Dynamic acoustic vowel distances within and across dialects
Cynthia G. Cloppet"*

"Department of Linguistics, Obio State University, Columbus, Ohio 43210, USA

Vowels vary in their acoustic similarity across regional dialects of American English, such that some
vowels are more similar to one another in some dialects than others. Acoustic vowel distance
measures typically evaluate vowel similarity at a discrete time point, resulting in distance estimates
that may not fully capture vowel similarity in formant trajectory dynamics. In the current study,
language and accent distance measures, which evaluate acoustic distances between talkers over time,
were applied to the evaluation of vowel category similarity within talkers. These vowel category
distances were then compared across dialects and their utility in capturing predicted patterns of
regional dialect variation in American English was examined. Dynamic time warping of mel-
frequency cepstral coefficients was used to assess acoustic distance across the frequency spectrum
and captured predicted Southern American English vowel similarity. Root-mean-square distance and
generalized additive mixed models were used to assess acoustic distance for selected formant
trajectories and captured predicted Southern, New England, and Northern American English vowel
similarity. Generalized additive mixed models captured the most predicted variation, but, unlike the
other measures, do not return a single acoustic distance value. All three measures are potentially

useful for understanding variation in vowel category similarity across dialects.

* Email: clopper.1@osu.edu
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I INTRODUCTION

Regional dialects of American English vary in the acoustic-phonetic realization of vowel
categories (Labov et al., 20006). This variation leads to vowel categories that are more similar in
acoustic-phonetic space in some dialects than others. For example, the Northern Cities vowel shift
leads to greater acoustic-phonetic similarity of /e =/ in the Northern dialect than in the Midland
dialect (Clopper and Tamati, 2014), the Southern vowel shift leads to greater acoustic-phonetic
similarity of /el ¢/ in the Southern dialect than in the Western dialect (Farrington et al., 2018), and

the low-back merger leads to greater acoustic-phonetic similarity of /a 5/ in California English than

in New York City English (Nycz and Hall-Lew, 2013).

Acoustic vowel category distance measures' are typically defined at a discrete time point within
the vowels of interest (e.g., Hay et al., 2006; Kendall and Fridland, 2012; Wassink, 2006). The goal of
the current study was to assess dynamic acoustic vowel category distance measures that capture
formant trajectories over time within the vowels of interest (e.g., Fox and Jacewicz, 2009; Renwick
and Stanley, 2020). These dynamic measures of vowel category distance within regional dialects of
American English were evaluated in comparison to qualitative descriptions of regional variation
(Labov et al., 20006). The results demonstrated that dynamic vowel category distance measures,
including dynamic time warping (DTW) of mel-frequency cepstral coefficients (MFCCs; Bartelds et
al., 2020; Lind-Combs et al., 2023; Mielke, 2012), root-mean-square distance (RMSD; Cole et al.,
2023; Kaland, 2023), and generalized additive mixed modeling (GAMM; Kirkham et al., 2019;
Renwick and Stanley, 2020), can all capture variation in vowel category distances within and across
dialects of American English, complementing prior qualitative descriptions.

A. Vowel category distance measures

Regional variation in acoustic-phonetic similarity of vowel categories has been quantified in

previous work using Euclidean distances and Pillai scores of formant frequency estimates (see Kelley
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and Tucker, 2020; Nycz and Hall-Lew, 2013, for reviews). Euclidean distances between vowel
categories are typically defined in the two-dimensional first formant (FF1) x second formant (F2)
space, using formant estimates from a discrete time point (e.g., vowel midpoint). Euclidean distances
between vowels have been used to predict sound change (Wieling et al., 2012), as a proxy for
individual participation in ongoing vowel shifts (Farrington et al., 2018; Kendall and Fridland, 2012),
to predict accentedness ratings (Gunter et al., 2020), and to assess the effects of lexical competition
on dialect variation (Clopper and Tamati, 2014).

Pillai scores are also typically calculated from estimates of F1 and F2 from a discrete time point.
Unlike Euclidean distances, Pillai scores quantify the overlap of the vowel category distributions in
the 1 x F2 space, instead of simply the distance between the two category means. Pillai scores are
used most commonly as a measure of vowel category merger within individuals (Gunter et al., 2020;
Hay et al., 2006; Nycz and Hall-Lew, 2013). A number of related measures of multidimensional
category overlap have also been proposed. These approaches typically involve estimates of F1 and
F2 of the target vowels from a discrete time point, but may also include duration (Wassink, 2006),
discrete cosine transformations of the formant frequency trajectories (Elvin et al., 2016), or formant
frequencies sampled at multiple discrete time points (Morrison, 2008). These approaches have been
used to identify the dimensions of variation that are necessary to distinguish vowel categories within
a language or dialect (Elvin et al., 2016; Haynes and Taylor, 2014; Morrison, 2008; Wassink, 20006).

In principle, these vowel category distance measures are appropriate for assessing variation in
vowel distances within and across varieties of American English. For example, Euclidean distances
between /el £/ have been used to distinguish Southern from Western varieties of American English
(Fatrington et al., 2018) and Pillai scores for /a o/ have been used to distinguish degtees of the low-
back vowel merger in California and New York City varieties (Nycz and Hall-Lew, 2013). However,

at least as they are typically implemented, these measures are based on a single sample of each
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formant estimated at a discrete time point for each vowel token. This implementation therefore does
not capture vowel category distances at other time points in the formant trajectories or over the
entire formant trajectory, despite clear evidence that vowels vary within and across dialects of
American English in their formant trajectory dynamics (Farrington et al., 2018; Fox and Jacewicz,
2009).

In contrast to this work on vowel category distances, dynamic acoustic distance measures have
been used to assess consonant category distances (Mielke, 2012) and lexical distances (Kelley, 2023;
Kelley and Tucker, 2022). Mielke (2012) used dynamic time warping of mel-frequency cepstral
coefficients, estimated over VCV utterances, to assess the relationship between acoustic and
phonological consonant similarity. Similarly, both Kelley (2023) and Kelley and Tucker (2022) used
dynamic time warping of mel-frequency cepstral coefficients, estimated over words, to predict lexical
competition in speech processing. In the current study, this D'TW approach was applied to vowel
category distances to assess variation within and across dialects of American English.

Acoustic distances between languages, dialects, and accents have also been quantified in previous
work using dynamic acoustic distance measures (e.g., Bartelds et al., 2020; Chernyak et al., 2024,
Heeringa et al., 2009). These acoustic language and accent distance measures capture distances
between different talkers’ productions of the same linguistic content (e.g., words, sentences),
whereas the acoustic vowel distance measures, such as Euclidean distances and Pillai scores, capture
distances between different vowel categories produced by the same talkers. In the current study, the
measures of between-talker language and accent distances were applied to within-talker vowel
category distances to assess dynamic vowel category similarity within dialects of American English
and to compare those vowel similarities across dialects. These comparisons across dialects were then

evaluated in the context of previous qualitative descriptions of regional variation (Labov et al., 2000).
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B. Language and accent distance measures

Three general approaches to quantifying acoustic language and accent distance have been
proposed in the literature: dynamic time warping (Bartelds et al., 2020), mean distances over time
(Heeringa et al., 2009), and generalized additive mixed modeling (Kirkham et al., 2019). Bartelds et
al. (2020) and Lind-Combs et al. (2023) both used dynamic time warping of MFCCs, estimated over
words and sentences, respectively, to assess native and non-native accent distances. This approach
differs from the Euclidean distance and Pillai score measures of vowel category distance, and from
the mean distance and GAMM approaches to language and accent distance, in that it includes a
summary representation of the spectrum over the frequency analysis range (i.e., up to the Nyquist
frequency), instead of focusing on estimated formant frequencies and their trajectories over time.
DTW distances of MFCCs therefore capture dynamic formant trajectory distance, but may also
capture distances between consonants, f0 contours, voice quality, and even recording devices and
background noise (Bartelds et al., 2020; Lind-Combs et al., 2023). MFCCs have also been used
without DTW to assess dialect similarity using multidimensional scaling and clustering techniques
(Ferragne and Pellegrino, 2010). DTW of MFCCs was adopted in the current study as a measure of
overall vowel distance, including dynamic formant, 0, and voice quality information, within and
across dialects. The MFCCs were estimated over the target vowels only, so that consonant effects
were minimized, and all distances were calculated within-talker, so that effects of recording device
and background noise were also minimized.

Heeringa et al. (2009) used Manhattan (or city-block) distances of formant estimates over time to
quantify Norwegian dialect distances. This approach is conceptually similar to Euclidean distance
measures of vowel category distance, except that (1) distances were calculated every 10 ms over
entire words, including both consonants and vowels, and (2) Manhattan distances were used instead

of Euclidean distances. Another conceptually similar measure is root-mean-square distance, in which
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distance is defined as the mean Euclidean distance over time. This measure has been used to
quantify the similarity of intonation contours (Cole et al., 2023; Kaland, 2023) and was adopted in
the current study as a measure of dynamic formant trajectory distance within and across dialects.

Generalized additive mixed models of formant trajectories involve fitting curves to formant
estimates over time and then identifying when in time the trajectories overlap and when they
diverge. This approach differs from the other distance measures in that a discrete, positive distance
measure is not returned. Rather, GAMMs provide an indication of (1) when in time the two formant
trajectories differ, and (2) the direction of this difference (i.e., positive or negative). GAMMSs have
been used to compare vowel-lateral sequences in varieties of UK English (Kirkham et al., 2019),
features of Southern American English among white and Black talkers in the American South
(Renwick and Stanley, 2020), and Australian vowel change over time (Cox et al., 2024). GAMMs
were adopted in the current study to assess the temporal properties of formant trajectory differences
within and across regional dialects of American English.

C. The current study

Dynamic time warping of MFCCs, root-mean-square distance, and generalized additive mixed
modeling were applied to three small datasets to assess their utility in quantifying dynamic acoustic
vowel distances within and across dialects of American English. Each dataset comprised the
stimulus materials from a previous perception task designed to examine cross-dialect lexical
processing (Clark et al., 2022; Clopper and Walker, 2017; Ross and Clopper, 2023). Each dataset
included minimal pair tokens for two vowel contrasts that were expected to differ in their acoustic
similarity across two talker dialects, based on previous descriptions of regional variation in American
English (Labov et al., 2006). Across datasets, the target vowel contrasts included /= €/ and /1e1/ to
capture features of the Northern Cities vowel shift, /a1 a/ and /1¢/ to capture features of the

Southern vowel shift, and /a1 a/ to capture non-rhoticity in New England. The three dynamic
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distance measures were evaluated against the predicted patterns of vowel category similarity for
these vowel contrasts. The vowel contrasts of interest were not predicted to be merged in any of the
target varieties and the central question was therefore how to capture varying non-zero distances
between vowel categories across regional dialects.

Given that the DTW approach successfully predicts perceptual native and non-native accent
distances (Bartelds et al., 2020; Lind-Combs et al., 2023), DTW distances were expected to produce
the predicted patterns of differential vowel distance across dialects. However, the cross-dialect vowel
distance predictions are based on patterns of overall vowel shifts in one or two dimensions of the F1
x F2 vowel space (e.g., raising and fronting of /&/ in the Northern Cities shift) and/or patterns of
vowel formant trajectory dynamics in one or two dimensions of the F1 x F2 x F3 vowel space (e.g,,
lowering of F3 in /a1/ sequences in rhotic varieties). Given that DTW distances were calculated
over MFCCs, capturing more spectral information than just one or two formant trajectories, the
predicted patterns of differential vowel distance across dialects may be masked by other similarities
and differences in the spectra across tokens. For example, predicted differences in F1 might be
masked by similarities in F2 and higher formants. The RMSD and GAMM analyses were therefore
based on target formant frequencies that were selected to highlight the expected cross-dialect
variation. This intentional focus on the target variation was expected to produce strong evidence of
the predicted patterns of differential vowel distance across dialects for these measures, as in previous
related work (Cox et al., 2024; Kirkham et al., 2019; Renwick and Stanley, 2020). Finally, given that
DTW distances and RMSDs were estimated over the entire vowel trajectory, the predicted patterns
of differential vowel distance across dialects may not be observed if they are limited to a short
temporal span of the trajectory. For example, predicted differences in the offglide of a diphthong

might be masked by similarities in the nucleus of the diphthong. The GAMM analysis allowed for a
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consideration of this temporal detail and was expected to produce the strongest evidence of the

predicted patterns of differential vowel distance across dialects.

II. METHODS

A. Datasets

The first dataset (Midland/Northern) comprises the stimulus materials from Clopper and
Walker’s (2017) cross-modal lexical decision task. The stimulus talkers were three Midland and three
Northern female young adults. The target vowel contrasts wete /& ¢/ and /1 e1/. These vowel
contrasts were selected to capture variation across the two dialects due to the Northern Cities vowel
shift. In particular, in the Northern Cities shift, /a/ is raised and fronted and /e 1/ ate lowered and
backed (Labov et al., 20006). The raising and fronting of /&/ and the lowering and backing of /¢/ is
predicted to lead to a smaller distance between these vowels for Northern talkers than Midland
talkers. In both varieties, /1/ is lower and backer than /e1/, so the lowering and backing of /1/ in
the Northern Cities shift is predicted to lead to a larger distance between these vowels for Northern
talkers than Midland talkers. The stimulus materials were 48 minimal pairs (24 per vowel contrast)
for each of the six talkers. There were two missing tokens and the minimal pair token for each of
these missing tokens was also excluded, leaving 286 minimal pairs (47-48 per talker) for analysis.

The second dataset (Southern/Northern Virginian) comprises the stimulus matetials from Clark
et al.’s (2022) cross-modal lexical decision task. The stimulus talkers were four Southern and four
Northern Virginian female young adults. The target vowel contrasts were /a1 a/ and /1¢/. These
vowel contrasts were selected to capture variation across the two dialects due to the Southern vowel
shift. In particular, in the Southern vowel shift, /a1/ is monophthongized and /1 ¢/ are raised and
fronted, with greater raising and fronting of /¢/ than /1/ (Labov et al., 20006). The

monophthongization of /a1/ is predicted to lead to a smaller distance between /a1 a/ for Southern
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talkers than Northern Virginian talkers. The more advanced raising and fronting of /e/ than /1/ is
likewise predicted to lead to a smaller distance between these vowels for Southern talkers than
Northern Virginian talkers. The stimulus materials were 69 wotd pairs (33 for /a1 a/ and 36 for /1
g/) for each of the eight talkers. There were eight missing tokens and the minimal pair token for
each of these missing tokens was also excluded, leaving 544 minimal pairs (67-69 per talker) for
analysis.

The third dataset (New England/Northern) comprises the stimulus materials from Ross and
Cloppet’s (2023) cross-modal lexical decision task. The stimulus talkers were two New England (one
female, one male) and two Northern (one female, one non-binary) young adults. The target vowel
contrasts were /a1 a/ and /x €/. These vowel contrasts wete selected to captute vatiation across the
two dialects in rhoticity and the Northern Cities shift, respectively. In particular, the New England
dialect is non-thotic (Labov et al., 2006), which is predicted to lead to a smaller distance between /ax
a/ for New England talkers than Northern talkers. As in the Midland/Northern dataset, the raising
and fronting of /&/ and the lowering and backing of /¢/ in the Northern Cities shift is predicted to
lead to a smaller distance between these vowels for Northern talkers than New England talkers. The
stimulus materials were 48 word pairs (24 per vowel contrast) for each of the four talkers. No tokens
were missing, so 192 minimal pairs were analyzed.

B. Acoustic distance analysis

For each dataset, the word tokens were stored in separate digital sound files that were segmented
to the word onset and offset. These sound files were down-sampled to 16 kHz with 16-bit
quantization for analysis. Each token was forced-aligned using the Penn Phonetics Lab Forced
Aligner (Yuan and Liberman, 2008) to obtain a preliminary segmentation of the target vowel. These

vowel alighments were then hand-corrected, following the segmentation guidance provided by
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Peterson and Lehiste (1960). For the New England/Northern dataset, the target vowel /a/ was
merged with the following /1/ for all /ai/ tokens so that /a1 a/ distances could be estimated.

1. Dynamic time warping

The first distance measure was dynamic time warping of mel-frequency cepstral coefficients,
following Bartelds et al. (2020) and Lind-Combs et al. (2023). The target vowel was extracted from
each token with a Hamming window using the hand-corrected boundaries. MFCCs were then
extracted using the zfe function in the python_speech_features package in Python (Lyons et al., 2020)
from each 25 ms window in each vowel token in 10 ms steps. For each window, 39 coefficients were
extracted, including the overall energy and the first 12 cepstral coefficients, along with the first- and
second-order derivatives of these measures. The spectrum used to calculate the MFCCs was
extracted using a 1024-point FFT with 0.97 pre-emphasis. The MFCCs were z-scored over time
separately for each coefficient for each token. Dynamic time warping was then used to estimate the
distance between each minimal pair for each talker. The DTW distances were time-normalized to
account for differences in overall duration of the paired tokens (Bartelds et al., 2020).

The DTW distances were analyzed using separate linear mixed-effects models for each dataset
with talker dialect, vowel contrast, and their interaction as fixed effects. The maximal data-driven by-
talker and by-minimal-pair random effects were used for each model. The fixed effects were sum-
contrast coded. Statistical significance was assessed using the Satterthwaite approximation of degrees
of freedom, as implemented in the /JzerTest package in R (Kuznetsova et al., 2017). Post-hoc pairwise
comparisons of significant effects were conducted using Tukey’s HSD tests in the emmeans package
in R (Lenth, 2024).

2. Root-mean-square distance

The second distance measure was root-mean-square distance of selected formant trajectories

over time, following Cole et al.’s (2023) and Kaland’s (2023) analyses of intonation contours. For

10
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each token, the first three formant frequencies (F1, F2, and F3) were estimated at 10% intervals over
the vowel duration from 0-100% (11 estimates per vowel) using a 12" order LLPC analysis (Burg
method) in the frequency range of 0-5500 Hz in Praat (Boersma and Weenink, 2023). All formant
estimates were converted to Bark to facilitate comparisons across talkers and formants
(Traunmiller, 1990). Given a large number of missing formant estimates at vowel onset (0%) and
offset (100%), RMSDs were calculated for each minimal pair for each talker over the middle 80% of
the vowel duration (10-90%). RMSDs were calculated separately for each formant and one formant
was selected for each vowel contrast for analysis. For the Midland/Northern dataset, F1 was
selected for both /= €/ and /1 e1/ distances to capture effects of raising of /a/ and lowering of /¢
1/ in the Northern Cities shift. For the Southern/Northern Virginian dataset, F2 was selected for
/a1 a/ distances to capture effects of /a1/ monophthongization (i.e., reduction of the fronting
offglide) in the Southern vowel shift and F1 was selected for /1 ¢/ distances to capture effects of
raising of /1¢/ in the Southern vowel shift. For the New England/Northern dataset, F3 was
selected for /ax a/ distances to captute effects of non-rhoticity in New England and F1 was
selected for /x €/ distances to capture effects of raising of // and lowering of /¢/ in the Northern
Cities shift, as in the Midland/Northern dataset.

RMSDs were analyzed using separate linear mixed-effects models with the same specifications as
in the D'TW analysis. Due to missing formant estimates, the analysis of the Midland/Notthern
dataset was based on 283 minimal pairs, the analysis of the Southern/Northern Virginian dataset
was based on 543 minimal pairs, and the analysis of the New England/Northern dataset was based
on 189 minimal pairs.

3. Generalized additive mixed modeling

The third distance measure involved generalized additive mixed models of selected formant

trajectories over time, following Renwick and Stanley (2020). The same selected formant estimates

11
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from the RMSD analysis were used in the GAMMs, except that the entire formant trajectory (0-
100%) was used because GAMMs are more robust to missing data than RMSDs. For each minimal
pair for each talker, the formant trajectory difference was calculated by subtracting the formant
estimate at each time point for one member of the minimal pair from the other. These formant
difference trajectories were then analyzed separately for each vowel contrast using GAMMs with a
parametric effect of talker dialect and talker dialect smooths over time as fixed effects and with by-
talker smooths over time and minimal pair x talker dialect smooths over time as random effects. A

correction term for autocorrelation at lag 1 was also included in each model.

III. RESULTS

A. Dynamic time warping

A summary of the mean DTW distances for each talker for each vowel contrast in each of the
three datasets is shown in Fig. 1. The by-talker means overlap considerably for both vowel contrasts
in the Midland/Northern (Fig. 1a) and New England/Northern (Fig. 1¢) datasets, whereas they
show cleat separation by talker dialect in the Southern/Northern Virginian (Fig. 1b) dataset. As
expected, the distances are smaller for both the /a1 a/ and /1 ¢/ contrasts for the Southern talkers
than the Northern Virginian talkers.

The linear mixed effects model predicting DTW distances from talker dialect and vowel contrast
for the Midland/Northern dataset revealed a marginal main effect of talker dialect (6 = .08, F(1,
236.5) = 3.60, p = .059). The Midland talkers had larger D'TW distances overall, as expected for the
/@ €/ contrast, but contrary to the prediction for the /1 e1/ contrast. Neither the main effect of
vowel contrast nor the interaction were significant. The model for the Southern/Northern Virginian
dataset revealed a significant main effect of talker dialect (§ = .25, F(1, 7.1) = 29.82, p <.001). The

Northern Virginian talkers had larger DTW distances overall, as expected for both vowel contrasts.

12
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Neither the main effect of vowel contrast nor the interaction were significant. The model for the
New England/Northern dataset revealed a significant interaction between talker dialect and vowel
contrast (§ = -0.10, F(1, 140.0) = 4.80, p = .030). The interaction reflects the expected cross-over
pattern, in which D'TW distances were larger for the Northern talkers than the New England talkers
for the /a1 a/ contrast (§ = -.29), but larger for the New England talkers than the Northern talkers
for the /& ¢/ contrast (§ = .10). However, post-hoc comparisons of estimated marginal means
revealed that the talker dialect effect was not significant for either vowel contrast. The main effects
of talker dialect and vowel contrast were also not significant.

Opverall, the DTW results are suggestive of the predicted patterns, but are only statistically robust
with these small samples in the Southern/Northern Virginian dataset. Moreover, the marginal result

in the Midland/Northern dataset is contrary to predictions.
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Southern/Northern Virginian (Fig. 2b) dataset, and for the /a1 a/ contrast in the New
England/Northern (Fig. 2¢) dataset. The by-talker means ovetlap considerably for the /x €/
contrast in both the Midland/Northern and New England/Northern datasets.

The linear mixed effects model predicting RMSDs from talker dialect and vowel contrast for the
Midland/Northern dataset revealed a significant interaction between talker dialect and vowel
contrast (§ = -.16, F(1, 5.2) = 8.54, p = .032). Post-hoc comparisons of estimated marginal means
for each vowel contrast revealed a significant effect of talker dialect for the /1 e1/ contrast (§ = -.40,
t(5.5) = -3.34, p = .018). As expected, the Northern talkers had larger RMSDs than the Midland
talkers. The talker dialect effect was not significant for the /& ¢/ contrast. The main effects of talker
dialect and vowel contrast were also not significant.

The model for the Southern/Northern Virginian dataset revealed significant main effects of
talker dialect (§ = .25, F(1, 6.4) = 12.75, p = .011) and vowel contrast (§ = .26, F(1, 25.1) = 28.73, p
<.001). As expected, the Northern Virginian talkers had larger RMSDs than the Southern talkers
overall. The overall RMSDs were also larger for the /a1 a/ contrast than the /1 ¢/ contrast. This
vowel contrast effect likely reflects inherent differences between the two contrasts: whereas the /a1
a/ contrast involves a difference between a diphthong and a monophthong, where larger distances
might be expected, the /1 ¢/ contrast involves a difference between two lax vowels, whete shorter
distances might be expected. The interaction between talker dialect and vowel contrast was not
significant.

The model for the New England/Northern dataset revealed a significant main effect of vowel
contrast (§ = .35, F(1, 183.0) = 107.27, p < .001) and a significant interaction between talker dialect
and vowel contrast (6 = -.24, F(1, 183.0) = 52.23, p < .001). The overall RMSDs were larger for the
/a1 a/ contrast than the /= €/ contrast. As in the Southern/Northern Virginian dataset, this effect

likely reflects inherent properties of the two contrasts, including a vowel-rhotic sequence in the /a1

15
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marginal means for each vowel contrast revealed a matginal effect of talker dialect for the /a1 a/

contrast (f = -1.01, t(2.2) = -3.51, p = .062). As expected, the Northern talkers had larger RMSDs

than the New England talkers. The talker dialect effect was not significant for the /& €/ contrast.

The main effect of talker dialect was also not significant.
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FIG 2. (Color online). Mean RMSDs for each talker for each vowel contrast for the
Midland/Notthern (a), Southern/Northern Virginian (b), and New England/Northern (c) datasets.

Error bars are standard errors.

Like the DTW results, the RMSD results are suggestive of the predicted patterns, although more
of the predicted patterns are statistically robust and there is no evidence of unexpected patterns. In
particular, in the RMSD analysis, significant talker dialect effects in the predicted direction are
observed for the /1 e1/ contrast in the Midland/Northern dataset and for both vowel contrasts in
the Southern/Northern Virginian dataset. The predicted effect is marginal for the /a1 a/ contrast in
the New England/Northern dataset.

C. Generalized additive mixed modeling

A summary of the mean formant trajectory differences for each talker for each vowel contrast in
each of the three datasets is shown in Fig. 3. The by-talker means show the expected talker dialect
differences for both contrasts in the Midland/Northern (Fig. 3a) dataset, for both vowel contrasts in
the Southern/Northern Virginian (Fig. 3b) dataset, and for the /a1 a/ contrast in the New
England/Northern (Fig. 3¢) dataset. The by-talker means ovetlap considerably for the /x €/
contrast in the New England/Northern dataset.

The GAMMs predicting formant trajectory differences over time for the Midland/Northern
dataset revealed significant main effects of talker dialect for both the /x €/ contrast (§ = -.77, #= -
3.00, p = .003) and the /1e1/ contrast (§ = .48, 7= 3.21, p = .001). Significant talker dialect
differences in the trajectories were observed for the /x €/ contrast between 0% and 72% and
between 94% and 100% of the vowel duration and for the /1 e1/ contrast between 29% and 82% of
the vowel duration. Formant differences were larger for the Midland talkers than the Northern

talkers for the /x €/ contrast and for the Northern talkers than the Midland talkers for the /1 e1/
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contrast, as expected. The GAMMs for the Southern/Northern Virginian dataset revealed
significant main effects of talker dialect for both the /a1 a/ contrast (§ = -.39, #= -2.39, p = .017)
and the /1¢/ contrast (§ = -.51, 7= -3.17, p = .002). Significant talker dialect differences in the
trajectoties were observed for the /a1 a/ contrast between 53% and 100% of the vowel duration
and for the /1 ¢/ contrast between 23% and 100% of the vowel duration. Formant trajectory
differences were larger for the Northern Virginian talkers than the Southern talkers for both vowel
contrasts, as expected. The GAMM:s for the New England/Northern dataset revealed a significant
main effect of talker dialect for the /ar a/ contrast (§ = 1.11, 7= 2.13, p = .034). Significant talker
dialect differences in the trajectories were observed for the /a1 a/ contrast between 42% and 100%
of the vowel duration. The talker dialect effect was not significant for the /= ¢/ contrast. Formant
trajectory differences were larger for the Northern talkers than the New England talkers for the /ax

a/ contrast, as expected.
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FIG 3. (Color online). Mean formant trajectory differences for each talker for each vowel contrast

for the Midland/Northern (a), Southern/Northern Virginian (b), and New England/Northern (c)

datasets. Error bars are standard errors. Temporal regions with non-significant talker dialect

differences in the GAMMs are shaded in gray.

Like the DTW and RMSD results, the GAMMs are suggestive of the predicted patterns,

although more of the predicted patterns are statistically robust and there is no evidence of

unexpected patterns. In particular, in the GAMM analysis, significant talker dialect effects in the
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predicted direction are observed for both vowel contrasts in the Midland/Northern dataset, for both
vowel contrasts in the Southern/Northern Virginian dataset, and for the /a1 a/ contrast in the New

England/Northern dataset.

IV.  DISCUSSION

All three of the acoustic distance measures considered in this study—DTW, RMSD, and
GAMMs—Ied to predicted patterns of vowel category distance within and across dialects. DTWs
revealed significant effects in the expected direction for both the /a1 a/ and /1¢/ contrasts in the
Southern/Northern Virginian dataset. RMSDs revealed significant effects in the expected direction
for these two contrasts, as well as for the /1 el/ contrast in the Midland/Northern dataset. GAMMs
revealed significant effects in the expected direction for these three contrasts, as well as for the /=
e/ contrast in the Midland/Northern dataset and the /a1 a/ contrast in the New England/Northern
dataset. The only predicted effect that was not observed across any of the distance measures was for
the /= ¢/ contrast in the New England/Northern dataset. This null result likely reflects the
variability between the two Northern talkers in this dataset. As shown in Fig. 3¢, one of the
Northern talkers produced formant trajectory differences for the /a €/ contrast that are similar to
the Northern talkers in the Midland/Northern dataset (see Fig. 3a), whereas the other Northern
talket’s mean formant trajectory difference for the /= €/ contrast was similar to the two New
England talkers in the New England/Northern dataset.

Although the three datasets that were analyzed in the current study are all rather small, the
results suggest that dynamic acoustic distance measures that have been used to assess language and
accent distances in previous work (e.g., Bartelds et al., 2020; Heeringa et al., 2009; Renwick and
Stanley, 2020) can usefully be applied to assessments of vowel category distance within and across

dialects. This quantification of dynamic vowel category distance in the current study complements
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previous qualitative descriptions of regional vowel variation in American English (e.g., Labov et al.,
2000), as well as previous measures of vowel category distance at discrete time points (e.g., Hay et
al., 2006; Kendall and Fridland, 2012; Wassink, 20006).

Moreover, although the magnitude of the DTW distances are not readily interpretable, the
RMSD and GAMM analyses were conducted in Bark and the magnitudes of the effects are therefore
interpretable from the model coefficients. The significant talker dialect effects ranged in magnitude
from .25 Bark in the RMSD analysis of the Southern/Northern Virginian dataset to 1.11 Batk in the
GAMM analysis of the New England/Northern dataset. These differences ate likely perceptible,
given vowel discrimination thresholds of approximately .28 Bark for American English listeners
(Kewley-Port and Zheng, 1999). Thus, just as these kinds of distance measures predict perception of
language and accent distances (e.g., Heeringa et al., 2009; Gunter et al., 2020; Porretta et al., 2015)
and performance in cross-accent speech processing tasks (e.g., Chernyak et al., 2024; Hay et al.,
2000), the dynamic measures examined in this study are also likely to predict judgments about
regional accents and cross-dialect speech processing performance. Exploring the relationship
between these dynamic vowel category distance measures and the perception of regional dialects is a
critical next step for linking acoustic distances between vowel categories to speech processing
performance (see also Bent et al., 2021; Kelley, 2023; Kelley and Tucker, 2022).

The increase in the number of predicted patterns that were observed from the DTW analysis to
the RMSD analysis to the GAMM analysis is consistent with the information that is used to estimate
distance in each approach. DTW of MFCCs captures more information in the spectrum than the
formant-based RMSD and GAMM analyses, including voice quality, f0, and higher formant
structure. The MFCCs also include first- and second-order derivatives of the cepstral coefficients,
which explicitly capture the slope and rate of change of these coefficients over time, in addition to

the time-varying coefficients themselves. These sources of additional information may mask the
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predicted differences, which are characterized by one or two time-varying formants, leading to fewer
predicted results. However, listeners also have access to this broader array of information in the
spectrum and so DTW distances may better predict perception than RMSD or GAMMs. Future
research exploring the relationship between these measures and the perception of regional dialects is
critical for understanding the roles of general acoustic distance and specific formant trajectory
distance in cross-dialect speech processing.

The RMSD and GAMM analyses in the current study captured formant trajectory information
from a single formant that was selected for each vowel contrast to highlight the predicted variation
in vowel category distance within and across dialects. Despite this similarity, these two analyses
differ in two primary ways. First, RMSDs return a discrete measure of distance, whereas GAMM:s
assess difference throughout the formant trajectory. Second, RMSDs return a positive distance
value, which can mask variation in the direction of the formant trajectory difference, whereas
GAMNMs assess signed (positive and negative) differences. The former difference in the two
approaches likely explains the significant difference that was obsetrved for the /a1 a/ contrast in the
New England/Northern dataset in the GAMM analysis, but not in the RMSD analysis. The formant
trajectory differences were only significantly different for the two talker dialects in the second half of
the contrast, consistent with the contrast between the presence vs. absence of the following rhotic
for Northern vs. New England talkers, respectively (see Fig. 3c). This difference is captured by the
GAMM analysis, but lost in the RMSD analysis, which returns just a single distance value, collapsed
over time. However, this single distance value makes RMSDs more suitable than GAMMs for
predicting perception because RMSDs can be straightforwardly entered as predictors in statistical
models.

The latter difference between the two approaches likely explains the significant difference that

was observed for the /= ¢/ contrast in the Midland/Northern dataset in the GAMM analysis, but
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not in the RMSD analysis. As shown in Fig. 3a, whereas the Midland talkers had a positive formant
trajectory difference for this contrast throughout the entire trajectory, the Northern talkers had a
negative formant trajectory difference in the first half of the contrast and a positive formant
trajectory difference in the second half of the contrast. The overall magnitudes of the formant
trajectory differences were comparable across dialects, so that the absolute, positive distance
measure in the RMSD analysis could not distinguish the two trajectory differences, whereas the
signed differences emerge as significant in the GAMM analysis. Future research exploring the
relationship between these measures and the perception of regional dialects is critical for
understanding the roles of overall formant trajectory distance and the direction and magnitude of
formant trajectory difference in cross-dialect speech processing.

The three analyses that were conducted in this study are a subset of the possible applications of
dynamic distance measures to vowel category distances within and across dialects. First, one formant
was selected for analysis in the RMSD and GAMM analyses, whereas other formants may also
exhibit interesting differences in distance for these vowel contrasts. For example, the analysis of the
/a1 a/ contrast in the Southern/Northern Virginian analysis focused on F2 to captute fronting of
the offglide, but it would also be reasonable to analyze F1 to capture raising of the offglide. Second,
the DTW analysis was based on MFCCs, whereas the RMSD and GAMM analyses were based on
formant estimates. A D'TW analysis could also be conducted on the formant trajectories to
disentangle DTW as a distance measure from the information about the spectrum included in the
analysis.” Finally, several recent studies have used discrete cosine transformations (DCTSs) to capture
formant trajectories (e.g., Cox et al., 2024; Elvin et al., 2016). Euclidean distance could be applied to
DCTs to further disentangle the distance measures from the characterization of the spectrum.

In summary, vowel categories are acoustically more similar to one another in some regional

dialects of American English than in others, even in the absence of vowel category mergers (Labov
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et al., 2000). The application of dynamic acoustic distance measures, including DTW, RMSD, and
GAMNMs, can capture this variation in vowel category acoustic distance within and across dialects.
The analyses that focused on specific formant trajectory distance (i.e., RMSD, GAMMs) captured
more of these predicted patterns than the analysis that focused on overall acoustic distance (i.e.,
DTW), although overall acoustic distance may be a better predictor of perception. Within the
analyses that focused on specific formant trajectory distance, the analysis that focused on formant
trajectory difference (i.e., GAMMs) captured more of these predicted patterns than the analysis that
focused on formant trajectory distance (i.e., RMSD), although RMSD may be more useful for
predicting perception because it returns a discrete distance value for each minimal pair. These
approaches therefore address varying aspects of the nature of dynamic vowel category distance and
may be most useful for distinct kinds of questions. The relationship between these acoustic distance
measures and human perception remains to be explored.
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ENDNOTES
! Although many of the approaches discussed here are not distance metrics in the mathematical
sense (including dynamic time warping, Pillai scores, and generalized additive mixed models), they
can usefully be applied to questions related to vowel category acoustic distance and so are referred to
here as “distance measures,” as in previous work (e.g., Bartelds et al., 2020; Mielke, 2012).
T would like to thank Matthew Kelley for this suggestion.
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