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Vowels vary in their acoustic similarity across regional dialects of American English, such that some 

vowels are more similar to one another in some dialects than others. Acoustic vowel distance 

measures typically evaluate vowel similarity at a discrete time point, resulting in distance estimates 

that may not fully capture vowel similarity in formant trajectory dynamics. In the current study, 

language and accent distance measures, which evaluate acoustic distances between talkers over time, 

were applied to the evaluation of vowel category similarity within talkers. These vowel category 

distances were then compared across dialects and their utility in capturing predicted patterns of 

regional dialect variation in American English was examined. Dynamic time warping of mel-

frequency cepstral coefficients was used to assess acoustic distance across the frequency spectrum 

and captured predicted Southern American English vowel similarity. Root-mean-square distance and 

generalized additive mixed models were used to assess acoustic distance for selected formant 

trajectories and captured predicted Southern, New England, and Northern American English vowel 

similarity. Generalized additive mixed models captured the most predicted variation, but, unlike the 

other measures, do not return a single acoustic distance value. All three measures are potentially 

useful for understanding variation in vowel category similarity across dialects. 
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I. INTRODUCTION 1 

Regional dialects of American English vary in the acoustic-phonetic realization of vowel 2 

categories (Labov et al., 2006). This variation leads to vowel categories that are more similar in 3 

acoustic-phonetic space in some dialects than others. For example, the Northern Cities vowel shift 4 

leads to greater acoustic-phonetic similarity of /ɛ æ/ in the Northern dialect than in the Midland 5 

dialect (Clopper and Tamati, 2014), the Southern vowel shift leads to greater acoustic-phonetic 6 

similarity of /eɪ ɛ/ in the Southern dialect than in the Western dialect (Farrington et al., 2018), and 7 

the low-back merger leads to greater acoustic-phonetic similarity of /ɑ ɔ/ in California English than 8 

in New York City English (Nycz and Hall-Lew, 2013).  9 

Acoustic vowel category distance measures1 are typically defined at a discrete time point within 10 

the vowels of interest (e.g., Hay et al., 2006; Kendall and Fridland, 2012; Wassink, 2006). The goal of 11 

the current study was to assess dynamic acoustic vowel category distance measures that capture 12 

formant trajectories over time within the vowels of interest (e.g., Fox and Jacewicz, 2009; Renwick 13 

and Stanley, 2020). These dynamic measures of vowel category distance within regional dialects of 14 

American English were evaluated in comparison to qualitative descriptions of regional variation 15 

(Labov et al., 2006). The results demonstrated that dynamic vowel category distance measures, 16 

including dynamic time warping (DTW) of mel-frequency cepstral coefficients (MFCCs; Bartelds et 17 

al., 2020; Lind-Combs et al., 2023; Mielke, 2012), root-mean-square distance (RMSD; Cole et al., 18 

2023; Kaland, 2023), and generalized additive mixed modeling (GAMM; Kirkham et al., 2019; 19 

Renwick and Stanley, 2020), can all capture variation in vowel category distances within and across 20 

dialects of American English, complementing prior qualitative descriptions. 21 

A. Vowel category distance measures 22 

Regional variation in acoustic-phonetic similarity of vowel categories has been quantified in 23 

previous work using Euclidean distances and Pillai scores of formant frequency estimates (see Kelley 24 
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and Tucker, 2020; Nycz and Hall-Lew, 2013, for reviews). Euclidean distances between vowel 25 

categories are typically defined in the two-dimensional first formant (F1) x second formant (F2) 26 

space, using formant estimates from a discrete time point (e.g., vowel midpoint). Euclidean distances 27 

between vowels have been used to predict sound change (Wieling et al., 2012), as a proxy for 28 

individual participation in ongoing vowel shifts (Farrington et al., 2018; Kendall and Fridland, 2012), 29 

to predict accentedness ratings (Gunter et al., 2020), and to assess the effects of lexical competition 30 

on dialect variation (Clopper and Tamati, 2014).  31 

Pillai scores are also typically calculated from estimates of F1 and F2 from a discrete time point. 32 

Unlike Euclidean distances, Pillai scores quantify the overlap of the vowel category distributions in 33 

the F1 x F2 space, instead of simply the distance between the two category means. Pillai scores are 34 

used most commonly as a measure of vowel category merger within individuals (Gunter et al., 2020; 35 

Hay et al., 2006; Nycz and Hall-Lew, 2013). A number of related measures of multidimensional 36 

category overlap have also been proposed. These approaches typically involve estimates of F1 and 37 

F2 of the target vowels from a discrete time point, but may also include duration (Wassink, 2006), 38 

discrete cosine transformations of the formant frequency trajectories (Elvin et al., 2016), or formant 39 

frequencies sampled at multiple discrete time points (Morrison, 2008). These approaches have been 40 

used to identify the dimensions of variation that are necessary to distinguish vowel categories within 41 

a language or dialect (Elvin et al., 2016; Haynes and Taylor, 2014; Morrison, 2008; Wassink, 2006). 42 

In principle, these vowel category distance measures are appropriate for assessing variation in 43 

vowel distances within and across varieties of American English. For example, Euclidean distances 44 

between /eɪ ɛ/ have been used to distinguish Southern from Western varieties of American English 45 

(Farrington et al., 2018) and Pillai scores for /ɑ ɔ/ have been used to distinguish degrees of the low-46 

back vowel merger in California and New York City varieties (Nycz and Hall-Lew, 2013). However, 47 

at least as they are typically implemented, these measures are based on a single sample of each 48 



 4 

formant estimated at a discrete time point for each vowel token. This implementation therefore does 49 

not capture vowel category distances at other time points in the formant trajectories or over the 50 

entire formant trajectory, despite clear evidence that vowels vary within and across dialects of 51 

American English in their formant trajectory dynamics (Farrington et al., 2018; Fox and Jacewicz, 52 

2009).  53 

In contrast to this work on vowel category distances, dynamic acoustic distance measures have 54 

been used to assess consonant category distances (Mielke, 2012) and lexical distances (Kelley, 2023; 55 

Kelley and Tucker, 2022). Mielke (2012) used dynamic time warping of mel-frequency cepstral 56 

coefficients, estimated over VCV utterances, to assess the relationship between acoustic and 57 

phonological consonant similarity. Similarly, both Kelley (2023) and Kelley and Tucker (2022) used 58 

dynamic time warping of mel-frequency cepstral coefficients, estimated over words, to predict lexical 59 

competition in speech processing. In the current study, this DTW approach was applied to vowel 60 

category distances to assess variation within and across dialects of American English. 61 

Acoustic distances between languages, dialects, and accents have also been quantified in previous 62 

work using dynamic acoustic distance measures (e.g., Bartelds et al., 2020; Chernyak et al., 2024; 63 

Heeringa et al., 2009). These acoustic language and accent distance measures capture distances 64 

between different talkers’ productions of the same linguistic content (e.g., words, sentences), 65 

whereas the acoustic vowel distance measures, such as Euclidean distances and Pillai scores, capture 66 

distances between different vowel categories produced by the same talkers. In the current study, the 67 

measures of between-talker language and accent distances were applied to within-talker vowel 68 

category distances to assess dynamic vowel category similarity within dialects of American English 69 

and to compare those vowel similarities across dialects. These comparisons across dialects were then 70 

evaluated in the context of previous qualitative descriptions of regional variation (Labov et al., 2006). 71 
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B. Language and accent distance measures 72 

Three general approaches to quantifying acoustic language and accent distance have been 73 

proposed in the literature: dynamic time warping (Bartelds et al., 2020), mean distances over time 74 

(Heeringa et al., 2009), and generalized additive mixed modeling (Kirkham et al., 2019). Bartelds et 75 

al. (2020) and Lind-Combs et al. (2023) both used dynamic time warping of MFCCs, estimated over 76 

words and sentences, respectively, to assess native and non-native accent distances. This approach 77 

differs from the Euclidean distance and Pillai score measures of vowel category distance, and from 78 

the mean distance and GAMM approaches to language and accent distance, in that it includes a 79 

summary representation of the spectrum over the frequency analysis range (i.e., up to the Nyquist 80 

frequency), instead of focusing on estimated formant frequencies and their trajectories over time. 81 

DTW distances of MFCCs therefore capture dynamic formant trajectory distance, but may also 82 

capture distances between consonants, f0 contours, voice quality, and even recording devices and 83 

background noise (Bartelds et al., 2020; Lind-Combs et al., 2023). MFCCs have also been used 84 

without DTW to assess dialect similarity using multidimensional scaling and clustering techniques 85 

(Ferragne and Pellegrino, 2010). DTW of MFCCs was adopted in the current study as a measure of 86 

overall vowel distance, including dynamic formant, f0, and voice quality information, within and 87 

across dialects. The MFCCs were estimated over the target vowels only, so that consonant effects 88 

were minimized, and all distances were calculated within-talker, so that effects of recording device 89 

and background noise were also minimized. 90 

Heeringa et al. (2009) used Manhattan (or city-block) distances of formant estimates over time to 91 

quantify Norwegian dialect distances. This approach is conceptually similar to Euclidean distance 92 

measures of vowel category distance, except that (1) distances were calculated every 10 ms over 93 

entire words, including both consonants and vowels, and (2) Manhattan distances were used instead 94 

of Euclidean distances. Another conceptually similar measure is root-mean-square distance, in which 95 
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distance is defined as the mean Euclidean distance over time. This measure has been used to 96 

quantify the similarity of intonation contours (Cole et al., 2023; Kaland, 2023) and was adopted in 97 

the current study as a measure of dynamic formant trajectory distance within and across dialects. 98 

Generalized additive mixed models of formant trajectories involve fitting curves to formant 99 

estimates over time and then identifying when in time the trajectories overlap and when they 100 

diverge. This approach differs from the other distance measures in that a discrete, positive distance 101 

measure is not returned. Rather, GAMMs provide an indication of (1) when in time the two formant 102 

trajectories differ, and (2) the direction of this difference (i.e., positive or negative). GAMMs have 103 

been used to compare vowel-lateral sequences in varieties of UK English (Kirkham et al., 2019), 104 

features of Southern American English among white and Black talkers in the American South 105 

(Renwick and Stanley, 2020), and Australian vowel change over time (Cox et al., 2024). GAMMs 106 

were adopted in the current study to assess the temporal properties of formant trajectory differences 107 

within and across regional dialects of American English. 108 

C. The current study 109 

Dynamic time warping of MFCCs, root-mean-square distance, and generalized additive mixed 110 

modeling were applied to three small datasets to assess their utility in quantifying dynamic acoustic 111 

vowel distances within and across dialects of American English. Each dataset comprised the 112 

stimulus materials from a previous perception task designed to examine cross-dialect lexical 113 

processing (Clark et al., 2022; Clopper and Walker, 2017; Ross and Clopper, 2023). Each dataset 114 

included minimal pair tokens for two vowel contrasts that were expected to differ in their acoustic 115 

similarity across two talker dialects, based on previous descriptions of regional variation in American 116 

English (Labov et al., 2006). Across datasets, the target vowel contrasts included /æ ɛ/ and /ɪ eɪ/ to 117 

capture features of the Northern Cities vowel shift, /ɑɪ ɑ/ and /ɪ ɛ/ to capture features of the 118 

Southern vowel shift, and /ɑɹ ɑ/ to capture non-rhoticity in New England. The three dynamic 119 
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distance measures were evaluated against the predicted patterns of vowel category similarity for 120 

these vowel contrasts. The vowel contrasts of interest were not predicted to be merged in any of the 121 

target varieties and the central question was therefore how to capture varying non-zero distances 122 

between vowel categories across regional dialects. 123 

Given that the DTW approach successfully predicts perceptual native and non-native accent 124 

distances (Bartelds et al., 2020; Lind-Combs et al., 2023), DTW distances were expected to produce 125 

the predicted patterns of differential vowel distance across dialects. However, the cross-dialect vowel 126 

distance predictions are based on patterns of overall vowel shifts in one or two dimensions of the F1 127 

x F2 vowel space (e.g., raising and fronting of /æ/ in the Northern Cities shift) and/or patterns of 128 

vowel formant trajectory dynamics in one or two dimensions of the F1 x F2 x F3 vowel space (e.g., 129 

lowering of F3 in /ɑɹ/ sequences in rhotic varieties). Given that DTW distances were calculated 130 

over MFCCs, capturing more spectral information than just one or two formant trajectories, the 131 

predicted patterns of differential vowel distance across dialects may be masked by other similarities 132 

and differences in the spectra across tokens. For example, predicted differences in F1 might be 133 

masked by similarities in F2 and higher formants. The RMSD and GAMM analyses were therefore 134 

based on target formant frequencies that were selected to highlight the expected cross-dialect 135 

variation. This intentional focus on the target variation was expected to produce strong evidence of 136 

the predicted patterns of differential vowel distance across dialects for these measures, as in previous 137 

related work (Cox et al., 2024; Kirkham et al., 2019; Renwick and Stanley, 2020). Finally, given that 138 

DTW distances and RMSDs were estimated over the entire vowel trajectory, the predicted patterns 139 

of differential vowel distance across dialects may not be observed if they are limited to a short 140 

temporal span of the trajectory. For example, predicted differences in the offglide of a diphthong 141 

might be masked by similarities in the nucleus of the diphthong. The GAMM analysis allowed for a 142 
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consideration of this temporal detail and was expected to produce the strongest evidence of the 143 

predicted patterns of differential vowel distance across dialects. 144 

II. METHODS 145 

A. Datasets 146 

The first dataset (Midland/Northern) comprises the stimulus materials from Clopper and 147 

Walker’s (2017) cross-modal lexical decision task. The stimulus talkers were three Midland and three 148 

Northern female young adults. The target vowel contrasts were /æ ɛ/ and /ɪ eɪ/. These vowel 149 

contrasts were selected to capture variation across the two dialects due to the Northern Cities vowel 150 

shift. In particular, in the Northern Cities shift, /æ/ is raised and fronted and /ɛ ɪ/ are lowered and 151 

backed (Labov et al., 2006). The raising and fronting of /æ/ and the lowering and backing of /ɛ/ is 152 

predicted to lead to a smaller distance between these vowels for Northern talkers than Midland 153 

talkers. In both varieties, /ɪ/ is lower and backer than /eɪ/, so the lowering and backing of /ɪ/ in 154 

the Northern Cities shift is predicted to lead to a larger distance between these vowels for Northern 155 

talkers than Midland talkers. The stimulus materials were 48 minimal pairs (24 per vowel contrast) 156 

for each of the six talkers. There were two missing tokens and the minimal pair token for each of 157 

these missing tokens was also excluded, leaving 286 minimal pairs (47-48 per talker) for analysis. 158 

The second dataset (Southern/Northern Virginian) comprises the stimulus materials from Clark 159 

et al.’s (2022) cross-modal lexical decision task. The stimulus talkers were four Southern and four 160 

Northern Virginian female young adults. The target vowel contrasts were /ɑɪ ɑ/ and /ɪ ɛ/. These 161 

vowel contrasts were selected to capture variation across the two dialects due to the Southern vowel 162 

shift. In particular, in the Southern vowel shift, /ɑɪ/ is monophthongized and /ɪ ɛ/ are raised and 163 

fronted, with greater raising and fronting of /ɛ/ than /ɪ/ (Labov et al., 2006). The 164 

monophthongization of /ɑɪ/ is predicted to lead to a smaller distance between /ɑɪ ɑ/ for Southern 165 
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talkers than Northern Virginian talkers. The more advanced raising and fronting of /ɛ/ than /ɪ/ is 166 

likewise predicted to lead to a smaller distance between these vowels for Southern talkers than 167 

Northern Virginian talkers. The stimulus materials were 69 word pairs (33 for /ɑɪ ɑ/ and 36 for /ɪ 168 

ɛ/) for each of the eight talkers. There were eight missing tokens and the minimal pair token for 169 

each of these missing tokens was also excluded, leaving 544 minimal pairs (67-69 per talker) for 170 

analysis. 171 

The third dataset (New England/Northern) comprises the stimulus materials from Ross and 172 

Clopper’s (2023) cross-modal lexical decision task. The stimulus talkers were two New England (one 173 

female, one male) and two Northern (one female, one non-binary) young adults. The target vowel 174 

contrasts were /ɑɹ ɑ/ and /æ ɛ/. These vowel contrasts were selected to capture variation across the 175 

two dialects in rhoticity and the Northern Cities shift, respectively. In particular, the New England 176 

dialect is non-rhotic (Labov et al., 2006), which is predicted to lead to a smaller distance between /ɑɹ 177 

ɑ/ for New England talkers than Northern talkers. As in the Midland/Northern dataset, the raising 178 

and fronting of /æ/ and the lowering and backing of /ɛ/ in the Northern Cities shift is predicted to 179 

lead to a smaller distance between these vowels for Northern talkers than New England talkers. The 180 

stimulus materials were 48 word pairs (24 per vowel contrast) for each of the four talkers. No tokens 181 

were missing, so 192 minimal pairs were analyzed. 182 

B. Acoustic distance analysis 183 

For each dataset, the word tokens were stored in separate digital sound files that were segmented 184 

to the word onset and offset. These sound files were down-sampled to 16 kHz with 16-bit 185 

quantization for analysis. Each token was forced-aligned using the Penn Phonetics Lab Forced 186 

Aligner (Yuan and Liberman, 2008) to obtain a preliminary segmentation of the target vowel. These 187 

vowel alignments were then hand-corrected, following the segmentation guidance provided by 188 
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Peterson and Lehiste (1960). For the New England/Northern dataset, the target vowel /ɑ/ was 189 

merged with the following /ɹ/ for all /ɑɹ/ tokens so that /ɑɹ ɑ/ distances could be estimated. 190 

1. Dynamic time warping 191 

The first distance measure was dynamic time warping of mel-frequency cepstral coefficients, 192 

following Bartelds et al. (2020) and Lind-Combs et al. (2023). The target vowel was extracted from 193 

each token with a Hamming window using the hand-corrected boundaries. MFCCs were then 194 

extracted using the mfcc function in the python_speech_features package in Python (Lyons et al., 2020) 195 

from each 25 ms window in each vowel token in 10 ms steps. For each window, 39 coefficients were 196 

extracted, including the overall energy and the first 12 cepstral coefficients, along with the first- and 197 

second-order derivatives of these measures. The spectrum used to calculate the MFCCs was 198 

extracted using a 1024-point FFT with 0.97 pre-emphasis. The MFCCs were z-scored over time 199 

separately for each coefficient for each token. Dynamic time warping was then used to estimate the 200 

distance between each minimal pair for each talker. The DTW distances were time-normalized to 201 

account for differences in overall duration of the paired tokens (Bartelds et al., 2020). 202 

The DTW distances were analyzed using separate linear mixed-effects models for each dataset 203 

with talker dialect, vowel contrast, and their interaction as fixed effects. The maximal data-driven by-204 

talker and by-minimal-pair random effects were used for each model. The fixed effects were sum-205 

contrast coded. Statistical significance was assessed using the Satterthwaite approximation of degrees 206 

of freedom, as implemented in the lmerTest package in R (Kuznetsova et al., 2017). Post-hoc pairwise 207 

comparisons of significant effects were conducted using Tukey’s HSD tests in the emmeans package 208 

in R (Lenth, 2024). 209 

2. Root-mean-square distance 210 

The second distance measure was root-mean-square distance of selected formant trajectories 211 

over time, following Cole et al.’s (2023) and Kaland’s (2023) analyses of intonation contours. For 212 
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each token, the first three formant frequencies (F1, F2, and F3) were estimated at 10% intervals over 213 

the vowel duration from 0-100% (11 estimates per vowel) using a 12th order LPC analysis (Burg 214 

method) in the frequency range of 0-5500 Hz in Praat (Boersma and Weenink, 2023). All formant 215 

estimates were converted to Bark to facilitate comparisons across talkers and formants 216 

(Traunmüller, 1990). Given a large number of missing formant estimates at vowel onset (0%) and 217 

offset (100%), RMSDs were calculated for each minimal pair for each talker over the middle 80% of 218 

the vowel duration (10-90%). RMSDs were calculated separately for each formant and one formant 219 

was selected for each vowel contrast for analysis. For the Midland/Northern dataset, F1 was 220 

selected for both /æ ɛ/ and /ɪ eɪ/ distances to capture effects of raising of /æ/ and lowering of /ɛ 221 

ɪ/ in the Northern Cities shift. For the Southern/Northern Virginian dataset, F2 was selected for 222 

/ɑɪ ɑ/ distances to capture effects of /ɑɪ/ monophthongization (i.e., reduction of the fronting 223 

offglide) in the Southern vowel shift and F1 was selected for /ɪ ɛ/ distances to capture effects of 224 

raising of /ɪ ɛ/ in the Southern vowel shift. For the New England/Northern dataset, F3 was 225 

selected for /ɑɹ ɑ/ distances to capture effects of non-rhoticity in New England and F1 was 226 

selected for /æ ɛ/ distances to capture effects of raising of /æ/ and lowering of /ɛ/ in the Northern 227 

Cities shift, as in the Midland/Northern dataset. 228 

RMSDs were analyzed using separate linear mixed-effects models with the same specifications as 229 

in the DTW analysis. Due to missing formant estimates, the analysis of the Midland/Northern 230 

dataset was based on 283 minimal pairs, the analysis of the Southern/Northern Virginian dataset 231 

was based on 543 minimal pairs, and the analysis of the New England/Northern dataset was based 232 

on 189 minimal pairs. 233 

3. Generalized additive mixed modeling 234 

The third distance measure involved generalized additive mixed models of selected formant 235 

trajectories over time, following Renwick and Stanley (2020). The same selected formant estimates 236 
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from the RMSD analysis were used in the GAMMs, except that the entire formant trajectory (0-237 

100%) was used because GAMMs are more robust to missing data than RMSDs. For each minimal 238 

pair for each talker, the formant trajectory difference was calculated by subtracting the formant 239 

estimate at each time point for one member of the minimal pair from the other. These formant 240 

difference trajectories were then analyzed separately for each vowel contrast using GAMMs with a 241 

parametric effect of talker dialect and talker dialect smooths over time as fixed effects and with by-242 

talker smooths over time and minimal pair x talker dialect smooths over time as random effects. A 243 

correction term for autocorrelation at lag 1 was also included in each model. 244 

III. RESULTS 245 

A. Dynamic time warping 246 

A summary of the mean DTW distances for each talker for each vowel contrast in each of the 247 

three datasets is shown in Fig. 1. The by-talker means overlap considerably for both vowel contrasts 248 

in the Midland/Northern (Fig. 1a) and New England/Northern (Fig. 1c) datasets, whereas they 249 

show clear separation by talker dialect in the Southern/Northern Virginian (Fig. 1b) dataset. As 250 

expected, the distances are smaller for both the /ɑɪ ɑ/ and /ɪ ɛ/ contrasts for the Southern talkers 251 

than the Northern Virginian talkers. 252 

The linear mixed effects model predicting DTW distances from talker dialect and vowel contrast 253 

for the Midland/Northern dataset revealed a marginal main effect of talker dialect (β = .08, F(1, 254 

236.5) = 3.60, p = .059). The Midland talkers had larger DTW distances overall, as expected for the 255 

/æ ɛ/ contrast, but contrary to the prediction for the /ɪ eɪ/ contrast. Neither the main effect of 256 

vowel contrast nor the interaction were significant. The model for the Southern/Northern Virginian 257 

dataset revealed a significant main effect of talker dialect (β = .25, F(1, 7.1) = 29.82, p < .001). The 258 

Northern Virginian talkers had larger DTW distances overall, as expected for both vowel contrasts. 259 
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Neither the main effect of vowel contrast nor the interaction were significant. The model for the 260 

New England/Northern dataset revealed a significant interaction between talker dialect and vowel 261 

contrast (β = -0.10, F(1, 140.0) = 4.80, p = .030). The interaction reflects the expected cross-over 262 

pattern, in which DTW distances were larger for the Northern talkers than the New England talkers 263 

for the /ɑɹ ɑ/ contrast (β = -.29), but larger for the New England talkers than the Northern talkers 264 

for the /æ ɛ/ contrast (β = .10). However, post-hoc comparisons of estimated marginal means 265 

revealed that the talker dialect effect was not significant for either vowel contrast. The main effects 266 

of talker dialect and vowel contrast were also not significant. 267 

Overall, the DTW results are suggestive of the predicted patterns, but are only statistically robust 268 

with these small samples in the Southern/Northern Virginian dataset. Moreover, the marginal result 269 

in the Midland/Northern dataset is contrary to predictions. 270 
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(a) (b)271 

(c)  272 

FIG 1. (Color online). Mean DTW distances for each talker for each vowel contrast for the 273 

Midland/Northern (a), Southern/Northern Virginian (b), and New England/Northern (c) datasets. 274 

Error bars are standard errors. 275 

B. Root-mean-square distance 276 

A summary of the mean RMSDs for each talker for each vowel contrast in each of the three 277 

datasets is shown in Fig. 2. The by-talker means show the expected talker dialect differences for the 278 

/ɪ eɪ/ contrast in the Midland/Northern (Fig. 2a) dataset, for both vowel contrasts in the 279 
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Southern/Northern Virginian (Fig. 2b) dataset, and for the /ɑɹ ɑ/ contrast in the New 280 

England/Northern (Fig. 2c) dataset. The by-talker means overlap considerably for the /æ ɛ/ 281 

contrast in both the Midland/Northern and New England/Northern datasets. 282 

The linear mixed effects model predicting RMSDs from talker dialect and vowel contrast for the 283 

Midland/Northern dataset revealed a significant interaction between talker dialect and vowel 284 

contrast (β = -.16, F(1, 5.2) = 8.54, p = .032). Post-hoc comparisons of estimated marginal means 285 

for each vowel contrast revealed a significant effect of talker dialect for the /ɪ eɪ/ contrast (β = -.46, 286 

t(5.5) = -3.34, p = .018). As expected, the Northern talkers had larger RMSDs than the Midland 287 

talkers. The talker dialect effect was not significant for the /æ ɛ/ contrast. The main effects of talker 288 

dialect and vowel contrast were also not significant.  289 

The model for the Southern/Northern Virginian dataset revealed significant main effects of 290 

talker dialect (β = .25, F(1, 6.4) = 12.75, p = .011) and vowel contrast (β = .26, F(1, 25.1) = 28.73, p 291 

< .001). As expected, the Northern Virginian talkers had larger RMSDs than the Southern talkers 292 

overall. The overall RMSDs were also larger for the /ɑɪ ɑ/ contrast than the /ɪ ɛ/ contrast. This 293 

vowel contrast effect likely reflects inherent differences between the two contrasts: whereas the /ɑɪ 294 

ɑ/ contrast involves a difference between a diphthong and a monophthong, where larger distances 295 

might be expected, the /ɪ ɛ/ contrast involves a difference between two lax vowels, where shorter 296 

distances might be expected. The interaction between talker dialect and vowel contrast was not 297 

significant.  298 

The model for the New England/Northern dataset revealed a significant main effect of vowel 299 

contrast (β = .35, F(1, 183.0) = 107.27, p < .001) and a significant interaction between talker dialect 300 

and vowel contrast (β = -.24, F(1, 183.0) = 52.23, p < .001). The overall RMSDs were larger for the 301 

/ɑɹ ɑ/ contrast than the /æ ɛ/ contrast. As in the Southern/Northern Virginian dataset, this effect 302 

likely reflects inherent properties of the two contrasts, including a vowel-rhotic sequence in the /ɑɹ 303 
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ɑ/ contrast versus two lax vowels in the /æ ɛ/ contrast. Post-hoc comparisons of estimated 304 

marginal means for each vowel contrast revealed a marginal effect of talker dialect for the /ɑɹ ɑ/ 305 

contrast (β = -1.01, t(2.2) = -3.51, p = .062). As expected, the Northern talkers had larger RMSDs 306 

than the New England talkers. The talker dialect effect was not significant for the /æ ɛ/ contrast. 307 

The main effect of talker dialect was also not significant. 308 
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FIG 2. (Color online). Mean RMSDs for each talker for each vowel contrast for the 311 

Midland/Northern (a), Southern/Northern Virginian (b), and New England/Northern (c) datasets. 312 

Error bars are standard errors. 313 

Like the DTW results, the RMSD results are suggestive of the predicted patterns, although more 314 

of the predicted patterns are statistically robust and there is no evidence of unexpected patterns. In 315 

particular, in the RMSD analysis, significant talker dialect effects in the predicted direction are 316 

observed for the /ɪ eɪ/ contrast in the Midland/Northern dataset and for both vowel contrasts in 317 

the Southern/Northern Virginian dataset. The predicted effect is marginal for the /ɑɹ ɑ/ contrast in 318 

the New England/Northern dataset. 319 

C. Generalized additive mixed modeling 320 

A summary of the mean formant trajectory differences for each talker for each vowel contrast in 321 

each of the three datasets is shown in Fig. 3. The by-talker means show the expected talker dialect 322 

differences for both contrasts in the Midland/Northern (Fig. 3a) dataset, for both vowel contrasts in 323 

the Southern/Northern Virginian (Fig. 3b) dataset, and for the /ɑɹ ɑ/ contrast in the New 324 

England/Northern (Fig. 3c) dataset. The by-talker means overlap considerably for the /æ ɛ/ 325 

contrast in the New England/Northern dataset. 326 

The GAMMs predicting formant trajectory differences over time for the Midland/Northern 327 

dataset revealed significant main effects of talker dialect for both the /æ ɛ/ contrast (β = -.77, t = -328 

3.00, p = .003) and the /ɪ eɪ/ contrast (β = .48, t = 3.21, p = .001). Significant talker dialect 329 

differences in the trajectories were observed for the /æ ɛ/ contrast between 0% and 72% and 330 

between 94% and 100% of the vowel duration and for the /ɪ eɪ/ contrast between 29% and 82% of 331 

the vowel duration. Formant differences were larger for the Midland talkers than the Northern 332 

talkers for the /æ ɛ/ contrast and for the Northern talkers than the Midland talkers for the /ɪ eɪ/ 333 
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contrast, as expected. The GAMMs for the Southern/Northern Virginian dataset revealed 334 

significant main effects of talker dialect for both the /ɑɪ ɑ/ contrast (β = -.39, t = -2.39, p = .017) 335 

and the /ɪ ɛ/ contrast (β = -.51, t = -3.17, p = .002). Significant talker dialect differences in the 336 

trajectories were observed for the /ɑɪ ɑ/ contrast between 53% and 100% of the vowel duration 337 

and for the /ɪ ɛ/ contrast between 23% and 100% of the vowel duration. Formant trajectory 338 

differences were larger for the Northern Virginian talkers than the Southern talkers for both vowel 339 

contrasts, as expected. The GAMMs for the New England/Northern dataset revealed a significant 340 

main effect of talker dialect for the /ɑɹ ɑ/ contrast (β = 1.11, t = 2.13, p = .034). Significant talker 341 

dialect differences in the trajectories were observed for the /ɑɹ ɑ/ contrast between 42% and 100% 342 

of the vowel duration. The talker dialect effect was not significant for the /æ ɛ/ contrast. Formant 343 

trajectory differences were larger for the Northern talkers than the New England talkers for the /ɑɹ 344 

ɑ/ contrast, as expected. 345 
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(b)  347 

(c)  348 

FIG 3. (Color online). Mean formant trajectory differences for each talker for each vowel contrast 349 

for the Midland/Northern (a), Southern/Northern Virginian (b), and New England/Northern (c) 350 

datasets. Error bars are standard errors. Temporal regions with non-significant talker dialect 351 

differences in the GAMMs are shaded in gray. 352 

Like the DTW and RMSD results, the GAMMs are suggestive of the predicted patterns, 353 

although more of the predicted patterns are statistically robust and there is no evidence of 354 

unexpected patterns. In particular, in the GAMM analysis, significant talker dialect effects in the 355 
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predicted direction are observed for both vowel contrasts in the Midland/Northern dataset, for both 356 

vowel contrasts in the Southern/Northern Virginian dataset, and for the /ɑɹ ɑ/ contrast in the New 357 

England/Northern dataset.  358 

IV. DISCUSSION 359 

All three of the acoustic distance measures considered in this study—DTW, RMSD, and 360 

GAMMs—led to predicted patterns of vowel category distance within and across dialects. DTWs 361 

revealed significant effects in the expected direction for both the /ɑɪ ɑ/ and /ɪ ɛ/ contrasts in the 362 

Southern/Northern Virginian dataset. RMSDs revealed significant effects in the expected direction 363 

for these two contrasts, as well as for the /ɪ eɪ/ contrast in the Midland/Northern dataset. GAMMs 364 

revealed significant effects in the expected direction for these three contrasts, as well as for the /æ 365 

ɛ/ contrast in the Midland/Northern dataset and the /ɑɹ ɑ/ contrast in the New England/Northern 366 

dataset. The only predicted effect that was not observed across any of the distance measures was for 367 

the /æ ɛ/ contrast in the New England/Northern dataset. This null result likely reflects the 368 

variability between the two Northern talkers in this dataset. As shown in Fig. 3c, one of the 369 

Northern talkers produced formant trajectory differences for the /æ ɛ/ contrast that are similar to 370 

the Northern talkers in the Midland/Northern dataset (see Fig. 3a), whereas the other Northern 371 

talker’s mean formant trajectory difference for the /æ ɛ/ contrast was similar to the two New 372 

England talkers in the New England/Northern dataset. 373 

Although the three datasets that were analyzed in the current study are all rather small, the 374 

results suggest that dynamic acoustic distance measures that have been used to assess language and 375 

accent distances in previous work (e.g., Bartelds et al., 2020; Heeringa et al., 2009; Renwick and 376 

Stanley, 2020) can usefully be applied to assessments of vowel category distance within and across 377 

dialects. This quantification of dynamic vowel category distance in the current study complements 378 
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previous qualitative descriptions of regional vowel variation in American English (e.g., Labov et al., 379 

2006), as well as previous measures of vowel category distance at discrete time points (e.g., Hay et 380 

al., 2006; Kendall and Fridland, 2012; Wassink, 2006).  381 

Moreover, although the magnitude of the DTW distances are not readily interpretable, the 382 

RMSD and GAMM analyses were conducted in Bark and the magnitudes of the effects are therefore 383 

interpretable from the model coefficients. The significant talker dialect effects ranged in magnitude 384 

from .25 Bark in the RMSD analysis of the Southern/Northern Virginian dataset to 1.11 Bark in the 385 

GAMM analysis of the New England/Northern dataset. These differences are likely perceptible, 386 

given vowel discrimination thresholds of approximately .28 Bark for American English listeners 387 

(Kewley-Port and Zheng, 1999). Thus, just as these kinds of distance measures predict perception of 388 

language and accent distances (e.g., Heeringa et al., 2009; Gunter et al., 2020; Porretta et al., 2015) 389 

and performance in cross-accent speech processing tasks (e.g., Chernyak et al., 2024; Hay et al., 390 

2006), the dynamic measures examined in this study are also likely to predict judgments about 391 

regional accents and cross-dialect speech processing performance. Exploring the relationship 392 

between these dynamic vowel category distance measures and the perception of regional dialects is a 393 

critical next step for linking acoustic distances between vowel categories to speech processing 394 

performance (see also Bent et al., 2021; Kelley, 2023; Kelley and Tucker, 2022). 395 

The increase in the number of predicted patterns that were observed from the DTW analysis to 396 

the RMSD analysis to the GAMM analysis is consistent with the information that is used to estimate 397 

distance in each approach. DTW of MFCCs captures more information in the spectrum than the 398 

formant-based RMSD and GAMM analyses, including voice quality, f0, and higher formant 399 

structure. The MFCCs also include first- and second-order derivatives of the cepstral coefficients, 400 

which explicitly capture the slope and rate of change of these coefficients over time, in addition to 401 

the time-varying coefficients themselves. These sources of additional information may mask the 402 
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predicted differences, which are characterized by one or two time-varying formants, leading to fewer 403 

predicted results. However, listeners also have access to this broader array of information in the 404 

spectrum and so DTW distances may better predict perception than RMSD or GAMMs. Future 405 

research exploring the relationship between these measures and the perception of regional dialects is 406 

critical for understanding the roles of general acoustic distance and specific formant trajectory 407 

distance in cross-dialect speech processing. 408 

The RMSD and GAMM analyses in the current study captured formant trajectory information 409 

from a single formant that was selected for each vowel contrast to highlight the predicted variation 410 

in vowel category distance within and across dialects. Despite this similarity, these two analyses 411 

differ in two primary ways. First, RMSDs return a discrete measure of distance, whereas GAMMs 412 

assess difference throughout the formant trajectory. Second, RMSDs return a positive distance 413 

value, which can mask variation in the direction of the formant trajectory difference, whereas 414 

GAMMs assess signed (positive and negative) differences. The former difference in the two 415 

approaches likely explains the significant difference that was observed for the /ɑɹ ɑ/ contrast in the 416 

New England/Northern dataset in the GAMM analysis, but not in the RMSD analysis. The formant 417 

trajectory differences were only significantly different for the two talker dialects in the second half of 418 

the contrast, consistent with the contrast between the presence vs. absence of the following rhotic 419 

for Northern vs. New England talkers, respectively (see Fig. 3c). This difference is captured by the 420 

GAMM analysis, but lost in the RMSD analysis, which returns just a single distance value, collapsed 421 

over time. However, this single distance value makes RMSDs more suitable than GAMMs for 422 

predicting perception because RMSDs can be straightforwardly entered as predictors in statistical 423 

models.  424 

The latter difference between the two approaches likely explains the significant difference that 425 

was observed for the /æ ɛ/ contrast in the Midland/Northern dataset in the GAMM analysis, but 426 
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not in the RMSD analysis. As shown in Fig. 3a, whereas the Midland talkers had a positive formant 427 

trajectory difference for this contrast throughout the entire trajectory, the Northern talkers had a 428 

negative formant trajectory difference in the first half of the contrast and a positive formant 429 

trajectory difference in the second half of the contrast. The overall magnitudes of the formant 430 

trajectory differences were comparable across dialects, so that the absolute, positive distance 431 

measure in the RMSD analysis could not distinguish the two trajectory differences, whereas the 432 

signed differences emerge as significant in the GAMM analysis. Future research exploring the 433 

relationship between these measures and the perception of regional dialects is critical for 434 

understanding the roles of overall formant trajectory distance and the direction and magnitude of 435 

formant trajectory difference in cross-dialect speech processing. 436 

The three analyses that were conducted in this study are a subset of the possible applications of 437 

dynamic distance measures to vowel category distances within and across dialects. First, one formant 438 

was selected for analysis in the RMSD and GAMM analyses, whereas other formants may also 439 

exhibit interesting differences in distance for these vowel contrasts. For example, the analysis of the 440 

/ɑɪ ɑ/ contrast in the Southern/Northern Virginian analysis focused on F2 to capture fronting of 441 

the offglide, but it would also be reasonable to analyze F1 to capture raising of the offglide. Second, 442 

the DTW analysis was based on MFCCs, whereas the RMSD and GAMM analyses were based on 443 

formant estimates. A DTW analysis could also be conducted on the formant trajectories to 444 

disentangle DTW as a distance measure from the information about the spectrum included in the 445 

analysis.2 Finally, several recent studies have used discrete cosine transformations (DCTs) to capture 446 

formant trajectories (e.g., Cox et al., 2024; Elvin et al., 2016). Euclidean distance could be applied to 447 

DCTs to further disentangle the distance measures from the characterization of the spectrum. 448 

In summary, vowel categories are acoustically more similar to one another in some regional 449 

dialects of American English than in others, even in the absence of vowel category mergers (Labov 450 
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et al., 2006). The application of dynamic acoustic distance measures, including DTW, RMSD, and 451 

GAMMs, can capture this variation in vowel category acoustic distance within and across dialects. 452 

The analyses that focused on specific formant trajectory distance (i.e., RMSD, GAMMs) captured 453 

more of these predicted patterns than the analysis that focused on overall acoustic distance (i.e., 454 

DTW), although overall acoustic distance may be a better predictor of perception. Within the 455 

analyses that focused on specific formant trajectory distance, the analysis that focused on formant 456 

trajectory difference (i.e., GAMMs) captured more of these predicted patterns than the analysis that 457 

focused on formant trajectory distance (i.e., RMSD), although RMSD may be more useful for 458 

predicting perception because it returns a discrete distance value for each minimal pair. These 459 

approaches therefore address varying aspects of the nature of dynamic vowel category distance and 460 

may be most useful for distinct kinds of questions. The relationship between these acoustic distance 461 

measures and human perception remains to be explored. 462 
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ENDNOTES 476 

1 Although many of the approaches discussed here are not distance metrics in the mathematical 477 

sense (including dynamic time warping, Pillai scores, and generalized additive mixed models), they 478 

can usefully be applied to questions related to vowel category acoustic distance and so are referred to 479 

here as “distance measures,” as in previous work (e.g., Bartelds et al., 2020; Mielke, 2012). 480 

2 I would like to thank Matthew Kelley for this suggestion. 481 
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