2024 IEEE 10th International Conference on Network Softwarization (NetSoft) | 979-8-3503-6958-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/NetSoft60951.2024.10588950

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

Improving Transfer Time Prediction of ML Models
via Auto-correcting Dynamical Systems Modeling

Venkat Sai Suman Lamba Karanam and Byrav Ramamurthy
School of Computing
University of Nebraska-Lincoln
Lincoln, NE, USA
saisuman @huskers.unl.edu and ramamurthy @unl.edu

Abstract—Machine Learning (ML) is extensively used for pre-
dicting transfer times for general purpose Wide Area Networks
(WANS) or public Internet applications, but for Research and
Education Networks (RENs) two major gaps exist in literature.
First, RENs i.e. networks carrying large data flows have received
limited attention by the networking community. RENs behave
differently compared to the general purpose Internet applica-
tions and other network types. Hence, ML models from other
network types cannot be used interchangeably for large data
transfers. Second, the ML models are used as blackboxes to train
on measured network values and then used to predict transfer
times or other runtime network parameters. In this paper, we
present a dynamical systems model of the large data transfers
typical of RENSs in the form of a system of Ordinary Differential
Equations (ODEs) inspired by the Lotka-Volterra competition
model. We present a transfer time prediction component called
Dynamic Transfer Time Predictor (DTTP) which solves the ODEs
and predicts the future transfer times. Second we formulate a
loss function based on Lyapunov function called Lyapunov Drift
Correction (LDC) that self-corrects the transfer time prediction
errors dynamically.

To design and develop our model, we studied real-world
datasets consisting of over 100 million transfer records collected
from platforms such as Open Science Grid (OSG), Large Hadron
Collider Optical Private Network (LHCOPN), Worldwide LHC
Grid (WLCG), as well as the RENs of Internet2 and ESNet. We
integrate our model into well-known neural network models and
regressors and present evaluation results.

I. INTRODUCTION

Network transfer time prediction systems for general pur-
pose Internet applications or public WANs are well re-
searched. Many of the prediction systems use ML models
as blackboxes that learn from the traffic traces/behavior and
then make predictions. Little attention is given to the transfer
time prediction systems for Research and Education Networks
(RENSs) that carry large data flows. Example RENs in the
continental US include ESNet (Energy Sciences Network) [1]
and Internet2 [2]. Traffic on RENs—typically characterized
by large data flows—behaves differently from general purpose
WANSs and hence existing ML models developed for latter
cannot be used on the former. We theorize that an accurate
understanding of the REN network traffic and mathematical
modeling is needed before ML models can be used effi-
ciently. To design and validate our appraoch, we extensively
collected and analyzed datasets from the Open Science Grid
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Figure 1. An example scenario of a data-intensive flow (or job) in the
network topology shown above. The data transfer queue consists of data
chunks { fo, f1...} to be processed in order at sites Dest 1 and Dest 2. There
are multiple network paths, and source sites that exhibit different transfer
times for each of the chunks. REN data transfer problem can be intuitively
modeled as a competition-based dynamical system in the form of ODEs. This
motivated us to model the problem using the Lotka-Volterra system.

(OSQG) [3], the Internet2 backbone [2], the Worldwide LHC
Grid (WLCG) [4] and the ESNet [1].

a) Our Approach: Our work uniquely tackles transfer
time prediction in RENs from a modeling perspective. We
model the stochastic processes impacting observed transfer
times as dynamical systems using ordinary differential equa-
tions (ODEs). We chose Lotka-Volterra system model as it is
suitable to model the competing data transfers in RENs. We
utilize solutions to the equations for predicting transfer times
of a data chunk from its source sites. The site with the best
transfer time is chosen as the source. Our approach involves a
prediction error minimization mechanism, calculating system
instability at each time step and minimizing errors accord-
ingly. Our proposed transfer time prediction model consists
of two components: (1) dynamical system representation
which is solved and the result being the predicted transfer
times (called Dynamic Transfer Time Predictor or DTTP), (2)
correction component (called Lyapunov Drift Correction or
LDC). Details of each are described in Sec. II.

The rest of the paper is organized as follows. Section II
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presents the technical details of the components in our pre-
diction system. Section III presents our evaluation setup and
Section IV presents the results and the associated discussion.
Section V concludes our work and discusses our future
directions.

II. APPROACH

This section covers the technical design of (1) the system
modeling and prediction and (2) the correction components.
We first begin by understanding how we modeled data-
intensive flows as a dynamical system, using one of the
well-known competition models called the Lotka-Volterra
system [5].

A. Dynamical System Modeling of Large Data Transfers

The Lotka-Volterra model (L-V model), also known as the
predator-prey model [5], is widely utilized to model dynamic
predator-prey relationships and their influence on population
growth. The general form of L-V model equation is expressed
as a system of integro-differential equations of the form below.

dN, n t .
el <e+; <A57,Ns(t)+/7m For(t T)Nd(f)d7>> N.(t) (1)
Here, r = 1,...,n and s # r. n is the total number of

species in the environment. We transform the general L-V
model from Eq. 1 to the REN scenario by integrating insights
from the experiment literature. The L-V model’s key principle,
independence among entities, aligns with the independent
nature of the experiments. Despite this independence, these
experiments share finite resources, leading to high levels of
competition. Consider two data-intensive flows, D and F,

0(0) o(l) O(t-1)
o) o) | o} o)) (00|
period 0 period 1 —— period (t-1) ——>

Figure 2. The figure shows the illustration of the dynamical systems repre-
sentation of our problem statement- transfer time prediction for automating
transfers. For simplicity, assume there is only one site  that wants to initiate
a data transfer p at time period z. Assume there are M possible sites
where the data chunk is located. Q;(z) is the expected data transfer time.
Q = {Qi|Vie{0,1,2...M} and i # s} is the queue of transfer times for
data chunk p for each of the M sites. In the figure, Q(x)-referred to as
a state—is a queue of expected transfer times for M sites for site s for
time period x, where x = {0,1,2...(¢t — 1)} are time periods. Essentially
this dynamical system formulation of transfers is essential to our problem
statement- to automate transfers by predicting transfer times for each data
chunk and for each time period. Each of the @Q;(z) are formulated as an
ODE and are solved by the prediction component DTTP (see Sec. II-B).

exhibiting the same internal resource usage pattern, both
utilizing the shared grid resources in a distributed manner
for transfers. Let R be a unit of resource that allows D
and E to perform their transfer ¢ and produce a unit output
o. Both D and F try to maximize their utility function
U when transferring the data on the grid. We give the
general form of the utility function U* where k ¢ D, E as
UF = 32, (Inof = (1 —In(zf))). Here of represents the

unit output during time period ¢ and (1 — In(x¥)) represents
the minimization of xf, a value that is inversely proportional
to the transfer rate.

To express data transfers using the L-V model, we examine
their evolution in a discrete time formulation. We explicitly
define this evolution as a dynamical system with a queue
for each discrete time interval in the range 1....t. Figure 2
illustrates the resulting dynamical system representation. In
the following subsection, we adapt the L-V competition
model to our problem statement using the dynamical system
representation shown in Fig. 2. Following that, we define and
explain the prediction model DTTP.

B. Dynamic Transfer Time Predictor (DTTP)

At each time slot ¢, Q;(t) is computed using the competi-
tion model in Eq. 2 for i*" site i = {1,2, ..., M'}. This means
that %= computed from Eq. 2 becomes Q;(t). Q;(t) values
depend on the history {Q;(0), @;(1), ..., Q;(t—1)}. From here
on, we refer to the result of Eq. 2 as Q(t) instead of “¥=. We
define the data transfers as a vector f = {f;|t =0,1,2,...},
where f; is the file or data to be transferred in time period
t. In Eq.1, the coefficient of auto-correlation or the intrinsic
rate of increase denoted by ¢ is a positive number which
represents the rate of growth of the population. Often € is
generally modeled as a geometric i.e. exponential growth.For
eq. 1, this can be given by = = N, (to), where N, (to)
is the initial population of species r. We define ¢, at time
t as the rate of change in the transfer rate (i.e., N,) and
is proportional to the observed network throughput for that
transfer during the time period t¢. €. has the limits [a, ],
where a and b are two positive integers. The constant a is
constrained by the minimum network throughput available
to r, ensuring the transfer occurs at the slowest speed. r
experiences the highest transfer time at time ¢ when a is the
observed network throughput. The constant b is constrained by
the maximum network throughput available to r: b represents
the optimal scenario for r and yields the lowest transfer time
at time t. Algorithm 1 describes the prediction component
of our system, DTTP, which essentially is a procedure to
compute the values of the network state at each time period
tas Q(t) = {Q1(t),Q2(t),....,Q(M)}. Below we describe
important definitions and process of computing Q(t) using
DTTP.

First, we define n, a positive integer, as the number of
transfers, both, opportunistic and non-opportunistic transfers
that are running on the sites that host the data, cached or
uncached (origin). These n transfers compete for resources at
the sites. N4 (t), where s = 1...n, is the aggregate information
rate (throughput) of the grid as a proportion of the total
information rate by the transfer s during the time period . A,
is the influence of transfer s on r and represents the unitary
action of s on r during time period t. We note that this is
a continuous process in reality and continues till the lifetime
of experiment s or r. Transfer r sees snapshots of A, in a
stochastic fashion at discrete time intervals ¢. Such discretiza-
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Figure 3. Visual representation of the prediction system DTTP, which

predicts the state Q(t) for time period ¢. The state Q(t) is a vector consisting
of expected transfer times for all potential sources sites s in {0,1,2,3...M}.
Say a transfer r is to be scheduled at time period ¢, the prediction system
DTTP takes as input all the previous states until ¢ i.e Q(0),..,Q(t — 1).
The inputs re(t]uired for Eq. 2 like ¢,, the unitary action A, the seasonal
component fq Fgr(t — 7) are updated for the current time period ¢. The
output Q(t) is fed back to the system again, to be used for computing the
state for next period (¢ + 1).

tion is done to effectively model the evolution of a transfer as a
discrete time formulation. For our prediction model, we define
this as the proportion of the network bandwidth that s uses
out of the set R,,. R, is the aggregate network bandwidth
that are common to s and r during time period ¢. A, can be
given as the unitary action of transfer s on transfer » during
time period t. This is expressed as Ag. = Pg.(t) X u,(t).
Here, P, (t) is the probability of a unitary action by transfer
s during time period ¢ that impacts transfer r. For our model,
we define this as the proportion of the network bandwidth
that s uses out of the set ps-. psr is the aggregate network
bandwidth common to s and 7 during time period ¢. u,(t) is
the utility of the transfer  during time period ¢. Following
this, A, can now be given by Ay, = Ze(t) X up(t). p3,
is the network usage of s out of pg,.. ps. are the aggregate
network bandwidth common to s and r during time period
t. By definition, %(t) < 1. Following the definition of

%(t), we could theorize that 0 < Zi(t) + %(t) < 1.
Also w,(t) is the utility function for time period ¢ and is
now given by u,(t) = ¢.(t) where .(t) is the number of
concurrent transfer streams during the time period ¢ for the
transfer r. ¢.(¢) is calculated as the number of I/O streams
for transfer r among all the sources during time period ¢. The
integral component fqp:t Fy.(t — 7)Ng(7)dT * N,.(t) in the
conventional L-V model represents the seasonal component.
The term Fj,,.(t — 7) is the unitary action of transfer s on

transfer » during the time period (7,7 + d7) which presents
itself at period ¢. We model this component as any cumulative
actions in the period (7,7 + d7) pertaining to transfer s that
directly affect the runtime execution of transfer r. The lifetime
of the transfer is limited and hence the lower limit of the
integral is chosen to be the start time of the transfer, r i.e
a finite value. Now we rewrite the seasonal component as

s t
JE Fan(t—7) = 2= (t = 7) x up(t —7) NS(T)‘ . Using this
redefined seasonal component and the redefined 3451» in Eq. 1
gives us the general form of our model.

dN,
Qr(t) = dt
= <5T + Zl (%(t) X ur(t) X Ng(t)+ o

%(t 1) Xt — T)NS(T)‘ZD

X Ny (t)
C. Lyapunov Drift Correction (LDC) for Prediction Error
Minimization

To minimize the prediction model error (Eq. 2), we employ
the Lyapunov drift-plus-penalty method, which diminishes
the distance between predicted and actual trajectories of a
dynamic system. The Lyapunov drift A(¢) gauges instability
at the start of time period ¢ as a scalar, measuring the distance
between two probability distributions at discrete intervals.
This metric assesses system stability and detects changes over
time. Higher the A value, higher the instability in the system.
In the context of our prediction model in Eq. 2, Lyapunov
drift A can be used to measure the distance between the
predicted Q(t) value and the actual observed value. Higher
the A value, higher the prediction error of the cache model.
The Lyapunov drift is given by A(¢) = [L(t) — L(t — 1)].
L(t) is the Lyapunov function-a scalar value-which defines
the state of the dynamical systems at time ¢t. When applied
to our prediction model, Lyapunov function is calculated as
half of the sum of squares of all predicted values by Eq. 2.
Conventional definition of the Lyapunov function L(t) is
given by L(t) = 1 ¥, [Q(1)?].

Let 6;(t) be the cumulative debt in data transfer time
incurred by site 4 until time ¢. 6;(¢) is calculated as 0;(t) =
qi(t — 1) — R;(t — 1). Here ¢;(t) is the sum of all predicted
transfer times until time ¢ for site ¢ (using 2) and ©;(t) is
the sum of all observed transfer times until time ¢ for site
i. ¢;(t) and ©,(t) are given by ¢;(t) = Z;ZlQ(p) and
0;(t) = 22:1 Qi(p) respectively. Q(p) is the actual observed
transfer rate for site ¢ at time slot p where p < t. Below, we
describe in detail its technical aspects and steps. Suppose we
would like to pick the site from S, where |S| = M, that
offers the minimum data transfer time. We modify the Lya-
punov function by adding the debt term 6;(¢). The modified
Lyapunov function L(t) is given by the following equation.

M
L) = 5+ QU +Ven?) )
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The term V' is a weight parameter which adjusts the in-
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Figure 4. Block diagram of the dynamic drift correction mechanism (LDC),
which adaptively corrects the prediction error of the transfer time predictions
made by DTTP. At each time period ¢, DC takes as input (1) the state @
which is a vector consisting of expected transfer times for all potential sources
sites s in {0,1,2,3...M} in the period 0, 1.., (¢ — 1) and (2) the debt term
©, which is a vector of cumulative debts for all transfers among the sites in
{0,1,2,3...M}. The LDC then computes the Lya. function L(¢ — 1) and
the corresponding drift A(t — 2). We must note that the Lya. function and
the drift are computed until the previous time period (hence L(t — 1) and
A(t — 2)), and then they are used to correct the prediction model DTT P
for the prediction into the future (i.e. time period t).

fluence of the debt term, denoted as 6,(t), representing the
cumulative debt in data transfer time for site ¢ until time ¢.
The constraint for minimizing transfer time is expressed as
A(t)+ V *x Ri(t) > A(t) + V * 0;(t). The constraint A(t)
ensures observed transfer times do not exceed their predicted
values (Eq. 2). We minimize the constraint A(t) for each time
period ¢ to ensure that L(t) is as small as possible. This can be
achieved by choosing the input parameters for the prediction
model (Eq. 2). To correct and update the model, we chose
the minimum of the right-hand side value among all the sites
i=0,1,..., M ie., min(A(t) + V % 0;(t)). We assume that
this minimum occurs at index k, then this index is passed to
update the competition model. The site corresponding to the
index k is chosen for the transfer during the next period .

III. EVALUATION SETUP

This section outlines the setup we used to evaluate our
proposed model. Figure 5 shows how we integrate our model
into the ML framework/model. The ML model solves the
prediction component (defined as a system of ODEs, see
Eq. 2) and optimizes over the Lyapunov loss function (see
Eq. 3). For evaluation, we chose well-known Neural network
based models and regressors. The choice of the ML models
was made to accommodate most commonly used architectures
for transfer time prediction applications, aided by our expe-
riences [6]. The details of the chosen ML models are given
below.

A. Neural Networks

We chose three different Neural Networks (NN), namely, (i)
a Deep Neural Network (DNN), (ii) Long Short-Term Mem-
ory (LSTM), (iii) and BiDirectional LSTM with Autoencoder-
Decoder DNN. Each of the three NNs were modified to fit
the requirements of our DTTP and LDC models, the details
of which are left for brevity.

ML Model

Predicted transfer
time for period t for
each of the M sites
hosting the data to be:
fetched (i.e. O(t)

Inputs measured
at time t
(required for Eq.

Solve LDC (Eq. 3) to |1

calculate the driftin |,

predictions from Eq. 2 ;
Jfor each iteration

Solve DTTP (Eq. 2)

| as a system of
2 ! dynamic ODEs

Figure 5. The architecture shows how our proposed prediction (DTTP) and
correction (LDC) are integrated into the ML models.

B. Regressors

Regression-based models are often considered lightweight
alternatives to the more computationally expensive neural
network-based models. The five regression techniques are:
(1) simple linear regression [7], (2) Lasso regression [8],
(3) Ridge regression [9], (4) ElasticNet [10] and (5) Lasso-
Lars [11] regressions.

IV. RESULTS AND DISCUSSION

Model MSE (%) RMSE (%) MAE (%) MAPE (%)
BiDir_LSTM_Enc_Dec_DNN 0.72 0.85 043 0.89
LSTM 0.82 0.91 0.48 0.88
DNN 0.82 0.91 0.48 0.86
Linear 2.13 1.46 1.22 76.04
Lasso 0.72 0.85 043 1.27
Ridge 0.72 0.85 0.43 0.94
ElasticNet 0.72 0.85 0.43 1.27
LassoLars 0.72 0.85 0.43 1.27
Table T

Comparison of different ML models integrated with our approach (as
shown in Fig. 5).

Table I presents the performance of the neural network-
based models (Secs. IV-a, IV-b and IV-c) and the regressors
(Sec. III-B). The hyperparameters for each of the models
were chosen from the optimal values that were derived via
GridSearch-based cross validation. The length of time period
t was fixed to half-day and the number of days in the
dataset was 700 consecutive days. Our results found that
all the tested models are able to achieve relatively high
accuracy in predicting the transfer times. Linear regression
performed the worst, as evidenced by the large M APE(%)
value (Table I). However, when regularization is applied
to the Linear regression, using Ridge/ElasticNet/Lasso-Lars,
the performance of the linear regression improves remark-
ably. We did not find considerable difference in accuracy
between any of the regularization methods. Similarly, all
three neural network-based models achieve similar accuracy
in predictions, with the BiDir_LSTM_Enc_Dec_DNN edging
out slightly. Figure 6 shows the Mean Error (%) for each
of the time periods ¢ using DNN (top-left), LSTM (top-
right), BiDir_LSTM_Enc_Dec_DNN (bottom-left) and Ridge
regression model (bottom-left).

While all four models exhibit fluctuations in prediction
mean errors, regression-based models, particularly ridge re-
gression, tend to perform worse as the training period in-
creases, evident from wider error lines in Fig. 6.
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Figure 6. The figure shows the Mean Error (%) over 700 days for each of the three NN models and one regressor (Ridge) that were integrated with our
DTTP+LDC model (see Sec. III-A & III-B and Fig. 5). The markers on X-axis start from O and end at 1400, representing the 1400 half-day time intervals.
The Y-axis is the Mean Error (%) of the predictions made by (top-left to bottom-right): DNN, LSTM, BiDir_LSTM_Enc_Dec_DNN and Ridge regression
models. Our approach has shown high, consistent accuracy in predicted transfer times for each interval (12-hour duration). The sporadic large spikes (both
above- and below- zero) are outliers where our model was not able to predict accurately. We theorize that these sporadic inaccuracies have the following
possibilities: (i) due to unknown underlying changes in the network configurations (like maintenance and/or abrupt disturbances of unknown causes), (ii) due
to the gaps in the data logging systems leading to incorrect input data values used for training, (iii) occasional resource usage anomalies natural to the grid
usage patterns (e.g. sudden availability of a specific dataset from an experiment, leading to an increase in frequency of experiments using that same dataset.
This ultimately shows up as anomaly or outlier in the input dataset, which was used to train our model).

V. CONCLUSION AND FUTURE WORK

This paper highlighted the importance of modeling the REN
network behavior using mathematical representations before
ML models can be applied. Specifically, we modeled the data
transfers as a dynamical systems problem using a system of
ordinary differential equations (ODEs) inspired by the Lotka-
Volterra (LV) competition system. LV model was modified
and adopted because its underlying theory can be adapted
to the REN traffic behavior (validated by our preliminary
analysis of a large collection REN traffic).

There are several interesting directions for future work.
Our proposed model can be further improved with application
layer awareness, where application/experiment type (LHC vs
CMS) is used as an additional term in the DTTP formulation
(Eq. 2). Additionally, other hyperparameters such as alterna-
tive prediction time period granularities can be explored. We
plan to combine our approach with the SDN paradigm for the
automation of data movement across the network, intelligent
caching and rerouting.
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