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Abstract—Semantic feature compression aims to compress
image features for downstream machine vision tasks without
reconstructing image pixels. Such a task is very challenging
since it needs to learn features which are not only useful for
machine vision tasks, but also easy to compress. While existing
learnable feature coding models utilize downstream task net-
works as teacher networks to guide the learning and compression
of semantic features, they use simple entropy models and do
not effectively reduce information redundancy. In this work,
we propose a transformer-based spatial-channel auto-regressive
feature context model (SC-AR FCM) to assist the entropy coding
of learnable features. Through extensive experimentation on
object detection and segmentation tasks, we demonstrate that the
rate-accuracy performance of our proposed method surpasses
traditional image compression techniques and state-of-the-art
learning-based feature compression techniques.

Index Terms—context model, entropy model, image coding for
machines, object detection, segmentation

I. INTRODUCTION

In recent years, the rapid advancement of machine vision
applications has placed an unprecedented demand on the
compression of images. These applications, ranging from
image classification [1] and object detection [2] to semantic
segmentation [3], rely on the analysis at a scale never before
imagined. To meet this demand, a new technological paradigm,
image coding for machines (ICM) [4]–[12] has emerged.
ICM helps in efficiently handling various vision tasks by
compressing the information contained in images, allowing
machines to process visual data more effectively.

Existing ICM methods can be categorized into two ap-
proaches: compress-then-analyze methods [8], [9], [11], [12],
and analyze-then-compress methods [4]–[7], [10]. Compress-
then-analyze methods concatenate the image codec and the
machine task network in an end-to-end manner. They need to
first reconstruct image pixels. Analyze-then-compress methods
extract semantic features from images and then compress those
features without reconstructing image pixels [10]. Compress-
then-analyze methods face a problem because machines don’t
need all feature maps from the original images for their
vision tasks to work [8], [11], leading to a bigger bit rate.
On the contrary, analyze-then-compress methods focus on
compressing necessary feature maps [10] as semantic features,
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which have essential and relevant information for semantic
vision tasks.

However, despite the promise of analyze-then-compress
methods, we have identified a limitation in state-of-the-art
(SOTA) methods. Most notably, the entropy models used in
these methods have weaknesses that make semantic features
more redundant [4]–[7], [10]. The entropy model is crucial
because it predicts the probability distribution of encoded
semantic features, helping to reduce bit rates in the coding
process. However, current models use a simple hyperprior
architecture [13] that struggles to capture correlations between
semantic feature elements to estimate the probability distribu-
tion [10].

Consequently, in this paper, we focus on analyze-then-
compress methods, composing their semantic feature for ma-
chines. We introduce a novel approach to address limitations
of the entropy model. Our contributions are summarized as
follows:

• We designed a transformer-based spatial-channel auto-
regressive feature context model (SC-AR FCM) to en-
hance the entropy coding of semantic features.

• We evaluate our model on two machine vision tasks:
objective detection and semantic segmentation. Exper-
imental results demonstrate that our proposed method
showcase state-of-the-art rate-accuracy performance.

II. RELATED WORK

A. Compress-then-Analyze Methods

Several existing compress-then-analyze methods [8], [9],
[11], [12] have explored the development of end-to-end models
tailored for machine-vision tasks. An early approach, end-to-
end learnable network [8], directly concatenated the image
codec with a machine task network. However, the challenge we
faced was finding the right balance among various loss func-
tions, such as those for machine vision tasks, image distortion,
and bit rate. To address this, end-to-end optimized network
[11] introduced a pre-trained codec to reduce image distortion
losses and maintain a balance in losses. The semantics-
oriented network [12] took a step further by enhancing the
loss function. It introduced a new perspective called semantics-
oriented metrics, which effectively highlighted the importance-
weighted pixels for specific machine tasks, resulting in im-
proved performance. In addition, content-adaptive methods [9]



focused on refining the latent representation of end-to-end
learned image codecs. This was achieved through fine-tuning
the encoder to optimize the overall performance of the system.

B. Analyze-then-Compress Methods

In contrast to compress-then-analyze methods, analyze-
then-compress methods [4]–[7], [10] have emerged as promis-
ing alternatives, compressing semantic features, which contain
crucial and relevant information for semantic vision tasks. An
early approach, deep feature compression [10] introduced an
idea of extracting semantic features through machine task’s
encoder and then compressing these semantic features. How-
ever, this direct compression poses a challenge to learning
semantic information. Compressible features codec [7] offered
a new perspective by focusing on a learnable encoder to
extract a latent representation instead of semantic features.
Then, a learnable decoder decompresses semantic features
for supervised machine tasks. Entropic student [4] adopted
knowledge distillation principles to enhance the learnable
encoder and decoder, by employing both a teacher model and
a student model with the guidance of a teacher model to train
student’s encoder in advance. Efficient entropic student [5]
not only improved the training process but also introduced an
efficient encoder architecture with residual blocks to improve
entropic student [4]’s performance. Prompt-ICM [6] directly
compresses semantic features with the mask as additional
input from an information selector (IS). IS generates additional
information, which is relevant to supervised machine tasks, to
help the codec to compress semantic features.

These analyze-then-compress methods [4]–[7], [10] makes
great contributions on main decoder and decoder. However,
they overlook the importance of incorporating entropy models
to perform the critical task of encoding semantic features.
They just utilize the simple hyperprior to estimate latent
representation’s distributions, which struggle to capture the
full correlation of semantic feature elements, resulting in
suboptimal compression efficiency for machine tasks. In the
subsequent sections of this paper, we will delve deeper into
these limitations and present our approach, the transformer-
based spatial-channel auto-regressive feature context model
(SC-AR FCM), as a solution to overcome these challenges.

III. PROPOSED METHOD

A. The Overall Architecture

Fig. 1 presents the overall architecture of our proposed
learnable semantic feature compression framework for ma-
chine vision tasks. Following entropic student [4], this archi-
tecture consists of a teacher network (Fig. 1 upper pipeline)
and a student network (Fig. 1 lower pipeline), which includes
our proposed entropy model. The teacher network is a machine
task network, such as an object detection net or a semantic
segmentation net, which does not have data compression
capability. It guides and instructs the training of the student
network. The backbone of the teacher network is ResNet50,
which has five blue stage blocks shown in Fig. 1. The
task head at the end of the teacher network is to address

Fig. 1. The overall architecture of the proposed model. AE and AD are
the arithmetic encoder and arithmetic decoder. Q represents quantization. SC-
AR TCM represents a spatial-channel auto-regressive feature context model.
LRCP represents a latent residual cross-attention prediction.

specific machine vision tasks. We have selected RetinaNet
[2] for object detection and Deeplab V3 [3] for semantic
segmentation, employing these as our teacher networks.

The student network, in contrast, is divided into two fun-
damental components, Part 1 and Part 2 as shown in Fig.
1. Part 1 is the feature codec, which plays a pivotal role
in learning and compressing semantic features useful for the
downstream machine task. The decoded semantic feature ĥ
is expected to match the Stage 2 output feature h of the
teacher network. During the training process, the teacher
network provides essential guidance to the student network in
learning semantic features, by minimizing the mean squared
error (MSE) between ĥ and h, and minimizing the Kullback-
Leibler (KL) divergence between ot and os, which are the
soft labels (class probabilities) output by the teacher network
and the student network, respectively. In order to reduce the
redundancy of semantic features, we proposed spatial-channel
auto-regressive feature context model (SC-AR FCM). SC-AR
FCM captures both spatial and channel correlations within
the semantic latent representation by estimating µ and σ
for the latent representation’s distribution in entropy coding.
Subsequently, Part 2 of the student network replicates the
remaining pipeline of the teacher network, and finally outputs
the machine task results, such as the object detection bounding
boxes and the semantic segmentation maps.

B. The Main Encoder/Decoder and Hyper Encoder/Decoder

Our proposed student network has a feature codec as Part
1 shown in Fig. 1 that effectively extracts and compresses
semantic features. The feature codec consists of the main



Fig. 2. The architecture of spatial-channel auto-regressive context model.
LRCP represents a latent residual cross-attention prediction.

encoder/decoder, the hyper encoder/decoder, our SC-AR FCM,
and latent residual cross-attention prediction (LRCP). The
main encoder/decoder consists of four convolutional layers
for encoding and decoding, while the hyper encoder/decoder
employs three convolutional layers. The main encoder directly
extracts semantic features from the input image x and com-
presses them as a latent representation z, which is quantized as
z̃, and further processed using an arithmetic encoder (AE) to
create a bitstream. The bitstream is then sent to an arithmetic
decoder (AD) to recover z̃. We predict a residue to reduce the
quantization error of z̃ by LRCP (details in Section C). Once
we compute this residue, we add it to z̃ to obtain ẑ which is
finally decoded by the main decoder to recover the semantic
features ĥ.

In the entropy model, the hyper encoder and decoder assist
the proposed SC-AR FCM in estimating the distributions of
z̃ for AE and AD. These components work together to ensure
efficient entropy coding, ultimately contributing to the success
of our proposed architecture.

C. SC-AR FCM and LRCP

Fig. 2 shows the details of our proposed spatial-channel
auto-regressive feature context model (SC-AR FCM) for en-
tropy coding. In our pursuit of reducing redundancy within z̃
for machines, we employ a SC-AR FCM. This model focuses
on learning both spatial and channel correlations within the
semantic latent representation z̃, such that entropy coding will
be more efficient and require less bit rates. As depicted in Fig.
2, z̃ is divided into small chunks, denoted as z̃1, z̃2, . . . , z̃k
along both the spatial and channel dimensions. These chunks
are entropy coded in a channel-first, then spatial 2D zigzag
order. Our proposed distribution prediction module estimates

the distribution parameters µk and σk for z̃k, using the outputs
of the hyper decoder Lµ and Lσ and all previously decoded
chunks z̃1, z̃2, . . . , z̃k−1.

When dealing with semantic features, it is crucial to mitigate
quantization errors to maintain the quality of the decoded
feature maps. To address this concern, we introduce a LRCP
designed to estimate the decimal part of z. Both distribution
prediction module and LRCP are constructed using a shifted-
window transformer [14], enabling them to effectively capture
global dependencies within feature maps. Once all the chunks,
namely z̃1, z̃2, . . . , z̃k, have been decoded, they are reassem-
bled into a coherent whole, forming the reconstructed ẑ. This
process ensures that the essential information for machine
tasks is efficiently preserved while minimizing redundancy and
quantization errors.

D. Training and Loss Functions

For the semantic segmentation task, we train our proposed
model in an end-to-end manner with the following loss func-
tion Lseg,

Lseg = λ · LR + 0.1 · LMSE + 0.5 · LKL + LPCE , (1)

LMSE =
1
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LKL = − 1

N

N∑
n=1

M∑
c=1

oc,nt log

(
oc,ns

oc,nt

)
, (3)

LPCE = − 1

N

N∑
n=1

M∑
c=1

yc log (o
c,n
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Here, LR represents the bit rate of z̃ which is measured by bits
per pixel (BPP), LMSE accounts for the mean squared error
between the semantic feature of the teacher network h and
that of the student network ĥ, Nh is the number of elements
in h, N is the number of pixels in an image, LKL is the KL
divergence between os and ot, LPCE corresponds to the pixel-
level cross-entropy loss, c is the class index, M is number of
classes, and yc ∈ {0, 1} is the label of class c, using 1-of-M
coding.

For the object detection task, we choose (5) as the loss
function.

Lobj = λ · LR + 0.1 · LMSE + 0.5 · LKL + LBCE +
1

Nb
Lb

(5)

LBCE = − 1

Nb

Nb∑
n=1

M∑
c=1

yc log (o
c,n
t ) , (6)

Lb =

Nbox−1∑
i=0

∥pi − p̂i∥2. (7)

Here, LBCE corresponds to the bounding box’s cross-entropy
loss, Lb corresponds to intersection-over-unions (IoU) loss
of bounding boxes, Nb is the number of bounding boxes,
whose IoU is higher than 0.5, p represents the ground-truth
bounding box coordinates, and p̂ represents the bounding box
coordinates predicted by the student network.



By adopting this unified training approach, we aim to
overcome the limitations stemming from the frozen main
encoder, providing a more effective and streamlined solution
for our model’s training process.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Evaluation Metrics

In our experiments, we employed the COCO 2017 dataset
[15] for both object detection and semantic segmentation
tasks. This dataset is well-regarded in the computer vision
community for its comprehensive collection of images and
annotations.

Throughout our training process, we continuously assessed
our model’s performance on the validation dataset. For each
training epoch, we closely monitored the model’s loss on this
validation dataset. If the model’s loss on the validation dataset
ceased to decrease, we terminated the training process.

When evaluating the performance of our model in the object
detection task, we employed the metric of mean average
precision (mAP). This metric is calculated based on bounding
box (BBox) outputs and considers different Intersection-over-
Unions (IoU) thresholds, ranging from 0.5 to 0.95.

For the semantic segmentation task, our performance as-
sessment relied on mIoU value, which is averaged IoU across
21 distinct segment classes. This approach provided a detailed
understanding of our model’s segmentation accuracy, offering
insights into its ability to differentiate and segment objects
within the images.

B. Object Detection Results

To assess the effectiveness of our proposed model, we
conducted an experiment against the state-of-the-art method,
Entropic Student [4], and also conventional codecs, VTM-19.2
[16] and BPG [17]. Notably, both VTM-19.2 and BPG belong
to the category of compress-then-analyze methods, wherein
they decompress source images for machine input.

In the context of object detection, our results, as illustrated
in Fig. 3 (a), showcase the performance of our model in terms
of rate-distortion curves and mean average precision (mAP).
Notably, our model exhibits superior rate-distortion curves,
reflecting its ability to efficiently balance the compression
rates and the preservation of object detection accuracy. Of
particular significance is the performance at low bit rates,
where our model achieves an mAP that surpasses VTM-19.2,
the second-best method, by an impressive margin of 8.9%.
This improvement at lower bit rates highlights the robustness
and efficiency of our approach.

C. Semantic Segmentation Results

As shown in Fig. 3 (b), we conducted a comparative
analysis of our model’s performance with respect to previ-
ous methods for the semantic segmentation task. Notably,
our model exhibits higher performance than other methods,
especially at lower bit rates. Our model surpasses the entropic
student approach, achieving a 0.21% increase in mIoU. This
outcome underscores the effectiveness of our proposed method

Fig. 3. The figure (a) is the results of object detection task. The figure (b) is
the results of semantic segmentation task.

in accurately semantic features from images. Moreover, in
a comparison with VTM, our model also demonstrates an
improvement in mIoU, boasting a 1.17% increase. This per-
formance enhancement shows the capacity of our approach to
excel in semantic segmentation.

V. CONCLUSION

In this paper, we propose the transformer-based spatial-
channel auto-regressive feature context model (SC-AR FCM),
which enhances the entropy coding of learnable features for
machine vision tasks. Our extensive experiments in object
detection and segmentation showcase that our method out-
performs conventional image compression techniques and the
state-of-the-art feature compression model, achieving superior
rate-accuracy performance. In the future, we will extend our



framework to accommodate multiple machine vision tasks or
hybrid machine-human vision tasks.
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