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Abstract—With the popularity of the Internet of Things (IoT) 

and surveillance, the amount of image and video information 
collected by internet has exploded. On the one hand, transmitting 
the massive information requires plenty of bandwidth. On the 
other hand, processing these data requires tremendous manpower. 
In order to solve these two problems at the same time, image 
coding for machines (ICM) came into being. At present, most ICM 
technologies combine traditional codecs such as BPG or machine 
learning codecs such as the hyperprior codec and the coarse-to-
fine codec with task networks such as image classification and 
semantic segmentation. This process requires the complete 
restoration of the image, which greatly increases the bitrates. 
Moreover, the restored images are for human eyes and contain a 
large amount of redundant information, which is not required by 
the task network. In order to solve this problem, side information 
driven image coding for machines (SIIC) was proposed, which 
only needs to input hyperprior information to the image 
classification network, which greatly reduces the scale of data 
transmission. Now, we propose a redundancy removal module that 
can further reduce the usage of bitrates for SIIC. Through this 
module, the new codec uses 3% to 4% less bitrates than the 
original SIIC when the bitrates are under 0.06 bpp, and can save 
up to 10% of bitrates when the bitrates are over 0.1 bpp.  
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I. INTRODUCTION 
As stated in [1], with the rapid development of the Internet 

of Things, humans are becoming less and less important in 
processing images or visual tasks such as image recognition. On 
the one hand, this is because these images are processed more 
by machine learning task networks such as ResNet-50 [2] and 
Yolov3 [3], which save manpower and are faster and more 
accurate than human labor. On the other hand, a large amount of 
image data are captured by terminals such as surveillance 
equipment, drones and autonomous vehicles, and then 
transmitted on the network, which results in massive bandwidth 
resources being occupied. Therefore, these images need to be 
compressed before transmission to save bandwidth resources. 
Image coding for machines was born to solve the problem of 
image transmission efficiency and visual tasks at the same time. 
It generally contains two parts. The first part is the codec 
responsible for image compression and transmission, which can 

be traditional image compression tools such as BPG [4]. 
However, with the development of machine learning, more 
learned codecs based on the convolutional neural network (CNN) 
are developed, such as Coarse-to-fine codec [5] and Hyperprior 
codec [6]. ICM not only compresses images to save bandwidth, 
but also uses task networks to handle visual recognition tasks. 

Most of the current ICM frameworks are obtained by 
splicing codec and task network. The image needs to be restored 
first and then processed through the task network. The quality of 
the restored image is judged by the metrics of human vision. 
These metrics include PSNR and MS-SSIM. However, it should 
be noted that the information required by human vision and the 
information required by the subsequent task network may be far 
apart. This will cause the reconstructed images to contain 
redundancy and also lack key information for the subsequent 
task. 

SIIC [7] only transmits hyperprior information to save 
bitrates. It does not generate intermediate images, but directly 
inputs the side information to the image classification network 
ViT [8]. Its metric is the top-1 classification accuracy, so the 
transmitted information does not carry too much redundant 
information irrelevant to the task. 

In this article, we proposed a redundancy removal module to 
further reduce the usage of bitrates in SIIC. In addition, this 
module is fast to train, requiring only 4 epochs of additional 
training, and is easy to insert into the pipeline. Ultimately, it 
enables SIIC to save 3% to 10% of bandwidth without degrading 
SIIC’s performance in image classification. 

The following is the structure of this article: Section II 
introduces related ICM frameworks, Section III describes our 
proposed method in details, Section IV presents the performance 
of redundancy removal module through experiments, and 
Section V concludes the paper. 

II. RELATED WORKS 
As mentioned in the Section I, most ICM pipelines are 

directly spliced together the codec and task network, such as J-
FT T-FT [9], transformed images [10], compressed 
representation [11], SPIC-Q [12], Post-SA [13], RNN-C + 
ResNet-50 [14]. Taking J-FT T-FT as an example, the image is 
first compressed by the learned codec, restored to 𝑥", and then 
assigned to different tasks such as image classification and 
object detection. 
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The other type is scaled feature pipeline, such as HMI-IC 
[15]. It contains a base layer and an enhancement layer. The base 
layer transmits a small part of the image information and 
performs relatively simple tasks such as image classification and 
thumbnail generation. The enhancement layer transmits the 
remaining information of the image, which is added to the 
information of the above-mentioned base layer to complete 
more complex tasks such as image reconstruction. 

The original SIIC [7] belongs to the first category, but it does 
not need to restore images, so it saves much bandwidth. It uses 
side information, also known as hyperpriors, which can 
effectively reduce the redundancy. 

 The redundancy removal module we proposed can act on 
both encoder and decoder ends of the codec in SIIC, thereby 
further reducing the usage of bitrates. 

III. PROPOSED METHOD 
Based on the original SIIC [7], we added redundancy 

removal modules named Decoder_sub on both the encoder and 
decoder sides. The overall process is shown in Fig. 1. Image 𝑥 
passes through the Encoder to produce latent 𝑦 , 𝑦  enters 
Encoder_h1 to produce the first layer hyperprior ℎ1, and ℎ1 
enters Encoder_h2 to produce the second layer hyperprior ℎ2. 
ℎ2 is quantized and become ℎ2' . ℎ2' enters redundancy removal 
module Decoder_sub to produce ℎ1′, then we subtract ℎ1′ from 	
ℎ1 to obtain residue ℎ𝑟. According to [5], ℎ2'  and ℎ𝑟' conform to 
the normal distribution. In particular, the parameters (𝜇!" , 𝜎!") 
of ℎ𝑟'  are calculated by ℎ2'  through Decoder_h2 and the 
prediction model. After ℎ2'  and ℎ𝑟' arrive at the decoder end, ℎ2' 
passes through Decoder_sub again to generate ℎ1′, then ℎ𝑟' and 
ℎ1′ are added to obtain ℎ1'. Finally, we put ℎ2'  and ℎ1' into the 
decoders and the task network ViT to produce the final 
classification results. The formulas needed are as follows: 

 y = Encoder (x), (1) 

 h1 = Encoder_h1 (y), (2) 

 h2 = Encoder_h2 (h1), (3) 

 ℎ1′ = Decoder_sub (ℎ2'), (4) 

 hr = h1 − ℎ1′, (5) 

 ℎ1'  = ℎ𝑟' + ℎ1′, (6) 

 ℎ2'′ = Decoder_h2_side (ℎ2'), (7) 

 ℎ2 = ℎ2′' + ℎ1' , (8) 

 ℎ2′ = Decoder_side1 (ℎ2), (9) 

 ℎ2′′ = Decoder_side2 (ℎ2′). (10) 

 

Fig. 1. The structure of SIIC with the proposed redundancy removal module. 

 

 

Fig. 2. The specific structure of Decoder_sub, where Depth2Space [5] 
doubles the tensor’s height and width and downsizes the channel by a factor 
of 4. 

 



SIIC [7] selected ViT [8] as the network for image 
classification. It uses transformers, which can well extract 
global information of the image and help produce better 
accuracy. 

The specific structure of Decoder_sub is shown in Fig. 2. We 
use Decoder_h2_side structure from [7] containing four 
transpose convolution layers (Tconv) and one Depth2Space [5] 
layer to build Decoder_sub, which will amplify the shape of ℎ2' 
to imitate ℎ1. The original shape of ℎ2'  is (𝑛, 𝑐, ℎ, 𝑤). The first 
Tconv layer increases the channel number c of ℎ2' from 128 to 
256, which is 2c. The second and third layers of Tconv maintain 
the shape (𝑛, 2𝑐, ℎ, 𝑤)  to extract and keep the important 
information that the following layers need. Then the 
Depth2Space [5] decreases the channels of ℎ2'  to 1/4 of the 
original, which is 0.5c = 64, and at the same time doubles h and 
w to 2h and 2w. Finally, the Tconv layer increases 0.5c to 2c and 
changes the shape of ℎ2'  from (𝑛, 0.5𝑐, 2ℎ, 2𝑤)  into 
(𝑛, 2𝑐, 2ℎ, 2𝑤), which is the shape of ℎ1	and ℎ1′. 
As shown in Fig. 1, Decoder_sub reversely predicts 

ℎ1′	through ℎ2', and the generated ℎ1′ can be offset with ℎ1, so 
that we can achieve the purpose of removing the redundant 
information in ℎ1. 

IV. EXPERIMENTS AND RESULTS 
We use the ImageNet1K [16] dataset as the training and 

validation dataset for the classification task. ImageNet1K has 
1,000 categories of images. The training set contains 1.28M 
images, and the validation set has 50,000 images. Most images 
are larger than 256×256.  

A. The First Training Stage 
The purpose of this stage is to make ℎ1′ as close as possible 

to ℎ1. At this time, the batchsize is 64, and the learning rate is 
set to 1e-5 for the first epoch and 1e-6 for the second epoch. The 
optimizer is Adam [17]. The required loss function is as follows: 

 loss = MSE (ℎ1#, ℎ1). (11) 

At this time, only the parameters of Decoder_sub are trained. 

B. The Second Training Stage 
The purpose of this stage is to transmit ℎ𝑟'  with as low 

bitrates as possible. At this time, the batchsize is 64 and the 
learning rate is set to 1e-6 for 2 epochs. The optimizer is Adam 
[17]. The loss function is as follows: 

 loss = 𝑅!"$ . (12) 

𝑅!"$  is the bitrate required to transmit ℎ𝑟' . The parameters 
trained at this time are from Decoder_sub, Decoder_h2 and 
Prediction Model. 

C. Results and Analysis 
Next are comparisons on the top-1 classification accuracy 

between our proposed method and other ICM pipelines on the 
ImageNet1K [16] validation set. The first is the comparison 
between the proposed SIIC with redundancy removal module 
and the original SIIC [7], as shown in Fig. 3. It can be found that 
in the range of 0~0.06 bpp, at the same accuracy level, our 
method requires 3%~4% less bitrates than the original SIIC [7]. 
Our method can also achieve more than 75% accuracy using 
0.09 bpp with the help of the redundancy removal module, 
which is 10% less than the bitrates of the original SIIC [7]. In 
addition, we also compared SIIC with the proposed redundancy 
removal module with J-FT T-FT [9], HMI-IC [15], etc., as 
shown in Fig. 4. It can be seen that our proposed method can 
consume fewer bitrates but achieve higher top-1 classification 
accuracy. 

 

Fig. 4. Comparison of the top-1 accuracy of SIIC with redundancy removal 
module (ours) and J-FT T-FT [9], transformed images [10], compressed 
representation [11], SPIC-Q [12], Post-SA [13], RNN-C + ResNet-50 [14], 
HMI-IC [15] on the ImageNet1K [16] verification set. 

 

 

Fig. 3. Comparison of the top-1 accuracy of SIIC with redundancy removal 
module (ours) and original SIIC [7] on the ImageNet1K [16] verification set. 

 



V. CONCLUSION 
In this article, we proposed a redundancy removal module to 

further reduce the bitrates used in SIIC. The proposed network 
module can be trained quickly and achieve improved results. 
After SIIC used the redundancy removal module, it not only 
improved the classification accuracy, but also further saved 
bitrates. Next, we plan to use the redundancy removal module in 
more ICM pipelines to achieve the goal of saving their bitrates.  

REFERENCES 
[1] A. Al-Kaff, D. Martin, F. Garcia, A. de la Escalera, and J. M. Armingol, 

“Survey of computer vision algorithms and applications for unmanned 
aerial vehicles,” Expert Syst. Appl., vol. 92, pp. 447–463, Feb. 2018. 

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 
recognition,” in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2016, pp. 770–778. 

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 
arXiv preprint arXiv:1804.02767, 2018. 

[4] F. Bellard. “The BPG image format,” [Online]. Available: 
http://bellard.org/bpg/, accessed on Jul. 12, 2022. 

[5] Y. Hu, W. Yang, and J. Liu, “Coarse-to-fine hyper-prior modeling for 
learned image compression,” in Proc. AAAI Conf. Artificial Intelligence, 
New York, NY, USA, Feb. 2020, pp. 11013-11020. 

[6] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational 
image compression with a scale hyperprior,” in Proc. Int. Conf. Learn. 
Represent. (ICLR), Vancouver, BC, Canada, May 2018. 

[7] Z. Zhang and Y. Liu, “Side information driven image coding for 
machines,” in 2022 Picture Coding Symposium (PCS). IEEE, 2022, pp. 
193–197. 

[8] A. Dosovitskiy et al., “An image is worth 16x16 words: transformers for 
image recognition at scale,” in  Proc. Int. Conf. Learn. Represent. (ICLR), 
Virtual Event, Austria, May 2021. 

[9] L. D. Chamain, F. Racapé, J. Bégaint, A. Pushparaja, and S. Feltman, 
“End-to-end optimized image compression for multiple machine tasks,” 
arXiv preprint arXiv:2103.04178, Mar. 2021. 

[10] N. Le, H. Zhang, F. Cricri, R. Ghaznavi-Youvalari, and E. Rahtu, “Image 
coding for machines: an end-to-end learned approach,” in Proc. IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Toronto, ON, Canada, Jun. 2021, pp. 1590-1594. 

[11] R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. 
Van Gool, “Towards image understanding from deep compression 
without decoding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 
Vancouver, BC, Canada, May 2018. 

[12] N. Patwa, N. Ahuja, S. Somayazulu, O. Tickoo, S. Varadarajan, and S. 
Koolagudi, “Semantic-preserving image compression,” in Proc. IEEE 
International Conference on Image Processing (ICIP), Abu Dhabi, United 
Arab Emirates, Oct. 2020, pp. 1281-1285. 

[13] S. Luo, Y. Yang, and M. Song, “DeepSIC: deep semantic image 
compression,” in Proc. International Conference on Neural Information 
Processing (ICONIP), Siem Reap, Cambodia, Dec. 2018, pp. 96-106. 

[14] M. Weber, C. Renggli, H. Grabner, and C. Zhang, “Observer dependent 
lossy image compression,” in Proc. DAGM German Conf. Pattern 
Recognit., Bingen, Germany, Sept. 2020, pp. 130-144. 

[15] Z. Wang, F. Li, J. Xu and P. C. Cosman, “Human–machine interaction-
oriented image coding for resource-constrained visual monitoring in IoT,” 
IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16181-16195, Sept. 
2022. 

[16] O. Russakovsky et al., “ImageNet large scale visual recognition 
challenge,” International journal of computer vision, vol. 115, no. 3, pp. 
211-252, Apr. 2015. 

[17] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” 
in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May 
2015. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


