THE NEW ENGLAND JOURNAL OF STATISTICS IN DATA SCIENCE Volume 2, 155-174 (2024)
DOI: https://doi.org/10.51387 /24-NEJSDS64

Cost-Aware Generalized a-Investing for Multiple Hypothesis
Testing

THoMASs COOK, HaArsH VARDHAN DUBEY, Ji AH LEE, GuaNcyu ZHU, TINGTING ZHAO,
AND PATRICK FLAHERTY™

Abstract

We consider the problem of sequential multiple hypothesis testing with nontrivial data collection costs. This problem
appears, for example, when conducting biological experiments to identify differentially expressed genes of a disease process.
This work builds on the generalized a-investing framework which enables control of the marginal false discovery rate in
a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of a-wealth which
motivates a consideration of sample size in the a-investing decision rule. Posing the testing process as a game with nature,
we construct a decision rule that optimizes the expected a-wealth reward (ERO) and provides an optimal sample size for
each test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than
other methods for n = 1 where n is the sample size. When the sample size is not fixed cost-aware ERO uses a prior
on the null hypothesis to adaptively allocate of the sample budget to each test. We extend cost-aware ERO investing
to finite-horizon testing which enables the decision rule to allocate samples in a non-myopic manner. Finally, empirical
tests on real data sets from biological experiments show that cost-aware ERO balances the allocation of samples to an
individual test against the allocation of samples across multiple tests.
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1. INTRODUCTION successfully rejected. Aharoni and Rosset [1] introduced gen-
eralized a-investing and provided a deterministic decision
rule to optimally set the a-level for each test given the his-
tory of test outcomes. A full review of related work is in
Section 1.2.

Machine learning systems are increasingly used to make
decisions in uncertain environments. Decision-making can
be viewed in the framework of hypothesis testing in that
a decision is made as the result of a rejection of the null
hypothesis [2, 10, 6, 28, 17, 5]. When multiple hypotheses 1.1 Contributions
are under consideration, a FDR control procedure provides
a way to control the rate of erroneous rejections in a batch ” )
of hypotheses for small-scale data sets [3, 24, 25, 4, 32, 16]. lem _Of online FDR.COHUOI yvhe%re the cost of data is not
However, these procedures typically require the test statis- negligible. Our specific contributions are:

We extend generalized a-investing to address the prob-

tics of all of the hypotheses under consideration so that « a theoretical analysis of the long term asymptotic be-
the p-values may be sorted and a set of hypotheses may be havior of a-wealth in an a-investing procedure,
selected for rejection. In many modern problems the test  a generalized a-investing procedure for sequential test-
statistics for all the hypotheses may not be known simulta- ing that simultaneously optimizes sample size and a-
neously and standard FDR procedures do not work. level using game-theoretic principles,

Online FDR methods have recently been developed to e amnon-myopic a-investing procedure that maximizes the
address the need for FDR control procedures that maintain expected reward over a finite horizon of tests.

control for a sequence of tests when the test statistics are

not all known at one time. Tukey and Braun [27] proposed 1.2 Related Work

the idea that one starts with a fixed amount “a-wealth” Tukey proposed the notion of a-wealth to control the
and for each hypothesis under consideration, the researcher family-wise error rate for a sequence of tests [26, 27]. Fos-
may choose to spend some of that wealth until it is all gone. tor and Stine [13] proposed a-investing, an online procedure
Foster and Stine [13] extended a-spending by allowing some 14t controls the marginal FDR (mFDR) for any stopping
return on the expenditure of a-wealth if the hypothesis is  time in the testing sequence. Aharoni and Rosset [1] intro-
arXiv: 2210.17514 duced generalized a-investing and provided a deterministic
*Corresponding author. decision rule to maximize the expected reward for the next
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test in the sequence. Recently, there has been much work on
online FDR control in the context of A/B testing, directed
acyclic graphs and quality-preserving databases [31, 20]. Ja-
vanmard and Montanari [14] first proved that generalized
a-investing controls FDR, not only mFDR under an online
setting with an algorithm called LORD. Ramdas et. al. [18]
proposed the LORD++ to improve the existing LORD. Re-
cent work leverages contextual information in the data to
improve the statistical power while controlling FDR. offline
[29] and online [7]. Ramdas et. al. [19] then proposed SAF-
FRON, which also belongs to the a-investing framework but
adaptively estimates the proportion of the true nulls. All
the aforementioned methods are synchronous, which means
that each test can only start once the previous test has fin-
ished. Zrnic at. al. [34] extend a-investing methods to an
asynchronous setting where tests are allowed to overlap in
time. These state-of-the-art online FDR control a-investing
methods do not address the needs for testing when the cost
of data is not negligible. So, we propose a novel a-investing
method for a setting that takes into account the cost of data
sample collection, the sample size choice, and prior beliefs
about the probability of rejection.

Section 2 is a technical background of generalized a-
investing. Section 3 contains a theoretical analysis of the
long term asymptotic behavior of the a-wealth. Section 4
presents a cost-aware generalized a-investing decision rule
based on the game-theoretic equalizing strategy. Section 5
presents empirical experiments that show that the cost-
aware ERO decision rule improves upon existing procedures
when data collection costs are nontrivial. Section 6 presents
analysis of two real data sets from gene expression stud-
ies that shows cost-aware a-investing aligns with the overall
objectives of the application setting. Finally, Section 7 de-
scribes limitations and future work.

2. BACKGROUND ON GENERALIZED
a-INVESTING

Following the notation of Foster and Stine [13], consider
m null hypotheses, Hy, ..., Hy, where H; C ©;. The random
variable R; € {0, 1} is an indicator of whether H; is rejected
regardless of whether the null is true or not. The random
variable V; € {0,1} indicates whether the test H; is both
true and rejected. These variables are aggregated as R(m) =
>ty Rjand V(m) = 37, V;. With these definitions, the
FDR [3] is

V(m)

FDR(m) = Py(R(m) > 0) Ey R(m)

| B(m) >0},
and the marginal false discovery rate (mFDR) is

_ _Eg[V(m)]
mFDR, (m) = m.

Setting n = 1 — « provides weak control over the family-wise
error rate at level a.

Aharoni and Rosset [1] make two assumptions in their
development of generalized a-investing:

V@j GH]‘ Zng(Rj|Rj,1,...,R1) < Qaj, (21)
Vangj :ng(RﬂRj,l,...,Rl) < Pjs 22)
where
pj= sup Py (R;=1). (2.3)
0]‘6(‘)]’71‘1]‘

Assumption 2.1 constrains the false positive rate to the level
of the test and Assumption 2.2 is an upper bound of p; on
the power of the test. A pool of a-wealth, W, (j), is available
to spend on the j-th hypothesis. The a-wealth is updated
according to the following equations:

Wa(0) =
Wa(j) =

o, (2.4)
Wa(j —1) = 0; + Rjt;. (2.5)

A deterministic function Zyy,_ (o) is an a-investing rule that
determines: the cost of conducting the j-th hypothesis test,
@;; the reward for a successful rejection, 1;; and the level
of the test, a;:

(i, 5,5) = Tw, o) ({R1,-- -, Rj_1}).

The a-investing rule depends only on the outcomes of the
previous hypothesis tests. The Foster-Stine cost depends hy-
perbolically on the level of the test ¢; = a; /(1 — ;).

Generalized a-investing can be viewed in a game-
theoretic framework where the outcome of the test (reject
or fail-to-reject) is random and the procedure provides the
optimal amount of “ante” to offer to play and “payoftf” to
demand should the test successfully reject. We make use of
this game theoretic interpretation in our contributions in
Section 4.1.

Aharoni and Rosset [1] derive a linear constraint on the
reward 1; to ensure that, for a given (¢;,«;), the mFDR
is controlled at a level o by ensuring the sequence A(j) =
aR; —V; + an — W,(j) is a submartingale with respect to
R;. Note that this constraint is not on the a-wealth process
directly. Their constraint is

(2.6)

wjgmin(ﬁ—l—a,ﬁ—i—a—l).

2.7
’ o (2.7)

Maximizing the expected reward of the next hypothesis test,
E(R;)1;, leads to the following equality
% _q,

2.8
o o (2.8)

Note that this equality selects the point of intersection of
the two parts of the constraint in (2.7). ERO a-investing
provides two equations for three unknowns in the determin-
istic decision rule. Aharoni and Rosset [1] address this in-
determinacy by considering three allocation schemes for ¢;:
constant, relative, and relative200 and suggest that the in-



vestigator can explore various options and set ¢; on their
own. Further details on these schemes are given in Section 5.

Since the dominant paradigm in testing of biological hy-
potheses is a bounded finite range for ©;, for the remain-
der we assume ©; = [0,6;] for some upper bound, f;, and
H; = {0}. This scenario may be viewed as a test that the
expression for gene j is differentially increased in an ex-
perimental condition compared to a control. We consider
a simple z-test here for concreteness. The power of a one-

sided z-test is (1 — 3) :=1— & (zl,a + (‘20/_\/’%1)) where

21 o = ®71(1 — a) is the z-score corresponding to level a,
1o is the expected value of the simple null hypothesis, p1 is
the expected value of the simple alternative hypothesis, o
is the standard deviation of the measurements, and n is the
sample size.

Using Equation (2.3), the best power under the previ-
ously defined ©; is

P = 1-® (Zlaj — (29)

0, )
a5/ /1y
The best power depends on: (1) the level of the test, a;, (2)
the scale of the bound on the alternative, 6;, (3) the sam-
ple size, n;, and the measurement standard deviation, o;.
One may compare multiple measurement technologies based
on their precision by exploring the effect of changing o; —
for example, for a fixed budget and all other things equal,
a trade-off can be computed between more samples with
a higher variance technology, versus fewer samples with a
lower variance technology. For the remainder, we assume o
is fixed and known. ERO a-investing for Neyman-Pearson
testing problems is solved by the following nonlinear opti-
mization problem:

max  Eg(R;)v; (2.10a)
, P;
st ;< 4, (2.10b)
pj
v <P pa, (2.10¢)
Qj
Yi_ P (2.10d)
pi
9.
N R TR 2.10
P (zl : oj/\/n—j> (2:10¢)

Constraints 2.10b and 2.10c correspond to (2.7) which con-
trols the mFDR level, and constraint (2.10d) ensures the
maximal expected reward for the j-th test. The optimal
ERO solution still depends on an external choice of the sam-
ple size n;, and the cost of the test ;.

3. LONG-TERM o-WEALTH

Since the levels of future tests depend on the amount of a-
wealth available at the time of the tests, a theoretical consid-
eration in generalized a-investing is whether the long-term
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a-wealth is submartingale or supermartingale (stochasti-
cally non-decreasing or stochastically non-increasing) for a
given decision-rule. Most prior works include some implicit
consideration of the behavior of the long-term a-wealth.
Zhou et. al. [33], which predates the seminal work of Fos-
ter and Stine [13], test levels are set such that testing may
continue indefinitely, even in the worst case scenario of no
rejections, while still utilizing all initial c-wealth. Foster
and Stine [13] discuss strategies for setting the level of the
test and provide some examples designed to accumulate a-
wealth for future tests. They also discuss the practical and
ethical concerns with sorting easily rejected tests so as to ac-
cumulate an arbitrary amount of a-wealth before conduct-
ing more uncertain tests. Aharoni and Rosset [1] seek to
optimize the expected reward of the current test in an effort
to maximize the a-wealth available, and, in-turn, the lev-
els for future tests. Javanmard and Montanari [14] discuss
setting the vector v such that the power is maximimized
for a mixture model set a-priori for the hypothesis stream.
In all of these methods, the motivation is to have sufficient
a-wealth to conduct tests,with an appreciable power per-
petually. Here we outline two scenarios where the long-term
a-wealth can be either submartingale or supermartingale.

In order to state the theorems regarding the a-wealth se-
quence, we require a lemma bounding a-wealth as a function
of the prior probability of the null hypothesis.

Lemma 1. Given an «j-level for the j-th hypothesis test
from rule Z(Ry,...R;_1), the expected value of a-wealth for
Foster-Stine a-investing is

E N [W] <

Yt oy — (s — ay)g] <a + 7 fja]) : (31)

1—Oéj

where BI7L (W] = E[W(j)—W( — D)W —1)], and
q; = Pr[0; € Hj], the prior probability (belief) that the j-
th null hypothesis is true. In the case of a simple null and
alternative ©; = {0,0;}, the bound is tight.

Proof. Proof is provided in Appendix A. O

We are now in a position to understand dynamical prop-
erties of the expected value of the sequence of a-wealth,

{W(j):jenN}

Theorem 1 (Submartingale a-Wealth). Given a simple
null and alternative ©; = {0,60;}, {W(j) : j € N} is
submartingale (stochastically non-decreasing) with respect to

{Ri,...,Rj_1} if
a;j/(1—a;) 1
j = . 3.2
Ty g - (32)
Proof. Proof is provided in Appendix A. O

Theorem 1 shows that one will be able to conduct an in-
finite number of tests in the long-term if the power is close
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to one or the prior probability of the null is close to zero.
This scenario may occur when the hypothesis stream con-
tains a large proportion of true alternative hypotheses, or if
the sample sizes of the individual tests are large.

Theorem 2 (Supermartingale a-Wealth). For any null
and alternative hypothesis, {W(j) : j € N} is super-
martingale (stochastically non-increasing) with respect to

{Ry,...,Rj_1} if
a;/(1—ay) > 1
< X g, . 3.3
me(Tmsay e iy 09
Proof. Proof is provided in Appendix A. O

Theorem 2 shows that the generalized a-investing testing
procedure will end in a finite number of steps if the power
of the test is close to zero or the prior probability of the null
hypothesis is close to one. This scenario may occur when
the hypothesis stream is made up of a large proportion of
true null hypotheses, or if the sample sizes used for each test
results in an under powered test.

These theorems provide general insights for understand-
ing when the a-wealth can be expected to be (stochastically)
non-decreasing or non-increasing. The non-decreasing «-
wealth sequences require that p; 1 1 for a fixed éj which, in
the case of a Gaussian, would require o;//n — 0 or n — oo.
So, the a-wealth grows unbounded if the sample size is un-
bounded. This theory in combination with the premise of
non-trivial experiment costs motivates the need for methods
for cost-aware a-investing when the sample size is not fixed.

If the sequence of hypotheses is under the control of the
investigator, a strategy they might employ is to select many
hypotheses that are likely to be rejected early so that a large
amount of a-wealth can be accumulated and then spent later
on hypotheses that are less likely to be rejected, but are still
of interest to the investigator. This phenomenon is generally
called piggybacking. However, the issue with this strategy
is that an investigator behaves differently if the difficult hy-
pothesis is the first in the sequence of tests versus if the
difficult hypothesis presents after a long sequence of easy
tests. If the sequence of tests is not under the control of the
investigator, they may still find themselves in a similar situ-
ation merely by a fortunate random ordering of the tests. In
Figure 1 shows that in ERO investing one can accumulate
a large amount of a-wealth and distort the expenditure of
wealth for difficult tests that are subsequent to easy tests.
ERO investing rejects several true nulls while cost-aware
ERO (CAERO) (Section 4) does not exhibit such aggres-
sive testing behavior. Our premise, in this work, is that the
investigator should be indifferent, in expectation, as to the
position of the difficult hypothesis in the sequence of tests.

4. COST-AWARE GENERALIZED
a-INVESTING

In this section, our development derives from two key
differences in assumptions compared to previous work. First,

Table 1. Payoff matrix for posing hypothesis testing as a
game against nature. The payouts shown are the expected
value of the payout for a given pair of pure strategies.

Player 1T (Nature)

9, € H; 0, ¢ H,
Player 1 Conduct Test —; + a;90;  —@; + piY;
(investigator) Skip Test 0 0

the a-cost of a hypothesis test, ¢;, should account for the
a-priori probability that the null hypothesis is true as well as
the pattern of previous rejections. The value of ¢; dictates
bounds on «; and p;, which, in combination with ¢;, directly
impact the behavior of W,,. Consequently, setting ¢; has an
impact on the level of future tests. In Section 4.1, we extend
the ERO problem from Aharoni and Rosset [1] to include
©; in the optimization problem. Second, we assume that the
per sample monetary cost to conduct hypothesis tests is not
trivial, motivating the need to include the sample size of a
test, n;, in the optimization. This extension is detailed in
Section 4.2. In Section 4, we present these extensions as a
single decision rule, and extend this rule to a finite horizon
in Section 4.4.

4.1 Optimizing ¢;

A key contribution of this work is a procedure for se-
lecting the amount of a-wealth to commit to a given hy-
pothesis test, ;. Aharoni and Rosset [1] leave ¢; up to the
investigator and provide several ways of selecting it: con-
stant, relative, and relative-200. Given a value of ¢;, the
variables «;, p;, and 1); are chosen such that the expected
reward, Eg(R;)v; is maximized. In their simulation studies,
the choice of ¢; is such that under the data-generating pro-
cess one is expected to see one true alternative hypothesis
before a-death. This section develops a principled method
of setting ; via a strategy for a two-player zero-sum game
between the investigator and nature.

Suppose that we have a zero-sum game involving two
players: the investigator (Player I) and nature (Player II).
The investigator has two strategies — to test or to not test a
hypothesis. Nature, independent of the investigator, chooses
to hide 0; € H; with probability ¢; and 6; ¢ H; otherwise.
The utility function for this game is the change in a-wealth.
The payoff matrix for the game is provided in Table 1.

If the investigator chooses not to conduct the test, there is
no cost (¢; = 0) and there is no reward (¢; = 0) regardless
of what nature has chosen. So, the change in a-wealth when
not conducting a test is zero. If the investigator chooses to
conduct a test, and nature has hidden 6; € Hj, then the
payout is —¢; with probability 1 — a;, or —p; + 9; with
probability «;. In expectation, this payout is —¢; + a; ;.
Similarly, if the investigator chooses to conduct the test and
nature has hidden 6; ¢ Hj, then the expected payout is
—; + p;v;. The mixed strategy of nature is known to be
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Figure 1: An example of piggybacking in an individual experiment where g; = 0.01 for the first 100 hypotheses, and
g; = 0.95 for the remaining 100 hypotheses. ERO investing with a relative spending scheme makes 8 false rejections

following change in g;, while CAERO (Section 4) does not.

(gj,1 — gj). What remains to be determined in this game
are the unknowns in the payoff matrix, as well as the in-
vestigator’s strategy. We choose to set the payoffs such that
the expected change in a-wealth is identical for both of the
investigator’s strategies. By designing the payoff matrix con-
ditioned on nature’s mixed strategy, such that the investi-
gator has the same expected payoff for both pure (and any
mixed) strategies, the investigator’s choice to test or not
test a hypothesis has no effect (in expectation) on the abil-
ity to perform future tests. With these properties, nature is
employing an equalizing strategy.
The result is the investigator is indifferent as to whether
to test or not test and the expected payoff is
0i(=pj + ;) + (1 —q;)(—g; + pjb;) =0.  (4.1)
Since the expected payoff for not testing is 0, this equation
ensures that the expected change in a-wealth when testing is
also 0. By definition, this gives a self contained decision rule
that makes a-wealth martingale, striking a balance between
the two scenarios given in Theorem 1 and Theorem 2.

Theorem 3 (Martingale a-Wealth). Given a simple null
and alternative ©; = {0,6;}, {W(j) : j € N} is martingale

with respect to {R1,...,R;j_1} if
1 ) )
pi = — —qq; . 4.2
= (1) (200 @2)
Proof. Proof is provided in Appendix A. O

Theorem 3 provides a condition on the power of the test
which requires a balance between the ratio of ¢; and v; and
the probability of a false positive.

Allowing ¢, to be a free variable in the optimization prob-
lem leads us to an infinite number of ERO-class solutions.

Selecting the maximum of this class would lead to aggressive
play, and in many situations leads to betting the farm or bold
play. The martingale constraint, (4.2), reduces the solution
space to a single nontrivial solution and a trivial solution
where ¢; = ¥; = a; = 0. Furthermore, the fact that the
expected reward is constrained to be zero by (4.2) means
that the ERO optimization problem is a feasibility problem.
Even so, we retain the objective function in the optimization
problem in anticipation for the next section where we allow
for variable sample sizes n;.

The investigator may additionally wish to limit the vari-
ance of their wealth process. This can be accomplished by
setting an upper bound on the proportion of wealth an inves-
tigator may spend for an ante. Furthermore, the investigator
may wish to lower bound the power of an individual test. In
order to satisfy these conditions, the investigator will col-
lect more samples for an individual hypothesis in order to
meet their power requirement. We choose to impose a lower
bound constraint on the power for this reason.

4.2 Optimizing n;

In the previous section n; was held fixed; we now consider
n; as a free variable in our optimization problem. As a result,
p; is no longer completely determined by «; and one can in-
crease p; via increasing n;. In scientific applications, the in-
vestigator is also constrained by sample collection costs, and
would not wish to spend excessively on a single hypothesis
test. We modify the generalized a-investing decision rule,
(2.6), to include a notion of dollar-wealth Wg(j) available
for expenditure to collect data to test the j-th hypothesis

((pja aj7¢j7nj) = I(Wa(0)7 W$(0))({R1, sy ijl})v (4'3)
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where n; is the sample size allocated for testing of the j-th
hypothesis. A natural update for the dollar-wealth is

Ws(0) = B (4.4)
Ws(j) = Ws(j—1) —c¢ny, (4.5)

where c; is the per-sample cost for data to test the j-th
hypothesis, and B is the initial dollar-wealth. Allowing the
cost to vary with the hypothesis test enables one to model
different experimental methods and cost inflation for long-
term experimental plans.

Since n; is a free variable under the control of the inves-
tigator, we again have many solutions to the ERO problem.
Furthermore, as n; increases up to the allowable expenditure
of sample resources, so does the power and therefore the ex-
pected reward. Theoretically, the optimal solution allocates
all the sample budget available even though the marginal
increase in power and thus the expected reward, is vanish-
ingly small for large n;. To address this issue, we modify the
objective function to include a small penalty for increasing
sample size,! —Acjn; where X is chosen by the investiga-
tor. The solution is fairly robust to the value of A and this
reformulation provides for a unique optimal value.

4.3 Cost-Aware ERO Decision Rule

The investigator’s goal is to conduct as many tests as
possible while rejecting as many true alternatives as possible
and maintaining control of the false discovery rate. Incorpo-
rating the methods for optimizing ¢; and n; into the ERO
problem yields a self-contained decision rule in the form of
(4.3),

max ]Eg(Rj)i/)j — /\cjnj (46&)
P O ¢jv N
s.t. v <P 4, (4.6b)
Pj
Pj
’(/)j < —=4a-—1, (460)
Q@
Yi_ % (4.6d)
pi
pi=1—0 (z 0; > (4.6¢)
g — 1 — l—a; — — 7 — |> .
’ o5/ Vi
Pj 2 Plo, (4.61)
Pj < aWa(j - 1)7 (46g)
njc; < Ws(j), (4.6h)
0=E[AW,], (4.61)

Constraints (4.6b) and (4.6¢) ensure control over the
mFDR. Constraints (4.6e) and (4.6f) connect the level,
power, and sample size of the test. Constraints (4.6g) and

1We thank an anonymous reviewer for this suggestion.

(4.6h) ensure the existing (o, $)-wealth is not exceeded. The
parameter a € (0, 1] controls the proportion of a-wealth that
a single test can be allocated. Constraint (4.6i) ensures na-
ture’s strategy is equalizing. Written out explicitly,

E[AW,] = (—¢; +v;) Pr[R; = 1] + (—;) Pr[R; = 0],

Pr[R; = 1] = a;q; + p;(1 — g;),

Pr[R; = 0] = (1 — a;j)g; + (1 — p;)(1 — q;).

A pseudo-code algorithm of the full cost-aware ERO method
and further extensions to cost-aware ERO are described in
Appendix C.

Lemma 2. The cost-aware ERO decision rule ensures
that «-wealth, W, (j), is martingale with respect to
{Rl,...,Rj_l}.

Proof. Constraint (4.6i) sets a-wealth to be martingale by
definition. O

Constraint (4.61) sets the expected change in a-wealth
equal to zero. This enforces that W, (j) is martingale. Al-
lowing W, (j) to be submartingale, as per Theorem 1, can
lead to a situation where hypotheses are tested at high a-
levels due to the accumulated W, from previous rejections.
This is referred to as piggybacking in the literature when
such accumulated wealth leads to poor decisions [18]. On
the other hand, allowing W, (j) to be supermartingale, as
per Theorem 2, causes the testing to end, and is referred
to as a-death in the literature. Using a game-theoretic for-
mulation allows us to propose an expected-reward optimal
procedure which considers preventing a-death and piggy-
backing.

Constraint (4.6i) only controls the ezpected increment
in W,. It is well known that martingale-based strategies
can suffer from what is known as gambler’s ruin. Since
no bounds are set on the worst case scenario, which in
this case is when R; = 0, it is possible that we could set
w; = Wa(j — 1), and suffer a-death. This occurs, for exam-
ple, when g; is close to 0, and 4 and o; allow for p; — 1. In
such a case, a rejection is almost certain, and in turn, so is re-
ceiving the reward ;. Recall that we restrict ourselves to an
ERO solution, and thus, we can interpret constraint (4.6i),
without the factor a, as setting ¢; to the expected reward —
the quantity that we are maximizing. In order to keep W,
martingale, this almost guaranteed upside must be counter-
acted by a devastating downside. In order to avoid a-death,
we add a factor which limits the maximal bet, preventing
the investigator from betting the farm. In simulation stud-
ies, we found that setting a = 0.025 gave good results. We
require p; > 0.9 when n is not constrained.
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Figure 2: Extensive form of two-step game between Investigator (Player I) and the Nature (Player II). Strategies for
each player are italicized. The leaves are labeled to denote the strategy taken by the investigator and are enumerated for

equations presented in Appendix G.

4.4 Finite Horizon Cost-Aware ERO
a-Investing

The standard ERO framework optimizes only the one-
step expected return, Eg(R;)1);. But, when tests are expen-
sive, it is logical to consider the expected return after two
(or more) tests. We consider g; to be known, and extend the
game theoretic framework to a finite horizon of decisions.
The extensive form of the game between nature, who hides
6; in the null or alternative hypothesis region, and the inves-
tigator, who seeks to find 6; and gain the reward for doing
so, is shown in Figure 2. We note that sequential two-step
cost-aware ERO investing is a different problem than batch
EROQO investing because two-step investing accounts for the
expected change in («, $)-wealth after each step while batch
cost-aware ERO only received the payoff at the conclusion
of all of the tests in the batch.

The two-step objective function is

E(ijj + Rj+1wj+l) = E(Rj)wj—i_
Vi [P(R; = 0)E(R; 11| R; = 0)+
P(Rj = 1)E(R;j41|R; = 1)]

(4.7)

with constraints (4.6b)-(4.61) from Problem 4.6 remaining
for steps 7 and j + 1. Designing the game so that nature’s
strategy is an equalizing strategy results in a system of equa-
tions (Appendix G) that form constraints in the ERO op-
timization problem. It is worth noting that such a game
simplifies to the standard cost-aware ERO method defined
in 4.6 when Wg >> 0. This holds since the parameters of
the second test depend on the expected a-wealth available
at that step. When the expected increment is 0, as set in
constraint (4.6i), and when available $-wealth is not scarce,
then each step is equivalent to optimization occurring on
the first test. When this constraint is lifted, or when the

available Wy is low, the finite horizon solution provides a
different solution to the single step solution.

5. SYNTHETIC DATA EXPERIMENTS

Experimental Settings To compare our method with state-
of-the-art related methods, we generate synthetic data as
described in Aharoni and Rosset [1]. The synthetic data is
composed of m = 1000 possible hypothesis tests. For the j-
th test, the true state of 6; is set to the null value of 0 with
probability ¢; ~ Unif(0.85,0.95) and otherwise set to 2. A
set of n; = 1000 potential samples (z;);~, were generated
iid from a N (0;,1) distribution. For each hypothesis test,
the z-score was computed as z; = /n} S0 x4, where n
is described in the table and the one-sided p-value is com-
puted. The methods were tested on 10,000 realizations of
this simulation data generation mechanism. Pseudo-code,
as well as other implementation details, for this simulation
can be found in Appendix B.

5.1 Comparison to State-of-the-Art Methods

Table 2 compares our method, cost-aware ERO, with
related state-of-the-art «-investing methods including:
a-spending [27], a-investing [13], a-rewards [1], ERO-
investing [1], LORD [14, 18], and SAFFRON [19]. The table
is indexed by the allocation scheme (Scheme), and the re-
ward method (Method). The allocation scheme determines
the value of ¢; at each step, which in many cases is left
to user discretion. We implement the ¢-allocation schemes
proposed by Aharoni and Rosset [1]. The constant scheme
simply allocates,

1
; = min {—W

W0, w - 1)},
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Table 2. Comparison of cost-aware a-investing with state-of-the-art sequential hypothesis testing methods. Values for Tests,
True Rejects and False Rejects are the average across 10,000 iterations, and these estimates are used for mFDR. All methods
are constrained to use 1000 samples at most per iteration. For comparison include LORD++ with the optimal sample size of
n = 3. However, the optimal sample size for LORD++ was selected by observing the number of true rejects for n; € [1,10]
and this information would not be available to an investigator. The optimal value of n} for cost-aware ERO, however, was
predictable from the observed data.

Tests True Rejects False Rejects mFDR

Scheme Method
constant a-spending 10.0 0.28 0.04 0.033
a-investing 16.0 0.44 0.07 0.045
a-rewards k =1 14.6 0.40 0.06 0.043
a-rewards k = 1.1 16.3 0.43 0.06 0.043
ERO investing 18.9 0.53 0.08 0.051
relative a-spending 66.0 0.55 0.04 0.028
a-investing 81.8 0.87 0.09 0.045
a-rewards k = 1 81.1 0.85 0.08 0.043
a-rewards k = 1.1 80.8 0.82 0.08 0.041
ERO investing 83.2 0.93 0.90 0.045
other LORD++ 1000.0 2.06 0.07 0.022
LORD1 1000.0 1.46 0.03 0.014
LORD2 1000.0 1.97 0.06 0.020
LORD3 1000.0 1.99 0.07 0.024
SAFFRON 1000.0 1.28 0.07 0.031
cost-aware ERO n; =1 953.0 4.23 0.12 0.023
cost-aware ERO n} 225.7 19.11 0.22 0.011
other LORD++ (n = 3) 334.0 22.54 0.79 0.032

for each test, the relative scheme allocates an amount that
is proportional to the remaining a-wealth,

1
= EWa (.] - 1)
and continues until W, (j) < (1/1000)W,(0). The relative
200 scheme follows the same proportional steps as the rel-
ative, but always performs 200 tests [1]. The results from
our implementation of these methods matches or exceeds
previously reported results.

ERO investing yields more true rejects than a-spending,
a-investing, and both a-rewards methods. The LORD vari-
ants and SAFFRON perform the maximum number of tests
while maintaining control of the mFDR. For the use scenar-
ios considered in the LORD and SAFFRON papers (large-
scale A/B testing), this is optimal — tests are nearly free
and the goal is to be able to keep testing while maintaining
mFDR control. The cost-aware ERO setting is different and
more applicable to biological experiments where one aims to
maximize a limited budget of tests to achieve as many true
rejects as possible while controlling the mFDR. Increasing
the sample size capacity for each test enables cost-aware
ERO to achieve higher power with fewer tests than the cur-
rent state-of-the-art methods with n = 1. For fair compari-
son, we varied n for LORD++ and include the sample size
which maximized the number of true rejections. This se-
lection was performed after running all considered sample
sizes. It is important to note that the investigator would not

P

have access to such information in a real experiment. Releas-
ing the restriction on sample size enables cost-aware ERO to
allocate an adaptive number of samples based on the prior of
the null as well as the available budget. Appendix D shows
the comparisons for ¢ = 0.1 and Appendix F shows com-
parisons with all of the other methods set to n; = 10. Our
cost-aware ERO method with n = 1 performs more tests
and rejects more false null hypotheses than all competing
methods at n = 1.

It is worth noting that ERO and cost-aware ERO with
n; = 1 are still quite different despite the restriction of sam-
ple size. We can view the difference in performance between
these two methods as the benefit of allocating ¢; using our
game-theoretic framework. Our decision rule incorporates
our prior knowledge of the probability of the null hypothesis
being true and aims to maintain a-wealth (as a martingale).
The experimental set up of Aharoni and Rosset [1] implicitly
leverages similar prior knowledge in the spending schemes
proposed. All spending schemes proposed in Aharoni and
Rosset [1] allow us to test at least one true alternative, in
expectation, at which point the a-wealth should increase.
This increase in a-wealth should then sustain testing until
another true alternative appears. However, in the cost-aware
ERO optimization problem, this information is explicitly ac-
counted for, and helps us avoid situations described in The-
orem 1 and Theorem 2. By restricting n; = 1, we have
effectively limited our ability to inflate p; with a large sam-
ple size, and influence W,,(j) towards being submartingale.
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Figure 3: Power, mFDR, and mean number of samples per test for cost-aware ERO and existing methods (n =

random ¢; ~ Beta.

On the other hand, nature’s equalizing strategy limits the
expected payout to 0, by limiting the size of ¢, preventing
the experimenter from experiencing a-death quickly, as seen
in the constant spending scheme.

5.2 Computation and Implementation

In our experiments, for one set of 1,000 potential hy-
pothesis tests ERO investing, cost-aware, and finite-horizon
cost-aware ERO all take ~ 30 seconds on a single 2.5GHz
core and 16Gb RAM. The nonlinear optimization problem
was solved using CONOPT [11]. Because the solver depends
on initial values and heuristics to identify an initial fea-
sible point, infrequently the solver was not able to find a
local optimal solution; in these instances, the solver was
restarted 10 times and if it failed on all restarts the it-
eration was discarded. Out of 10,000 data sets at most
27 iterations were discarded (for n; = 1). Code to repli-
cate these experiments is available at https://github.com/
ThomasCook1437/cost-aware-alpha-investing.

5.3 Random Prior of the Null Hypothesis

One of the benefits of incorporating a notion of sampling
cost into the hypothesis testing problem is the ability to al-
locate resources based on the prior probability of the null,
q. We generated simulation data as previously described ex-
cept the prior probability of the null hypothesis is selected
at random from ¢; ~ Beta(a, b) where a +b = 100 and with
2,500 independent realizations of the data. Appendix B con-
tains pseudo-code and further implementation details. Fig-
ure 3(a-c) shows the power, mFDR, and mean number of
samples per test as a function of E[g;]. The results show
that cost-aware ERO a-investing achieves high power while
maintaining control of the mFDR. A key result of this ex-
periment is that should it not be possible to collect as many
samples as the optimization problem yields, the investigator
may choose to not perform the test at all and instead wait
for a test (with associated prior) that does yield an optimal
sample size within the budget or may choose to allow the a-
wealth ante to adjust to the bound on the sample size. This

1) with

often occurs for large values of ¢;, which we know by The-
orem 2 will influence W, (j) towards behaving as a super-
martingale. Cost-aware ERO will compensate by increasing
p; through the sample size, n;, and will expend the Wy avail-
able, as the optimization only considers a single step. It is
worth noting, that when E[g;] is close to 1, cost-aware ERO
with n = 1, maintains power better than other methods.
This can be attributed to the allocation scheme that con-
straint (4.61) creates. The value of ¢; is kept small so that
multiple false null hypotheses are tested at an appreciable
level so that a-wealth can be earned, and testing sustained.
This setting is common in biological settings, where false
null hypotheses can be rare.

5.4 Sensitivity to the Prior

Cost-aware ERO makes explicit the prior on the null,
while the dependence on the probability of null hypothe-
ses in the sequence is more implicit in other methods. So,
an important question is, how sensitive is the method to
misspecification of ¢;. To address this question, we consider
two types of misspecification across the hypothesis sequence:
variance with a correct expectation, and bias Appendix E.
We find that cost-aware ERO is robust to variance in g with
a correct expectation. This is likely due to the property that
cost-aware ERO is relatively conservative in its allocation of
(cr, $)-wealth and the method has the opportunity to recover
from losses due to misspecification. However, the cost-aware
ERO is sensitive to a biased specification of g;. If the true
probability of the null is 0.9 on average and ¢ = 0.85 is used
in cost-aware ERQO, 273 fewer tests are performed compared
to using the correct value of g. Essentially, the downward
bias in the assumed ¢ causes cost-aware ERO to be more ag-
gressive in spending a-wealth than it should be. In practice,
this effect could be mitigated, but ensuring that a-wealth
spending is conservative or by giving a margin of safety to
the assumed value of ¢;. However, a more principled so-
lution would employ a robust optimization formulation of
cost-aware ERO or to implement online-learning for the ¢
process. While this modification is outside of the scope of
this paper, it is of great interest.
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Figure 4: Power, mFDR, and mean number of samples per test for finite horizon cost-aware ERO with random ¢; ~ Beta.
A larger horizon corresponds to a greater number of future tests considered in the optimization process.

5.5 Finite-Horizon Cost-Aware ERO Investing

To test whether extending the horizon of the reward to be
maximized would enable better decisions as to («, $)-wealth
allocation, we varied the length of the horizon considered in
the cost-aware ERO investing decision rules. In general, the
optimal values returned are identical between the decision
rules. This is especially visible at the beginning of the test-
ing process. Discrepancies occur when Wy is sufficiently low
such that repeatedly applying the one-step cost-aware ERO
decision rule would expend all Wy prior to the final test in
the finite horizon. This occurs when the finite-horizon is set
to be a large number of steps or when the experiment is near
the end of its funding. We also noticed that our solver ex-
hibited less stability as the length of the horizon increased.

As seen in Figure 4, extending the horizon to include
more tests results in the same allocation of samples. For
E[gq] = 0.9, which we consider most applicable to biological
applications, Table 3 confirms that the solutions for different
horizons are identical, with discrepancies occurring due to
computational constraints.

Table 3. Varying the size of the finite horizon when
q; ~ Beta(90, 10). Values displayed correspond to the mean
across 2,500 repetitions.

Tests True Rejects False Rejects mFDR
Horizon
2 191.0 16.25 0.31 0.018
3 187.0 15.90 0.30 0.018
4 181.0 15.37 0.30 0.018
5 177.3 15.04 0.29 0.018

Note that this technique optimizes the parameters of each
test based on the expected wealth available at that time. The
parameters set for future tests will never truly be attained.
These results demonstrate that our principled (W, Ws)
spending strategy considering one step sufficiently captures
the effect of the current test on our future tests. The mar-
tingale constraint enables us to conduct tests so that future

tests remain powerful, and we do not benefit from adding ad-
ditional information to our optimization problem. These re-
sults simultaneously suggest that an extended horizon may
be appropriate for contexts where the optimization objec-
tive is not restricted to the expected reward or where the
martingale constraint is not set for each individual test.

6. REAL DATA EXPERIMENTS

Biological experiments are typically such that the sample
costs are non-trivial, the proportion of false null hypothe-
ses is small, and the number of overall tests is large. Our
methods were compared to the ERO method on two gene
expression data sets. The results show that the cost-aware
method performs more tests and rejections, while spending
fewer samples than a method which does not have the capa-
bility to adapt the sample size. As there is no ground-truth
for these data sets, we are unable to compare the number of
true rejections.

6.1 Prostate Cancer Data

Gene expression data was collected to investigate the
molecular determinants of prostate cancer [9]. The data set
contains 50 normal samples and 52 tumor samples and each
sample is a m = 6033 vector of gene expression levels. The
data set has been normalized and log-transformed so that
the data for each gene is roughly Gaussian. Let the empirical
mean and standard deviation of the log-transformed normal
samples be denoted fi; and &; respectively and let the log-
transformed tumor data be denoted z; € R*2. The goal is to
test whether the tumor gene expression is increased relative
to the normal samples.

We use this data set to simulate a sequential testing sce-
nario across genes. To estimate a prior for the null hypothe-
sis for each gene, a logistic function was fit to only the first
two samples, §; =1 — (1 + exp(—B([T;]1:2 — 20))) ", where
xo = logyy(4)/0 and B = 2; these first two samples were then
removed from the data set. The order of the genes was per-
muted randomly and the cost-aware decision function was
computed for each gene in sequence with ¢; as described



and 0; = log;((2)/6;. We compared cost-aware ERO to
ERO investing with the maximum number of samples avail-
able (n = 50) and with a n = 3 because a typical default
replication level in biological experiments is to conduct ex-
periments in triplicate. For both procedures c¢; = 1, V7, and
Ws[0] = 1000. Pseudo-code and implementation details for
this experiment can be found in Appendix B.

Figure 5 shows the cost-aware and ERO decision rules
on the prostate gene expression data set. The ERO method
with n = 50 selects many tests, but rapidly expends Wy,
as it does not optimize the sample size. The ERO method
with n = 3 is able to test a much greater number of genes
because it is limited in the amount of Wy expenditure per
test. While it may appear that the ERO method with n = 3
is a much more favorable result, there are some critical con-
cerns with this rejection sequence. First, ERO (n = 3) fails
to reject nearly all of the tests in the first 50 genes. Among
those genes are many that clearly have a strong differential
gene expression signature, Z; shown in Figure 5. Congru-
ent with our observations of the effect of piggybacking in
ERO investing (Figure 1), had one of the early tests ap-
peared later in the sequence, after ERO had accumulated
a significant a-wealth reserve, it would have been rejected.
Second, ERO (n = 3) received a much noisier observation of
the true differential gene expression signature compared to
ERO (n = 50). As can be seen in Figure 5, ERO (n = 50)
does reject many early tests that do display a 2-fold increase
in gene expression in the tumor compared to the normal
cells when we observe all 50 samples. ERO (n = 3) likely
fails to reject true alternative hypotheses, in part, due to
the fact that it does not have access to enough samples to
accurately assess the true differential expression level. Cost-
aware ERO allocates, on average n_;f = 15.5 samples per test.
This allocation strikes an balance between ERO with n = 3
and n = 50. It is provides a more accurate measurement of
the differential gene expression than ERO (n = 3), it does
not expend the sample collection resources as aggressively
as ERO (n = 50). Finally, it is not as susceptible to the
(random) ordering of the tests compared to ERO (n = 3)
which has the issue a-piggybacking or ERO (n = 50) which
has the issue of betting the farm in terms of sample resource
wealth.

6.2 LINCS L1000

The Library of Integrated Network-Based Cellular Signa-
tures (LINCS) NIH Common Fund program was established
to provide publicly available data to study how cells respond
to genetic stressors, such as perturbations by therapeutics
[12]. The data considered is made up of L1000 assays of
1220 cell lines. The L1000 assay provides mRNA expression
for 978 landmark genes. Differential gene expression is then
calculated under a protocol known as level 5 preprocessing.
Jeon et. al. [15] infer the remaining genes using a CycleGAN
and make the predictions available on their lab’s webpage.?

2https://maayanlab.cloud/sigcom-lincs/#/Download
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Data was prepared in a similar fashion to the prostate
cancer data. Data was available for 1220 samples which ex-
perienced a 10 uM perturbation Vorinostat. Differential ex-
pression for 23,614 genes against controls were processed as
per the L1000 Level 5 protocol. Following this protocol, we
divided the values by the standard deviation for each indi-
vidual gene so that the data had unit variance. Our exper-
imental protocol utilized 100 samples to estimate q. We set
g; =1 — 1+ exp(—B([%;]1:100 — Jco)))_l7 where zg = 2/c0
and 8 = 0.6. The distribution of g; reflects our prior belief
that most genes are likely to belong to the null hypothesis.
Samples used for this estimation were shuffled between iter-
ations. For both procedures ¢; = 1,Vj, and Wg[0] = 100000.
Our method was allowed n < 1120 samples while the ERO
used n = 1120 samples. The order of genes was randomly
shuffled and the procedures were repeated 1,000 times to
collect average statistics. One sided Gaussian tests were per-
formed where pg = 0 and pa = 0.5. 0 =1 is assumed since
data is already standardized.

Our method (CAERO) results in 797 tests with 176.89
rejections and an average sample size per test of n = 108.
while ERO (n = 1120) results in 90 tests with 32.49 re-
jections. The results on this data set are consistent with
observations for the prostate cancer gene expression data
set in that the ERO procedure expends its sample budget
long before the a-wealth has been exhausted.

7. DISCUSSION

We have introduced an ERO generalized a-investing pro-
cedure that has a self contained decision rule. This rule re-
moves the need for a user-specified allocation scheme and
optimally selects the sample size for each test. We have
shown empirical results in support of the benefits of op-
timizing these testing parameters rather than being left to
user choice.

The cost-aware ERO methods does require the specifica-
tion of the prior for the null, ¢;. We have shown that the
number of tests and true rejections is not sensitive to vari-
ability in g;, but is sensitive to bias in g; — for example, if the
investigator is systematically optimistic. For future work, it
would be useful to investigate online learning methods for
estimating ¢; and robust optimization formulations of the
cost-aware ERO decision rule to reduce this sensitivity.

Cost-aware ERO does not, yet, have an explicit mech-
anism to hedge the risk of dollar wealth or a-wealth loss.
The current optimization problem assumes a risk-neutral
player who wishes to not lose a-wealth, on average, when
conducting a test. Since this desire is expressed in expecta-
tion, the variance of actual outcomes can be large, leading
to a-death without some constraint on the relative expendi-
ture of a-wealth. For future work, it would be interesting to
investigate a principled risk-hedging approach to conserve
some wealth for future tests with the hope that a test with
a more favorable reward structure is over the horizon.
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Figure 5: Comparison of Cost-aware ERO investing and ERO investing for a prostate cancer gene expression data set.
ERO (n = 50) rejects many tests early, but suffers from an aggressive expenditure of sample collection resources and
is unable to test beyond the 20th gene. ERO (n = 3) is able to reject more tests, but fails to reject early hypotheses,
observes a noisier measurement of the true differential gene expression, and benefits from a piggybacking effect for later
tests. Cost-aware ERO distributes the finite allocation of samples across a smaller set of genes than ERO (n = 3), but
a larger set of genes than ERO (n = 50). It allocates, on average, n* = 15.5 samples per test which strikes a balance

j
between expenditure of W, and Wjg.

The results from applying ERO and cost-aware ERO A.2 Proof of Theorem 1
(Figure 5) show that there is a trade-off between expen-

diture of W, and Ws. In our formulation of the problem, Proof. Since ©; = {0,6;}, by lemma 1 we have

we have assumed that the initial Wy is fixed and can only ) . .
E W, —Wa(—1) | Wa(j—1
decrease. It would be interesting to apply a similar line of W) alj ) Waly )
reasoning to Wg that was used to move from a-spending to Y +lp; — (pj — ;) qj] (a + %) )
a-investing. Specifically, if a test is rejected, there may be L —aj L —a

some reward towards Wg. Then the decision rule may be
modified to maximize Wy or to constrain it to be a martin-
gale process as we have done here with W,,.

We define M, := p; — (p; — &j)gq;, then {W,(j) : j € N}
is submartingale, if and only if

, a;/(1 - ay)
APPENDIX A. THEORETICAL ANALYSIS T T ata;/(1-ag)
OF LONG-TERM ,

Since M; = p; — (p; — «j)q; > pj(1 — ¢ ), thus {W,(j)} is

ALPHA-WEALTH AND submart?ngalé PR !

COST-AWARE ERO

SOLUTION 4 o;/(1 - aj) 1

P a0l —q .

A.1 Proof of Lemma 1
A.3 Proof of Theorem 2

Proof. The expected increment in a-wealth is
Proof. Let M; := p; — (pj — a;)q;, by Lemma 1, {W,(j) :

E[Wa(j) — Wa(j — 1)] = E[R;]a — E[1 — R}] : fjaf j € N} is supermartingale, if
J
< /l-ay) (A1)
This equation requires the probability of rejection, which T a+ta;/(1-ay)

can be written in factorized form as
Next we define s; € [0, (1 — a;)/«;], a positive number

Pr(Rj =1)= Pr(Rj _ 1|9j € H;) Pr(ﬁj c Hj) to control how large the power is for the jth test, such that

+PI‘(RJ:].|QJ ¢H])Pr(0j gHJ) pj:sjaj/(]-faj)

Now, Pr( ; = 1l0; € H;) < «; by Assumption 2.1 and And we have
Pr(R; = 1|9 ¢ H;) < p; by Assumption 2.2. Defining
Pr(6; € H;) = g; gives the result. O pj—oj=[(s; — 1oy + a?]/(l —aj;) > (s; — Daj;/(1 —aj).



Thus,
My < % (sj — 1)%‘%_
1-— a; 1-— Q;
The condition in (A.1) becomes
1—q;
JM]' S S5 — (Sj - 1)(]]
Qj
1

=s5;(1—qj <
SJ( q])+QJ—a+aj/(1_aj)

Thus, for a given g;, the condition on s; for stochastically
non-increasing wealth is

1
< | ——q; 1—gq,). A2
N ey ) L
The upper-bound in condition (A.2) is valid if it is positive.
For j large enough, if o;/(1 — ;) < «, then

1

a+oj/(1—ay) A

4 2c

If o; < 1/2, this term is positive and the upper-bound for
s; is positive. O

A.4 Proof of Theorem 3

Proof. Following the notation of Aharoni and Rosset [1], the
expected increment in a-wealth is

E[Wa(]) - Wa(j - 1)|Wa(] - 1)] (A3)
=E[Rj{R1,...,Rj—1}(—¢ +¢))
—E[l — Rj[{R1,..., Rj—1}|(—¢).

By definition, a-wealth is martingale when this increment

is equal to 0. Next, let E/71[X] = E(X|{Xy,..., X1}
Then equation A.3 becomes:
0=E"[Rj](—¢+v;) +E 1 - Rjl(~p)  (A4)

Expanding E/~1 [R;] in terms of variables in equation 4.6
gives

E/7'R;] = Pr(R; = 1)
= PI"(Rj = 1|9j c Hj)Pr(Gj S Hj)

+Pr(R; = 116; ¢ H;) Pr(6; ¢ H;).

By our previous assumptions, Pr(R; = 1|6; € H;) < «;
and Pr(R; = 1|6; ¢ H;) < p;. We define Pr(6; € H;) = gj,
and hence Pr(0; ¢ H;) =1 — g,.

Simplifying equation A.4 yields

0= (gjaj + (1 —qj)pj)(—p; + ;) (A.5)

+ (g (1 — ) + (1 = g;)(1 = pj))(—;)
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Solving equation A.5 for p;

= (i )(% )
1_(]]' d}j

— gja;. This implies that the

This implies that p; o
power of the test must balance the probability of rejection
under the null and the ratio of the cost and reward of the
test. U

A.5 Existence and Uniqueness of Solution

Since the solution to the cost-aware ERO problem is in-
fact an ERO solution, the existence of a solution is proven
in Lemma 2 of Aharoni and Rosset [1] given some assump-
tions which hold for a uniformly most powerful test with a
continuous distribution function. Since these are the types
of tests being considered in the current work, the necessary
assumptions are met.

Theorem 4. In the cost-aware ERO solution with A = 0,
© 1S unique.

Proof. Suppose 3 a solution (@;J/J

E(R;); = E(R;)" ;.

o, p;,n;) such that
(A.6)

Expanding the expectation of rejections in equation A.6
yields

(gjaj + (1= qj)pj)v; = (g0; + (1 —q;)p;)v;. (A7)

As per Lemma 2, the a-wealth is martingale when using a
solution to the cost-aware ERO optimization problem. Ap-

plying theorem 3 gives
4j a])

()
/ 1_(]]' Q/JJ
() (2
Pj 1—q o — a0y -

Substituting equations A.8 and A.9 into equation A.7
gives

s (25) (30
= gjaf + (1 — )((1_1%) (Zi g ))wg‘

(qa'aj +24 - %%‘) Ui = | Gej + = — g0 | ¢
1/)3‘ 77[}j

Pi oy — 21 *
(%‘)% (l/f}‘)w’

(A.8)

(A.9)
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(A.10)
J

Pj=¢;

Since the sample size, n; is now made a free parame-
ter, a natural question is whether or not a unique n; can
be selected. This is not necessarily the case. Consider the
solution (¢;, ¥;, a, pj, n;) to the cost-aware ERO problem.
Assume that a continuous distribution function is used. We
now show that (v;, a;, pj,n;) are not necessarily unique.

. Suppose there exists a solution (¢7,v],aj,pj,n}) such
that

E(R;); = E(R;)";.

From equation A.10, we know that ¢; = ¢;. From Aharoni
and Rosset [1], any solution that is ERO must satisfy

P

Y% (A.11)
pPj  Qy

Using equation A.11 it follows that
LR R} (A.12)
P %

Solving equations A.11 and A.12 for ¢; and ¢ respectively
give

1
=TT (A.13)
aj Iz
N 1
& T

Substituting equations A.13 and A.14 into equation A.10
gives

1 1
T T T 11 (A.15)
Qi P ai P
Simplifying gives
1 1 1 1
—_— == (A.16)

Suppose o > a;. It follows that p; > p;. Without loss of
generality (with respect to the test statistic having a con-
tinuous distribution function), assume the test statistic is
normally distributed. Writing out p; and p; explicitly then
implies that

0.
J
1-9 Zl—(x; — Toj

"
VT

0.
>1-9 <z1_% - = ) (A.17)
N

0.
Zlfa; — Ui < Zl—a; — Ui (A18)
nk Nz

gg: — gj < Z1—q —Zlfa; (Alg)
O

VI — 1/’/l;f < HT] (Zl—aj — Z1_a;> (AQO)
J

Equation A.20 shows that a range on n values can be
used. In certain scenarios, this allows (¢;,q;,p;, 1) #
(¥, a, p;,nj). Considering the case when o < a; results
in equation A.20 having the inequality reversed. Note that
n; = 1 is not necessarily permitted by this range. Including
n; in our problem is still useful, despite not being unique,
since an a-priori specification may not yield the same max-
imal expected reward as leaving n; to be optimized.

APPENDIX B. SIMULATION DETAILS

In this section we describe simulations in greater de-
tail so that our work can be fully reproduced. We briefly
present the cost-aware ERO a-investing method in algorith-
mic form. All baseline methods were based on initial values
and code in Robertson et. al. [22].

Algorithm 1 Cost-aware ERO Algorithm.
Input «, W4 (0), Wg(0)
7+ 0
while W, (j) > € and Ws(j) > € do
Define ¢, ¢; for hypothesis j
Solve Problem 18 to obtain ¢j;, aj, pj, ¥, and n;
Collect data (zj1, ..., n;) and compute p-value p;.
if p; < a; then
Rj —1
else
R; + 0
end if
Update Wg(j + 1) < Ws(j) — ¢jn;
Update Wa (5 + 1) < Wa(j) — @5 + Rj1;
j—j+1
end while

We now provide a comparison of the usage of information
of the hypothesis stream and prespecified parameters that
each method considered in our simulation studies uses.

B.1 Experiment for Table 2

For CAERO (n*), we set the lower bound on p; = 0.9,
A = le — 3, and a = 0.025. For CAERO, n = 1 we set
the lower bound of p; = 0.01. In our simulation we define
a = 0.05, W,(0) = 0.0475, Wg(0) = 1000, n;te = 10000
(number of iterations), m = 1000 (maximum number of
tests per iteration), and ¢ = 1 (cost per sample). W, (0)
for implementations of LORD and SAFFRON follow sug-
gestions from Javanmard and Montanari [14] and Ramdas
et. al. [19]. An explicit algorithm is given in Algorithm 2. A
similar experimental set up is used for Table 5 and Table 8
where ¢; and n; are adjusted respectively.
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Table 4. Comparison of various online multiple hypothesis testing procedures.

Error Criterion

Params. Needed at Test

Prespecified Parameters Incorporating Priors

Method
a-investing mFDR
ERO investing mFDR

Access to calculating p  Prespecified spending scheme

Spending scheme
Spending scheme

- Prespecified spending scheme

LORD FDR (indep.), mFDR - v, wo, bo Setting v [14]
SAFFRON FDR (indep.), mFDR - A, wo Adaptive
CAERO mFDR  gj, Access to calculating p a, A At test

Algorithm 2 Simulation run in Table 2.

Input a, Wo(0), Ws(0), niter, m, ¢
for ¢ = 0 to ¢ = Njter do
Set seed to @
X =]
for j =0 to m do
Sample 0;, with Pr(0; = 0) = ¢; ~ Unif(.85,.95), and
P’I“(aj :2) = 1—qj.
X [7] = 1000 realizations from N (6;,1).
end for
for each testing method (unique row in Table 2) do
7«0
while W, (j) > € and Wg(j) > e do
n; =1 > Sample size to use if method not
cost-aware.
if Spending and Investing rule separate then
Obtain ¢; from spending scheme.
Obtain «;, ¥; from investing rule 7
else
Obtain ¢;, o , 9, from self-contained investing
rule Z. (If using cost-aware, obtain and update n;).
end if
Perform 1-sided Z-test on X [4][0 : n;], and obtain
p-value, pj.
if p; < a; then
Rj —1
else
Rj 0
end if
Update Wy (j + 1) + Ws(j) — cn;
Update Wa(j + 1) <= Wa(j) — @5 + Rjv;
j—j+1
end while
end for
end for
Aggregate results

B.2 Experiment for Figure 3

We next discuss the experimental details for producing
Figure 3. For CAERO (n*), we set the lower bound on p; =
0.9, A = le — 3, and a = 0.025. For CAERO, n = 1 we set
the lower bound of p; = 0.01. In our simulation we define
a = 0.05, W, (0) = 0.0475, Ws(0) = 1e8, njter = 2500, m =
1000, and ¢ = 1. An additional ¢, specifically q1gg1 is drawn
for solving the finite-horizon optimization problem when we
reach the final test. We sample ¢; from a Beta(a, 100 — a)

distribution, and then sample whether 6; is null or not based
on the realization of g;. This sampling scheme and relevant
parameter values are given in Algorithm 3.

Algorithm 3 Simulation run in Figure 2.

Input «, Wa(0), Ws(0), niter, m, ¢
for 1 = 0 to 7 = Njter do
Set seed to ¢
for A € {10, 30,50, 70,90} do
X =]
for j =0 to m do
Sample g; ~ Beta(A, 100 — A)
Sample 0;, with Pr(0; = 0) = g;, and Pr(0; =2) =

1-— qj.
X [7] = 1000 realizations from N (6;,1).
end for
for each testing method (unique row in Figure 3) do
while W, (j) > e and Wg(j) > e do
Perform while loop in Algorithm 2.
end while
end for
end for
end for
Aggregate results

B.3 Experiment for Figure 5

The real data experiment shown in Figure 5 and detailed
in Section 6 can be broken down into two steps: preprocess-
ing and testing.

In preprocessing, we load in two dataframes, one con-
taining gene expression data for 50 normal (non-cancerous)
samples (6033 x 50), and a second containing similar data
for 52 tumor samples (6033 x 52). We take then mean across
the normal samples to obtain a (6033 x 1) vector containing
the mean gene expression for normal patients. We calculate
the standard deviation in a similar manner and use these
vectors to standardize the (6033 x 52) dataframe contain-
ing tumor samples. Next, the first two columns of the tu-
mor samples dataframe is separated from the remaining 50
columns to provide an informed estimate of ¢; for each test.
It is important to note that we are allowing the potential
for misspecification of g; by using an estimate of only two
samples. Using these two samples:

¢; = 1= (1 +exp(=B(;]12 — 20))
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where zg = log,,(4)/6, 8 = 2, [£;]1.2 denotes the sample
mean of the two tumor samples separated from the remain-
ing 50 tumor samples for the jth gene, and & is the estimated
standard deviation from the normal samples.

During the testing process, we perform a random shuffie
of the genes and then run testing. This process is shown in
Algorithm 4. In this scenario, we set a = 0.05, W, (0) =
0.0475, Ws(0) = 1000, njzer = 1000 (number of permuta-
tions), m = 6033, and ¢ = 1. We set ERO investing to al-
ways use a sample size of n; = 50. For cost-aware ERO, we
set the lower bound of p; = 0.1 and do not set a restriction
on the upper value of n;. However, if the optimized value is
greater than 50, we choose to skip the test. Lastly, we set
the constraint of ¢; < 0.5 * (1 — ¢;)W,(j) to avoid quick
a-death in some permutations. We note that this does not
affect tests with large g; very much, as one might expect,
since those tests require small bets in order to keep nature’s
strategy equalizing.

Algorithm 4 Simulation run in Figure 5.

Input a, Wa(0), Ws(0), niter, m, ¢
for ¢ = 0 to ¢ = Njter do
Set seed to i
Randomly shuffle data
for Method € { ERO, cost-aware ERO} do
while W, (j) > e and Ws(j) > € do
if Method is cost-aware ERO then
Set constraint ¢; < (1 — ¢;)Wa(j)
Solve Problem 18 to obtain ¢j;, a;, ¥;, and n;
if 0 <n; <50 then
Perform test and update as per other simu-

lations.
else
Skip test
end if
else
Perform test with sample size n; = 50 and up-
date as per other simulations.
end if
end while
end for
end for
Aggregate results.

APPENDIX C. EXTENSIONS OF
COST-AWARE o-INVESTING

In this section, we explore extensions of cost-aware ERO
a-investing.

C.1 Cost Tradeoffs

In Problem 4.6 the monetary cost does not factor in to the
objective except through the constraints. In many practical
applications, it may be useful to simultaneously maximize
the a-reward and minimize the $-cost. In those applications,

the objective function can be augmented to E(R;)¢; —vyc;jn;,
where v controls the trade-off between improving a-wealth
and minimizing $-cost.

C.2 Variable Utility

Not all hypotheses may have equal value to the investiga-
tor and their value assessment may be independent of their
assessment of the prior probability of the null hypothesis
[18]. For example, an investigator may be confident that a
gene is differentially expressed in a particular tissue based
on prior literature. Then the prior probability that 6; = 0
is low, p; ~ 0, and the utility of testing that hypothesis is
also low. There may be a different gene that has not been
reported to be differentially expressed in the tissue, but if
it is it would be a major scientific discovery. Then, the in-
vestigator may assign a high prior probability to the null
0; = 0, but also a high utility to the event that the null is
rejected. A generalized form of the cost-aware decision rule
can be constructed to account for varying utility levels for
each hypothesis in the batch by making the objective func-
tion Y"1 | Eg(R;)U(R;);, where U(R;) is the utility of the
rejection of the j-th null hypothesis.

C.3 Batch Testing

Many biological experiments are conducted in batches.
This scenario leads to a need for a decision rule that pro-
vides (e, 97, n;)5, for a batch of K tests. To address this
need, the objective function in Problem 4.6 can be modi-
fied to Zf:l Eg(R;);. It seems reasonable to expend all of
the a-wealth for each batch and then collect the reward
at the completion of the batch so that a next batch of
hypotheses can be tested. Therefore, we have constraints
Z]K:l v; < Wy(0) and Z]K:1 ¢;n; < Wg(0). The other con-
straint remain and apply for each test in the batch.

APPENDIX D. METHOD COMPARISON
WITH q = 0.1

In Table 5 we explore the comparison of cost-aware ERO
investing with other methods for ¢; = 0.1. Naturally, when
nulls occur infrequently, the issue of multiple testing is not
as dire, and in some cases, FDR is controlled without using
any correction [21, Figure 6]. When true alternatives are
abundant, cost-aware ERO requires a large ante (y;). In
this simulation we set @ = 1 to highlight this effect. We also
relax any lower bound on p;. This causes cost-aware ERO
to rapidly deplete the a-wealth. In contrast, other methods
do not increase the ante at all, or as severely, as cost-aware
ERO. However, it should be noted that the fraction of the
tests that are true rejects among those that are performed
is very high. For example, in constant ERO investing the
proportion of true rejects is 24% and the proportion of true
rejects for cost-aware ERO (n; < 10) is 90%. This is a highly
desirable result for the setting of biological experiments and
other settings where sample cost is nontrivial.
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Table 5. Comparison of cost-aware a-investing with state-of-the-art sequential hypothesis testing methods with a prior
probability of the null, ¢ = 0.1 using 2,500 iterations.

Tests True Rejects False Rejects mFDR

Scheme Method
constant a-spending 10.0 2.49 0.00 0.001
a-investing 932.4 231.55 0.46 0.002
a-rewards k =1 925.0 230.13 0.46 0.002
a-rewards k = 1.1 926.5 221.54 0.42 0.002
ERO investing 934.3 230.87 0.45 0.002
relative a-spending 66.0 4.95 0.00 0.001
a-investing 994.0 661.55 10.19 0.015
a-rewards k =1 989.2 416.37 2.00 0.005
a-rewards k = 1.1 991.4 626.93 7.47 0.012
ERO investing 994.8 820.57 34.14 0.040
other LORD++ 1000.0 322.87 1.07 0.003
LORDI1 1000.0 93.81 0.07 0.001
LORD2 1000.0 301.45 0.94 0.004
LORD3 1000.0 320.61 1.06 0.003
SAFFRON 1000.0 779.92 23.92 0.030
cost-aware ERO n; =1 11.1 9.94 0.15 0.013
cost-aware ERO nj; <10 12.8 11.48 0.21 0.017
cost-aware ERO n} 10.6 9.48 0.13 0.012

APPENDIX E. SENSITIVITY ANALYSIS
WITH RESPECT TO g,

Since the cost-aware ERO method makes use of the prior
probability of the null hypothesis, ¢;, we investigate the sen-
sitivity of the method to misspecification of that parameter.
Table 6 shows the number of tests, mean true rejects, mean
false rejects, and mFDR for simulation where the g; pro-
vided for optimization is misspecified. Specifically, we vary
the specified ¢;, when holding the true g; fixed at 0.9. We
performed 10, 000 iterations where cost-aware a-investing is
restricted to a single sample and a = 1.

Table 6. Varying the magnitude of misspecification of g;
shows that small deviations from the true value do not
dramatically change performance, however, larger
misspecifications result in fewer tests performed and fewer
rejections. However, mFDR is still controlled.

these ¢; by {0.01,0.05,0.1,0.2,0.3,0.4}. For numerical sta-
bility we truncate all ¢; € [0.01,0.99]. Results are presented
in Table 7.

Table 7. When constraining ¢; and allowing n; to be
selected adaptively, the harmful effects of prior
misspecification can be reduced. Bias in prior specification is
more harmful than a noisy estimate.

Tests  True False mFDR
Rejects  Rejects

Specified q
True 230.5 39.13 0.43 0.011
Noisy ¢ 230.3 39.09 0.21 0.005
Noisy g, bias = -0.01  225.4 38.26 0.17 0.004
Noisy ¢, bias = -0.05  213.6 36.41 0.13 0.003
Noisy g, bias = -0.1 206.0 35.11 0.10 0.003
Noisy g, bias = -0.2 197.1 33.70 0.07 0.002
Noisy ¢, bias = -0.3 192.4 32.90 0.07 0.002
Noisy g, bias = -0.4 189.8 32.44 0.06 0.002

Tests True Rejects False Rejects mFDR
Specified q
0.50 2.7 0.13 0.06 0.049
0.70 10.6 0.33 0.06 0.047
0.80 32.9 0.72 0.08 0.047
0.85 92.4 1.58 0.13 0.049
0.89 282.4 3.54 0.20 0.044
0.90 365.0 4.15 0.22 0.041

We now consider the effect on performance for the
CAERO method presented in the main results. We draw
¢; ~ Unif(0.65,0.95). We consider running the CAERO with
the true ¢;, ¢; with N (0, 0.2) noise, and lastly negatively bias

APPENDIX F. COMPARISON WITH OTHER
METHODS WITH n; = 10

The simulation study used in Table 2 was repeated with
setting n = 10 for the existing methods and n; < 10 for
cost-aware ERO. The cost per sample was set to ¢; = 1,
and the total budget was W5[0] = 1000. Hence, for methods
that do not optimize sample size, the number of tests was
limited to 100.

Cost-aware ERO performs more tests and rejects more
true alternative hypotheses than existing methods. These
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Table 8. Using a non-optimized pure strategy of setting n=10 (max n permissible in cost-aware simulations in Table 2).
Although using a larger number of samples for each test gives more powerful tests, the number of samples used by cost-aware
ERO investing is lower than all methods other than a constant spending scheme for a-spending, which only gives a single true

rejection.

Tests True Rejects False Rejects mFDR

Scheme  Method
constant spending 10.0 1.00 0.05 0.02
investing 54.0 5.40 0.23 0.035
rewards k =1 47.8 4.79 0.20 0.034
rewards k = 1.1 49.1 4.91 0.19 0.031
ERO investing 54.0 5.40 0.23 0.035
relative  spending 66.0 6.55 0.05 0.006
investing 99.9 10.00 0.52 0.045
rewards k = 1 99.9 10.00 0.45 0.039
rewards k = 1.1 99.9 10.00 0.40 0.036
ERO investing 99.9 10.00 0.52 0.045
other LORD++ 100.0 10.00 0.16 0.014
LORD1 100.0 9.99 0.07 0.006
LORD2 100.0 10.00 0.16 0.014
LORD3 100.0 10.00 0.16 0.014
SAFFRON 100.0 10.00 0.44 0.038

results demostrate that even when state-of-the-art methods
have access to larger sample sizes, the ability to optimize
the sample size results in better performance.

APPENDIX G. TWO-STEP COST AWARE
ERO INVESTING

In order to set nature’s strategy to equalizing in the two-
step optimal procedure, the expected change in a-wealth
must be equal no matter what strategy the experimenter
uses. It follows that the expected change in a-wealth must be
found for each strategy, and the system of equations solved.

In order for the martingale solution for the two-step game
to hold, the following equations must hold.

0= P(TTy)(—p1 — p2 + a1 + aziba) (G.1)

+ P(TT2)(—p1 — w2 + a1h1 + paia)

+ P(TT3)(—p1 — p2 + p1ih1 + azt)

+ P(TTy)(—p1 — p2 + p1ib1 + pata)
0= P(TSl)(—tpl + 0411/11) + P(TSQ)(—QD1 + p11/J1) (GQ)
0= P(STl)(—<p2 + Olziﬁz) + P(STQ)(—QOQ + ,021#2), (G3)

where

P(TT) = (q1)(q2) (G.4)
P(TTy) = (q1)(1 — g2) (G.5)
P(TTs) = (1 —q1)(g2) (G.6)

P(TTy) = (1 — q1)(1 — q2) (G.7)
P(TS)) = q (G.8)
P(TSy)=1—q (G.9)
P(STy) = o (G.10)
P(STy) =1 — ¢ (G.11)
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