
Improving Transfer Time Prediction of ML Models

via Auto-correcting Dynamical Systems Modeling

Venkat Sai Suman Lamba Karanam and Byrav Ramamurthy

School of Computing

University of Nebraska-Lincoln

Lincoln, NE, USA

saisuman@huskers.unl.edu and ramamurthy@unl.edu

Abstract—Machine Learning (ML) is extensively used for pre-
dicting transfer times for general purpose Wide Area Networks
(WANs) or public Internet applications, but for Research and
Education Networks (RENs) two major gaps exist in literature.
First, RENs i.e. networks carrying large data flows have received
limited attention by the networking community. RENs behave
differently compared to the general purpose Internet applica-
tions and other network types. Hence, ML models from other
network types cannot be used interchangeably for large data
transfers. Second, the ML models are used as blackboxes to train
on measured network values and then used to predict transfer
times or other runtime network parameters. In this paper, we
present a dynamical systems model of the large data transfers
typical of RENs in the form of a system of Ordinary Differential
Equations (ODEs) inspired by the Lotka-Volterra competition
model. We present a transfer time prediction component called
Dynamic Transfer Time Predictor (DTTP) which solves the ODEs
and predicts the future transfer times. Second we formulate a
loss function based on Lyapunov function called Lyapunov Drift
Correction (LDC) that self-corrects the transfer time prediction
errors dynamically.

To design and develop our model, we studied real-world
datasets consisting of over 100 million transfer records collected
from platforms such as Open Science Grid (OSG), Large Hadron
Collider Optical Private Network (LHCOPN), Worldwide LHC
Grid (WLCG), as well as the RENs of Internet2 and ESNet. We
integrate our model into well-known neural network models and
regressors and present evaluation results.

I. INTRODUCTION

Network transfer time prediction systems for general pur-

pose Internet applications or public WANs are well re-

searched. Many of the prediction systems use ML models

as blackboxes that learn from the traffic traces/behavior and

then make predictions. Little attention is given to the transfer

time prediction systems for Research and Education Networks

(RENs) that carry large data flows. Example RENs in the

continental US include ESNet (Energy Sciences Network) [1]

and Internet2 [2]. Traffic on RENs–typically characterized

by large data flows–behaves differently from general purpose

WANs and hence existing ML models developed for latter

cannot be used on the former. We theorize that an accurate

understanding of the REN network traffic and mathematical

modeling is needed before ML models can be used effi-

ciently. To design and validate our appraoch, we extensively

collected and analyzed datasets from the Open Science Grid

Cache

Data Origin

f2f0 f1

Dest. site

Transfer queue

time periods
0 1 2

Legend

Figure 1. An example scenario of a data-intensive flow (or job) in the
network topology shown above. The data transfer queue consists of data
chunks {f0, f1...} to be processed in order at sites Dest 1 and Dest 2. There
are multiple network paths, and source sites that exhibit different transfer
times for each of the chunks. REN data transfer problem can be intuitively
modeled as a competition-based dynamical system in the form of ODEs. This
motivated us to model the problem using the Lotka-Volterra system.

(OSG) [3], the Internet2 backbone [2], the Worldwide LHC

Grid (WLCG) [4] and the ESNet [1].

a) Our Approach: Our work uniquely tackles transfer

time prediction in RENs from a modeling perspective. We

model the stochastic processes impacting observed transfer

times as dynamical systems using ordinary differential equa-

tions (ODEs). We chose Lotka-Volterra system model as it is

suitable to model the competing data transfers in RENs. We

utilize solutions to the equations for predicting transfer times

of a data chunk from its source sites. The site with the best

transfer time is chosen as the source. Our approach involves a

prediction error minimization mechanism, calculating system

instability at each time step and minimizing errors accord-

ingly. Our proposed transfer time prediction model consists

of two components: (1) dynamical system representation

which is solved and the result being the predicted transfer

times (called Dynamic Transfer Time Predictor or DTTP), (2)

correction component (called Lyapunov Drift Correction or

LDC). Details of each are described in Sec. II.

The rest of the paper is organized as follows. Section II

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

979-8-3503-6958-8/24/$31.00 ©2024 IEEE 243

20
24

 IE
EE

 1
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
So

ftw
ar

iz
at

io
n

(N
et

So
ft)

 |
97

9-
8-

35
03

-6
95

8-
8/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
et

So
ft6

09
51

.2
02

4.
10

58
89

50

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 19,2024 at 09:53:05 UTC from IEEE Xplore. Restrictions apply.

presents the technical details of the components in our pre-

diction system. Section III presents our evaluation setup and

Section IV presents the results and the associated discussion.

Section V concludes our work and discusses our future

directions.

II. APPROACH

This section covers the technical design of (1) the system

modeling and prediction and (2) the correction components.

We first begin by understanding how we modeled data-

intensive flows as a dynamical system, using one of the

well-known competition models called the Lotka-Volterra

system [5].

A. Dynamical System Modeling of Large Data Transfers

The Lotka-Volterra model (L-V model), also known as the

predator-prey model [5], is widely utilized to model dynamic

predator-prey relationships and their influence on population

growth. The general form of L-V model equation is expressed

as a system of integro-differential equations of the form below.

dNr

dt
=

(

ϵr +

n
∑

s=1

(

AsrNs(t) +

∫

t

−∞

Fsr(t − τ)Ns(τ)dτ

)

)

Nr(t) (1)

Here, r = 1, ..., n and s ̸= r. n is the total number of

species in the environment. We transform the general L-V

model from Eq. 1 to the REN scenario by integrating insights

from the experiment literature. The L-V model’s key principle,

independence among entities, aligns with the independent

nature of the experiments. Despite this independence, these

experiments share finite resources, leading to high levels of

competition. Consider two data-intensive flows, D and E,

period 0

Q1(0)

Q(0)

QM(0) Q1(1)

Q(1)

QM(1) Q1(t-1)

Q(t-1)

QM(t-1)

period 1 period (t-1)

Figure 2. The figure shows the illustration of the dynamical systems repre-
sentation of our problem statement- transfer time prediction for automating
transfers. For simplicity, assume there is only one site r that wants to initiate
a data transfer ρ at time period x. Assume there are M possible sites
where the data chunk is located. Qi(x) is the expected data transfer time.
Q = {Qi|∀iϵ{0, 1, 2...M} and i ̸= s} is the queue of transfer times for
data chunk ρ for each of the M sites. In the figure, Q(x)–referred to as
a state–is a queue of expected transfer times for M sites for site s for
time period x, where x = {0, 1, 2...(t − 1)} are time periods. Essentially
this dynamical system formulation of transfers is essential to our problem
statement- to automate transfers by predicting transfer times for each data
chunk and for each time period. Each of the Qi(x) are formulated as an
ODE and are solved by the prediction component DTTP (see Sec. II-B).

exhibiting the same internal resource usage pattern, both

utilizing the shared grid resources in a distributed manner

for transfers. Let R be a unit of resource that allows D

and E to perform their transfer c and produce a unit output

o. Both D and E try to maximize their utility function

U when transferring the data on the grid. We give the

general form of the utility function Uk where k ϵ D,E as

Uk =
∑

∞

t=0

(

ln okt ∗ (1− ln(xk
t))

)

. Here okt represents the

unit output during time period t and (1− ln(xk
t)) represents

the minimization of xk
t , a value that is inversely proportional

to the transfer rate.

To express data transfers using the L-V model, we examine

their evolution in a discrete time formulation. We explicitly

define this evolution as a dynamical system with a queue Q

for each discrete time interval in the range 1....t. Figure 2

illustrates the resulting dynamical system representation. In

the following subsection, we adapt the L-V competition

model to our problem statement using the dynamical system

representation shown in Fig. 2. Following that, we define and

explain the prediction model DTTP.

B. Dynamic Transfer Time Predictor (DTTP)

At each time slot t, Qi(t) is computed using the competi-

tion model in Eq. 2 for ith site i = {1, 2, ...,M}. This means

that dNr

dt
computed from Eq. 2 becomes Qi(t). Qi(t) values

depend on the history {Qi(0), Qi(1), ..., Qi(t−1)}. From here

on, we refer to the result of Eq. 2 as Q(t) instead of dNr

dt
. We

define the data transfers as a vector f = {ft|t = 0, 1, 2, ...},

where ft is the file or data to be transferred in time period

t. In Eq.1, the coefficient of auto-correlation or the intrinsic

rate of increase denoted by ϵ is a positive number which

represents the rate of growth of the population. Often ϵ is

generally modeled as a geometric i.e. exponential growth.For

eq. 1, this can be given by dNr

dt
= Nr(t0)

ϵt, where Nr(t0)
is the initial population of species r. We define ϵr at time

t as the rate of change in the transfer rate (i.e., Nr) and

is proportional to the observed network throughput for that

transfer during the time period t. ϵr has the limits [a, b],
where a and b are two positive integers. The constant a is

constrained by the minimum network throughput available

to r, ensuring the transfer occurs at the slowest speed. r

experiences the highest transfer time at time t when a is the

observed network throughput. The constant b is constrained by

the maximum network throughput available to r: b represents

the optimal scenario for r and yields the lowest transfer time

at time t. Algorithm 1 describes the prediction component

of our system, DTTP, which essentially is a procedure to

compute the values of the network state at each time period

t as Q(t) = {Q1(t), Q2(t),, Q(M)}. Below we describe

important definitions and process of computing Q(t) using

DTTP.

First, we define n, a positive integer, as the number of

transfers, both, opportunistic and non-opportunistic transfers

that are running on the sites that host the data, cached or

uncached (origin). These n transfers compete for resources at

the sites. Ns(t), where s = 1...n, is the aggregate information

rate (throughput) of the grid as a proportion of the total

information rate by the transfer s during the time period t. Asr

is the influence of transfer s on r and represents the unitary

action of s on r during time period t. We note that this is

a continuous process in reality and continues till the lifetime

of experiment s or r. Transfer r sees snapshots of Asr in a

stochastic fashion at discrete time intervals t. Such discretiza-

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

244
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 19,2024 at 09:53:05 UTC from IEEE Xplore. Restrictions apply.

Select a source

site for period t

𝜖𝑟
𝑁𝑟(𝑡)

𝐴𝑠𝑟 න𝑞
𝑡𝐹𝑠𝑟(𝑡 − 𝜏)

෍𝒔→𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠
Q(t)

Q(0)

Q(1) Q(2)Q(0) Q(t-1)

All previously computed

states so far

Inputs measured at time t (required

for Eq. 2)

Figure 3. Visual representation of the prediction system DTTP, which
predicts the state Q(t) for time period t. The state Q(t) is a vector consisting
of expected transfer times for all potential sources sites s in {0, 1, 2, 3...M}.
Say a transfer r is to be scheduled at time period t, the prediction system
DTTP takes as input all the previous states until t i.e Q(0), .., Q(t − 1).
The inputs required for Eq. 2 like ϵr , the unitary action Asr , the seasonal

component
∫ t

q
Fsr(t − τ) are updated for the current time period t. The

output Q(t) is fed back to the system again, to be used for computing the
state for next period (t+ 1).

tion is done to effectively model the evolution of a transfer as a

discrete time formulation. For our prediction model, we define

this as the proportion of the network bandwidth that s uses

out of the set Rsr. Rsr is the aggregate network bandwidth

that are common to s and r during time period t. Asr can be

given as the unitary action of transfer s on transfer r during

time period t. This is expressed as Asr = Psr(t) × ur(t).
Here, Psr(t) is the probability of a unitary action by transfer

s during time period t that impacts transfer r. For our model,

we define this as the proportion of the network bandwidth

that s uses out of the set ρsr. ρsr is the aggregate network

bandwidth common to s and r during time period t. ur(t) is

the utility of the transfer r during time period t. Following

this, Asr can now be given by Asr =
ρs

sr

ρsr

(t) × ur(t). ρssr
is the network usage of s out of ρsr. ρsr are the aggregate

network bandwidth common to s and r during time period

t. By definition,
ρs

sr

ρsr

(t) ≤ 1. Following the definition of
ρs

sr

ρsr

(t), we could theorize that 0 ≤
ρs

sr

ρsr

(t) +
ρr

sr

ρsr

(t) ≤ 1.

Also ur(t) is the utility function for time period t and is

now given by ur(t) = ςr(t) where ςr(t) is the number of

concurrent transfer streams during the time period t for the

transfer r. ςr(t) is calculated as the number of I/O streams

for transfer r among all the sources during time period t. The

integral component
∫ p=t

q
Fsr(t − τ)Ns(τ)dτ ∗ Nr(t) in the

conventional L-V model represents the seasonal component.

The term Fsr(t − τ) is the unitary action of transfer s on

transfer r during the time period (τ, τ + dτ) which presents

itself at period t. We model this component as any cumulative

actions in the period (τ, τ + dτ) pertaining to transfer s that

directly affect the runtime execution of transfer r. The lifetime

of the transfer is limited and hence the lower limit of the

integral is chosen to be the start time of the transfer, r i.e

a finite value. Now we rewrite the seasonal component as
∫ t

q
Fsr(t− τ) =

ρs

sr

ρsr

(t− τ)×ur(t− τ)×Ns(τ)
∣

∣

∣

t

q
. Using this

redefined seasonal component and the redefined Asr in Eq. 1

gives us the general form of our model.

Qr(t) =
dNr

dt

=

(

ϵr +

n
∑

s=1

(

ρssr

ρsr
(t)× ur(t)×Ns(t)+

ρssr

ρsr
(t− τ)× ur(t− τ)Ns(τ)

∣

∣

∣

t

q

))

×Nr(t)

(2)

C. Lyapunov Drift Correction (LDC) for Prediction Error

Minimization

To minimize the prediction model error (Eq. 2), we employ

the Lyapunov drift-plus-penalty method, which diminishes

the distance between predicted and actual trajectories of a

dynamic system. The Lyapunov drift ∆(t) gauges instability

at the start of time period t as a scalar, measuring the distance

between two probability distributions at discrete intervals.

This metric assesses system stability and detects changes over

time. Higher the ∆ value, higher the instability in the system.

In the context of our prediction model in Eq. 2, Lyapunov

drift ∆ can be used to measure the distance between the

predicted Q(t) value and the actual observed value. Higher

the ∆ value, higher the prediction error of the cache model.

The Lyapunov drift is given by ∆(t) = [L(t) − L(t − 1)].
L(t) is the Lyapunov function–a scalar value–which defines

the state of the dynamical systems at time t. When applied

to our prediction model, Lyapunov function is calculated as

half of the sum of squares of all predicted values by Eq. 2.

Conventional definition of the Lyapunov function L(t) is

given by L(t) = 1
2

∑

i=1[Q(t)2].
Let θi(t) be the cumulative debt in data transfer time

incurred by site i until time t. θi(t) is calculated as θi(t) =
qi(t− 1)− Ri(t− 1). Here qi(t) is the sum of all predicted

transfer times until time t for site i (using 2) and Θi(t) is

the sum of all observed transfer times until time t for site

i. qi(t) and Θi(t) are given by qi(t) =
∑t

p=1 Q(p) and

Θi(t) =
∑t

p=1 Q̂i(p) respectively. Q̂(p) is the actual observed

transfer rate for site i at time slot p where p ≤ t. Below, we

describe in detail its technical aspects and steps. Suppose we

would like to pick the site from S, where |S| = M , that

offers the minimum data transfer time. We modify the Lya-

punov function by adding the debt term θi(t). The modified

Lyapunov function L(t) is given by the following equation.

L(t) =
1

2
∗

M
∑

i=1

[Qi(t)
2 + V ∗ ri(t)

2] (3)

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

245
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 19,2024 at 09:53:05 UTC from IEEE Xplore. Restrictions apply.

The term V is a weight parameter which adjusts the in-

θ𝑖 𝑡 2𝑉𝑄𝑖 𝑡 2

෍𝑖→0 𝑡𝑜 𝑀

1/2
Q(1)Q(0) Q(t-1)

Θ(1)Θ(0) Θ(t-1)

L(1)L(0) L(t-1)

Δ(0) Δ(t-2)

L(t-2)

All previously

computed states so far Lya. Drifts computed

from the Lya. Functions

Debt vectors computed

so far

Figure 4. Block diagram of the dynamic drift correction mechanism (LDC),
which adaptively corrects the prediction error of the transfer time predictions
made by DTTP. At each time period t, DC takes as input (1) the state Q
which is a vector consisting of expected transfer times for all potential sources
sites s in {0, 1, 2, 3...M} in the period 0, 1.., (t− 1) and (2) the debt term
Θ, which is a vector of cumulative debts for all transfers among the sites in
{0, 1, 2, 3...M}. The LDC then computes the Lya. function L(t − 1) and
the corresponding drift ∆(t − 2). We must note that the Lya. function and
the drift are computed until the previous time period (hence L(t − 1) and
∆(t − 2)), and then they are used to correct the prediction model DTTP
for the prediction into the future (i.e. time period t).

fluence of the debt term, denoted as θi(t), representing the

cumulative debt in data transfer time for site i until time t.

The constraint for minimizing transfer time is expressed as

∆(t) + V ∗ Ri(t) ≥ ∆(t) + V ∗ θi(t). The constraint ∆(t)
ensures observed transfer times do not exceed their predicted

values (Eq. 2). We minimize the constraint ∆(t) for each time

period t to ensure that L(t) is as small as possible. This can be

achieved by choosing the input parameters for the prediction

model (Eq. 2). To correct and update the model, we chose

the minimum of the right-hand side value among all the sites

i = 0, 1, ...,M i.e., min(∆(t) + V ∗ θi(t)). We assume that

this minimum occurs at index k, then this index is passed to

update the competition model. The site corresponding to the

index k is chosen for the transfer during the next period t.

III. EVALUATION SETUP

This section outlines the setup we used to evaluate our

proposed model. Figure 5 shows how we integrate our model

into the ML framework/model. The ML model solves the

prediction component (defined as a system of ODEs, see

Eq. 2) and optimizes over the Lyapunov loss function (see

Eq. 3). For evaluation, we chose well-known Neural network

based models and regressors. The choice of the ML models

was made to accommodate most commonly used architectures

for transfer time prediction applications, aided by our expe-

riences [6]. The details of the chosen ML models are given

below.

A. Neural Networks

We chose three different Neural Networks (NN), namely, (i)

a Deep Neural Network (DNN), (ii) Long Short-Term Mem-

ory (LSTM), (iii) and BiDirectional LSTM with Autoencoder-

Decoder DNN. Each of the three NNs were modified to fit

the requirements of our DTTP and LDC models, the details

of which are left for brevity.

Inputs measured

at time t

(required for Eq.

2)

Solve DTTP (Eq. 2)

as a system of

dynamic ODEs

Solve LDC (Eq. 3) to

calculate the drift in

predictions from Eq. 2

for each iteration

Function to solve

Predicted transfer

time for period t for

each of the M sites

hosting the data to be

fetched (i.e. Q(t))

Loss Criterion

ML Model

Figure 5. The architecture shows how our proposed prediction (DTTP) and
correction (LDC) are integrated into the ML models.

B. Regressors

Regression-based models are often considered lightweight

alternatives to the more computationally expensive neural

network-based models. The five regression techniques are:

(1) simple linear regression [7], (2) Lasso regression [8],

(3) Ridge regression [9], (4) ElasticNet [10] and (5) Lasso-

Lars [11] regressions.

IV. RESULTS AND DISCUSSION

Model MSE (%) RMSE (%) MAE (%) MAPE (%)

BiDir LSTM Enc Dec DNN 0.72 0.85 0.43 0.89

LSTM 0.82 0.91 0.48 0.88

DNN 0.82 0.91 0.48 0.86

Linear 2.13 1.46 1.22 76.04

Lasso 0.72 0.85 0.43 1.27

Ridge 0.72 0.85 0.43 0.94

ElasticNet 0.72 0.85 0.43 1.27

LassoLars 0.72 0.85 0.43 1.27

Table I
Comparison of different ML models integrated with our approach (as

shown in Fig. 5).

Table I presents the performance of the neural network-

based models (Secs. IV-a, IV-b and IV-c) and the regressors

(Sec. III-B). The hyperparameters for each of the models

were chosen from the optimal values that were derived via

GridSearch-based cross validation. The length of time period

t was fixed to half-day and the number of days in the

dataset was 700 consecutive days. Our results found that

all the tested models are able to achieve relatively high

accuracy in predicting the transfer times. Linear regression

performed the worst, as evidenced by the large MAPE(%)
value (Table I). However, when regularization is applied

to the Linear regression, using Ridge/ElasticNet/Lasso-Lars,

the performance of the linear regression improves remark-

ably. We did not find considerable difference in accuracy

between any of the regularization methods. Similarly, all

three neural network-based models achieve similar accuracy

in predictions, with the BiDir LSTM Enc Dec DNN edging

out slightly. Figure 6 shows the Mean Error (%) for each

of the time periods t using DNN (top-left), LSTM (top-

right), BiDir LSTM Enc Dec DNN (bottom-left) and Ridge

regression model (bottom-left).

While all four models exhibit fluctuations in prediction

mean errors, regression-based models, particularly ridge re-

gression, tend to perform worse as the training period in-

creases, evident from wider error lines in Fig. 6.

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

246
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 19,2024 at 09:53:05 UTC from IEEE Xplore. Restrictions apply.

DNN

0
0
.1

5
-0

.3
0
.3

-0
.1

5
-0

.4
5

-0
.6

12-hour intervals

0 200 400 600 800 1000 1200 1400

LSTM

0
0
.1

5
-0

.3
-0

.1
5

-0
.4

5
-0

.6

12-hour intervals

0 200 400 600 800 1000 1200 1400

BiDir_LSTM_Enc_Dec_DNN

0
0
.1

5
-0

.4
5

0
.3

-0
.1

5
0

0
.1

5
-0

.3
0

.3
-0

.1
5

12-hour intervals

0 200 400 600 800 1000 1200 1400

Ridge

0
0
.1

5
-0

.3
0
.3

-0
.1

5
0
.4

12-hour intervals

0 200 400 600 800 1000 1200 1400

Figure 6. The figure shows the Mean Error (%) over 700 days for each of the three NN models and one regressor (Ridge) that were integrated with our
DTTP+LDC model (see Sec. III-A & III-B and Fig. 5). The markers on X-axis start from 0 and end at 1400, representing the 1400 half-day time intervals.
The Y-axis is the Mean Error (%) of the predictions made by (top-left to bottom-right): DNN, LSTM, BiDir LSTM Enc Dec DNN and Ridge regression
models. Our approach has shown high, consistent accuracy in predicted transfer times for each interval (12-hour duration). The sporadic large spikes (both
above- and below- zero) are outliers where our model was not able to predict accurately. We theorize that these sporadic inaccuracies have the following
possibilities: (i) due to unknown underlying changes in the network configurations (like maintenance and/or abrupt disturbances of unknown causes), (ii) due
to the gaps in the data logging systems leading to incorrect input data values used for training, (iii) occasional resource usage anomalies natural to the grid
usage patterns (e.g. sudden availability of a specific dataset from an experiment, leading to an increase in frequency of experiments using that same dataset.
This ultimately shows up as anomaly or outlier in the input dataset, which was used to train our model).

V. CONCLUSION AND FUTURE WORK

This paper highlighted the importance of modeling the REN

network behavior using mathematical representations before

ML models can be applied. Specifically, we modeled the data

transfers as a dynamical systems problem using a system of

ordinary differential equations (ODEs) inspired by the Lotka-

Volterra (LV) competition system. LV model was modified

and adopted because its underlying theory can be adapted

to the REN traffic behavior (validated by our preliminary

analysis of a large collection REN traffic).

There are several interesting directions for future work.

Our proposed model can be further improved with application

layer awareness, where application/experiment type (LHC vs

CMS) is used as an additional term in the DTTP formulation

(Eq. 2). Additionally, other hyperparameters such as alterna-

tive prediction time period granularities can be explored. We

plan to combine our approach with the SDN paradigm for the

automation of data movement across the network, intelligent

caching and rerouting.

VI. ACKNOWLEDGMENTS

This work is sponsored in part by National Science Foun-

dation (NSF) grant with award number OAC-2322369 and

Department of Energy (DoE) grant with award number DE-

SC0024648.

REFERENCES

[1] J. Leighton, “ESNet: The Energy Sciences Network,” 1996.
[2] F. Yeung, “Internet 2: Scaling Up the Backbone for R&D,” IEEE

Internet Computing, vol. 1, no. 2, pp. 36–37, 1997.
[3] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,

P. Avery, K. Blackburn, T. Wenaus, F. Würthwein et al., “The Open
Science Grid,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012057.

[4] I. Bird, “Computing for the Large Hadron Collider,” Annual Review of

Nuclear and Particle Science, vol. 61, pp. 99–118, 2011.
[5] M.-C. Anisiu, “Lotka, Volterra and their model,” Didáctica mathemat-

ica, vol. 32, pp. 9–17, 2014.
[6] V. S. S. L. Karanam and B. Ramamurthy, “Dycrono: Dynamic cross-

layer network orchestration and real-time deep learning-based network
load prediction,” in 2023 International Conference on Optical Network

Design and Modeling (ONDM), 2023, pp. 1–6.
[7] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley &

Sons, 2003, vol. 330.
[8] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society Series B: Statistical Methodology,
vol. 58, no. 1, pp. 267–288, 1996.

[9] A. E. Hoerl and R. W. Kennard, “Ridge regression: applications to
nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 69–82,
1970.

[10] C. De Mol, E. De Vito, and L. Rosasco, “Elastic-net regularization in
learning theory,” Journal of Complexity, vol. 25, no. 2, pp. 201–230,
2009.

[11] M. G. Usai, M. E. Goddard, and B. J. Hayes, “LASSO with cross-
validation for genomic selection,” Genetics research, vol. 91, no. 6, pp.
427–436, 2009.

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

247
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 19,2024 at 09:53:05 UTC from IEEE Xplore. Restrictions apply.

