ings demonstrate significant robustness, with a mere 7.6% decline
in performance even when the noise level is quadrupled relative to
the signal, which still outperforms all comparison method when no
noise present. (2) We tested the model’s performance with respect
to the number of training epochs, varying from 50 to 500 epochs,
as shown in Table 6. The results demonstrate the robustness of our
model is not sensitive to parameter changes, exhibiting only a 3.16%
of variation in ROC scores.
5.3.6 Efficiency Analysis. In Table 7, we present the running time
per epoch at a range of training time spans from 1 month to 121
months with 1,000 agents. The results reveal that the running time
for most encoders (MLP, CNN, and Transformer) follows an approx-
imately linear growth trend with respect to the increase in training

Method 1 mon 15 mon 121 mon
MLP 0.779 11.578 110.334
RNN 0.955 18.108 614.385
CNN 0.784 10.741 113.833
Transformer 1.142 13.405 131.646

Table 7: Comparison of running time per epoch over different
encoders and trajectory time spans (Unit: second).

trajectory time span. On the other hand, the slow running time
with the RNN model may be attributed to its recursive structure,
which can affect efficiency in large-scale parallel computing.
6 Conclusions and Future Work
In conclusion, this study advances the domain of outlier detection in
human semantic trajectories by introducing a novel self-supervised
learning approach that leverages the inherent temporal periodicity
in human mobility behaviors. Traditional methods, which typically
relied on hand-crafted spatiotemporal indicators, have been shown
to possess limitations in their adaptability to unseen outlier patterns.
In contrast, our methodology, built on intuitive human behavior
patterns, presents a promising solution for detecting meaningful
outliers of semantic trajectories. The comprehensive experiments
confirmed the effectiveness, robustness, and efficiency of our pro-
posed method. For future research directions, we are inclined to
investigate the underlying factors influencing disparate model per-
formances across various outlier types. Additionally, refining our
approach to accommodate corner cases, such as holidays, may en-
hance the robustness of outlier detection in real-world scenarios.
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