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Abstract—With the popularity of the Internet of Things (IoT)
and surveillance, the amount of image and video information
collected by internet has exploded. On the one hand, transmitting
the massive information requires plenty of bandwidth. On the
other hand, processing these data requires tremendous manpower.
In order to solve these two problems at the same time, image
coding for machines (ICM) came into being. At present, most ICM
technologies combine traditional codecs such as BPG or machine
learning codecs such as the hyperprior codec and the coarse-to-
fine codec with task networks such as image classification and
semantic segmentation. This process requires the complete
restoration of the image, which greatly increases the bitrates.
Moreover, the restored images are for human eyes and contain a
large amount of redundant information, which is not required by
the task network. In order to solve this problem, side information
driven image coding for machines (SIIC) was proposed, which
only needs to input hyperprior information to the image
classification network, which greatly reduces the scale of data
transmission. Now, we propose a redundancy removal module that
can further reduce the usage of bitrates for SIIC. Through this
module, the new codec uses 3% to 4% less bitrates than the
original SIIC when the bitrates are under 0.06 bpp, and can save
up to 10% of bitrates when the bitrates are over 0.1 bpp.

Keywords—nbitrate, image classification, image coding for
machines, redundancy removal, transpose convolution

I. INTRODUCTION

As stated in [1], with the rapid development of the Internet
of Things, humans are becoming less and less important in
processing images or visual tasks such as image recognition. On
the one hand, this is because these images are processed more
by machine learning task networks such as ResNet-50 [2] and
Yolov3 [3], which save manpower and are faster and more
accurate than human labor. On the other hand, a large amount of
image data are captured by terminals such as surveillance
equipment, drones and autonomous vehicles, and then
transmitted on the network, which results in massive bandwidth
resources being occupied. Therefore, these images need to be
compressed before transmission to save bandwidth resources.
Image coding for machines was born to solve the problem of
image transmission efficiency and visual tasks at the same time.
It generally contains two parts. The first part is the codec
responsible for image compression and transmission, which can
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be traditional image compression tools such as BPG [4].

However, with the development of machine learning, more

learned codecs based on the convolutional neural network (CNN)
are developed, such as Coarse-to-fine codec [5] and Hyperprior

codec [6]. ICM not only compresses images to save bandwidth,

but also uses task networks to handle visual recognition tasks.

Most of the current ICM frameworks are obtained by
splicing codec and task network. The image needs to be restored
first and then processed through the task network. The quality of
the restored image is judged by the metrics of human vision.
These metrics include PSNR and MS-SSIM. However, it should
be noted that the information required by human vision and the
information required by the subsequent task network may be far
apart. This will cause the reconstructed images to contain
redundancy and also lack key information for the subsequent
task.

SIIC [7] only transmits hyperprior information to save
bitrates. It does not generate intermediate images, but directly
inputs the side information to the image classification network
ViT [8]. Its metric is the top-1 classification accuracy, so the
transmitted information does not carry too much redundant
information irrelevant to the task.

In this article, we proposed a redundancy removal module to
further reduce the usage of bitrates in SIIC. In addition, this
module is fast to train, requiring only 4 epochs of additional
training, and is easy to insert into the pipeline. Ultimately, it
enables SIIC to save 3% to 10% of bandwidth without degrading
SIIC’s performance in image classification.

The following is the structure of this article: Section II
introduces related ICM frameworks, Section III describes our
proposed method in details, Section IV presents the performance
of redundancy removal module through experiments, and
Section V concludes the paper.

II. RELATED WORKS

As mentioned in the Section I, most ICM pipelines are
directly spliced together the codec and task network, such as J-
FT T-FT [9], transformed images [10], compressed
representation [11], SPIC-Q [12], Post-SA [13], RNN-C +
ResNet-50 [14]. Taking J-FT T-FT as an example, the image is
first compressed by the learned codec, restored to X, and then
assigned to different tasks such as image classification and
object detection.
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Fig. 1. The structure of SIIC with the proposed redundancy removal module.

The other type is scaled feature pipeline, such as HMI-IC
[15]. It contains a base layer and an enhancement layer. The base
layer transmits a small part of the image information and
performs relatively simple tasks such as image classification and
thumbnail generation. The enhancement layer transmits the
remaining information of the image, which is added to the
information of the above-mentioned base layer to complete
more complex tasks such as image reconstruction.

The original SIIC [7] belongs to the first category, but it does
not need to restore images, so it saves much bandwidth. It uses
side information, also known as hyperpriors, which can
effectively reduce the redundancy.

The redundancy removal module we proposed can act on
both encoder and decoder ends of the codec in SIIC, thereby
further reducing the usage of bitrates.

III. PROPOSED METHOD

Based on the original SIIC [7], we added redundancy
removal modules named Decoder_sub on both the encoder and
decoder sides. The overall process is shown in Fig. 1. Image x
passes through the Encoder to produce latent y, y enters
Encoder hl to produce the first layer hyperprior h1, and h1
enters Encoder h2 to produce the second layer hyperprior h2.
h2 is quantized and become h2. h2 enters redundancy removal
module Decoder_sub to produce h1', then we subtract h1’ from
h1 to obtain residue Ar. According to [5], h2 and hr conform to
the normal distribution. In particular, the parameters (i, 0,)
of hr are calculated by h2 through Decoder h2 and the
prediction model. After A2 and Ar arrive at the decoder end, h2
passes through Decoder sub again to generate h1’, then hr and
h1' are added to obtain A1. Finally, we put 22 and h1 into the
decoders and the task network ViT to produce the final
classification results. The formulas needed are as follows:

y = Encoder (x), (1

hl = Encoder _hl (y), 2)

h2 = Encoder _h2 (hl), 3)
h1' = Decoder sub (h2), 4
hr=hl — h1', (5)
h1=hr + K1, (6)
h2' = Decoder h2 side (h2), @)
h=h2'+h1, (8)
h' = Decoder sidel (h), 9)

h'" = Decoder side2 (R').

Fig. 2. The specific structure of Decoder sub, where Depth2Space [5]
doubles the tensor’s height and width and downsizes the channel by a factor
of 4.
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Fig. 3. Comparison of the top-1 accuracy of SIIC with redundancy removal
module (ours) and original SIIC [7] on the ImageNet1K [16] verification set.

SIIC [7] selected ViT [8] as the network for image
classification. It uses transformers, which can well extract
global information of the image and help produce better
accuracy.

The specific structure of Decoder_sub is shown in Fig. 2. We
use Decoder h2 side structure from [7] containing four
transpose convolution layers (Tconv) and one Depth2Space [5]
layer to build Decoder sub, which will amplify the shape of ~2
to imitate h1. The original shape of h2 is (n, ¢, h,w). The first
Tconv layer increases the channel number ¢ of h2 from 128 to
256, which is 2c. The second and third layers of Tconv maintain
the shape (n,2c,h,w) to extract and keep the important
information that the following layers need. Then the
Depth2Space [5] decreases the channels of A2 to 1/4 of the
original, which is 0.5¢ = 64, and at the same time doubles h and
w to 2h and 2w. Finally, the Tconv layer increases 0.5c to 2¢ and
changes the shape of h2 from (n,0.5c,2h,2w) into
(n, 2¢, 2h, 2w), which is the shape of h1 and h1'.

As shown in Fig. 1, Decoder sub reversely predicts
h1’ through h2, and the generated h1’ can be offset with h1, so
that we can achieve the purpose of removing the redundant
information in h1.

IV. EXPERIMENTS AND RESULTS

We use the ImageNet1K [16] dataset as the training and
validation dataset for the classification task. ImageNet1K has
1,000 categories of images. The training set contains 1.28M
images, and the validation set has 50,000 images. Most images
are larger than 256x256.

A. The First Training Stage

The purpose of this stage is to make h1' as close as possible
to h1l. At this time, the batchsize is 64, and the learning rate is
set to 1e-5 for the first epoch and 1e-6 for the second epoch. The
optimizer is Adam [17]. The required loss function is as follows:

bit-rate to accuracy
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Fig. 4. Comparison of the top-1 accuracy of SIIC with redundancy removal
module (ours) and J-FT T-FT [9], transformed images [10], compressed
representation [11], SPIC-Q [12], Post-SA [13], RNN-C + ResNet-50 [14],
HMI-IC [15] on the ImageNet1K [16] verification set.

loss = MSE (h1',h1). (11

At this time, only the parameters of Decoder sub are trained.

B. The Second Training Stage

The purpose of this stage is to transmit hr with as low
bitrates as possible. At this time, the batchsize is 64 and the
learning rate is set to 1e-6 for 2 epochs. The optimizer is Adam
[17]. The loss function is as follows:

loss = Rz (12)

Ry is the bitrate required to transmit hr. The parameters
trained at this time are from Decoder sub, Decoder h2 and
Prediction Model.

C. Results and Analysis

Next are comparisons on the top-1 classification accuracy
between our proposed method and other ICM pipelines on the
ImageNet1K [16] validation set. The first is the comparison
between the proposed SIIC with redundancy removal module
and the original SIIC [7], as shown in Fig. 3. It can be found that
in the range of 0~0.06 bpp, at the same accuracy level, our
method requires 3%~4% less bitrates than the original SIIC [7].
Our method can also achieve more than 75% accuracy using
0.09 bpp with the help of the redundancy removal module,
which is 10% less than the bitrates of the original SIIC [7]. In
addition, we also compared SIIC with the proposed redundancy
removal module with J-FT T-FT [9], HMI-IC [15], etc., as
shown in Fig. 4. It can be seen that our proposed method can
consume fewer bitrates but achieve higher top-1 classification
accuracy.



V. CONCLUSION

In this article, we proposed a redundancy removal module to

further reduce the bitrates used in SIIC. The proposed network
module can be trained quickly and achieve improved results.
After SIIC used the redundancy removal module, it not only
improved the classification accuracy, but also further saved
bitrates. Next, we plan to use the redundancy removal module in
more ICM pipelines to achieve the goal of saving their bitrates.
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