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Deep Multi-Task Learning for Spatio-Temporal
Incomplete Qualitative Event Forecasting

Tanmoy Chowdhury ', Yuyang Gao”, and Liang Zhao

Abstract—Forecasting spatiotemporal social events has signifi-
cant benefits for society to provide the proper amounts and types
of resources to manage catastrophes and any accompanying soci-
etal risks. Nevertheless, forecasting event subtypes are far more
complex than merely extending binary prediction to cover mul-
tiple subtypes because of spatial heterogeneity, experiencing a
partial set of event subtypes, subtle discrepancy among different
event subtypes, nature of the event subtype, spatial correlation of
event subtypes. We present Deep multi-task learning for spatio-
temporal incomplete qualitative event forecasting (DETECTIVE)
framework to effectively forecast the subtypes of future events
by addressing all these issues. This formulates spatial locations
into tasks to handle spatial heterogeneity in event subtypes and
learns a joint deep representation of subtypes across tasks. This
has the adaptability to be used for different types of problem
formulation required by the nature of the events. Furthermore,
based on the “first law of geography”, spatially-closed tasks share
similar event subtypes or scale patterns so that adjacent tasks
can share knowledge effectively. To optimize the non-convex and
strongly coupled problem of the proposed model, we also propose
algorithms based on the Alternating Direction Method of Mul-
tipliers (ADMM). Extensive experiments on real-world datasets
demonstrate the model’s usefulness and efficiency.

Index Terms—Multi-task learning, optimization, softmax

regression, ordinal regression, deep learning.

1. INTRODUCTION

OCIETAL events happening at a particular time and loca-
S tion such as disease epidemics and organized crime, natural
hazard events, environmental pollution events, and urban-related
events have a significant impact on society. The capacity to
correctly foresee future spatiotemporal occurrences of this type
would thus be immensely advantageous for decision-makers
aiming to prevent, manage, or mitigate the accompanying social
turmoil and hazards. Spatiotemporal social event forecasting is
a rapidly expanding research area that typically forecasts the
occurrence of future spatial events, specifically whether or not a
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specific geographical event will occur. In many situations, how-
ever, just anticipating the occurrence of an event is insufficient.
Understanding a potential event’s subtype, category, magnitude,
or degree is critical for providing correct and appropriate crisis
management resources. For example, Fig. 1(a) shows the per-
centage of six pollutant subtypes that feature in air pollution
events based on the most frequently detected primary pollutants
in Shenzhen, China in Summer 2013 [1]. Local Environmental
Monitoring Centers try to identify which pollutant source caus-
ing the most harm to public health and take appropriate action.
For instance, when the pollutant subtype is PM 2.5 (atmospheric
particulate matter with a diameter less than 2.5 micrometers),
the government can suggest that people who are sensitive to
small particles wear gauze masks to protect themselves. On the
other hand, when the subtype is O3 (trioxygen), government
agencies need to alert people to avoid going outside when
the O3 concentration is highest. Thus, successful forecasting
of the pollutant subtypes provides more specific information
that enables practitioners to allocate resources that will address
public health issues with the specific primary pollutant source
most effectively. In another example, as shown in Fig. 1(b), the
Centers for Disease Control and Prevention (CDC) rank the
severity of ongoing disease outbreaks using five scale points.
The successful prediction of the scale of future disease outbreaks
enables practitioners to allocate appropriate levels of resources
for vaccination and isolation. Accurate forecasts of social events,
especially localized ones, are crucial for authorities to plan
resource allocation and responses. However, as yet little research
has focused specifically on spatial social event scale forecasting.

The majority of prior work in this field, such as [2], [3] has
concentrated on the event occurrence rather than the exploration
of the various event subtypes. A few preliminary research [4],
[5] tried to investigate this open subject using simple multi-class
classification approaches. Moreover, standard event forecasting
methods often anticipate a binary output (i.e., the event either
occurs or it does not) and cannot be used to forecast event scales,
which are ordinal variables.

Spatial event subtype forecasting is significantly more chal-
lenging than simply adapting a binary classification problem to
amulti-class or multi-scale setting. /) Event-subtype correlation
and spatial heterogeneity: Population, climate, and government
policies vary by location, leading to demographic disparities
among social media users. For example, the same number
of 'flu’ mentions on Twitter can indicate different influenza
activity levels in California and Nebraska due to population
differences. According to the “first law of geography” [6],
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Fig. 1.
(CDC).

nearby locations tend to have more similar event subtype
patterns. For instance, neighboring districts like Guangning and
Longhua often share similar pollutant patterns, while distant
districts like Longhua and Dapeng show more differences in air
pollution patterns in Shenzhen, China. 2) Incomplete labels in
spatial event subtypes: Due to numerous subtypes and limited
historical data, new subtypes may not appear in training sets for
specific locations. For instance, in the Venezuela civil unrest
dataset, 11 out of 14 cities lack some event subtypes. Similarly,
in Nebraska, there were no level 3 or level 5 influenza events in
2011, making future forecasts for these scales challenging. This
issue hampers the model’s ability to predict unseen subtypes or
scale levels, posing significant problems for rare but impactful
events like pandemics and terrorist attacks. 3) Difficulties in
representing event subtype patterns: Subtle differences between
event subtypes are hard to capture with manual features (e.g.,
bag-of-words), which are sparse, high-dimensional, and suffer
from the curse of dimensionality [7]. This is exacerbated in
multi-location training, underscoring the need for efficient
end-to-end representation learning.

In this paper, we propose a novel a Deep multi-task learning
for spatio-temporal incomplete qualitative event forecasting
(DETECTIVE) framework for spatial event subtype forecasting
that addresses all the above challenges. The main contribu-
tions of our study are as: 1) Developing a new deep-based
framework for societal event subtype forecasting. We formulate
event subtype forecasting for multiple locations as a spatial
incomplete multi-task learning problem and propose a novel
deep-based framework that learns profound representations of
event subtypes across tasks. We enforce shared latent feature
representations for different locations while preserving hetero-
geneity in their event subtype patterns. 2) Proposing a model
that enforces spatial event subtype patterns. Based on the first
law of geography, we enforce similar event subtype patterns
among spatially-closer tasks via a novel deep regularization
term to provide the theoretical equivalence to the ratio of the
probabilities of the event subtypes distribution patterns in nearby
locations. A shared bottom architecture learns the shared hidden
representation of event subtypes across tasks. The representation
is then passed into a goal-specific (class/scale) function with
weight coefficients and a threshold matrix. We introduce two
constraints in the goal-specific function to make the framework
compatible with special cases (like multi-class, multi-scale,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

ILI Activity Level

5-High

-.,
=

808

4-Moderate
J-Low
2-Minimal

1-nsefficient data

[a] Relative amounts of six air pollutant subtypes in 10 districts in Shenzhen, China, 2013 [1], [b] ILI data for one week of the 2016-17 influenza season

etc). To be more specific: a) in a multi-class problem, multiple
weight coefficient vectors and one threshold matrix will be
learned per task; b) in a multi-scale problem, one shared weight
coefficient vector and threshold matrix will be learned per task.
In cases of incomplete subtype events, we utilize the ’first
law of geography’. That’s why if a subtype is missing for
one location, then it can utilize the ratio of probability of the
event subtypes (one event subtype compared to another event
subtype) of its adjacent locations to complement the missing
subtype. In addition, the newly proposed deep regularization
term enjoys better scalability with high-dimensional data and
is thus more capable of handling complex real-world problems
effectively and efficiently. 3) Developing an efficient algorithm
for solving new non-convex and strongly-coupled problems.
To solve the proposed model’s objective function, which is
non-convex and highly-coupled, we propose algorithms based
on the Alternating Direction Method of Multipliers (ADMM)
that decomposes the original complex problems into subprob-
lems that can be solved efficiently with analytical solutions and
conventional stochastic optimization. 4) Conducting compre-
hensive experiments to validate the effectiveness and efficiency
of the proposed model. Experiments on six real-world datasets
in two domains, civil unrest and air pollution event subtype
forecasting, and ten datasets from civil unrest and influenza
outbreaks domains for scale-level forecasting demonstrate that
the proposed models outperform other comparison methods
in different application domains, with sensitivity and qualita-
tive analyses demonstrating the effectiveness of the proposed
regularization term.

In summary, this study introduces DETECTIVE, an innova-
tive deep framework for spatiotemporal event subtype forecast-
ing across multiple locations. It addresses incomplete spatial
multi-task learning and ensures shared yet heterogeneous event
subtype representations. By applying the first law of geography,
DETECTIVE enforces similar patterns among geographically
close locations through a novel deep regularization term, pre-
dicting missing subtypes using probability ratios from nearby
locations. It also employs an efficient ADMM-based algorithm
to solve the complex, non-convex, coupled objective function
by breaking it into manageable subproblems. Extensive experi-
ments on datasets from civil unrest, air pollution, and influenza
outbreaks demonstrate the framework’s powerful and efficient
solution for spatiotemporal event subtype forecasting.
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II. PROBLEM SETUPS AND PRELIMINARIES SETUPS
A. Problem Setup

Suppose there are S spatial locations (e.g., cities, states) in
a country of interest and 7" denotes all the time intervals. The
spatio-temporal social indicator data (e.g., social media, news,
pollutant factors) for location s and time interval ¢ (e.g., one
day) can be formulated as X, ; € R'*P, which denotes a D-
dimension feature vector whose -th element is a feature value
(e.g., the term frequency or index value).

The event subtype at location s and time ¢ is defined

as a nominal/ordinal response Y, ; € {C1,Cs,...,Cx }, where
C1,Cy,...,Cx areclass labelsor Y, ; € {C1,Cs, ...,Cs}, where
C1,Cy,. . .,Cyare scale levels where K and § is the total number

of event classes and scales respectively. Here a “non-event” will
also be defined as a default subtype when no event happens. A
natural scale level ordering is denoted as C; < Ca < ... < Cs,
where < is the ascending order relation.

Given the input data X ; for a specific location s and a time
interval ¢, the goal is to predict the subtype of a future event,
denoted by Y -, for the same location s and a future time interval
7, where 7 =t + p and p > 0 is the lead time. In this paper, the
default time intervals ¢ is per day and the lead time p is one
day ahead unless otherwise specified. Formally, this problem
is equivalent to learning a mapping from input data to a future
event subtype X¢; — Y r.

B. Preliminaries

1) Multi-Class Classification: To address this issue, multi-
class classification models [8] such as multinomial logistic
regression (also known as softmax regression) and neural net-
works [9] are commonly used to solve the problem due to the
nature of predicting multiple outputs with a single model. The
objective function of our problem with the softmax regression
formulation is as follows:

eXontbi
Z oX,.07

S T K
L(6) =——(ZZZ 1Yo =k}log ————
)

s & k=1
where § € R¥*P is the parameter set of the model, 6, € R*P

denotes the parameters for class k, and 1{-} is the indicator
function. For example, suppose the event subtype for location s
attime ¢ is k, then 1{Y, , = k} = 1 while 1{Y, ; = j} = 0 for
any j # k.

The (1) suffers from a critical challenge: all the locations
share a single weight coefficient vector #, hence the model
cannot handle any spatial heterogeneity in the event subtype for
different locations. Consider civil unrest for example, finding
1000 tweets mentioning the keyword “student” in a time period
could strongly suggest an education-related event for a city with
a population of 10000 but may not be a strong indicator for a
city with a population of a million. This discrepancy can lead
to considerable heterogeneity of the weight coefficient  for
different locations.

To address this challenge, we can extend (1) to create a
location-specific model, where each location s has its own

7915

weight coefficient set, denoted as ©, € RX*P, Here, O, ; €
R*P denotes the parameters for location s and for class k and
the objective function of the location-based softmax regression
formulation is as follows:

3 393 k

e a, f.e

§ T K
L(8)=— (ZZZ 1{Y, =k} logZK
2)

8 it k=1

However, the above formulation is still insufficient as (2) as-
sumes all the locations are independent, even though some
spatial correlations will exist among the various locations in
terms of the event subtype pattern, as shown in Fig. 1(a). Also,
(2) tries to learn an individual parameter set © , for each location
s, which can dramatically reduce the training sample size for
a given location model. Furthermore, due to a large number of
potential subtypes and the limited amount of local historical data,
there may be unseen subtypes that have not appeared in a specific
location within a time period. For example in Brazil, there
were no education or medical-related protests in the city Belo
Horizonte during the time period from July, 2013 to February,
2014. The specific model for Belo Horizonte will not be able to
predict these two subtypes in the future.

2) Ordinal Regression: If the response variable Y, ; is an
ordinal variable, the assumption of order between event scales
makes it inappropriate to apply conventional methods such as
multi-class classification and regression directly. Specifically,
conventional regression models like linear regression require
continuous values and thus cannot handle the categorical vari-
able Y ; in our problem. Classification models, although they
focus on categorical variables, only address nominal variables
and ignore the ordinal information in our problem.

To predict the ordinal variable Y, ;, ordinal regression models
such as the proportional odds model (POM) [10] are commonly
used to effectively leverage and address the ordinal nature of the
problem. Compared to multi-class logistic regression, POM adds
the constraint, the hyper-planes, that separate different classes
are parallel for all classes, which is, the weight co-efficient vector
w is common across classes. The model also assumes that a latent
variable underlies the ordinal response, which will be estimated
by threshold matrix b in the model in order to separate different
class labels.

In the logistic ordinal regression, we model the cumulative
probability as the logistic function. Thus, the objective function
can be formulated as a negative log-likelihood:

a;rg m_m Z

—J(wTX_.;_.z +bs,Ys__: ~1))
< beg-1 3

log(J(w 20 2 +be ¥ )

S-t-bs,l g bs,? S bs,.‘] S

Where w € R(P~U*1 and b € R**¥ are the two parameter sets
to be estimated in the model, with b g=—o0c and b, g=co to
represent extremal classes, X, ; denotes ¢-th sample of the s-th
location, Y, ; denotes its corresponding scale. The function o ()
is the logistic sigmoid function denoted as o(z) = 1/(1 + e *).
Notice that our problem and proposed models are generic and
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Fig.2. Generic Flowchart of the proposed DETECTIVE framework. The input
samples contain the input data X s ; for a specific location, s (here indicated by
A, B, C, D) and a time interval £, the goal is to predict the subtype of a future
event, Ys r (here indicated by the number in the matrix) for the same location
g and a future time interval 7, where T =t + p and p > 0 is the lead time. A
shared bottom architecture, ¢ leams the shared hidden representation of event
subtypes across tasks. The representation is then passed into a goal-specific
(class/scale) function f(-) with weight coefficients, W and a threshold matrix,
b. This f(-) can be adapted based on the problem’s nature. See the Fig. 3 for
multi-class problem and the Fig. 4 for multi-scale problem.

can also accommodate other ordinal regression models. In this
paper, we focus on POM.

The model proposed in (3) suffers from two challenges:
1) all the locations share a single weight coefficient vector
w and threshold vector b, therefore cannot handle any spatial
heterogeneity in the event scale for different locations; and
2) (3) assumes all the locations are independent even though
some spatial correlations exist among locations regarding the
event scale pattern, as shown in Fig. 1(b). In order to jointly
handle these challenges, in the next section, we present our
DETECTIVE framework.

III. DETECTIVE

The regression (softmax/ordinal) model can be seen as a
special case of a neural network with 0 hidden layers. We pro-
pose a generalized Deep multi-task learning for spatio-temporal
incomplete qualitative event forecasting (DETECTIVE) frame-
work based on the deep architecture with an arbitrary number
of hidden layers. Fig. 2 shows a flowchart of the proposed
DETECTIVE framework. The framework adopts the idea of
a shared bottom architecture that can learn the shared hidden
representations of event subtypes across tasks. Initially, the
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objective function of the regression model is:

LW,b,8) = —=—
(M Xs,t))
1{Y,; = c}Ho Wa.cibse
(ZSZ DAL g):e_l W “(hfxﬂn)
s.t.,CL (W) = 01, Ca(b) = @)

where X ; denotes t-th sample of the s-th location, Y, ; denotes
its corresponding subtype or scale. Here 1{-} is the indicator
function. For example, suppose the event subtype for location s
at time ¢ is ¢, then 1{Y; ; = ¢} =1 while 1{Y,; = j} = 0 for
any j # c.

In generalized DETECTIVE framework, the function h(-) de-
notes the computation of the shared hidden layers and ¢ denotes
the parameter set of the network, the activation h(X ;) is thus
the hidden representations learned by the shared hidden layers.
h(X ) is then passed as input to the goal (class/scale) specific
function f(-) with the weight coefficient (W e RS*¢*(P-1))
and the threshold matrix b (b € R5*¥). Furthermore, the goal-
specific (class/scale) function (f(-)) with two constraints (£2,
and (27) makes the framework compatible with special cases
(for example, multi-class, multi-scale problems, etc.). For the
special case of multi-scale prediction, the constraint {2; is im-
plemented as W ., = W, .,,Ve1,e2 € C. And then constraint
Q; isimplemented as b ¢, < bg e, < bsey - <oy, < by

Lemma 1: The ratio of the probability of being belong to two
types (1 and 2) of two tasks (z and j) close in geo-spatial distance
should also be similar. Mathematically, this can be expressed as:

PlYi: € C1|Xis)  P(Yj: €Ci|Xjs)
P(Yi: € Co|Xip)  P(Yj € ColXj)

)

Proof: Based on the first law of geography “everything is
related to everything else, but near things are more related than
distant things”[6], we know nearby locations will tend to be more
similar to each other. For a time interval £, given two locations
¢ and j that are close in geo-spatial distance, the probability of
the event subtype is being belong to C; at location i denoted as
P(Y;; € C1|X; ), will be similar to that at location j, leads to
the following equation:

P(Yi; € C1]|Xi:) = P(Y;: € C1]|Xj,) (6)

Likewise, the ratio of the probability of the event subtype at
location ¢ belong to event subtype C; compared to event subtype
Cg, should also be similar to that at location j. This can be
expressed as:

P(Yi: € C1]|Xi) .
P(Yit € Co| X )

P(Y;: € C1|X;40)
P(Yje € Co|Xje)

O

Based on Lemma 1, spatial adjacency-based deep regulariza-
tion terms (7(-)) are proposed to regularize the hidden repre-
sentation learned by the shared hidden layers to enforce similar
event subtype patterns for spatially adjacent tasks. For example,
in the left bottom of Fig. 2 Task B is closer to Task C compared
to Task A, thus Task B and C can share knowledge of their
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subtype patterns and influence each other more strongly while
Task A, which is further away, will not influence Task C as much.
Consequently, with the help of this knowledge sharing, Task B is
able to learn unseen event subtypes through Task C, mitigating
the problem of incomplete subtype availability due to gaps in the
local task training data. We also introduced o and /3 to control
the importance of the terms. Finally, the objective function of
multi-class, multi-scale problem can be written as:

L= L(W,b,8) +aRi(W)+ BRa2(W,b)
s.t,CL(W) = Qy,Ca(b) = Qs )

A. Special Cases of DETECTIVE

The goal-specific function (f(-)) along with the constraints
(€2) gives us the flexibility to implement the DETECTIVE frame-
work for different special cases. In this section, we discussed two
special cases which are multi-class and multi-scale problems in
Sections III-A1 and ITI-A2 respectively.

1) DETECTIVE-K: For multi-class problem the class spe-
cific function f(-) would be:

Wy s o (1K) = eWnexXe)t0ne ®)

For convenience, we choose to use © (O € RS*¢xD) 1o
denote the parameters set consists of W (W € RS*Cx(D-1))
and b (b € R5%C)

F, ot (B K)) = et Zaskthie

— eh(xs,n)es.c

= fos,c(h(Xs)) ©)
Now for multi-class problem, Y;; € {C1,Ca,...,Cx}, where
C1,Cs,...,Ck are class levels. So for the K classes the (4) can

be directly applied for multi-class problem without constraints
(€21 and £27) by replacing f(-).
i

LW, b,¢) = —3T

Ewa,kh(xs,t)"l‘bs.k
ews:chfxs,t)fbe,c

X (ZZZ 1{Y,; = k}log %

8 Tt k=1 1
1
£(8,¢) =—5F
R N(Xe00OT,
X (ZZZ 1{Y, =k}og— h(X“)eT) (10)
8 t k=1 Erj:l's S

In order to jointly handle the spatial heterogeneity issue in (1)
and spatial correlation issue in (2), multi-task learning technique
is leveraged which can jointly learn the shared characteristics
among tasks while preserve the exclusive patterns for each
task [11], [12]. [13] have demonstrated the utility of applying a
Multi-Task Learning framework for forecasting spatiotemporal
event occurrence. More detailed literature survey is included
in the supplemental material, available online. However, when
forecasting event subtype, where multi-class classification prob-
lem is combined with multi-task learning, each task has only a
limited number of samples and thus in practice not every task
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Fig. 3. Special Case: DETECTIVE-K framework. Here the goal specific
function f(-) showed in the generic model structure (Fig. 2) has been adapted for
multi-class problem. Multiple weight coefficient vectors and threshold matrices
will be learned per task for class prediction.

Prediction on Test set
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B
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Fig.4. Special Case: DETECTIVE-§framework. Here the goal specific func-
tion f(-) showed in the generic model structure (Fig. 2) has been adapted for
multi-scale problem. Multiple weight coefficient vectors and threshold matrices
will be learned per task for class prediction. One shared weight coefficient vector
and threshold matrix will be learned per task for scale prediction.

has a complete set of labels in the training set. For example,
in Fig. 3 the bottom left box contains an example of a set
of training data labels (event subtypes). Only 3rd task has a
complete set of labels, the other two tasks are both missing
one class. Consequently, the weight coefficient associated with
the missing event subtype k cannot be learned during training
and the model is not capable of predicting the missing event
subtypes. This issue becomes more severe as the number of
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class labels increases.
P(Yis =CalXiys)  P(Yje =CalXjie)
P(Yi,t = Cblxi,t) P(Yj,t S Cb|Xj,t)

In order to address this problem, we propose allowing correlated
tasks to adaptively complement each other’s missing classes
based on Lemma 1. From the (5), the ratio of the probability
of the event class at location 7 being equal to event class C,
compared to event class Cp, should also be similar to that at
location j. By considering C; = {C,} and C; = {C,} This can
be expressed as (11).

The posterior probability P(Y;; = C,|X; ) can be equiva-
lently represented by any multi-class based models. The sim-
ilarity pattern based on the ratio of the probability above can
thus be equivalently denoted by input X and weight coefficient
© based on (2), as shown in Lemma 2.

Lemma 2: In the DETECTIVE-K framework, for any deep
learning architectures that use the softmax function as their
output layer, (11) is theoretically equivalent to the following:

(11)

h(Xit)(Oia —0ip)T = M(Xj1)(Oja—O;p)T  (12)

where ©; , denotes the task specific output layer weight coeffi-
cient vector for task 7 and class C.
Proof: We can derive the lemma from the following equa-
tions:
X6l
P(Yas = Ca|Xuy) = =%

13
eh(X,-_;)QEk 3
Equation (13) is the definition of the posterior probability of
the softmax output layer for a given input X and function A(-).
From this, we can derive an equivalent expression in logarithmic
form as follows:

K
log P(Ys = Cal Xiz) = log X087 —Jog 3 ehXs)0T
k=1
We can now subtract any pair of classes C, and Cp to omit the
common denominator in (13), as shown below:

" P(Yi: = CalXiz)
p(Yi,t = Cblxi,t)

Thus, combining (11) and (14), we can safely conclude
that given two tasks ¢ and j that are close geo-spatially, the
difference between the products of the hidden representation
of corresponding input and weight coefficients of any pair of
classes h(X;)(©i 0 — ©:)T and h(X;)(0;.. — ;)T should
be similar, as shown in (12). [l

Therefore, based on (11), and equivalently on (12) we define
the regularization term for © based on spatial adjacency of the
tasks.

aRi(W) =0,

lo (14)

= h(Xi4)07 4 — h(Xi)O7,

BRaW,D) = 5 37 S (X0 )(©4s — 047

1 s
— " adi(s, )h(Xe)(Ocs — Oc)T 3

N,
(15)
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Now, replacing £(0, ¢), aR (W), and SR,(W, b) of (7) the
model for multi-class problem will be:

£0,8)+ 53T Ih(X,)(©ui ~ 047

1 I
e Zc adj(s,c)h(Xc)(Oci — Oc5)" |13

N
where £(0, ¢) in (10) is the general multi-task deep learning
objective function; ¢ is the weight coefficient parameter set for
the shared hidden layers; © is the task specific output layer
parameter set with ©,; denoting the parameters for task s
and for predicting class C;. The function adj(s, c) defines the
adjacency relation between s and ¢, which can be defined based
on either spatial correlations such as spatial contiguity or spatial
distance. N, is the normalization term for location s such that
N, :Zf adj(s, c). Here, the adjacent function is defined based
on the physical distance and the well-known generalized RBF
kernel [14], as: adj(s, ¢)=e~7%=:2)* _ The function d(s, ) can
be the physical distance between two spatial locations and 7 is
the scaling factor.

The proposed regularization term encourages adjacent tasks
to have a similar ratio of the probability between any pair of
event subtypes by ensuring the difference between the corre-
sponding weight coefficients and input h(X;)(0;c, — Oic,)T
is similar for adjacent tasks. The regularization hyper-parameter
B controls the importance of this term, which can be tuned
via cross-validation. Lemma 2 and the above model objective
indicate that instead of directly applying the regularization on
inputdata X, DETECTIVE-K learns the mapping from the input
data from different tasks in a deep shared feature space and then
applies the spatial regularization to the latent representation.

2) DETECTIVE-§: For multi-class, the scale specific func-
tion f(-) would be:

st,c‘,bslc(h(XS,t)) . J(Ws,ch(Xs,t) + bs,.c)
= U(Ws,c—lh(Xs,t) + bs?c—l) (17)

For multi-scale problem, Y: € {Ci,Ca,...,C5}. where
Ci,Cy, . . .,C; are scale levels. Since for multi-scale case the sum
of all classes specific activations are naturally one, this is why
we can ignore the denominator of the (4).

1 S T §
L(W,b,¢) =—== I 1Y, =8

s t §=1

(16)

log(o(Wssh(Xst) +bsg) — o(Wes-1h(Xs,) + bs,§—1)))
(18)

We have two constraints {2; and €25 in the (7). For the special
case of mult-scale prediction, the constraint £2; is implemented
as Wy ., = Ws,, Ve, e0 € C. And then constraint )5 is im-
plemented as by g < bg1 < beo--- < bgg 1 < beg. Dueto £y,
we can define feature weight coefficient matrix W € RS*(P-1)
instead of W e R5*C*(P-1) where each column of W, denoted
as W, ., is the feature weight coefficient vector for task s, while
each row of b, denoted as b, ., is the threshold vector for task s.
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So, for multi-scale problem, the (7) will take the form as:
. ST
apEsmin Z” log | o(Wh(X,:)+beg)

—J(WJI(Xs,z)+bs,§_1)) +aR1(W) + BRo(W, b)

8.t b_g,]_ = b_g,g < 1)5!3 <-.--< bs,ﬁ_l, ERS {1,2, A §} (19)
Where W, € R™(P-1) and b, € RE1*! are the two parame-
ter sets to be estimated in the model, with b, y=—o0c and b, 5=0c
to represent extremal classes; X ; denotes ¢-th sample of the
s-th location; Y, ; denotes its corresponding scale; o(x) is the
logistic sigmoid function denoted as o(z) = 1/(1 + e %), and
h(-) denotes the computation of the shared hidden layers coupled
with parameter set ¢.

To handle the spatial heterogeneity of event scale criteria for
different locations, we need to build an exclusive model for
each individual locations, all of which have their own thresh-
olds. Although these thresholds are different, different locations
share similar feature weight coefficients patterns because people
generally share a common language and speak in a similar way,
so the keywords for a topic of interest will be similar across
different locations, for example, “influenza” and “cough”,would
both refer to the topic ‘flu’. Learning multiple related tasks
simultaneously effectively increases the sample size for each
task, since when we learn a model for a specific task, we use
information from all other tasks.

Therefore, we propose to leverage multitask learning in or-
dinal regression to enforce different tasks that share a similar
weight coefficients pattern but reserve their own thresholds.
The similar pattern of W across different tasks is achieved by
enforcing a similar sparsity pattern among tasks. We can add
?5 1 norm regularization over the W matrix, which sums the /5 ;
norms for each feature, and each /5 ; norm is enforced for all the
tasks for each feature. Thus, the :-th feature, which corresponds
to the z-th element in each model, is likely to be selected or not
by all models simultaneously. Mathematically, we propose the
model] as follows:

al'gmjﬂw,.b,g& L(W,b,0) + "JHW“2,1
s.L. bs,l = bs‘E < bs,S oW bs,ﬁ—l: s € {]—: 2: £ S}

Where we define L(W, b, ¢) for simplicity and for later use as:

_Z _log (0 (Woh(X0) +bsyy,,.)

— 0o (Wsh(Xs,.t) + bS,Ya,t—l))

Here we can consider R4 (W) = ||W]||z2.1 is the group sparsity
term for matrix W which encourages all tasks to selectacommon
set of features; it can be computed as the sum of £3-norm for
each row in W. The regularization hyper-parameter cx controls
the sparsity.

The odds of being equal or under C, is defined as the fraction
of the probability of being equal or under C, over the probability
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of being above C, and mathematically:

P(Yi; = Ca|Xiys)
P(Y;;: = Ca|Xiy)

{Cg |C§ j Ca,} and

odds(Yiz < Ca|Xi 1)) = (20)

Now from Lemma 1, if we consider C; =
Cy = {C;|C; = C,} then

P(Yit < Ca|Xit)  P(Yje = Ca|Xjp)
P(Yis - CalXiz)  P(Yj: > Ca|Xjit)

odds(Yi+ =X Ca|Xiyt)) = 0dds(Yie = CalXje))

21

So, the ratio of the odds of being equal or under two adjacent
scales a and b of two tasks (z and 7) close in geo-spatial distance
should also be similar. Mathematically:

odds(Yis < Ca|Xiz)  odds(Y;s < CalX;:)
odds(Yie = Co|Xiz)) ~ odds(Y;: < Co|Xj0))
The similarity pattern in (22) can thus be equivalently denoted

by thresholds (shown in Lemma 3).
Lemma 3: Equation (22) is theoretically equivalent to:

(22)

biscb - bﬁeca. 5 bjfcb . bj:Cu (23)

where 7 and j are two tasks that are close in geo-spatial distance
and C, and C;, are two adjacent event scales.

Proof: We can derive the theorem from the following equa-
tions:

h(P(m < Cal Xiie)
P(Y;; = CalXit)
Equation (24) is the definition of POM. From this, we can derive
an equivalent expression with Cp and subtract one from the

other to omit the input vector X; ; on the right, as shown in
the following equation:

i (P(Yi,t = Cb|X£,t)) T (P(Yw‘.,t = Ca-|Xi_.t))
P(Y;; = Cp| Xit) P(Y;: = CalXit)

) — WIh(Xie) +bic,  (24)

=bic, —bic,

Combining above equation with (20), where the term odds is
defined, we obtain the ratio of odds with ¢ as:

odds(Y; s < Cp|Xi )
odds(Y;: = Ca|Xiyt))

Thus, by combining (22) and (25), gives the conclusion that
given two tasks i and j that are close in geo-spatial distance,
the difference between threshold b; ¢, — b; ¢, and b; ¢, — bjc.
should be similar, as in (23). O

Therefore, we define the other regularization term SRo(W, b)
to encourage the difference between threshold parameter b; ¢, —
b; ¢, to be similar among adjacent tasks. Mathematically, the
DETECTIVE-§model is as follows:

— ebicy—bica

(25)

argming, , » L(W, b, ¢) + | W||2 1+
2

S §-1
S S s —bst)— = T ey —bagr)
i=1 j=2 N zeadj(i) o

<--<bhig1,1€{L2..,8} (26)
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Where the function adj(i) returns the set of tasks that is
adjacent to task ¢ and NV; is the total number of its neighbors.
This term will encourage adjacent tasks to have a similar ratio
for the odds between two consecutive scales by encouraging the
difference between threshold parameter b; 1 — b; to be similar
among adjacent tasks. The regularization hyper-parameter 3
controls the importance of this term.

IV. ALGORITHMS

A. Algorithm of DETECTIVE-K

The problem in (16) is nonconvex and parameters are tightly
coupled together within the new regularization term. Moreover,
the function h(-) involves the shared neural network layers,
with highly complex objective functions coupled with param-
eter set ¢. Instead of directly solving the whole problem with
regularization, existing works typically first decompose it into
subproblems which are much simpler or even with analytical
solutions and hence ensures the efficiency. For example, several
ADMM [15] based methods has been proposed: [16] applied
ADMM on deep convolutional neural networks with sparse
regularization and observed improvement on the optimization
efficiency and overall performance; [17] proposed ADMM-NET
for solving the general Compressive Sensing MRI problem.
However, those algorithms are normally problem dependent and
thus can not be directly used here. A new method is needed to
solve our new problem which is highly challenging. Thus, we
propose a new algorithm based on ADMM that first decomposes
the original problem into several simpler subproblems that can
then be solved iteratively. Our algorithm ensures global optimal
solutions with analytical solutions for all subproblems except
the subproblem that includes the original deep model loss, which
will be solved with Stochastic Gradient Descent (SGD) to get
local optima. More details of the algorithm are presented as
follows.

Based on the ADMM formulation, the original objective
function of DETECTIVE-K can now be re-written as follows:

00+ 4575

_L
N,

Zs (Z,i = Vs,j)T

2
adj(s &) Ze(Uei — Usj)T

2

s..0=V,0=U,Z = h(X) (27)

Thus, by decoupling the output layer parameter set © that
appears both in deep model loss and regularization term, the
original problem is transformed into a simpler one with auxiliary
variables V, U and Z. The augmented Lagrangian that uses
additional quadratic penalty terms with penalty parameter p is
further computed as follows:

L(¢,0,V.U,Z)
= L5(4,0) + (¥ Z-HX)D)+£1 Z-HX)|13
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s C2 2

ﬁzz

+tr(yO-V))+E S10-V13

8
_ 1 ] _ _
Ze(Ve—Va) 570 _adi(s,0) Zo(Ue i~ Uc,ﬂ

2

+tr(yO-0)+ 510Ul

where the ¢r(-) operator denotes the trace of the matrix.

The pseudo-code of the proposed algorithm is summarized in
Algorithm 1. The parameter set {¢,0,V,U, Z, (1) 42 4B)}
is alternately solved by the proposed algorithm until conver-
gence is achieved. Lines 3-15 show the alternating optimization
for each of the variables. M € R**Ck is an auxiliary matrix
to help make the computation in matrix format. The detailed
optimization for all the variables is described in supplemental
materials, available online.

B. Algorithm of DETECTIVE-§

The pseudo-code of the proposed algorithm is summa-
rized in Algorithm 2 to solve the (26). The parameter set
{W,b,¢,U,V,yV) 4@ 43} is alternately solved by the pro-
posed algorithm until convergence is achieved. Lines 3-7 show
the alternating optimization of each of the variables. The detailed
optimization for all the variables is described in more detail
below.

Base on ADMM formulation, the original objective function
of model can be re-written as follows:

L(W,b,9,U,V) = L(W,b,6) +a||U]|2,1

s §-1

Z

L};::j_l)

2
il
N Y (Vey—Veya)

® zcadj(i)

stW=Ub=V,

2

Vian<Via<Vizg<.--<Vigiforie{1,2,...,8} (28)
Thus, the augmented Lagrangian is:
argmin L(W, b, ¢) + a||U||21
W.b.¢,UV
+ trace(y (W — UYT) + p/2I|W — U||3
+trace(y® (b —V)T) + p/2|b - V|}3
53 §-1 T
+§Z (Vij — 31)__ Z (Vg = Vzij)
i=1 j=2 N zcadj(i) 3
§-1
+ 3 DV V)T +p/2Y [l max(Vis
Vsi!O)”%

Notice that the maz operator here acts as a vector max which
will set the element of the vector to 0 when it is less than 0.
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Algorithm 1: The Proposed Algorithm for DETECTIVE-K.

Algorithm 2: The Proposed Algorithm for DETECTIVE-§.

Require: XY, p, 3,4

Ensure: solution ¢, ©

1: initialize ¢°, ©0, VO, U0, Z0 4(1)0 4(2)0 4(3)0 ;-0

2: repeat

3 % Solve subproblem of variable ¢, © by fixing the
other variables

4: L= ) B
axgming o (4, 0) + (o (Z-hEON) + 112~
hOO[3
(e~ “VP)+flle-VI+ (- +410-
Ul

5: fors<1to K do
6: % Get the analytical solution by setting
Vi.L(¢,0.V,U,Z)=0
7. Vie (B(ZFZs) ® (MMT)+ pI)!
vee(yS”) + pOs +
BM (7= 32 adj(s, ¢)Z.UF M) Z,)
8: end for
9: forc<=1to K do
10: % Get the analytical solution by setting
Vi.L(¢,0,V,U,Z)=0
1: U« B 450 (277:) © (MMT)+pI) !
vee(yt) +pO.—BYS M (3= Y5, .adi(s,i) ZUTM —
ZVIMTZ)
12: end for
13: for s <= 1to K do
14: % Get the analytical solution by setting
VzL(¢0,V,UZ)=0
15: Zie
(ol +h(Xa)+ A Yo adj (s, €) ZOT MMV)
(BVIMMTV, + pI)1

16: end for
17:  yWi <=y 4 p(Z — f(X)) % Update dual
variable y(1

18: Y@ =y 4 pO V)
variable y(%

19: yB = 43 4 p(©—0)
variable 33

20: i<=i+1

21: until convergence

% Update dual

% Update dual

1) Update W, b, ¢: The sub-problem of updating W, b and
¢ is as follows:

arg miny , , L(W, b, ¢) + trace(y™ (W — U)T)

+p/2||W U3 +trace(y® (6-V)")+p/2/b- VI3 (29)

Since L(W, b, ¢) is a non-convex function with respect to W,
b and ¢, we will use a traditional gradient descent algorithm,

carefully choosing the step size Aw, A, and A4 for W, b and ¢
to jointly update them to local optima.

Require: XY, p,a, B, Aw, As, Ay

Ensure: solution W, b, ¢

1: initialize WO, 50, g0, U0, VO ¢(1)0 (20 4(3)0 ; — 0
2: repeat

Wt b, ¢* < Equation (29)

4 U* < Equation (30)

5: V' & calculation following Theorem I'V-B3

6:  yWi 421 43 < Equation (31)
7
8

(75

14<i+1
: until convergence

2) Update U: The sub-problem of updating U is as follows:
arg ming a||U||z,1+trace(y™ (W—U)T)+p/2[[W-U|f3
(30)

This can be solved by proximal gradient descent using the
proximal operator on the {2 1 norm [18].
3) Update V: The sub-problem of updating V is as follows:

S §-1

g 2|

msj_l)

2

== > Wy

zeadj(i)

Vzi-1)

N; 2

+ p/2|[b— V|3 + trace(y@ (b — V)T)
81 s s AT
T Z1’,=2 y'\“‘ (V‘.'_l V,'l)

§-1
o) i,
The adj() function introduces some difficulties for updating V',
since every pair of consecutive class level thresholds for the
same task show in the same term. In addition, the same class
level threshold among all tasks will also lead to recursive rela-
tionships. This makes elemental-wise updating of V' impossible
in practice.
In order to address this problem, we can treat the adj() func-
tion as the matrix representation B € RS*5, and reformulate the
problem as matrix multiplication:

w5 E

+ trace (y(z)(b — V)T)

|| max(V.; 1 —V.4,0)|3

.J 1 RT“

§—1
3
+ 21— VIE+ Dy (Vi — V)T
i=2
=

%=1

+ || max(V. ;1 —V-._a'no)“%

[SC =
||
(]

i
Where R;; = 1 and R; q45(i) = — 5=, fori = 1..
total number of neighbors of task 3.

.S. N; is the
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Corollary 1: The optimal solution for matrix V can be ob-
tained by computing its column vectors in order as follows:

Vi —y( )P+b‘,1

V,i —
(BV.ia L+y P +p(b. V. 51) + 32,
x(,BL—f—QpI)‘l Vi<V
BVt L +y2 + pbi + 49,
x(BL + pI)~1 ViV

Where L = RTRandi =2...§ — 1.
Proof: Recall that the problem of update V in matrix multi-
plication format is as follows:

35 05~V

2
+ trace ( @0 — V)T) g §||e V|2

MIm

) Rl

arg miny,

+Zy( Vir = V)T
pk—l
+ EZ Hmax(V‘i_} = Vfiso)H%

=2

Where R;; = 1 and R; a4y = —§-» fori = 1.
total number of neighbors of task 3.

For the sub-problem of solving V. ;, the analytical solution
is fairly straight forward, since it is not involved in the max
operator:

.S. N; is the

Foreach V. ;(¢ > 1) there is a max operator, thus the derivative
with respect to V. ;(i > 1) lies on two situations as follows:

BV,—V,)L—y? +p(V,—0.,)

_y{z) 1 +o(Vii—Viia) Vi<V
E(Vﬁi “.'_1)L ik y(‘? + p(V,i - e‘si')
_y,(,?ll V,i 2 V. i—1

Where L = RTRandi=2...k—1.

The above equations demonstrate that the analytical solution
of V. ; relies on V.;_;. However, as we can obtain analytical
solution for V. ;, we can get the analytical solution of V_;
consecutively in ascending order. The analytical solution can
therefore be computed as shown in Lemma 3. O

4) Update y: Finally, update ),y 43 as follows:

y® =y® + p(W - U);
y® =y® +p(b—V);

y) =max(y” + p(Vi1 —V4),0), fori =2.. §—1 (31)
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V. EXPERIMENTS
A. Experiments for DETECTIVE-K

1) Dataset and Experiment Setup: The description of the
datasets, settings (parameters and hyper-parameters), and sen-
sitivity analysis for comparison models are included in the
supplemental material, available online. In a nutshell, five
datasets (Brazil, Colombia, Mexico, Paraguay, and Venezuela)
from civil unrest forecasting and one dataset from air pollution
event forecasting are used for the experimental evaluations.
All the experiments were conducted on a 64-bit machine with
Intel(R) core(TM) quad-core processor (i7CPU 2.5 GHz) and
16 GB memory. The hyper-parameters and network structure
are chosen via a grid search based on model performance on
the validation set. For all neural network based models, fully
connected layers with sigmoid activation function are used. To
evaluate the model performance, macro-average precision, recall
and F1-Score are used here to provide an overall measure of
model performance across all event subtype classes. In addition,
we also introduce the Receiver Operating Characteristic (ROC)
curve to further evaluate the overall prediction power. The per-
formance of the proposed model is compared with baselines as
well as existing state of the art methods, namely: SVCIVI (Sup-
port Vector Classifier with OneVsOne) and SVCIVA (Support
Vector Classifier with OneVsAll) [19], SR (Softmax Regres-
sion) [4], [20], SBM (Shared-Bottom Model) [21], [22], T-GCN
(Temporal Graph Convolutional Network) [23], and MegaCRN
(Meta-Graph Convolutional Recurrent Network) [24].

2) Performance: Tables I and II show the performance for
all the methods on all the datasets over all the event subtypes
based on macro-average precision, recall and Fl-score. For
neural network based models the numbers attached along with
the model name are the number of hidden layers, notice that
DETECTIVE-K-SR is DETECTIVE-K framework used with
Softmax Regression (i.e., without hidden-layers).

Table I shows that DETECTIVE-K framework used along
with deep architectures performs consistently well across all the
different countries, with DETECTIVE-K-2 achieving the high-
est scores in most cases. Specifically, DETECTIVE-K-2 attains
an impressive F1 score in Colombia and Paraguay, indicating ro-
bust predictive capabilities. Conversely, traditional methods like
SVCIVA, SVC1V1, and MLP display lower performance met-
rics. Additionally, advanced models like T-GCN and MegaCRN
show moderate effectiveness but fail to outperform the
DETECTIVE-K consistently. The DETECTIVE-K-2 method,
in particular, demonstrates substantial improvement over others,
particularly evident in Brazil and Paraguay, highlighting its
efficacy in civil unrest detection tasks across diverse regions.

Table II also demonstrate the effectiveness of the proposed
methods in the domain of air pollution event forecasting
with different prediction lead times. DETECTIVE-K used
along with deep architectures outperforms the baseline models
consistently by 5%—10% in terms of the Fl-score and achieves
the top performance for both precision and recall. The results
presented in this table also highlight the increasing difficulty
of predictions with longer lead times, as forecasting long-term
future events introduces considerably more uncertainty.
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Mesxico

Paraguay

Venezuela

0.1798,0.1991,0.1738
0.1651,0.1600,0.1511

0.2009,0.2396,0.2055
0.2058,0.2715,0.2152

0.2136,0.2348,0.2069
0.2118,0.2481,0.2058

0.1781,0.1888,0.1676

0.2212,0.2644,0.2287

0.2239,0.2507,0.2191

0.2106,0.1897,0.1849

0.2378,0.2935,0.2402

0.2538,0.2661,0.2326

0.1800,0.1957,0.1715
0.1757,0.1534,0.1608
0.1842,0.1539,0.1675

0.2160,0.3145,0.2234
0.2300,0.2694,0.2307
0.2133,0.2049,0.2084

0.2174,0.2200,0.2155
0.2180,0.2311,0.2152
0.2174,0.2200,0.2155

0.2237,0.2051,0.2121
0.2104,0.1951,0.2009
0.2060,0.1793,0.1908

0.2447,0.3655,0.2543
0.2363,0.2971,0.2416
0.2392,0.2459,0.2369

0.2212,0.2115,0.2122
0.2455,0.2505,0.2286
0.2545,0.1910,0.2162

0.1882,0.2154,0.1835
0.1507,0.2000,0.1719

0.2540,0.2761,0.2610
0.2380,0.3038,0.2628

0.2474,0.2718,0.2482
0.1585,0.2000,0.1759

Method Brazil Colombia
SVC1VA 0.2318,0.2479,0.2368 0.2374,0.2673,0.2447
S5VC1V1 0.2444,0.2582,0.2465 0.2062,0.2096,0.1995
SR | 0.2131,0.2525,0.2247  0.2496,0.2840,0.2545
DETECTIVE-K-SR | 0.2586,0.2699,0.2560 0.2568,0.2799,0.2645
MLP-1 0.2423,0.2358,0.2359 0.2369,0.2354,0.2357
MLP-2 0.2512,0.2575,0.2530 0.2594,0.2736,0.2634
MLP-3 0.2699,0.2590,0.2643 0.2400,0.2628,0.2436
SBM-1 0.2821,0.2634,0.2696 0.2956,0.2701,0.2762
SBM-2 0.2560,0.2737,0.2597 0.2919,0.2637,0.2732
SBM-3 0.2821,0.2637,0.2714 0.2759, 0.3176,0.2863
T-GCN 0.2511,0.3798,0.2532 0.2451,0.2475,0.2463
MegaCRN 0.2538,0.2635,0.2560 0.2159,0.2500,0.2317
DETECTIVE-K-1 0.2848.,0.2804,0.2788 0.3067,0.2761,0.2845
DETECTIVE-K-2 0.3558, 0.2887,0.2779  0.2648,0.3130,0.2670
DETECTIVE-K-3 0.2828,0.2641,0.2712 0.2689,0.3152,0.2710

0.2187,0.2070,0.2123

0.2467,0.3749,0.2562

0.2252,0.2110,0.2176

0.2543,0.3373,0.2638

0.2684,0.2422,0.2477
0.2704,0.2421,0.2471

0.2081,0.2338,0.2000

0.2473,0.4482,0.2532

0.2178,0.2571,0.2174

Bold underlining means the best performance; only underlining without bold means thesecond-best performance.

CHINA AIR POLLUTION EVENT FORECASTING DATASET WITH VARIOUS PREDICTION LEAD TIMES (MACRO PRECISION, RECALL, AND F1)

TABLE IT

3-days

5-days

T-days

0.4362, 0.4768, 0.4309
0.4532, 0.4849, 0.4565

0.3940, 0.3946, 0.3872
0.4361, 0.4545, 0.4380

0.4334, 0.4553, 0.4240
0.4351, 0.4412, 0.4302

Method | 1-day

SVC1VA 0.4966, 0.5255, 0.5009

SVC1vV1 0.5700, 0.5716, 0.5652
SR I 0.4254, 0.4338, 0.4287

0.4082, 0,4229, 0.4102

0.3949, 0.4208, 0.3974

0.4126, 0.4277, 0.4104

DETECTIVE-K-SR. |

0.5290,0.6436, 0.5572

0.4256, 0.6395, 0.4293

0.4281, 0.6350, 0.4236

0.4541, 0.6863, 0.4412

0.4679, 0.4809, 0.4614
0.4687, 0.4805, 0.4638
0.4989, 0.4916, 0.4902

0.4596, 0.4761, 0.4451
0.4378, 0.4359, 0.4308
0.4848, 0.4683, 0.4718

0.4646, 0.4684, (1.4592
0.4605, 0.4472, 0.4504
0.4597, 0.4537, 0.4364

0.5718, 0.5230, 0.5162
0.4630, D.6396, 0.4880
0.5154, 0.5426, 0.5035

0.5692, 0.5075, 0.5134
0.4802, 0.6211, 0.4997
0.5089, 0.6331, 0.5236

0.5763, 0.5343, 0.4896
0.5070, 0.6457, 0.5256
0.5271, 0.5631, 0.5184

MLP-1 0.5640, 0.5625, 0.5594
MLP-2 0.6108, 0.5567, 0.5693
MLP-3 0.5739, 0.6873, 0.5719
SBM-1 0.5710, 0.6162, 0.5812
SBM-2 0.5383, 0.5981, 0.5509
SBM-3 0.5284, 0.6085, 0.5526
T-GCN 0.3303, 0.4485, 0.3423
MegaCRN 0.2436, 0.4288, 0.2524

0.0704, 0.2470, 0.1096
0.2560, 0.4270, 0.2555

0.0696, 0.2389, 0.1078
0.2628, 0.4446, 0.2747

0.0690, 0.2490, 0.1080
0.2432, 0.4311, 0.2461

DETECTIVE-K-1
DETECTIVE-K-2
DETECTIVE-K-3

0.5558, 0.5668, 0.5560
0.5605, 0.6556, 0.5863
0.5979, 0.6364, 0.6002

0.4761, 0.5704, 0.5046
0.4932, 0.6186, 0.5290
0.5633, 0.5776, 0.5431

0.4878, 0.6562, 0.5085
0.4935, 0.5289, 0.4991
0.5256, 0.5851, 0.5300

0.4738, 0.6539, 0.4698
0.5627, 0.6390, 0.5868
0.5138, 0.6310, 0.5425

Bold underlining means the best performance; only underlining without bold means thesecond-best performance.

However, the proposed model behaves stably and suffers from
less decline in terms of its overall performance compared with
the other methods. For instance, the Fl-score only decreases
by about 10% for the DETECTIVE-K-3 model, while other
baselines decrease by about 15%—30%. This may suggest that
the proposed spatial regularization term in DETECTIVE-K
improves the robustness of the deep model substantially,
enabling it to capture more long-term dependencies of the data
and the corresponding event subtypes.

The experimental results in both Tables I and II show that
overall shallow models such as SR, SVM based models, and
DETECTIVE-K-SR perform worse than deep models with
hidden layers such as MLP, SBM and DETECTIVE-K-3. This is
largely because shallow models cannot discriminate the subtle
differences between event subtype patterns very well. Among
the shallow models, DETECTIVE-K-SR still outperforms all
other baselines most of the time, which further demonstrates
the effectiveness of the proposed spatial regularization even
on shallow models on various application domains. Moreover,
DETECTIVE can forecast with a time GAP (Table II) while the
lead time gap affects the sequence-based model such as TGCN.

Civil Unrest (Brazil) Dataset 5 China Air Dataset
A
08 = o= : 08
o =
g . .
o s, i i3
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] E .y 2
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S04 i B 04t
% ) 7 [——oetectvex auc=oa) % h ——— DETECTIVEK {AUC=0.80)
& ; = = MLP{AUC =077} & iy | - = MLPALC=0.7T)
02 SME {ALC = 0,77) 02, SWB [AIUC = 0.78)
= = SWCIVA[AUC = 0.71) ¥y - SVCIVA (AUC =0.78)
~ — SVGIVI (AUG =0.70) » = = SNCIVI [ALIC = 0.76}
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Fig.5. Macro-average ROC comparison.

In the Receiver Operating Characteristic (ROC) curve analy-
sis (Fig. 5) Brazil dataset is used to represent the Civil Unrest
dataset, other datasets follow the similar trends. The China Air
dataset has a lead time of 7 days. For neural network based
models, only those giving the best AUC scores are shown
here. The curves for the Civil Unrest dataset on the left clearly
show that the DETECTIVE-K model achieves the best ROC
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TABLE I
EVENT FORECASTING PERFORMANCE COMPARISON ON CIVIL UNREST DATASETS (MZE, MAE)

Method | Argentina Brazil Chile Colombia Mexico Paraguay Uruguay Venezuela
SVCIVA 0.0368, 0.0708  0.0440, 0.0857  0.0657,0.1129  0.0552, 0.0916 0.1284,0,2284  0.0353, 0.0674  0.0223, 0.0390  0.0615, 0.1127
SVC1V1 0.0339, 0.0670  0.0441, 0.0860  0.0610, 0.1098  0.0506, 0.0884  0.1187,0.2184  0.0339, 0.0610  0.0227, 0.0403  0.0690, 0.1201
SVMOP 0.0392, 0.0709  0.0482, 0.0854  0.0740, 0.1180  0.0542, 0.0889 0.1187,0.2184  0.0337, 0.0608 0.0239, 0.0398  0.0690, 0.1201
POM 0.0287, 00572 0.0626,0.1230 0.0524, 0.0989  0.0376, 0.0724 0.0982,0.1906 0.0367, 0.0717  0.0340, 0.0667 0.0374, 0.0722
T-GCN 0.0765, 0.0881 0.0736, 0.0905 0.0798, 0.1066  0,0293, 0.0459  0.2006, 0.2632  0.0326,0.0566 0.0444,0.0547 0.0519, 0.0693
MegaCRN 0.0115, 0.0228  0.0520, 0.0660 0.0426, 0.0676 0.0221, 0.0368 1.0000,0.1617 0.0314,0.0613 0.0076, 0.0141 0.0499, 0.0666
MITOR-1 0.0161, 0.0306  0.0344, 0.0665 0.0436, 0.0812 0.0280, 0.0534  0.0967, 0.1875  0.0284, 0.0551 0.0132, 0.0250  0.0289, 0.0551
MITOR-IIL 0.0158, 0.0305  0.0339, 0.0657 0.0436, 0.0812 0.0274, 0.0521 0.0875, 0.1690  0.0286, 0.0555  0.0122, 0.0231 0.0286, 0.0545
DETECTIVE-§ | 0.0147, 0.0291  0.0348, 0.0674 0.0353, 0.0647 0.0197, 0.0366 0.0736, 0.1414  0.0259, 0.0499 0.0092, 0.0170  0.0226, 0.0425
Bold underlining means the best performance; only underlining without bold means thesecond-best performance.

curve, with an AUC score of 0.81. This is also the case for the TABLE IV

China air pollution dataset, where the DETECTIVE-K model
again achieves the highest AUC score of 0.80. This further
demonstrates the effectiveness and overall prediction power of
the proposed DETECTIVE-K.

B. Experiments for DETECTIVE-§

1) Dataset and Experiment Setup: The detailed description
of the datasets, parameter settings and sensitivity analysis, in-
troduction and hyper-parameter settings for comparison models
are included in the supplemental material, available online. As
a summary, in this study, 8 datasets from civil unrest forecasting
and 2 datasets from influenza outbreak forecasting are used for
the experimental evaluations. All the experiments were con-
ducted on a 64-bit machine with Intel(R) core(TM) quad-core
processor (i7CPU 2.5 GHz) and 16 GB memory. The hyper-
parameters in the proposed model have been chosen based on the
performance for the validation set. The validation set consists of
arandomly chosen 20% of the training data. We used three fully
connected layers (256, 128, 64) with relu activation function, and
SGD for optimization. To evaluate the prediction performance
for ordinal variables, Mean Zero-one Error (MZE) and Mean Ab-
solute Error (MAE) are commonly used. MZE is the error rate of
the classifier: MZE = + SN [t # wi] =1 — Ace, wherey;
is the true label, y; is the predicted label and Acc is the accuracy
of the classifier. MZE values range from 0 to 1; they are related
to global performance, but do not consider the order. MAE is the
average deviation in absolute value of the predicted rank y} from
the true one y; [25]: MAE = + SN lyf — yi|. MAE values
range from O to k — 1 (maximum deviation in number of scales).
The performance of the proposed models is compared with the
baseline as well as the state-of-the-art methods, namely: SVCI1V1
(Support Vector Classifier with OneVsOne), SVCIVA (Support
Vector Classifier with OneVsAll) [19], SVMOP (Support Vec-
tor Machines with OrderedPartitions) [26], POM (Proportional
Odds Model) [27], T-GCN (Temporal Graph Convolutional Net-
work) [23], MegaCRN (Meta-Graph Convolutional Recurrent
Network) [24], and MITOR [28].

2) Performance: Tables IIl and IV show the performance
for all the methods on all the datasets based on both MZE and
MAE. These indicate that the methods that utilize DETECTIVE-
§frameworks perform better than most baseline methods overall.
Table III shows that DETECTIVE-§consistently performs well

EXPERIMENTAL RESULTS FOR U.S. FLU DATASETS (MZE, MAE)

Model

2011-2012

2013-2014

SVC1VA
SVC1V1

0.2246, 0.3167
0.2220, 0.3096

0.2861, 0.4367
0.2869, 0.4368

POM
SVMOP

0.2250, 0.3117
0.2269, 0.3118

0.3036, 0.4822
0.2921, 0.4310

T-GCN
MegaCRN

0.2541, 0.3231
0.1737, 0.1750

0.3128, 0.4107
0.1815, 0.2172

MITOR-I
MITOR-II

0.1148, 0.1900
0.1145, 0.1895

0.1796, 0.3473
0.1794, 0.3466

DETECTIVE-§ | 0.1098,0.1827  0.1657, 0.2985

Bold undetlining means the best performance; only undetlining without

I-best perf

bold means th

(b) 2013-14 flu true proportional odds of scale 4 over 3

Fig. 6. The heat map for the US flu dataset for b. 4 — b. 3 and ground truth
proportional odds of class 4 over class 3.

across different countries, being the best in Argentina, Chile,
Colombia, Mexico, Uruguay, and Venezuela and outperform-
ing the baseline models by 4%-29% both in MZE and MAE.
In the case of Brazil, the result degraded. One reason for
that can be the language difference between Brazil and other
countries. Table IV also demonstrate the effectiveness of the
proposed methods. DETECTIVE-§outperformed the baseline
models consistently by 4%—13% both in MZE. While MegaCRN
has a low MAE, its high MZE suggests it often misses the exact
scale of the event.
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Fig. 7.  Sensitivity analysis for hyper-parameters.

3) The Effect of Scale Pattern Regularization: Fig. 6 com-
pares the scale patterns in terms of b learned by DETECTIVE-§.
Each of Fig. 6(a) shows the difference between 3rd and 4th
thresholds bi,4 — bi, 3 for each ith task (state) in the U.S.
Fig. 6(b) shows the ground truth proportional odds of class
4 over class 3 for each of the states for two years, 2013 and
2014. Fig. 6(a) the patterns among nearby states is spatially
smoothed, which is more similar to the patterns in ground truth
shown in Fig. 6(b). This is because DETECTIVE-§can utilize
threshold regularization to encourage the nearby states to share
their knowledge with each other under the “first law of geogra-
phy”, which will largely alleviate each state’s incompleteness of
label set. For example, the pattern of the relatively small state
“Colorado™ suffered from data incompleteness and deviated
from the neighbor states, but DETECTIVE-§corrected this, as
compared with the ground truth in Fig. 6(b).

4) Parameter Sensitivity Study of DETECTIVE-§: There are
two hyper-parameters in the proposed DETECTIVE-§model, as
shown in (28), where o controls group sparsity £3 ; norm and 3
controls the proposed regularization term on 6. Fig. 7 show the
MZE and MAE of the model versus « and /3 respectively. Only
the results for Mexico within civil unrest datasets and 2013-14
influenza outbreak dataset are shown due to space limitations.
The top 2 bar charts in Fig. 7 show the MZE and MAE of the
model versus a. By varying o across the range from 0.0001 to
10, the performance of the influenza outbreak dataset is stable,
with the fluctuation ranges less than 0.01. For the civil unrest
dataset, the fluctuation range is 0.015 in MZE and 0.03in MAE.
The best performance is obtained when a = 0.5. We can also
see a clear trend where both MZE and MAE increase when a is
too large or too small. The bottom 2 bar charts illustrate the MZE
and MAE of the model versus /3, which is varied across the same
range as .. The fluctuation ranges around 0.01 for both MZE and
MAE. In general, the performance is good when /3 is small, but
deteriorates once 3 becomes too large. A large 3 will force the
model to pay too much attention to being similar to its adjacent
tasks and may thus lead to the loss of its own characteristic and
a consequent decrease in overall performance.
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VI. CONCLUSION

Effective future event subtype forecasting can be utilized to
qualitatively guide precautionary resource allocation and enable
practitioners to take more precise preemptive measures. This
work offers a unique spatial incomplete multi-task deep learning
(DETECTIVE) architecture that addresses geographical het-
erogeneity, task label incompleteness, event subtype pattern
correlations, and model adaptability in order to accomplish this
goal. To deal with this non-convex and strongly coupled model
objective, two effective algorithms were proposed. Comprehen-
sive experiments on real-world datasets show that the suggested
model performs better in a variety of application areas than
alternative baseline methods.
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