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Abstract: Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease
(AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses
on the detection of dementia from speech transcripts of controls and dementia groups. We propose
encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and
thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using
contrastive learning to improve performance in a multi-task framework. Our results demonstrate
the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy
and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite
having significantly fewer parameters. This highlights the importance of pause and filler word
encoding on the detection of dementia.
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1. Introduction

Dementia is a progressive cognitive disorder caused by neurodegenerative diseases,
with Alzheimer’s disease (AD) being the most prevalent form [1]. AD accounts for a signif-
icant majority of dementia cases, affecting millions worldwide. Given the extensive impact
of AD and the current lack of a cure, early detection of dementia is crucial. Detecting the
disease in its early stages can allow for timely intervention, which can slow the progression
of symptoms and provide better management options. Early diagnosis can greatly improve
the quality of life for individuals living with dementia, enabling them and their families to
plan and access support sooner [2].

In recent years, deep neural networks (DNNs) have shown considerable promise in
the detection of dementia from speech transcripts. By utilizing DNNs, models can be
enhanced with data features that facilitate the early detection of dementia. Researchers
have employed audio recordings, textual data, and biomedical imaging to detect dementia.
In this paper, we focus specifically on textual data to leverage large language models
(LLMs). LLMs are pre-trained models trained on vast corpora of data from various topics.
Some well-known LLMs include BERT and its variants [3,4], GPT-3 [5], and others. These
models contain contextual information within the text, enabling the extraction of syntactic
and semantic information. Due to this contextualized training, they excel in downstream
tasks such as semantic analysis, question answering, and named-entity recognition [6-8].

In the literature, researchers have employed various approaches for the detection of
dementia based on speech transcripts. In early attempts, researchers in [9-11] focused on
using lexical and syntactic information to detect dementia. These approaches involved
analyzing factors such as the frequency of nouns and verbs, common word usage, language
fluency, and other related linguistic features. In recent studies, using transfer learning
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through LLMs has become very popular due to their powerful ability to capture complex
language patterns and enhance model performance [12-15]. The authors in [14] proposed
a sentenced-based pipeline that integrates various augmentation techniques, pre-trained
LLMs, and classifiers to perform classification tasks. They thoroughly evaluated each
augmentation technique, explored a range of pre-trained models, and experimented with
different classifiers, including CNNs and RNNs. Additionally, the authors implemented
various voting mechanisms to refine their results, presenting a detailed analysis of each
component’s impact on the overall performance. Other studies have introduced innovative
methods, such as contrastive learning (CL), which involves learning from the data them-
selves to separate the feature space for each class [16,17]. In [16], the authors propose a
multimodal approach which uses both text and audio using graph neural networks (GNNs)
with CL, and study the impact of both modalities. Also, the authors in [18,19] explore the
use of Transformers and attention-based approaches combined with CNNs and RNNs.
Due to the limited data available in this field, several authors have proposed various
augmentation techniques to mitigate this issue [20-22]. In [21], the authors proposed a
generative approach for data augmentation by using variational auto-encoders (VAEs).
Instead of raw text or speech, they augmented the lingual and acoustic features. These
augmentation methods aimed to increase the dataset size, enhancing the model’s ability to
generalize and perform better [23].

In [12,24], the authors proposed a technique where pause information is encoded
within the text, a feature typically used in speech-based analysis. Pauses are introduced
using special characters, enabling the language model to recognize these features, which
has been shown to enhance model performance. In [12], the authors utilized the ADReSS
dataset [25] for their experiments and employed temporal word alignment to implement
their methodology. Building on this idea, we apply a similar concept to the Pitt Corpus
Cookie Theft dataset [26].

In this paper, we propose a new methodology using LLMs for the detection of dementia
from transcriptions of speech by encoding in-text pauses and filler words, and study the
impact on the performance of contrastive learning. We hypothesize and validate that
the inclusion of these encodings and modeling schemes lead to a significant impact on
performance, starting at 57% accuracy for a baseline model and increasing to 87% by
our final model. This paper is organized as follows: In Section 2, the main materials and
methods used are explained, which include dataset preparation, in-text pause encoding, and
the contrastive learning scheme. In Section 3, the results for the experiments are presented.
In Section 4, our results are discussed. Finally, in Section 5, the paper is concluded.

2. Materials and Methods

This section provides the data preparation and modeling steps. The main objective
of this paper is to enhance the performance of detection models through the use of in-text
encoding and contrastive learning, which can be considered a multi-task learning scheme.
As shown in [27-29], multi-task learning can be beneficial in improving model performance.
Below, we summarize our contributions:

*  Proposing in-text pause and other language features (uh/um) encoding.

¢ Thoroughly evaluating different pauses to provide insight on how they affect model
performance.

*  Proposing to use contrastive learning to improve performance.

*  Combining in-text pause encoding and DualCL in a multi-task manner.

As mentioned in Section 1, our proposed approach is similar in context to [12,24].
In [12], the authors utilized temporal word alignment to embed the pause information
within the text. We take a different approach in our modeling that does not involve temporal
word alignment, which follows the directions in [24]. We explore alternative methods to
encode pauses, their different combinations, and language information directly within
the textual data; this has not been attempted before (please see Table 1). This approach
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allows us to investigate the impact of pause information on model performance, potentially
offering new insights into dementia detection through textual analysis.

Another approach of interest in this paper is contrastive learning (CL). Researchers
have adopted contrastive methods to perform dementia detection, relying on the data
themselves to improve the representation space while enhancing model performance [30].
In this paper, we employ a technique called dual contrastive learning (DualCL) [31], which
has demonstrated strong performance with general textual data. In Section 3.3, we provide
a detailed explanation of this methodology.

Table 1. Different in-text encoding schemes.

Input Type Example

Original “senl (...)sen2 (.),sen3, (..)...”

E1y,50,F0 Vo “senl sen2 sen3 ... ”

E1,,50,F0 Vo “senl Lo sen2 Shsen3 Me ... ”

Epy,51,F0 Vo “senl sen2 sen3 ... LoShMe..."”

E1y,50,F, Vo “senl, sen2, sen3 ... , #Sh #Me Me #Lo Lo”

E1y,50,F0 V1 “senl, sen2, sen3 ... #Sh #Me #Lo"”

Ep s,.,F0 Vo “senl Lo sen2 Shsen3 Me ... ,Lo Sh Me ... "

E1, 50,5, Vo “senl Lo sen2 Sh sen3 Me ... , #Sh Sh #Me Me #Lo Lo ... ”

L “senl Lo sen2 Sh sen3 Me ... , #Sh #Me #Lo”

E1,,5,,F.,V0 “senl, sen2,sen3 ... ,Lo Sh Me ... ,#Sh Sh#Me Me #Lo Lo ... ”

E1y,5,,F0 W “senl, sen2,sen3 ... ,Lo Sh Me ... , #Sh #Me #Lo”

Ely,50.F,V; “senl, sen2, sen3 , ... , #Sh Sh #Me Me #Lo Lo ... , #Sh #Me #Lo”

Ep 5.5, Vo “senl Lo sen2 Shsen3 Me ... ,Lo Sh Me ... , #Sh Sh#Me Me #Lo Lo ... ”

Ep s,k v, “senl Lo sen2 Shsen3 Me ... ,Lo Sh Me ... , #Sh #Me #Lo”

Ep 50,5V, “senl Lo sen2 Sh sen3 Me ... , #Sh Sh #Me Me #Lo Lo ... , #Sh #Me #Lo”
Eiy5,,5, W “senl, sen2,sen3 ... ,Lo Sh Me ... ,#Sh Sh#Me Me #Lo Lo ... , #S5h #Me #Lo”
Ep s,k “senl Lo sen2 Shsen3 Me ... ,Lo Sh Me ... ,#Sh Sh #Me Me #Lo Lo ... ,#Sh #Me #Lo”

2.1. Dataset Preparation

In this study, the Pitt Corpus Cookie Theft dataset [26] from DementiaBank is used.
These transcripts are rich in detail, including the patients’ demographic information like
gender and age, as well as clinical data such as dementia severity. Additionally, they con-
tain syntactic details to ensure language consistency, timestamps, and dialogues between
researchers and participants. This dataset contains 243 and 305 recordings and CHAT style
transcriptions for control and dementia groups, respectively. Throughout our experiments,
we use the ground-truth transcriptions for our training and evaluation. For our analysis,
we specifically exclude certain special characters found in the conversations, such as “[/ /],
“&-uh”, and “&=laughs”, among others. Each of these symbols has its meaning, which can
be found in the DementiaBank documentation [26].

2.2. In-Text Pause Encoding

In this section, an in-text pause encoding scheme is explained. In this methodology,
a relationship between pauses and dementia diagnosis within the textual information
is explored. Lately, this topic has been of interest in the literature [12,24], in which the
classification is achieved based on the frequency and duration of pauses within the speech.
In our previous work, presented in [24], preliminary experiments were conducted on in-text
encoding.. The method is fully explained in this section. The current work expands on [24]
by thoroughly examining the effect of each pause encoding and adding new textual cues
(filler words) to the analysis. Also, a combination of each encoding with CL is studied. In
Section 3, all the results are presented in detail.

An important reason to use textual information over audio recordings is that while
audio recordings are very rich in information, they are very complex and require significant
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computational resources to be properly utilized [32,33]. Additionally, transcripts from
standard tests provide an additional layer of privacy. The transcripts of the audio can be
obtained once and they can be used for training and evaluation. The transcription can be
performed by very powerful tools such as the Whisper [34] and Wav2vec [35] models.

As mentioned in Section 2.1, the Cookie Theft dataset is used in the experiments in our
study. We follow the same methodology as was introduced in [24] to construct the in-text
pause encodings. In the dataset, some special characters indicate different pause lengths.
To be specific, the symbols “(.)”, “(..)”, and “(...)” represent short, medium, and long pauses,
respectively. These pauses are measured in seconds or fractions of a second, depending on
the type of the pause. For short, medium, and long pauses, the pause lengths are under
0.5s,0.5-2 s, and over 2 s, respectively [12]. We replace these symbols with “Sh”, “Me”,
and “Lo”, to be inserted within the text. Also, a vector that contains the frequency of each
pause is used in our analysis.

Given a sample text of the form

“segl (...) seg2 (.) seg3 (..) ...”,
we introduce the following encodings: In-place (I), end-sequence (S), frequency (F), and
vector (V). Each of these combinations can be present or absent in the encoding, which
results in 16 different combinations in total. The base text takes the form

“segl seg2 seg3 ..."”.

The baseline, where no encoding and vector information is included, is represented
by By. The experiments showed that models performed better when they were provided
with a secondary numerical vector input corresponding to the frequencies of the pauses in
the form

[#Sh, #Me, #Lo)|,

where #5Sh, #Me and #Lo represent the number of short, medium, and long pauses, respec-
tively. It should be mentioned that all the combinations include the secondary vector input,
which has its secondary model.

For example, if a text only contains the in-place encoding, it is represented as Ej, s, r, v,
In this case, our sample text takes the form

“segl Lo seg2 So seg3 Me ...".

The end-sequence encoding attaches all the pauses in the order that they are happening
in the text to the end of the text as follows:

“segl seg2 seg3 ... Lo Sh Me ...”.

The third encoding, frequency encoding, creates a text with the count of each pause
type attached to each pause type (e.g., “Sh”), and is attached to the end of the text as follows:

“segl seg2 seg3 ... #5h Sh #Me Me #Lo Lo”.

Lastly, the vector encoding is similar to the frequency encoding, but the pause type is
not included in the encoding. It can be shown as follows:

“segl seg2 seg3 ... #Sh #Me #Lo".

As an example, the model with input that includes frequency and vector encoding
is represented as Ej, s, r,v,- All 16 different combinations can be seen in Table 1. All
combinations are explored in Section 3.
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It should be mentioned that later in our experiments, specific symbols that have been
discarded from the text, “uh” and “um”, will be added to the text to add more language
features to the pipeline and study their effects.

2.3. Modeling

In this section, we present the modeling for our two different approaches. In the first
case, a classifier based on cross-entropy is introduced. In the second case, a contrastive
learning approach is utilized. Both models are formulated within a multi-task setup.

2.3.1. Model for In-Text Encoding Scheme

In this section, the model for training and inference using in-text encoding is described.
In order to leverage the pre-trained LLMs, the BERT-base-uncased model [36] serves as
our base model to extract features for the classification layers. These layers consist of a
dropout layer and two linear layers. Additionally, a secondary network that processes
frequency vectors is laid out. This network consists of linear layers in an auto-encoder
format. This network serves as a regularizer for the main network. The model is depicted
in Figure 1. The primary network makes use of a classification loss, and the secondary
network incorporates a regularization loss. As shown in [37], several architectures were
considered to obtain the best fit for this task.

Pi number li
Input Transcript LB

e.g.[5,2,2]
M 1 3.dim
BERT Linear layer 1
768 dim ﬂ 1L 256 dim
RELU
Drop out layer (0.3) @256 dim
768 dim ﬂ Linear layer 2
Llnearilayer 1 8 dim

256 dim

concatenation +
. 8dim

264 dim Linear layer 3

1 256 dim

Linear layer 2 RELU

1l 256 dim

Linear layer 4

1dim
ﬂ?; dim

label output 1 output 2
Binary Cross-Entropy loss MSE
Cross Loss Reg Loss
* A

Loss Function

Figure 1. Model architecture for in-text encoding scheme.

For the classification loss, cross-entropy is used as follows:

N
Lclassification = )_ CE(Wi, i), 1)
i=1
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where CE, y;,7;, and N are the cross-entropy loss, ground-truth label, predicted label, and
number of samples, respectively. For the regularization loss, the mean square error (MSE)
loss is used as follows:

ERegularizﬂtion = MSE (VF/ VF )/ )

where Vr and Vr are the true frequency input and its reconstruction, respectively. So, the
total optimization cost becomes

L= EClassification + )‘ERegularizution/ 3)

where A is a hyperparameter to be optimized.
It should be noted that the secondary network is present for all the experiments, except
for the baseline By.

2.3.2. Contrastive Learning

In this section, we propose using CL for classification. CL is a well-established ap-
proach that employs pairs of positive and negative examples to guide the deep learning
model. Over time, CL has gained significant traction, surpassing earlier benchmarks
and enhancing performance in fully supervised, semi-supervised, and self-supervised
learning environments.

The core of CL is the creation of meaningful representations through the comparison
of positive and negative instance pairings. The essential principle is that in an embedded
space, similar examples should be close together, while distinct instances should be far-
ther apart [30]. CL helps models find relevant features and similarities in the dataset by
approaching learning as a differentiation process [30].

In this paper, we use an approach that the authors in [31] proposed. The authors
proposed the dual contrastive learning (DualCL) framework that is a method that concur-
rently trains on the features of input samples and the parameters of classifiers. Essentially,
DualCL treats the classifier parameters as extended samples linked to various labels. It
then leverages CL to draw comparisons between these input samples and the extended,
or augmented, samples. This approach allows for a more integrated and holistic learning
process, where both the sample features and classifier parameters are understood and
developed in relation to each other.

In this section, we address the modeling portion of the experiments. The notation
from [31] is adopted. The focus is on a text classification task encompassing K different
classes. The dataset under consideration, denoted as {x;, yi}fi 1, comprises N individual
training instances. Each instance consists of an input sentence x; € R, comprising L
words, alongside its corresponding label y;. For clarity, the study uses Z = {1, 2,---,N } to
represent the index set of the training samples and £ = {1,2,- - - ,K} to denote the index
set of the labels.

We explore self-supervised contrastive learning. This technique involves a dataset of
N training samples, each accompanied by at least one augmented version within the set.
If j(i) represents the index of the augmented sample originating from the i-th sample, the
standard formula for contrastive loss is as follows:

1 exp (zl- “Zj() /’L')

Eself N IEZI log Zae_Ai exp(zi ) Za/T) (4)
where z; signifies the normalized form of x;. The set A; := Z\{i} is the contrastive samples’
set. The dot product is represented by the symbol -, and T > 0 acts as the temperature factor.
In this context, the i-th sample is labeled as the anchor, the j(i)-th sample is considered a
positive sample, and the rest of the samples, totaling N — 2, are deemed negative in relation
to the i-th sample.

In the context of feature representation z; and classifier 6; for a given input example
x;, the goal is to align the softmax transformation of 6; - z; with the actual label of x;. The
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column of 6; that corresponds to the true label of x; is represented as 0;. The objective is to
maximize the dot product 6; - z;, thereby enhancing the representation of both 6; and z;
with supervised learning.

To achieve this, the dual contrastive loss is introduced. This loss function aims to
maximize the dot product 0; - z; when x; shares the same label as x;, and minimize it
when x; has a different label. This approach is designed to leverage the relationships
between various training samples, effectively distinguishing between those with similar
and dissimilar labels.

For a given anchor z;, derived from the input x;, we categorize {6]* } ___ as positive

jePi

samples and {6* } . as negative samples. The contrastive loss is then defined as
1 jeAnr;
Z Z . exp ( -z;/ T) )
ZEI €P; & ZaeA exp(e ZI/T)

In this formula, T is a positive real number that serves as the temperature factor.
The set A; := Z\{i} includes the indices of all contrastive samples, while P; := {p € A;
: Yp = yi} denotes the set of positive sample indices. The term |P;| represents the size
or cardinality.

To continue, with 6] as the anchor, {z]-}jepi are considered positive samples, and

{zj}]. A\ p, ATe negative samples. This forms the basis for another type of contrastive loss,
defined as (6 )
1 1 exp(0; - zp/T
‘CQ =X —lo * (6)
N L Pl L BT, o0 2/

The dual contrastive loss then combines these two contrastive loss terms:
‘CDual = ‘CZ + ‘CB (7)

In the joint training and prediction phase, the goal is to ensure that 6; is an effective
classifier for z;. This is achieved using a modified cross-entropy loss, designed to maximize
0; - z; for each input x;:

1 exp (07 - z;
Lop= = Y —log 2R =) __ ®)
i€z Ykek exp <9i 'Zi>

where 95‘ is the k-th column of 6;.

To train the encoder f effectively, both training objectives are minimized simultane-
ously, enhancing the quality of the feature representations and the classifiers. The overall
loss function is given as

Loveral = (1 —a)Lcg + aLpyal - )

Here, « is a hyperparameter that modulates the impact of the dual contrastive loss in
the overall training process. Later on in our experiments, Lgeqularization Will be added to the
L overanl as follows:

'Coverall = (1 - “)£CE + “ﬁDual + /\ﬁRegularizationr (10)

where A is a hyperparameter to be optimized. This formulation will benefit from the
secondary network shown in Figure 1. It represents a clear multi-task learning paradigm,
from which the training can greatly benefit. The experiments in Section 3.3 demonstrate
that this is indeed the case.
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3. Results

In this section, we cover the impact of in-text encoding of pauses (Section 3.1) and filler
words (Section 3.2). In Section 3.3, we study the effects of CL on the model performance. Our
code for all the experiments can be found at https:/ /github.com/ARoS-NCSU/Dementia-
Detection-InTextEmbedding, accessed on 16 May 2024.

3.1. In-Text Pause Encoding Results

We study the effect of in-text encoding on model performance. The results are sum-
marized in Table 2. The row for By corresponds to the base model without any in-text
encoding information available. All 16 combinations mentioned in Table 1 were explored.
In all experiments, we used 20-fold cross-validation to evaluate the results. We used the
Adam optimizer [38] with default parameters. For A, we performed a grid search in the
(0, 1] interval. After hyperparameter optimization, we chose 0.75. For each fold, all models
were trained for 20 epochs and the best performance is reported.

As can be seen, for the Ej, s, r, v, model, performance is around 0.58 and 0.56 for
accuracy and fl-score, respectively. In this case, no in-text encoding is applied. For
Ey, 50,5, Vo, Where in-text encoding is applied, we observe a drop in performance but still
within the standard deviation of the model with no in-text encoding. This indicates that
in-place encoding is not helpful on its own. For all other encodings, we observe a significant
performance boost compared to the first two encodings. In particular, encoding Ey, s, F, v,
where in-place pauses and their corresponding frequencies are combined, achieved the
highest accuracy and f1-score, 0.84 and 0.85, respectively. In all experiments in Table 2, all
artifacts and symbols are removed from the text, including “uh” and “um” filler words.

Table 2. In-text pause encoding results for 16 different combinations.

Input Type Acc. F1
E1,50,F0 Vo 0.58 + 0.11 0.56 + 0.24
E1,50,F0, 0 0.50 = 0.07 0.46 + 0.25
Ely,s1,F0, V0 0.83 + 0.06 0.85 + 0.05
Elo 50 FLVe 0.83 = 0.06 0.84 + 0.06
Elo,So,Fo,Vl 081 + 008 084 + 006
Ep,s,,Fo Vo 0.83 + 0.07 0.84 + 0.07
EL,s0.F,V0 0.84 + 0.06 0.85 + 0.06
L 0.82 + 0.06 0.83 + 0.06
I N A 0.83 + 0.06 0.84 + 0.05
Eiy,5,,E,v; 0.82 + 0.06 0.84 + 0.05
Efy,50,E,; 0.82 + 0.06 0.84 + 0.06
Ep,s.,F Vo 0.83 + 0.07 0.85 + 0.06
Ep s, kv, 0.83 = 0.06 0.85 + 0.05
A A 0.83 = 0.05 0.85 + 0.04
Epy,5,,F,v; 0.82 + 0.07 0.84 + 0.06
Ep,s.,5,v; 0.83 = 0.08 0.85 + 0.07

EAvemge 0.79 0.80
By 0.56 +0.11 0.42 +0.27

We also explored the effect of introducing single pauses (short, medium, or long), or a
pair of them but did not observe a clear pattern that led us to believe that one combination
was better than the others. Appendix A provides the details of this analysis.

3.2. Filler Word Encoding Results

We expand our previous analysis by considering the filler words “uh” and “um”. It
has been shown that filler word count plays a role in differentiating a dementia group from
a control group [39-41]. The results are presented in three phases, as shown in Table 3.
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Either the encoding for filler words is fixed while varying the encoding for pauses, or
the encoding for pauses is fixed while varying the encoding for filler words. For phase 1,
the encoding for the filler words to use Filler(Ey, s, r, v,) is fixed, i.e., only the vector of
counts is included, and the encoding for the pauses is varied. For phase 2, the encoding of
the pauses to use Pause(Ej, s, r,v, ) is fixed, i.e., the pause in which all pause encoding is
present, and the filler word encoding is varied. Finally, for phase 3, we fix the encoding
of the filler words to use Filler(Ey, s, r,v,) and vary the encoding for the pauses. The
motivation for this analysis is to measure the impact of different choices of pause and filler
word encoding.

Table 3. In-text filler word encoding results.

Phase 1 Phase 2 Phase 3
Input Type Acc. F1 Acc. F1 Acc. F1

E1y,50,F0 Vo 0.53 0.41 0.83 0.85 0.84 0.85
EL,,50,F0 Vo 0.57 0.46 0.83 0.85 0.84 0.86
E1,,5,,F0, V0 0.82 0.85 0.84 0.86 0.83 0.85
E1,,50,F, 0 0.82 0.84 0.83 0.85 0.83 0.86
Ely,50,F0, V1 0.84 0.86 0.84 0.85 0.82 0.84
EL,s.,F0 Vo 0.84 0.86 0.84 0.85 0.84 0.86
Ep 50,5, Vo 0.84 0.86 0.84 0.85 0.83 0.84
EL,s0.F0, V1 0.84 0.86 0.84 0.85 0.83 0.85
E1,,5,,F.,0 0.83 0.85 0.81 0.84 0.82 0.84
Eiy,s,,F0 1 0.83 0.85 0.83 0.85 0.83 0.85
E1y,50,F, W4 0.82 0.84 0.83 0.85 0.83 0.85
Ep 5.5, Vo 0.82 0.84 0.82 0.84 0.84 0.85
Ep s.,E v, 0.83 0.85 0.84 0.86 0.82 0.84
L 0.82 0.84 0.82 0.84 0.85 0.86
E1,5.,F,v 0.84 0.85 0.81 0.84 0.82 0.84
Ep,s.,m,v 0.83 0.86 0.84 0.85 0.83 0.84

E average 0.79 0.80 0.83 0.85 0.83 0.85

In phase 1, Filler(Ey, s, r,,v,) Was used, where only the filler words (i.e., uh/um) were
added to the text. Compared to the best results in Table 2, a 1% performance enhancement
can be seen in terms of f1-score over multiple encodings. Although the average performance
is the same as in Table 2, individual encodings showed better performance in most cases.
This fact motivated the phase 2 experiments.

Given the improvements achieved by adding uh/um to the text, we started to encode
them in the same way as for the pause information. In phase 2, anew I, S, F, V was
introduced for the uh/um encoding. To find which of these combinations resulted in the
best performance, first, a pause encoding, Pause(Ey, s, r, v,), was fixed to perform this
experiment. It can be observed that the Filler(Ey, s, r,v,) and Filler(Ey s, r,v,) resulted
in the best performance. Out of convenience, we chose Filler(Ey, s, r, v, ) moving forward.
In phase 3, the filler word encoding was fixed to repeat the experiments for all 16 pause
encoding experiments.

The main difference, in terms of performance, between phases 1 and 2 can be seen in
encodings Ey, s, r,, v, and Ej, s, v, (first two rows). There is roughly a 30% improvement
across both metrics, which shows the effectiveness of the filler encoding. Also, due to these
improvements, the average performance over all the encodings improved by 4% and 5%
for accuracy and fl-score, respectively. The results in phase 3 are similar to phase 2, but
Pause(Ej, s, F,v,) achieved 85% and 86% in accuracy and f1-score, respectively, which is
the best performance over all the phases.

In this section, we extended the work in [24] by exploring different aspects of the
in-text pause encoding. Also, we incorporated filler words into text and found the optimal
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setup for this approach, which resulted in significant performance improvement in some
pause encodings and also improved model performance overall.

3.3. Contrastive Learning

In this section, the results of using CL to perform the classification are presented.
For this, we used the DualCL framework as introduced in Section 2.3.2. For more clarity,
samples in the same class are considered positive, while if they belong to different classes,
they are considered negative samples. We used 20-fold cross-validation with 20 epochs for
the evaluation of the model performance. We used the Adam optimizer [38] with default
parameters. For hyperparameters A and &, we chose 0.75 and 0.5 after performing a grid
search in the range [0-1].

The first two rows in Table 4 show the impact of CL on the base model By. Compared
to the baseline, By, the CL model achieved a roughly 30% improvement across both metrics,
which shows the effectiveness of the CL approach. Keeping the filler words (third row) also
improves accuracy, and fl-scores by an additional 1%. Compared to the previous results,
we achieved a new best accuracy of 86%, which is an improvement of 1%.

Table 4. Results showing impact of contrastive learning (CL) and data augmentation (Aug) on
different models.

Input Type Acc. F1
By 0.56 £ 0.11 0.42 £ 0.27
By +CL 0.85 + 0.04 0.84 + 0.04
By with Fillers + CL 0.86 = 0.04 0.85 = 0.04
Bg + CL + Aug 0.87 = 0.05 0.85 = 0.05
By with Fillers + CL + Aug 0.85 = 0.05 0.84 + 0.05
Pause(EI],Sg,Fl,Vl ), Filler(EIl,Sl,po,Vl ) 0.85 = 0.06 0.86 = 0.06
Pause(Ey, s,,F, v, ), Filler(Eyp, s,,F,,v,) + CL 0.87 = 0.08 0.86 = 0.09

Since the dataset for training is small, we explored augmentation techniques to im-
prove model performance. Similar augmentation techniques as used in previous sections
were used, but they did not improve the model’s performance. So, they are not reported in
this paper. In Table 4 (rows 4 and 5), a contextualized embedding augmentation [42] was
used to generate more samples. In particular, we used the BERT model for this contextu-
alized augmentation. The choice of augmentation is very important, given the fact that
too many changes can affect performance negatively due to the nature of the dataset and
task. For training, three augmented samples per ground-truth sample were generated. In
this case, when uh/um was not included, the model had a better performance in accuracy,
better than all the results before. This might be due to the fact that augmentation imposes
some changes, which in combination with uh/um impact the classification negatively.
Compared to the results where no augmentation was utilized, the accuracy improved by
1% and the f1-score stayed the same.

Previously, we observed that combining pause and filler word encoding improved
performance. It is only natural to combine these results with CL. For this, we chose the best
result from Table 3 phase 3, namely, Ey, s, r, v, (Pause(Ey, s, F,v,) and Filler(Ey, s, k) v;))s
to apply CL. Table 4 (last two rows) shows the results for this encoding. We observe a
2% increase in accuracy for this model.

In Table 5, we take a closer look at the impact of CL on pause encoding by repeating
the experiments for Table 2 with CL present. An immediate conclusion that can be drawn
from this table compared to Table 2 is that average accuracy has increased by 3%, which
shows improvement in performance over all the encodings. In terms of the fl1-score, the
average stayed the same, which is due to some improvements but also some drops in
performance. We also note that the variances in Table 2 are lower than the variance in
Table 5. This is an indication that adding CL decreases the stability of the model.
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Table 5. CL results for 16 combinations of pause encodings with no filler words.

Input Type Acc. F1
E1,,50,F0, Vo 0.83 + 0.08 0.82 + 0.09
EL,s0,F0, 0 0.85 + 0.08 0.84 + 0.10
E1y,5,,F, V0 0.84 + 0.08 081 +0.11
E1,,50,F.,V0 0.82 + 0.08 0.80 + 0.07
E1,,50.F0, v, 0.85 + 0.08 0.83 + 0.11
Ep,s,, k0,0 0.84 + 0.09 0.82 +0.11
Ep,s0.5,V0 0.80 +0.10 0.78 + 0.11
Ep,s0,F,v1 0.81 + 0.09 0.79 +0.11
Ep.51,F,Vo 0.78 + 0.08 0.79 + 0.09
Eq,,s,,F0, v, 0.84 + 0.09 0.82 + 0.10
Epy, 50,54 0.82 + 0.08 0.80 + 0.10
Ep s,k 0.79 + 0.08 0.77 + 0.13
Ep,s., kv, 0.77 + 0.09 0.72 +0.15
Ep,s50,F,v; 0.79 + 0.09 0.77 +0.12
Ep,s,,F,v, 0.80 + 0.09 0.79 + 0.14
Ep s kv, 0.83 + 0.07 0.81 + 0.09

EAveruge 0.82 0.80

3.4. Literature Comparison

In Table 6, we compared our results with some models in the literature that used the
Pitt corpus dataset for classification. To the best of our knowledge, the results in [14] are
state-of-the-art (SOTA) results. They thoroughly examined different choices for the input
types (whole text or sentences), augmentation, pre-trained LLMs, and classifiers. After
the investigations, they proposed using sentence-based rather than text-based pre-trained
language models. The best model (S-BERT) uses sentences as input to the BERT-large
model, with linear regression as the classifier. S-BERT achieved 0.88 and 0.87 in accuracy
and fl-score, respectively. Our model is short 1% in performance in both metrics. In our
modeling, we use the BERT-base model, which has far fewer parameters compared to
BERT-large. Also, we used the whole text, not the sentences in each text, for classification.
The authors in [14] also reported results for the text-based approach (T-BERT). Compared
to their results, our model has a 2% improvement in both metrics. This shows our model
is more efficient in processing whole text than the model proposed in [14]. In [15], the
authors used a pre-trained LLM with RNNs. In [18,19], the authors used RNNSs, attention
mechanism, and Transformers to perform classification. It can be observed that models
utilizing pre-trained LLMs achieve better results.

Table 6. Comparison of different methods using Pitt corpus dataset.

Input Type Acc. F1 No. Params.
S-BERT [14] 0.88 0.87 340M
T-BERT [14] 0.85 0.84 340M
Y. Pan et al. [19] - 0.84 -
P. Saltz et al. [18] 0.76 0.76 110M
ALBERT+BiLSTM [15] 0.79 0.81 11M
Ours 0.87 0.86 110M

4. Discussion

In this work, we proposed using in-text encoding to improve the model’s performance.
We studied the effect of different types of pauses in Table A2 but did not see a significant
difference in their performance. This may be due to not picking a relevant separation for the
scale of pauses. Since filler words have proven to be an important indicator for dementia
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detection, in Table 3, we investigated this fact and observed that for some pause encodings,
the performance improved. It should be mentioned that the average performance over all
the pause encoding was the same as the average in Table 2. In the next step, we introduced
the filler word encoding in Table 3. The average accuracy and f1-score improved by 4% and
5%, respectively.

In the second portion of our modeling, we introduced DualCL to train the model.
Table 4 shows the results for the cases where the filler words are absent or present. In
the case where they are present, we can observe a 1% performance boost compared to
the best prior results. Also, in Table 4, we used a contextualized augmentation to further
improve the results. In the case where the filler words are not used, the model’s accuracy
increased by 1% compared to the best accuracy in Table 4 with no augmentation. It should
be mentioned that augmentation was performed for all prior experiments, but the results
were not satisfactory, and so, were not reported.

Lastly, we combined in-text encoding with the CL method. Table 5 shows that the
average accuracy over all the pause encodings improved by 3%, which shows that this
combination is very effective. It should be mentioned that the combination resulted in a
higher standard deviation compared to other experiments. The last row in Table 3 shows
the results for pause and filler encoding with the CL approach. This combination resulted
in the best overall performance over both accuracy and fl-score.

The results in Table 6 show that our scheme is able to come close to SOTA performance
(S-BERT [14]) with almost a third of the number of parameters. Since in our work, classi-
fication is performed at the document level, our result is directly comparable to T-BERT
from [14]. This comparison shows an improvement over T-BERT, suggesting the effective-
ness of our modeling scheme. However, further experiments are needed to confirm that
the model appropriately attends to pause and filler word encodings. This is crucial for
enhancing the model’s interpretability, as these features are significant for clinicians.

5. Conclusions

In this paper, we proposed an in-text encoding methodology and the integration of
contrastive learning (CL) as part of an LLM-based model for detection of dementia from
speech transcripts. To the best of the authors’ knowledge, the proposed approaches have not
been explored by other authors in the literature. This work extends our previous research
presented in [24], where we initially introduced in-text encoding. It is demonstrated that
incorporating pauses and other language features (such as “uh” and “um” filler words)
within the text model can considerably enhance performance. Additionally, it is shown
that combining the CL approach with in-text encoding can further improve the model’s
performance. Overall, our modeling proved to be effective in distinguishing between the
dementia and control groups.

The main limitation of our approach is related to automatic transcription. Accurate
transcription with relatively precise timestamps is essential for the successful application
of our method. For future work, we plan to incorporate other language features such as
elongated words (e.g., “uhhh”, “perrfect”, etc.) within the text to study their effects, where
the current language model may not properly encode them for analysis. For future work,
incorporating an adaptive pause threshold within the models, exploring a combination
of well-chosen augmentation techniques, and sentence-based pre-trained large language
models could potentially improve model performance.
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Appendix A. Effects of Pause Subsets

In Tables A1 and A2, the effect of each pause type is explored. To study how each type
of pause affects the model performance, first, we removed each pause individually, and
then, we just kept one pause at a time. To understand the effect of each pause on the model
performance, we compared the best performance for each case to the average performance
in Table 2. It should be mentioned that in the secondary network, the corresponding
number associated with the removed pause frequency is set to zero.

If the short pauses are removed (the other two types are still present), the average
accuracy and f1-score decrease by 1% and 2%, respectively. This shows that short pauses
are important in dementia detection. In the case where the medium pauses are removed,
the average accuracy is the same, but the average f1-score drops by 1%. Compared, to the
short pause case, the effect is less severe. When the long pauses are removed, the results are
similar to the medium case. To study the effect of each pause on performance individually,
we address the case where only one pause is present in our analysis. First, if only short
pauses are present, the model’s performance drops by 1% and 2% for accuracy and fl-score,
respectively. In the case of medium pauses, the model performance is preserved, which
shows the significance of this type of pause. For long pauses, the accuracy is preserved, but
there is a 1% decrease in fl-score.

Table A1l. Effects of pause removal on average performance.

Pauses Included Acc. A Acc. F1 AF1
All Pauses 0.79 - 0.80 -
Short Removed 0.78 —0.01 0.78 —0.02
Medium Removed 0.79 - 0.79 —0.01
Long Removed 0.79 - 0.79 —0.01
Short Only 0.78 —0.01 0.78 —0.02
Medium Only 0.79 - 0.80

Long Only 0.79 - 0.78 —0.02
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Table A2. Studying the effect of each pause and their combinations on the model’s performance.
Short Removed Medium Removed Long Removed Short Only Medium Only Long Only
Input Type Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
Ei,50F0 Vo 053+0.09 039+030 053+0.08 040+028 053+0.07 040+030 051+0.09 032+035 058+0.08 056+026 0.52+0.07 0.39+0.33
Ep,s0k v, 050+0.06 036+031 053+0.08 043+020 055+0.09 043+0.27 051+006 039+030 052+0.09 035+£034 052+0.08 0.31+031
Eps.kv, 084+0.07 086+006 0.83+006 0.84+0.06 083+0.07 085+0.06 0.82+007 0.84+0.07 083+0.06 085+0.05 0.83+0.06 0.85=+0.06
EpsoF,v, 082+0.07 084+006 0.84+0.06 0.86+0.05 081+0.05 083+005 0.83+006 085+0.05 082+0.06 0.84+0.05 0.83+0.07 0.85+0.06
Ep,sok, v,  083+0.07 085+006 0.83+005 084+0.05 083+0.07 085+0.06 0.81+0.08 084+0.06 084+0.06 0.85+0.06 0.82+0.06 0.84+0.05
Eps, kv, 081+£007 083+006 083+006 085+0.06 0.83+0.06 0.85+0.05 0.84+0.07 085+007 083+007 085+0.06 0.81+0.08 0.84+0.07
Eps0F,v, 081+005 083+004 084+006 085+0.06 0.81+0.08 0.84+0.06 082+006 085+006 082+007 0.84+0.07 0.83+0.08 0.85+0.07
Epsokv; 081+006 083+005 082+005 084+0.04 083+006 08+005 0.83+0.06 085+006 082+006 085+0.05 0.82+0.06 0.84=+0.06
Eps.mv, 081+0.07 084+006 083+006 085+0.05 083+0.07 085+006 0.82+0.08 084+0.07 081+0.06 0.84+004 0.82+0.08 0.84=+0.07
Eps,rv, 084%0.06 085+0.06 0.82+007 084+0.06 082+0.07 085+006 0.82+0.06 083+0.05 083+0.06 0.85+0.06 0.83+0.08 0.86=0.07
Ep,s0F,v; 0.82+0.07 084+006 083+006 084+006 083+0.07 085+0.06 0.81+0.08 0.83+0.07 083+006 085+0.05 0.82+0.06 0.84+0.05
Ens, v, 082+008 084+007 083+006 085+0.05 083+0.06 0.84+0.06 0.82+0.06 084+005 082+006 084+0.05 0.83+0.06 0.85+0.06
Eps, pv,; 083+007 085+006 081+005 083+0.05 083+0.06 0.84+0.06 0.82+0.06 084+005 082+007 084+0.06 0.82+0.08 0.85+0.06
EpsoF,v,  083+0.08 085+006 0.83+006 0.84+0.05 081+0.06 083+0.05 0.81+007 084+0.05 082+0.07 0.85+0.06 0.83+0.06 0.85+0.05
Eps,ry,  082+£0.07 085+006 0.82+0.07 0.84+0.06 083+0.07 085+0.07 0.83+0.06 084+0.05 084+0.06 085+0.06 0.82+0.08 0.84+0.06
Eys, pv, 082+007 085+006 082+007 085+0.06 0.81+0.08 0.85+0.07 0.83+0.06 085+005 084+006 086+0.06 0.83+0.06 0.84=+0.06
0.78 0.78 0.79 0.79 0.79 0.79 0.78 0.78 0.79 0.80 0.79 0.78

Average
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