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Abstract. We consider linear combinatorial optimization problems under uncertain dis-
ruptions that increase the cost coefficients of the objective function. A decision maker, or 
planner, can invest resources to probe the components (i.e., the coefficients) in order to 
learn their disruption status. In the proposed probing optimization problem, the planner, 
knowing just the disruptions’ probabilities, selects which components to probe subject to a 
probing budget in a first decision stage. Then, the uncertainty realizes, and the planner 
observes the disruption status of the probed components, after which the planner solves 
the combinatorial problem in the second stage. In contrast to standard two-stage stochastic 
optimization, the planner does not have access to the full uncertainty realization in the sec-
ond stage. Consequently, the planner cannot directly optimize the second-stage objective 
function, which is given by the actual cost after disruptions, and the decisions have to be 
made based on an estimate of the cost. By assuming that the estimate is given by the condi-
tional expected cost given the information revealed by probing, we reformulate the prob-
ing optimization problem as a bilevel problem with multiple followers and propose an 
exact algorithm based on a value function reformulation and three heuristic algorithms. 
We derive theoretical results that bound the value of information and the price of not hav-
ing full information and a bound on the required probing budget that attains the same per-
formance as full information. Our extensive computational experiments suggest that 
probing a fraction of the components is sufficient to yield large improvements in the opti-
mal value, that our exact algorithm is competitive for small- to medium-scale instances, 
and that the proposed heuristics find high-quality solutions in large-scale instances.

History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. 
Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1- 

0236] and the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI 2145553]. 
Supplemental Material: The software that supports the findings of this study is available within the paper 

and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024. 
0629) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/ 
2024.0629). The complete IJOC Software and Data Repository is available at https://informsjoc. 
github.io/. 

Keywords: optimization under uncertainty • bilevel optimization • value of information • integer programming

1. Introduction
We study a class of combinatorial optimization problems for which uncertain disruptions (or failures) can affect 
the objective function coefficients. To describe our problem setting, we first consider the following deterministic 
baseline combinatorial problem:

min
x

X
i∈N

cixi (1a) 

s:t: x ∈ X ⊆ {0, 1}N, (1b) 

where N � {1, : : : , N}, ci denotes the nominal cost corresponding to binary variable xi, and X ≠ ∅ is the set of feasi-
ble solutions.

We consider the case in which uncertain disruptions (failures) affect the cost coefficients component-wise; that 
is, if a disruption impacts component i ∈ N , then its cost is increased from ci to c′i , where c′i > ci. This is a common 
setting in the literature, for example, in shortest path problems, where an arc failure results in an increased travel 
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time (cost), or in a manufacturing setting, where a defective product results in additional cost due to reproces-
sing. The decision maker, or planner, knows that component i is disrupted with probability pi, i ∈ N .

We consider the case in which the uncertainty about the disruptions can be mitigated by investing resources 
into information collection before solving the combinatorial problem. We refer to any such activity to gather 
additional information as probing. Probing a given component confirms whether the component is disrupted. 
Our main focus is to measure the value of information provided by probing.

In the first decision stage of our problem, the planner selects which components to probe subject to a limited 
budget. Then, the uncertainty is realized and the planner observes whether the probed components are dis-
rupted or not. In a second decision stage, the planner solves the combinatorial problem based on the partial 
information collected by the probes. The objective of the planner is to decide which components to probe in order 
to minimize the expected cost.

Having partial, rather than full information, implies that the solution plan in the second stage has to be made 
by estimating any uncertainty that was not revealed by probing. Once a solution plan is executed, the disruptions 
occur (or not) and the decision maker is able to observe the complete realization of the uncertainty and compute 
the actual or true cost for the solution plan selected. Consequently, an optimal solution plan in the second stage 
(obtained based on estimated costs) might not necessarily minimize the actual realization of the costs. Because 
the probing decisions are made in order to minimize actual rather than estimated costs, such a discrepancy 
implies that the probing problem has a two-stage bilevel structure. Specifically, the probing problem can be 
framed as a two-stage stochastic program where the second stage is a bilevel optimization problem. Next, we 
present a formalization of the problem under consideration.

1.1. Problem Statement
Let the occurrence of disruptions be represented by a random vector J � (Ji : i ∈ N ). We assume that the random 
variables Ji are independent, and Ji has a Bernoulli distribution with parameter pi ≥ 0, i ∈ N . That is, Ji takes the 
value of one if a disruption impacts component i and takes the value of zero otherwise, and P[Ji � 1] � pi. We 
denote the realizations of J by ξ ∈ {0, 1}N.

For each component i ∈ N , let zi be the first-stage binary decision variable that takes the value of one if the 
planner decides to probe component i and zero otherwise. If zi � 1 and component i is not disrupted (i.e., if 
ξi � 0), then the cost at i is given by ci. Else, if the planner probes i ∈ N and i is disrupted (i.e., ξi � 1), then the 
cost at i is given by c′i . On the other hand, if the planner does not probe component i ∈ N , then we assume that 
the planner estimates the cost of i to be ci(1� pi) + c′i pi. We define the estimated cost when the planner selects a 
probing plan z, if scenario ξ happens, and if the solution plan x ∈ X is executed, by

Ĉ(z,ξ, x) � X
i∈N :zi�1

[ci(1� ξi)xi + c′iξixi] +
X

i∈N :zi�0

[ci(1� pi)xi + c′i pixi]

�
X
i∈N

[ci((1� ξi)zi + (1� pi)(1� zi))xi + c′i (ξizi + pi(1� zi))xi]: (2) 

It can be shown that the estimate defined in (2) is precisely the conditional expected value of the cost given that 
the planner selects x ∈ X and that Ji � ξi for all i with zi � 1 (see Appendix A).

After a solution plan x ∈ X is executed from the estimated cost, the planner observes the actual cost C(ξ, x), cor-
responding to the realization of scenario ξ ∈ Ξ, which is given by

C(ξ, x) �
X
i∈N

[ci(1� ξi)xi + c′iξixi]: (3) 

Observe that the estimated cost function Ĉ(z,ξ, x) depends on vector ξ; however, it only observes the ξi compo-
nents for which zi � 1, that is, the occurrence or absence of disruptions for the components that are probed. On 
the other hand, the actual cost function C(ξ, x) is independent of the probing plan, because once the solution is 
executed, the disruptions occur (or not) according to the realized scenario.

As an illustration, consider a planner seeking to solve a shortest path problem from node 1 to node 3 in the 
graph of Figure 1, where costs ci and c′i are displayed alongside the arcs. Consider that the set of arcs is ordered 
as {(1, 2), (1, 3), (2, 3)} and that the disruption probability is pi � 1=2 for each arc i � 1, 2, 3. Suppose the planner 
probes arc (1,3), that is, z � (0, 1, 0), and that scenario ξ � (0, 1, 0) realizes, which means that arc (1,3) is disrupted, 
whereas arcs (1,2) and (2,3) are not disrupted. In this case the planner estimates the costs of the arcs not probed 
(1,2) and (2,3) to be 2 and 3, respectively. On the other hand, the cost estimate for arc (1,3) is 10, because (1,3) is 
being probed, and in the realized scenario, a disruption is observed. If the solution plan is to use the path 1-2-3, 
that is, x � (1, 0, 1), then the estimated cost Ĉ(z,ξ, x) in this scenario is five, whereas the actual cost C(x,ξ) is three, 
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as in scenario ξ � (0, 1, 0) arcs (1,2) and (2,3) are not disrupted. Alternatively, if the solution plan is to use path 
1-3, that is, x′ � (0, 1, 0), then for this scenario, the estimated and actual costs are both equal to 10 (for solution 
plan x′).

1.2. Mathematical Formulation
Let B, 0 ≤ B ≤ N, be the available budget for probing in the first stage. We formulate the probing problem as a 
two-stage stochastic problem of the form

ΓB :� min
z

[F (z, J)] (4a) 

s:t:
X
i∈N

zi ≤ B, (4b) 

z ∈ {0, 1}N, (4c) 

where

[F (z, J)] �X
ξ∈Ξ
πξF (z,ξ): (5) 

In Equation (5), πξ is the probability of scenario ξ, which can be computed from the disruption probabilities pi, 
i ∈ N , by

πξ �
Y

i∈N ,ξi�1

pi

Y
i∈N ,ξi�0

(1� pi) ξ ∈ Ξ: (6) 

For each scenario ξ ∈ Ξ, the function F (z,ξ) in (5) is the actual cost incurred by the planner if the probing deci-
sions are given by z and the realized scenario is ξ:

F (z,ξ) � min
x

{C(ξ, x) : x ∈ arg min
x′

{Ĉ(z,ξ, x′) : x′ ∈ X}}, (7) 

where the outer “min” in (7) breaks ties in case that there are several solution plans x that minimize the estimated 
cost Ĉ.

The first-stage problem decides the probing plan z with the objective of minimizing the expected actual cost 
(4a), which is computed by solving the second-stage problem. In the second stage (7), for a given probing plan z 
and a realization of the uncertainty, the planner first selects a solution plan that minimizes the estimated cost 
and then computes the actual cost after executing the selected solution plan. In contrast to standard two-stage 
stochastic problems in which the second stage solves a single-level problem for each realization of the uncer-
tainty, our second-stage problem is defined by “argmin” constraints resulting in a bilevel structure.

Observe that Γ0 corresponds to the expected actual cost associated with a limited information (LI) approach, in 
which the planner is not able to perform any probing. In contrast, ΓN is the expected actual cost under a full infor-
mation (FI) approach, in which the planner is able to completely remove the uncertainty from the problem. For 
any B, we refer to Γ0 � ΓB as the value of information associated with having B probes, whereas ΓB � ΓN is referred 
as the price of not having full information associated with having B probes. The value of information measures the 
largest possible expected cost savings associated with being able to probe B components. The price of not having 
full information measures the largest possible expected cost incurred due to probing only B components.

We remark that our modeling framework can be easily extended to accommodate multiple variations of the 
problem such as the case in which probing costs are item dependent, that is, replacing cardinality Constraint (4b) 

Figure 1. Shortest Path Example 

Note. Over each arc, we denote the costs by ci, c′i .
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by a knapsack constraint, or the case in which there are additional constraints on the probing plans, that is, con-
sidering that z ∈ Z ⊂ {0, 1}N, or the case in which instead of having a probing budget, the decision maker seeks to 
balance between a here-and-now probing cost and a wait-and-see expected second-stage costs.

1.3. Statement of Contribution
The main contributions of this work are as follows. We propose a special class of two-stage stochastic programs 
for combinatorial problems under uncertainty that can quantify the value of knowing with certainty whether dis-
ruptions impact a subset of the components of the cost function. We reformulate the two-stage stochastic prob-
lem as a bilevel problem with multiple followers and solve the problem using exact solution methods as well as 
heuristic approaches.

We derive upper and lower bounds on the value of information and the price of not having full information. 
The first of these bounds does not depend on B, whereas the second one does. These results suggests that there 
are instances where the value of information is independent on the number of probes, and that there are 
instances where optimally placed probes always reveal at least some information about the remaining uncer-
tainty. We also derive an upper bound on the minimum value of B for which ΓB � ΓN, that is, the minimum bud-
get needed to obtain the same objective value as under full information.

In addition, we conduct computational experiments on two problem settings: a project selection problem, 
which is modeled as a knapsack problem, and a routing under uncertainty problem, which is modeled as a short-
est path problem. Our computational results show that 

1. Having full information often results in a considerable improvement to the optimal value.
2. Probing a small subset of the components can yield large improvements to the optimal value and in many 

cases get close to the value obtained under full information.
3. Our proposed upper bound on the value of B for which ΓB � ΓN, shows that often probing roughly less than 

40% of the components is enough to achieve the same performance as having full information for the routing prob-
lem and probing less than 65% of the components is to enough match the performance of full information for the 
project selection problem.

4. Our exact solution approach for the bilevel problem with multiple followers is able to solve medium-sized 
problem instances for both problem settings, and the computational effort is highly dependent on the number of 
scenarios.

5. Our proposed heuristics are able to consistently find high-quality solutions for large problem instances for 
both problem settings considered and with up to 500 scenarios.

To the best of our knowledge, our bilevel formulation is the first one to provide optimal probing plans (as 
opposed to approximation algorithms) for these type of information discovery problems over independent 
uncertain events, as well as the first one to conduct an extensive computational study regarding the value of 
information for the two problem settings selected.

2. Literature Review
Our work is related to previous work in probing problems, stochastic programming, and bilevel optimization. 
Regarding using probing to reduce uncertainty, Gupta et al. (2016) consider a probing setting with unlimited 
budget for combinatorial problems. In their model, only “items” probed in the first stage can be included in the 
objective function of the second stage. The authors propose an approximation algorithm and focus on bounding 
an “adaptivity gap” between optimal online and offline policies. Similar models are studied by Gupta and 
Nagarajan (2013) and Adamczyk et al. (2016), who also propose approximation algorithms. Guha and Munagala 
(2012), and particularly, Goel et al. (2010), consider a probing setting that is closer to what we do in this paper. 
The main differences is that their focus is on developing approximation algorithms. They show that for specific 
combinatorial problems there is a constant-factor approximation algorithm (based on solving the “outlier 
problem”) for both the online and offline versions of the problem. We note, however, that the complexity of the 
algorithm depends on the computational complexity of the outlier problem. This complexity, in turn, is problem 
dependent, thus constant-factor approximations might not be available to all problems. More general probing 
problems with a similar approach to Goel et al. (2010) have also been considered in the two-stage stochastic pro-
gramming literature. These problems are, as we do in this paper, formulated as two-stage stochastic problems. 
Their focus is, however, on the statistical and mathematical properties of the model (Artstein and Wets 1993; Art-
stein 1994, 1999).

Our work can be considered to be related to stochastic optimization problems with decision-dependent uncer-
tainty (Jonsbråten et al. 1998, Goel and Grossmann 2004, Hellemo et al. 2018), because by probing, the planner 

Lozano and Borrero: Combinatorial Problems with Disruptions and Probing 
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

60
7:

fe
50

:0
:6

10
0:

3c
9b

:6
7c

1:
1c

6c
:5

84
4]

 o
n 

19
 D

ec
em

be
r 2

02
4,

 a
t 0

6:
46

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

updates the probability distribution in the second stage. The main differences of these models with our work is 
that not all uncertainty is revealed in the second stage and that the actual distribution used in the first stage 
remains independent of the probing decisions. These properties imply that standard stochastic optimization pro-
blems with decision-dependent uncertainty do not require a bilevel structure, as we do in this case.

The second-stage problem in our setting is a bilevel programs with integer requirements at both levels (Gümüş 
and Floudas 2005, DeNegre and Ralphs 2009, Fischetti et al. 2017, Lozano and Smith 2017b, Tahernejad et al. 
2020). This class of problems is Σ

p
2-hard (Caprara et al. 2013) and is normally solved by branch-and-cut methods 

or iterative decomposition algorithms (Kleinert et al. 2021). Standard bilevel problems with integer requirements 
at both levels are typically deterministic, and stochastic versions are analogous to two-stage stochastic integer 
problems (Cormican et al. 1998, Janjarassuk and Linderoth 2008, Beck et al. 2023). On the other hand, two-stage 
stochastic problems where the second-stage problem is a bilevel integer program (similar to what we consider in 
this paper) have been studied rather scarcely in the literature (Alizadeh et al. 2013, Özaltin et al. 2018).

3. Exact Solution Approach
We first reformulate our problem as a bilevel problem with multiple followers and analyze two limiting cases. 
We then propose exact solution approaches to solve the proposed reformulation.

3.1. Bilevel Reformulation of Problem (4)
A standard approach to solve two-stage stochastic programs is to use a deterministic equivalent monolithic for-
mulation, in which the expectation is represented by a weighted sum over all possible scenarios and copies of 
the second-stage variables are introduced for each scenario. We generate such monolithic formulation for Prob-
lem (4) as follows. For scenario ξ ∈ Ξ, let xξ ∈ X be the solution plan under scenario ξ and let all solution plans be 
represented by xΞ � {xξ}ξ∈Ξ; that is, xξ is an optimal solution to the inner problem in (7). Then

ΓB � min
z,xΞ

X
ξ∈Ξ
πξ
X
i∈N

[ci(1� ξi)xξi + c′iξix
ξ
i ] (8a) 

s:t:
X
i∈N

zi ≤ B, (8b) 

xξ ∈ arg min
x

(X
i∈N

[ci((1� ξi)zi + (1� pi)(1� zi))xi

+ c′i (ξizi + pi(1� zi))xi] : x ∈ X

)
∀ξ ∈ Ξ, (8c) 

z ∈ {0, 1}N: (8d) 

Formulation (8) describes a bilevel problem with multiple followers (one per scenario) under the so-called opti-
mistic assumption (Dempe 2002); that is, it breaks possible ties in the arg min by selecting the second-stage solu-
tion plans that minimize the objective function in (8a). The probing stage corresponds to the leader’s problem, 
whereas the original combinatorial problem corresponds to the follower’s problem. The objective is to minimize 
the expected actual cost while ensuring that the second-stage solutions minimize the estimated cost for each 
scenario.

We first analyze the two limiting cases of Problem (8) that can be readily solved as single-stage problems. For 
the first limiting case, suppose that there is no probing budget, that is, B � 0, which implies that zi � 0 for all 
i ∈ N . In this case, the estimated cost function Ĉ simplifies to

Ĉ(z,ξ, x) �
X
i∈N

[ci(1� pi)xi + c′i pixi] (9) 

and evaluates to the same value under all scenarios for a given x-solution. As a result, optimal solution plans for 
all scenarios coincide, and all constraints in (8c) can be replaced by the single constraint

x ∈ arg min
x′

X
i∈N

[ci(1� pi)x′i + c′i pix
′
i ] : x′ ∈ X

( )
: (10) 
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On the other hand, because we select a single solution plan x for all the scenarios, the objective function of (8) 
simplifies to

X
ξ∈Ξ
πξ
X
i∈N

[ci(1 � ξi)xi + c′iξixi] �
X
i∈N

X
ξ∈Ξ:ξi�0

cixi +
X
ξ∈Ξ:ξi�1

c′i xi

 !
(11a) 

�
X
i∈N

[ci(1 � pi)xi + c′i pixi], (11b) 

that is, the leader’s Objective (8a) of minimizing the expected actual cost coincides with the follower’s Objective 
(10) of minimizing the estimated cost. As a result, if there is no probing (B � 0), then the two-stage problem (8) 
simplifies to

Γ0 � min
X
i∈N

[ci(1 � pi)xi + c′i pixi] : x ∈ X

( )
, (12) 

which is a single-stage combinatorial problem where an optimal solution plan is selected entirely based on the 
estimated probabilities pi, i ∈ N . An alternative interpretation of (12) is that, in the absence of probing, both the 
actual cost and estimated cost functions simplify to a naive expected cost function based on the probabilities pi.

For the second limiting case, consider that all nodes can be probed, that is, B � N. We have that zi � 1 for all 
i ∈ N, and the estimated cost becomes

Ĉ(z,ξ, x) �X
i∈N

[ci(1� ξi)xi + c′iξxi]: (13) 

In other words, the estimated cost for each scenario is equal to the actual cost because there is full information, 
and it is readily seen that Problem (8) becomes the single-stage problem

ΓN � min
X
ξ∈Ξ
πξ
X
i∈N

[ci(1 � ξi)xξi + c′iξx
ξ
i ] : xξ ∈ X ∀ξ ∈ Ξ

( )
: (14) 

Moreover, as in (14), there are no coupling requirements between solution plans xξ, and we have that

ΓN �X
ξ∈Ξ
πξmin

X
i∈N

[ci(1� ξi)xξi + c′iξx
ξ
i ] : xξ ∈ X

( )
: (15) 

As a result, ΓN can be computed by decomposing Problem (14) and solving |Ξ | single-stage combinatorial pro-
blems independently (and potentially in parallel).

3.2. Value Function Approach
One of the major challenges in solving discrete bilevel problems is the construction of valid relaxations. A com-
mon relaxation from the bilevel literature is known as the high-point relaxation, which is obtained by dropping the 
requirement of optimality in the lower-level problem enforced by Constraints (8c). After removing these con-
straints in Problem (8), the probing variables become irrelevant because they do not appear in the objective func-
tion, and the high-point relaxation reduces to

ΓH �X
ξ∈Ξ
πξmin

X
i∈N

[ci(1 � ξi)xξi + c′iξx
ξ
i ] : xξ ∈ X

( )
� ΓN, (16) 

that is, the high-point relaxation is precisely the full information problem ΓN (see Equation (15)), which generally 
yields weak lower bounds on the optimal value.

Value function approaches have been successfully used in the literature for bilevel problems with one follower 
(Mitsos 2010, Lozano and Smith 2017b). For our multifollower problem, observe that Formulation (8) can be 
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equivalently posed as

ΓB � min
X
ξ∈Ξ
πξ
X
i∈N

[ci(1 � ξi)xξi + c′iξx
ξ
i ] (17a) 

s:t:
X
i∈N

zi ≤ B, (17b) 

X
i∈N

[ci((1 � ξi)zi + (1 � pi)(1 � zi))xξi + c′i (ξizi + pi(1 � zi))xξi ]

≤ X
i∈N

[ci((1 � ξi)zi + (1 � pi)(1 � zi))xi + c′i (ξizi + pi(1 � zi))xi] ∀x ∈ X , ∀ξ ∈ Ξ, (17c) 

z ∈ {0, 1}N; xξ ∈ X ∀ξ ∈ Ξ, (17d) 

which is a single-level nonlinear binary optimization problem with potentially exponentially many constraints. 
Observe that the nonlinearities are products between binary variables (zix

ξ
i ), which we linearize by introducing 

one auxiliary binary variable wξi per quadratic term and including standard McCormick envelopes (McCormick 
1976), given by

wξi ≤ zi, (18a) 

wξi ≤ xξi , (18b) 

wξi ≥ zi + xξi � 1, (18c) 

for any i ∈ N and ξ ∈ Ξ.
We define a relaxed value function problem (RVF) by considering a subset of second-stage solution plans 

X̂ ⊆ X . Formally, RFV(X̂ ) is defined as (17), except that X is replaced by X̂ in (17c). Let ΓB(X̂ ) be the optimal 

objective function value of RFV(X̂ ) and note that for any X̂ ⊆ X , it holds that ΓB(X̂ ) ≤ ΓB.
We propose a cutting-plane algorithm that iteratively explores second-stage solution plans and adds them to 

X̂ . Solving RFV(X̂ ) for each X̂ provides a sequence of nondecreasing lower bounds on ΓB. Upper bounds are 
obtained by considering fixed probing plans (obtained by solving RFV(X̂ )) and then solving the single-level com-
binatorial problems corresponding to each scenario for the fixed probing plan considered. Algorithm 1 forma-
lizes our proposed cutting-plane approach. Line 1 initializes the lower and upper bounds, sets X̂ � ∅, and creates 
a trivial probing plan z � 0. Line 2 computes a lower bound by solving RVF for the solution plans obtained thus 
far in set X̂ . Line 3 solves the combinatorial problem to minimize the estimated cost for the probing plan ẑ found 
in Line 2. Line 4 computes the expected actual cost and updates the upper bound if necessary. Line 5 stops the 
execution of the algorithm if the lower bound is equal to the upper bound. Otherwise, it updates the set of 
second-stage solution plans by adding all the solution plans discovered in Line 3 and goes back to Line 2 to con-
tinue with the cut-generation algorithm.

Algorithm 1 (Cutting-Plane Algorithm) 
1: Set LB ��∞, UB �∞, X̂ � ∅, and incumbent probing plan z � 0.
2: Solve RFV(X̂ ). Set LB � ΓB(X̂ ) and record the optimal probing plan found ẑ.
3: For each scenario ξ ∈ Ξ, solve lower-level problem min{Ĉ(ẑ,ξ, x) : x ∈ X} and record the optimal solution 

plans found x̂ξ.
4: If 

P
ξ∈ΞπξC(ξ, x̂ξ) < UB, then update UB �Pξ∈ΞπξC(ξ, x̂ξ) and z � ẑ.

5: If LB � UB, terminate with an optimal probing plan given by z. Otherwise, update X̂ :� X̂ ∪ {∪ξ∈Ξx̂ξ} and 
return to Line 2.

Algorithm 1 terminates finitely with an optimal probing plan because the set of all possible second-stage solu-
tion plans X is finite. Note that all the problems solved are feasible (setting all the variables to zero gives a trivial 
feasible solution) and bounded (all the variables are binary), and as a result, there is no need to check for 
unboundedness or feasibility. On the other hand, because of the optimistic assumption that the follower breaks 
ties among alternative optimal solution plans by selecting the one that minimizes the leader’s objective, we need 
to be careful when recording an optimal solution plan x̂ξ at Line 3 to account for the case in which there exist 
alternative optimal x-solutions (see Appendix B). To the best of our knowledge, Algorithm 1 is among the first 
exact approaches for discrete bilevel problems with multiple followers, although it can be seen as a rather 
straight forward extension of existing approaches for single-follower settings (Mitsos 2010, Lozano and Smith 
2017b).
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The major computational challenge for Algorithm 1 is solving RFV(X̂ ), because on the one hand enforcing xξ ∈
X requires making copies of all the constraints needed to describe X for each scenario. On the other hand, the 
number of additional variables and constraints needed to linearize the quadratic terms also grows as function of 
the number of scenarios. As a result, as the number of scenarios grows, RFV(X̂ ) becomes prohibitively large and 
considerably challenging to solve. In contrast, the lower-level problems solved at Step 3 are as difficult as the 
original combinatorial problem. In our computations this amounts to solving a shortest path problem or a knap-
sack problem per scenario. Moreover, these problems could be solved independently, which could allow for effi-
cient multithread implementations.

4. Theoretical Bounds on the Performance of Probing
In this section, we derive theoretical bounds on the difference of objective value that can be attained with more 
probing resources (Section 4.1). We also provide a scheme to find an upper bound on the budget B∗ that is 
required to attain the same performance as full information, that is, to attain that ΓB∗ � ΓN (Section 4.2). The qual-
ity of some of these bounds are evaluated empirically in Section 6.3.

4.1. Bounds on the Value of Information and on the Price of Not Having Full Information
We derive bounds on the value of information Γ0 � ΓB and on the price of not having full information ΓB � ΓN. 
We first provide results for the effect of additional probing on the optimal estimated cost for a given scenario 
and then construct bounds for the value of probing in terms of the expected actual cost.

For any given subset of components P ⊆ N and any scenario ξ ∈ Ξ, let φξP be the optimal estimated cost for sce-
nario ξwhen the components in P are probed. That is,

φξP � min
X
i∈P

[ci(1� ξi) + c′iξi]xi +
X

i∈N \P
[ci(1� pi) + c′i pi]xi : x ∈ X

8<
:

9=
;: (19) 

Let xξ,P be an optimal solution plan associated with φξP . Lemma 1 presents upper and lower bounds on the dif-
ference in optimal estimated cost for two nested probing plans, that is, two plans such that one probes a subset 
of the components probed by the other plan.

Lemma 1. Let ξ ∈ Ξ and Q ⊆ P ⊆ N be given. ThenX
i∈P\Q

(c′i � ci)(pi � ξi)xξ,Qi ≤ φξQ �φξP ≤
X

i∈P\Q
(c′i � ci)(pi � ξi)xξ,Pi : (20) 

Proof. For convenience, let us denote

Cξi � ci(1 � ξi) + c′iξi i ∈ N , ξ ∈ Ξ and Ĉi � ci(1 � pi) + c′i pi i ∈ N , 

then φξQ �Pi∈QCξi xξ,Qi +Pi∈N \QĈix
ξ,Q
i . We have that

φξQ �X
i∈Q

Cξi xξ,Qi + X
i∈N \Q

Ĉix
ξ,Q
i (21a) 

≤ X
i∈Q

Cξi xξ,Pi + X
i∈N \Q

Ĉix
ξ,P
i (21b) 

�X
i∈P

Cξi xξ,Pi + X
i∈N \Q

Ĉix
ξ,P
i �

X
i∈P\Q

Cξi xξ,Pi (21c) 

�X
i∈P

Cξi xξ,Pi + X
i∈N \P

Ĉix
ξ,P
i + X

i∈P\Q
Ĉix

ξ,P
i �

X
i∈P\Q

Cξi xξ,Pi (21d) 

� φξP + X
i∈P\Q

(c′i � ci)(pi � ξi)xξ,Pi , (21e) 

where the second line follows from the optimality of xξ,Q, the third by rearranging the terms, and the last one 
from the definition of φξP . By doing similar steps, starting from φξP rather than φξQ, it can be shown that 
φξP ≤ φξQ +Pi∈P\Q(c′i � ci)(ξi � pi)xξ,Qi . The combination of both inequalities gives the result. w
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Now we turn our attention to the effects of probing on the expected actual cost. For a given P ⊂ N , let γ(P) be 
the expected actual cost corresponding to nodes in P being probed; that is, γ(P) is the objective function in (8) 
for the probing plan zi � 1 for any i ∈ P and zi � 0 i P. From the definition of xξ,P and Constraint (8c), it follows 
that

γ(P) �
X
ξ∈Ξ
πξ
X
i∈N

[ci(1� ξi) + c′iξi]xξ,Pi : (22) 

Note that the relationship between γ(P) and ΓB is given by

ΓB � min{γ(P) : |P | � B,P ⊆ N }: (23) 

Theorem 1 presents upper and lower bounds for the change in optimal expected actual cost corresponding to 
two nested probing plans.

Theorem 1. Let Q ⊆ P ⊆ N be given. Then,

X
ξ∈Ξ
πξ

X
i∈N \P

(c′i � ci)(pi � ξi)(xξ,Pi � xξ,Qi )
2
4

3
5 ≤ γ(Q)� γ(P)

≤
X
ξ∈Ξ
πξ

X
i∈N \Q

(c′i � ci)(pi � ξi)(xξ,Pi � xξ,Qi )
2
4

3
5:

(24) 

Proof. Note that X
i∈N

Cξi xξ, Pi �X
i∈P

Cξi xξ, Pi + X
i∈N \P

Ĉix
ξ, P
i + X

i∈N \P
(Cξi � Ĉi)xξ, Pi (25a) 

� φξP + X
i∈N \P

(c′i � ci)(ξi � pi)xξ, Pi : (25b) 

Therefore,

γ(P) �X
ξ∈Ξ
πξ φξP + X

i∈N \P
(c′i � ci)(ξi � pi)xξ, Pi

0
@

1
A: (26) 

Because an analogous result holds for Q, we conclude that

γ(Q)� γ(P) �
X
ξ∈Ξ
πξ φξQ �φξP +

X
i∈N \Q

(c′i � ci)(ξi � pi)xξ,Qi �
X

i∈N \P
(c′i � ci)(ξi � pi)xξ,Pi

0
@

1
A (27a) 

≤
X
ξ∈Ξ
πξ

X
i∈P\Q

(c′i � ci)(pi � ξi)xξ,Pi +
X

i∈N \Q
(c′i � ci)(ξi � pi)xξ,Qi �

X
i∈N \P

(c′i � ci)(ξi � pi)xξ,Pi

0
@

1
A (27b) 

≤
X
ξ∈Ξ
πξ

X
i∈N \Q

(c′i � ci)(ξi � pi)xξ,Qi �
X

i∈N \Q
(c′i � ci)(ξi � pi)xξ,Pi

0
@

1
A, (27c) 

where (27b) follows from the upper bound in Lemma 1, and thus the upper bound in (24) follows. The lower 
bound in (24) follows from a similar procedure, using the lower bound in Lemma 1. w

Theorem 1 can be used to provide nontrivial bounds on ΓB � ΓB′ for any B′ > B ≥ 0. These bounds, however, 
require knowing in advance optimal solution plans to the second-stage problem. Corollary 1, shown next, 
removes some of these limitations and provides upper bounds that only depend on the cost coefficients and on 
the optimal probing plan associated with the smaller subset of components.

Corollary 1. Let Q ⊆ P ⊆ N be given. Then,

γ(Q)� γ(P) ≤ 2
X

i∈N \Q
(c′i � ci)pi(1� pi): (28) 

Lozano and Borrero: Combinatorial Problems with Disruptions and Probing 
INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2024 INFORMS 9 

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

60
7:

fe
50

:0
:6

10
0:

3c
9b

:6
7c

1:
1c

6c
:5

84
4]

 o
n 

19
 D

ec
em

be
r 2

02
4,

 a
t 0

6:
46

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

Moreover,
γ(∅)� γ(P) ≤

X
i∈N

(c′i � ci)pi(1 � pi): (29) 

In particular,

γ(Q)� γ(P) ≤ 1

2

X
i∈N \Q

(c′i � ci), (30) 

and

γ(∅)� γ(P) ≤ 1

4

X
i∈N

(c′i � ci): (31) 

Proof. By Theorem 1, we have that

γ(Q)� γ(P) ≤
X
ξ∈Ξ
πξ

X
i∈N \Q

(c′i � ci)(pi � ξi)(xξ, Pi � xξ, Qi )
2
4

3
5 (32a) 

� X
i∈N \Q

(c′i � ci)
X
ξ∈Ξ
πξ(pi � ξi)(xξ, Pi � xξ, Qi ) (32b) 

� X
i∈N \Q

(c′i � ci)
X

ξ∈Ξ,ξi�0

πξ(pi � ξi)(xξ, Pi � xξ, Qi ) + X
ξ∈Ξ, ξi�1

πξ(ξi � pi)(xξ, Qi � xξ, Pi )
" #

: (32c) 

Fix i ∈ N and note thatX
ξ∈Ξ,ξi�0

πξ(pi � ξi)(xξ,Pi � xξ,Qi ) � X
ξ∈Ξ,ξi�0

πξpi(xξ,Pi � xξ,Qi ) (33) 

≤ X
ξ∈Ξ,ξi�0

πξpi (34) 

≤ pi(1� pi), (35) 

where the first inequality follows because πξpi ≥ 0 and xξ,Pi � xξ,Qi ≤ 1 and the final inequality because P
ξ∈Ξ,ξi�0π

ξ � 1� pi. Analogously,X
ξ∈Ξ,ξi�1

πξ(ξi � pi)(xξ,Qi � xξ,Pi ) �
X

ξ∈Ξ,ξi�1

πξ(1� pi)(xξ,Qi � xξ,Pi ) (36) 

≤ X
ξ∈Ξ,ξi�1

πξ(1� pi) (37) 

≤ (1� pi)pi: (38) 

Thus, it can be concluded that
γ(Q)� γ(P) ≤

X
i∈N \Q

2(c′i � ci)pi(1 � pi):

The final inequality follows because pi(1� pi) ≤ 1=4 as pi ∈ [0, 1] for all i ∈ N .
Now, suppose Q � ∅. In this case, optimal solution plan xξ,∅ do not depend on ξ, and therefore xξ,∅ � x0 for all 

ξ ∈ Ξ. In this case, Equation (32c) becomes

γ(∅)� γ(P) ≤
X
i∈N

(c′i � ci)
X

ξ∈Ξ,ξi�0

πξpi(xξ,Pi � x0
i ) +

X
ξ∈Ξ,ξi�1

πξ(1� pi)(x0
i � xξ,Pi )

" #
(39) 

≤
X
i∈N

(c′i � ci)
X

ξ∈Ξ,ξi�0

πξpix
ξ,P
i �

X
ξ∈Ξ,ξi�1

πξ(1� pi)xξ,Pi � pi(1� pi)x0
i + pi(1� pi)x0

i

" #
(40) 

≤ X
i∈N

(c′i � ci)
X

ξ∈Ξ,ξi�0

πξpix
ξ,P
i �

X
ξ∈Ξ,ξi�1

πξ(1� pi)xξ,Pi

" #
(41) 

≤ X
i∈N

(c′i � ci)pi(1� pi), (42) 

where the last inequality follows as 0 ≤ xξ,Pi ≤ 1 for all ξ ∈ Ξ. w

Lozano and Borrero: Combinatorial Problems with Disruptions and Probing 
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

60
7:

fe
50

:0
:6

10
0:

3c
9b

:6
7c

1:
1c

6c
:5

84
4]

 o
n 

19
 D

ec
em

be
r 2

02
4,

 a
t 0

6:
46

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

Let B ⊆ N denote the components probed in an optimal probing plan associated with ΓB. Corollary 1 implies 
that the value of information, Γ0 � ΓB, is upper bounded by

Γ0 � ΓB ≤
X
i∈N

(c′i � ci)pi(1� pi) ≤ 1

4

X
i∈N

(c′i � ci), (43) 

for any 1 ≤ B ≤ N. Similarly, for the price of not having full information, ΓB � ΓN, we have

ΓB � ΓN ≤ 2
X

i∈N \B
(c′i � ci)pi(1� pi) ≤ 1

2

X
i∈N \B

(c′i � ci): (44) 

Observe that there is a remarkable asymmetry in these bounds. On the one hand, the bound on the value of infor-
mation does not depend on the number of components that are probed, whereas the bound on the price of not 
having full information does. The bound on the value of information might be explained from the observation 
that, in general, one might gather all the relevant uncertain information of the system by just probing one compo-
nent (see, for example, Remark 1). The bound for the price of not having full information might be interpreted as 
implying that there exist instances where optimally placed probes always reveal at least some information about 
the remaining uncertainty. Next, we provide an example showing that these bounds are tight.

Remark 1. Consider the shortest path problem in Figure 2 with source node 1 and sink node 3 with ε > 0 arbitrary, where 
over each arc we display the costs ci and c′i . On each arc, there is a failure with probability 1/2. If there is no probing 
resources available, that is, if B � 0, then the estimate for both paths is the same (both are estimated to be one), and both have 
the same actual expected cost of one; therefore, Γ0 � 1. Now consider B � 1 and that arc (1, 3) is probed. Then, in all scenar-
ios ξ with ξ(1, 3) � 0, the optimal path is 1-3, with a cost 1� ε. By contrast, in all scenarios ξ with ξ(1, 3) � 1, the optimal 
path is 1-2-3, with a cost of 1. The actual expected cost in this case would be 1=2 × (1� ε) + 1=2 × (1) � 1� ε=2: Moreover, 
it can be verified that if B � 1 then probing (1, 3) is optimal; therefore, Γ1 � 1� ε=2 and Γ0 � Γ1 � ε=2. Evaluating the 
upper bound proposed, we get that 

P
i∈N (c′i � ci)=4 � ε=2, which is exactly the same as Γ0 � Γ1, and thus the upper bound 

in Corollary 1, particularly Equation (43), is tight.
Note, moreover, that this example also shows that the bound in (44) is tight. Observe that if the planner has full informa-

tion, that is, B � 3, then the solution is identical as with the case with B � 1. Therefore, Γ3 � 1� ε=2 and Γ1 � Γ3 � 0. In 
this case, B � {(1, 3)} and thus 

P
i∈N \B(c′i � ci) � (1=2� 1=2) + (1=2� 1=2) � 0. Therefore, the right-hand side of (44) is 

also zero, and thus the bound in (44) is tight.

4.2. Upper Bound on Probing Budget
Next, we derive a bound on the amount of budget needed to achieve the same objective value as when solving 
the problem under perfect information. Formally, we are interested in finding the minimum budget value B∗
such that ΓB∗ � ΓN. The problem of finding B∗ is at least as challenging as solving the original problem because 
for any candidate budget value B′, we must solve the original problem to optimality in order to obtain ΓB′ . As a 
result, we propose a simpler approach to obtain an upper bound on B∗ described in Algorithm 2.

Line 1 starts the procedure by solving the problem under perfect information and recording the optimal solu-
tion plans found for each scenario denoted by x̂ξ. The intuition behind our proposed approach is that a probing 
plan that probes all the components i ∈ N for which at least one solution plan x̂ξi � 1 is likely to achieve an 

Figure 2. Another Shortest Path Example 

Note. Over each arc we denote the costs by ci, c′i .
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objective value close to ΓN. For this reason, Line 1 defines set Q to contain all the components described above. 
Line 2 sets a probing plan ẑ to probe all the components included in set Q and solves the follower problems of 
minimizing the estimated cost for each scenario. Line 3 checks if, for each scenario, the optimal estimated cost 
obtained is equal to the estimated cost function evaluated at x̂ξ. If this is the case, then probing plan ẑ achieves 
an objective function equal to ΓN because each x̂ξ is an alternative optimal solution plan to the follower problem 
of minimizing the estimated cost and B̂ � |Q | establishes an upper bound on B∗. Otherwise, there must exist at 
least one scenario ξ ∈ Ξ and one component j ∈ N \Q for which the solution plan that minimizes the estimated 
cost function does not match x̂ξj . Line 4 identifies this component, adds it to set Q, and returns to Line 2 to update 
the probing plan and continue executing the algorithm.

Algorithm 2 (Budget Upper Bound Algorithm) 
1: Solve the limiting case in which B � N and record the optimal solution plans found for each scenario x̂ξ. 

Define set Q � {i ∈ N : ∃ξ such that x̂ξi � 1}.
2: Set probing plan ẑi � 1 for all i ∈ Q and ẑi � 0 otherwise. For each scenario ξ ∈ Ξ, solve lower-level problem 

min{Ĉ(ẑ,ξ, x) : x ∈ X} and record the optimal solution plans found x̃ξ.
3: If Ĉ(ẑ,ξ, x̃ξ) � Ĉ(ẑ,ξ, x̂ξ) for all ξ ∈ Ξ, then go to Line 5. Otherwise, go to Line 4.
4: Identify a component j ∈ N \Q for which x̃ξj ≠ x̂ξj for some ξ ∈ Ξ. Update set Q :� Q ∪ {j} and return to Line 2.
5: Terminate with an upper bound on B∗ given by B̂ � |Q | .
The algorithm terminates in a finite number of steps because in the worst case it obtains Q � N and returns the 

trivial bound B̂ � N.

5. Heuristic Approaches
We propose three heuristic solution approaches for the problem. Our first heuristic is a simple randomized 
greedy constructive approach that prioritizes probing components with low nominal cost coefficients. Algorithm 
3 describes our proposed heuristic approach.

Algorithm 3 (Randomized Greedy Heuristic) 
1: Sort the components i ∈ N according to their nominal cost coefficients in a nondecreasing fashion. Let π be 

the ordering of the components, where πk denotes the index for the kth component in ordering π.
2: For k � 1, : : : , N set probing plan ẑπk

� 1 with probability λ. Stop once B components have been selected or 
when k � N.

3: For each scenario ξ ∈ Ξ, solve lower-level problem min{Ĉ(ẑ,ξ, x) : x ∈ X} and record the optimal solution 
plans found x̂ξ. Store the objective value given by 

P
ξ∈ΞπξC(ξ, x̂ξ).

4: Repeat Lines 2 and 3 for a given number of iterations. Return the best probing plan found.

Line 2 introduces randomization, depending on the parameter λ ∈ [0, 1], in order to add diversity to the pool 
of probing plans explored. We consider this first approach as the most naive way in which a practitioner could 
quickly obtain probing plans for their problem. Thus, we use this heuristic as a baseline to measure the perfor-
mance of our more advanced heuristic approaches described below.

Our second heuristic approach follows the same intuition as our procedure to find an upper bound on B∗. That 
is, the components for which x solutions to the perfect information setting are equal to one could be good candi-
dates to be probed. Algorithm 4 describes our second heuristic approach.

Algorithm 4 (Heuristic Based on Perfect Information) 
1: Solve the limiting case in which B � N and for each scenario ξ, record the optimal solution plan found, 

denoted by xξ, N. For each i ∈ N record the number of scenarios in which xξ, N
i � 1. Denote this number by si.

2: Sort the components i ∈ N in nonincreasing order according to si. Let π be the ordering of the components, 
where πk denotes the index for the kth component in ordering π.

3: For k � 1, : : : , N set probing plan ẑπk
� 1 with probability λ. Stop once B components have been selected or 

when k � N.
4: For each scenario ξ ∈ Ξ, solve lower-level problem min{Ĉ(ẑ,ξ, x) : x ∈ X} and record the optimal solution 

plans found x̂ξ. Store the objective value given by 
P
ξ∈ΞπξC(ξ, x̂ξ).

5: Repeat Lines 2 to 4 for a given number of iterations. Return the best solution found.

In this case, the ordering prioritizes components for which xξ, N
i � 1 across multiple scenarios. As with the first 

heuristic, Line 3 introduces randomization in order to add diversity to the pool of probing plans explored.
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Our third heuristic approach defines probing plans according to the estimated cost function. We consider the 
problem of minimizing the expected estimated cost:

min
z, xΞ

X
i∈N

[ci((1 � ξi)zi + (1 � pi)(1 � zi))xi + c′i (ξizi + pi(1 � zi))xi] (45a) 

s:t:
X
i∈N

zi ≤ B, (45b) 

xξ ∈ X ∀ξ ∈ Ξ, (45c) 

z ∈ {0, 1}N, (45d) 

which is a single-level problem that can be readily solved with an off-the-shelf optimization solver. The intuition 
behind our third heuristic approach is that (near) optimal probing plans from (45) have a high chance of perform-
ing well in the original problem. Algorithm 5 describes our third heuristic approach.

Algorithm 5 (Heuristic Based on Minimizing the Estimated Cost Function) 
1: Solve Problem (45) and record the optimal probing plan ẑ and the optimal solution plans found for each 

scenario x̂ξ.
2: For each scenario ξ ∈ Ξ, compute the expected actual cost given by 

P
ξ∈ΞπξC(ξ, x̂ξ).

3: Add a no-good cut 
P

i∈N:ẑ i�1zi ≤ Pi∈Nẑi � 1 to Formulation (45). Repeat Lines 1 and 2 for a given number of 
iterations. Return the best probing plan found.

6. Computational Results
We conduct a computational study to compare the performance of the proposed algorithms. We measure the 
value of information and the price of not having full information over a set of instances from the literature for a 
shortest path problem and over a set of synthetic instances for a project selection problem. We code our algo-
rithms in Java using Eclipse SDK version 4.7.1, and all optimization problems are solved using CPLEX 20.1 with 
a time limit of one hour (3,600 seconds). All experiments are conducted on an Intel(R) Xeon(R) CPU E5-1650 v4 
at 3.60 GHz with 32 GB of memory. The source code and problem instances are publicly available at a GitHub 
repository (Lozano and Borrero 2024).

We use sample average approximation (SAA) to estimate the second-stage expected value because |Ξ | grows 
exponentially as N increases. We note that SAA is a common approach to estimate expectations in two-stage set-
tings. SAA has an exponentially fast convergence rate in terms of the number of scenarios used (Kleywegt et al. 
2002) and has been shown to be highly accurate in routing problems (Verweij et al. 2003).

6.1. Results for a Shortest Path Problem with Disruptions and Probing
We first study a shortest path problem in which arcs are susceptible to uncertain disruptions that increase their 
cost and the decision maker is able to probe a limited set of arcs, revealing if a disruption impacts (or not) each 
arc probed, before planning their route/path.

We consider a graph G � (V,A), where V is the set of nodes and A ⊆ V × V is the set of arcs. The nominal cost 
for arc a ∈ A is denoted by ca and when a disruption impacts arc a, there is a cost increase of da units. Let x be a 
vector of variables corresponding to the flow on arcs in A, s be the source node, t be the destination node, and 
γ+(u)=γ�(u) be the arcs directed out of/into node u. The set X of feasible solutions for this problem is given by

X
a∈γ+(s)

xa �
X

a∈γ�(t)
xa � 1, (46a) 

X
a∈γ+(u)

xa �
X

a∈γ�(u)
xa ∀u ∈ V \ {s, t}, (46b) 

x ∈ {0, 1} |A | : (46c) 

We use a subset of problem instances from Lozano and Smith (2017a), which is in turn based on a grid network 
structure commonly used in the literature (Israeli and Wood 2002, Cappanera and Scaparra 2011). These net-
works have nodes arranged in a grid of m rows and n columns. We consider networks of sizes 5× 5 (27 nodes 
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and 86 arcs) and 10× 10 (102 nodes and 416 arcs) to test the exact value function approach and networks of size 
20× 20 (402 nodes and 1,826 arcs) and 30× 30 (902 nodes and 4,236 arcs) to test the heuristic approaches. For 
each network size, there are 10 different problem instances for which the values of ca and da are randomly gener-
ated between [1, 100], and for the probing budget, we consider values of B to be roughly in {0:05 |A | , 0:1 |A | , 
0:2 |A | }.

We denote by Ξ̂ ⊆ {0, 1} |A | the set of scenarios of the SAA and consider problem configurations with | Ξ̂ | ∈
{10, 30, 50} to test the exact approach and |Ξ̂ | ∈ {100, 500} to test the heuristics. To generate the scenarios in Ξ̂, we 
set the probability of disruptions pa � 0:5 for every arc. As a result, for each scenario ξ ∈ Ξ̂ and each arc a ∈ A, we 
randomly set ξa � 1 with 50% chance or ξa � 0 with 50% chance. Because we are using SAA, we set πξ � 1

| Ξ̂ | for 
all ξ ∈ Ξ̂.

Table 1 shows the result of our experiments for the exact approach. The first column presents the grid size. 
The second and third columns show the number of nodes and arcs in the network. The fourth column shows the 
number of scenarios. The fifth column presents the average optimal expected actual cost with no probing (Γ0), 
and the sixth column shows the average optimal expected actual cost with full information (ΓN), where N � |A |
for this problem. Columns 7 and 8 show the average bound on the minimum budget needed to obtain an optimal 
value equal to ΓN (denoted by B̂) and the value of the budget constraint (denoted by B). Columns 9 and 10 show 
the average and maximum full information gap (FIG) computed as

FIG � Γ0 � ΓN

Γ0
: (47) 

Columns 11 to 15 present for the value function approach the average CPU time, the average lower and upper 
bounds obtained within the time limit, the average optimality gap, and the number of instances solved to 
optimality.

We are also interested in measuring the value of information and the price of not having full information. The 
last two columns of Table 1 present two such measures. The first one is a standardized measure of the value of 
information and is computed as

Probing Value � Γ0 � ΓB

Γ0
: (48) 

Table 1. Assessing the Performance of the Value Function Exact Approach on Shortest Path Problems

Grid |V | |A | |Ξ̂ | Γ0 ΓN B̂ B

FIG Value function

Average Maximum Time (s) LB UB Gap
No. 

solution
Probing 

value
Price 
gap

5 × 5 27 86 262.2 208.7 4 20% 34% 19 221.3 221.3 0% 10 16% 6%
10 262.2 208.7 24.6 8 20% 34% 21 213.3 213.3 0% 10 19% 2%

262.2 208.7 16 20% 34% 7 209.1 209.1 0% 10 20% 0.2%
266.2 208.9 4 21% 29% 821 230.4 230.4 0% 10 13% 9%

30 266.2 208.9 34.8 8 21% 29% 1,178 218.9 219.9 0% 9 17% 5%
266.2 208.9 16 21% 29% 572 211.2 211.7 0% 9 20% 1%
268.8 211.2 4 21% 29% 2,069 234.7 235.7 0% 8 12% 10%

50 268.8 211.2 41.9 8 21% 29% 2,254 222.6 225.3 1% 6 16% 6%
268.8 211.2 16 21% 29% 2,290 215.0 216.9 1% 7 19% 3%

10 × 10 102 416 403.0 303.0 20 25% 30% 1,182 306.9 310.6 1% 8 23% 2%
10 403.0 303.0 65.0 40 25% 30% 13 303.0 303.0 0% 10 25% 0%

403.0 303.0 80 25% 30% 9 303.0 303.0 0% 10 25% 0%
412.9 305.3 20 26% 30% 3,600 309.3 359.6 14% 0 13% 15%

30 412.9 305.3 103.9 40 26% 30% 3,308 306.5 332.2 8% 1 20% 8%
412.9 305.3 80 26% 30% 292 305.3 305.3 0% 10 26% 0%
414.6 303.5 20 27% 31% 3,600 306.8 408.4 24% 0 1% 26%

50 414.6 303.5 125.7 40 27% 31% 3,600 304.4 344.7 12% 0 17% 12%
414.6 303.5 80 27% 31% 3,600 303.8 310.7 2% 1 25% 2%

Average 23% 31% 1,580 262.5 275.6 4% 119 18% 6%
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The second measure standardizes the price of not having full information and is given by

Price Gap � ΓB � ΓN

ΓB
: (49) 

For instances not solved to optimality, we use the best solution available as a proxy for ΓB in the calculation of 
the performance measures, which means that the computations of our performance measures are approximate: 
The probing values we obtain are a lower bound on the true value, whereas the price gap values we obtain pro-
vide an upper bound for the true value. Each row in Table 1 summarizes the results for 10 different problem 
instances.

The full information gap is on average 23%, with values as high as 34%, which indicates that there are consid-
erable potential improvement to be achieved by probing. Moreover, the bound on the minimum budget needed 
to obtain an optimal value equal to ΓN is consistently less than 50% of the total number of arcs, with values rang-
ing between roughly 16% and 49% depending on the number of scenarios, which shows that for this data set 
probing a relatively small fraction of the total arcs is often sufficient to match the performance of perfect informa-
tion. This result is also supported by the price gap measure, which shows that for most instances probing only 
20% of the arcs yields objective values within 3% of ΓN and in some cases produces solutions with objective equal 
to ΓN. Regarding the value of information, probing leads to an 18% average improvement to the objective value 
with respect to Γ0, depending on the available budget. We remark that probing only 5% of the arcs achieves 
improvements of up to 23% in some instances, and the only case in which the probing value is low (1%) corre-
sponds to a set of instances that are not solved to optimality by the exact algorithm and for which the average 
optimality gap is 24%, suggesting that for these instances our method fails to obtain high-quality probing plans. 
Our main take away from the probing value measure is that probing a relatively small fraction of arcs often 
results in considerable improvements to the objective value.

Regarding the computational performance of our exact algorithm, Table 1 shows that we solve 119 of the 180 
instances in this data set to optimality within the time limit. The solution time is highly dependent on the number 
of scenarios and the budget. Instances with higher budgets seem to be solved faster than instances with tight 
budgets, and the solution times increase considerably for instances with more scenarios. The average optimality 
gap is 4%, with values ranging from 1% to 24%, where the worst optimality gaps correspond to instances with 
tight budget, reinforcing the idea that instances with low budgets tend to be harder to solve.

We now turn our attention to the heuristic approaches. We refer to the randomized greedy heuristic as H1, to 
the heuristic based on a perfect information solution as H2, and to the heuristic based on minimizing the esti-
mated cost function as H3.

We first use the lower bounds obtained with the value function approach for the 5× 5 and 10× 10 instances to 
assess the performance of the heuristics in terms of optimality gap. We find that for these problem instances, H1 
finds solutions within 13% of the lower bound on average, H2 finds solutions within 6% of the lower bound, and 
H3 is the best performer on average finding solutions within 4% of the lower bound. The detailed results of this 
experiment are reported in Table C.1.

We also compare the performance of the heuristic approaches over the larger problem instances 20× 20 and 
30× 30. Table 2 reports the results of this experiment. Column “Obj” shows the average objective function value 
for the best solution found by each heuristic. The remaining columns present the same information as before, 
where each row summarizes the results for 10 different problem instances. Bold numbers in the objective column 
indicate the best performing heuristic for each row and are used to compute the average probing value and price 
gap. In this experiment, we used a small subset of the scenarios in Ξ̂ when minimizing the estimated cost func-
tion for H3 because solving the resulting discrete quadratic problem becomes too computationally taxing for 
large values of |Ξ̂ | , in part because of the additional variables and constraints needed for linearizing the qua-
dratic terms and also because of the number of variables and constraints needed to describe Xξ for each scenario.

The full information gap for these larger problem instances is on average 31%, with values as high as 36%, 
which is larger than for the smaller networks. The bound for the amount of budged needed to achieve ΓN ranges 
from roughly 21% to 33% of the total number of arcs, which again shows that for this problem, probing a rela-
tively small fraction of the arcs often guarantees the same performance as having full information. This idea is 
again reinforced by the price gap, which is on average 10%, indicating that we are able to find solutions with 
objective value within 10% of ΓN on average with the proposed heuristics. We remark that optimal probing plans 
would probably yield even lower values for the price gap. Regarding the value of information, the probing value 
measure is consistently above 20% even for small budgets of roughly 5% of the total number of arcs. This again 
shows that probing a small fraction of arcs can lead to considerable improvements to the objective value even 
when using our proposed heuristics that do not guarantee an optimal probing plan.
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In terms of the computational performance, H1 is the fastest with an average CPU time of 252 seconds, fol-
lowed by H3 with 356 seconds, and H2 with 464 seconds. Regarding solution quality, H2 is clearly the best per-
former finding the best solutions in 10 of 12 instance configurations, outperforming H1 on average by 11% and 
H3 by 3%.

6.2. Results for a Project Selection Problem with Disruptions and Probing
We also study a project selection problem in which projects are susceptible to uncertain failures that reduce their 
profitability. Before deciding their selection, the decision maker is able to probe a limited set of projects, revealing 
if a failure impacts (or not) each project probed with the objective of maximizing the expected actual profit.

We consider a set of projects N � {1, : : : , N}, each project i ∈ N has a nominal profit denoted by ci and an 
investment cost denoted by wi. When a project fails, its profit is reduced to zero, and the decision maker has a 
total fund of W to invest among the projects. Let xi be a binary variable that takes the value of one if project i is 
selected and a value of zero, otherwise. The set X of feasible solutions for this problem is given by a single knap-
sack constraint: X

i∈N

wixi ≤ W, (50a) 

x ∈ {0, 1}N: (50b) 

We generate a set of synthetic instances as follows. We consider a number of projects N ∈ {20, 30, 40} to test the 
exact approach and N ∈ {100, 200} to test the heuristics. For each project, we draw coefficients wi independently 
at random from a discrete uniform distribution U(1, 50) and coefficients ci from a discrete uniform distribution 
U(50, 100). We then set the available funds W � 0:1

P
i∈N wi. We generate 10 different problem instances for each 

value of N considered.

Table 3. Assessing the Performance of the Value Function Approach on Knapsack Problems

N | Ξ̂ | B̂ B Γ0 ΓN

Value function

Time (s) LB UB Gap No. sol Probing value Price gap

20 1 226.9 297.1 2 250.2 250.2 0% 10 10% 16%
10 11.1 3 226.9 297.1 7 274.2 274.2 0% 10 21% 8%

6 226.9 297.1 5 292.9 292.9 0% 10 29% 1%
1 220.7 300.1 15 243.9 243.9 0% 10 10% 19%

30 12.2 3 220.7 300.1 46 270.2 270.2 0% 10 22% 10%
6 220.7 300.1 123 290.4 290.4 0% 10 32% 3%
1 219.0 299.2 34 240.5 240.5 0% 10 10% 20%

50 13 3 219.0 299.2 128 266.7 266.7 0% 10 22% 11%
6 219.0 299.2 345 287.6 287.6 0% 10 31% 4%

30 1 361.6 484.6 7 387.2 387.2 0% 10 7% 20%
10 16.4 3 361.6 484.6 90 423.1 423.1 0% 10 17% 13%

6 361.6 484.6 1,598 453.0 454.3 0% 8 25% 7%
1 353.5 485.2 72 377.7 377.7 0% 10 7% 22%

30 18.4 3 353.5 485.2 2,271 409.3 409.3 0% 10 16% 16%
6 353.5 485.2 3,600 437.5 451.7 3% 2 24% 10%
1 349.3 482.5 592 369.1 369.1 0% 10 6% 24%

50 19.2 3 349.3 482.5 3,579 398.4 414.7 4% 2 14% 17%
6 349.3 482.5 3,600 424.5 463.5 8% 0 22% 12%

40 1 480.6 643.3 39 506.8 506.8 0% 10 5% 21%
10 21.7 3 480.6 643.3 1,871 543.8 544.3 0% 10 13% 15%

6 480.6 643.3 3,601 568.4 605.8 6% 0 18% 12%
1 469.0 648.1 1,665 493.0 493.0 0% 10 5% 24%

30 24 3 469.0 648.1 3,600 521.9 567.9 8% 0 11% 19%
6 469.0 648.1 3,600 548.4 628.3 13% 0 17% 15%
1 465.6 646.5 3,549 486.2 507.4 4% 5 4% 25%

50 24.8 3 465.6 646.5 3,600 493.1 591.7 17% 0 6% 24%
6 465.6 646.5 3,600 503.7 636.0 21% 0 8% 22%

Total 1,527 398.6 416.6 3% 187 15% 15%
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Similar to our first problem, we consider scenario configurations with |Ξ̂ | ∈ {10, 30, 50} to test the exact 
approach and | Ξ̂ | ∈ {100,500} to test the heuristics. To generate the scenarios in Ξ̂, we set the probability of fail-
ure pi � 0:5 for every project and randomly set ξi � 1 with 50% chance or ξi � 0 with 50% chance.

Table 3 shows the results of our experiments for the exact approach. The first column shows the number of 
projects and the remaining columns display the same metrics as Table 1 adjusted to reflect the fact that the pro-
ject selection objective is to maximize the expected profit (as opposed to minimize the cost). As before, each line 
summarizes the results for 10 different problem instances.

The gap between ΓN and Γ0 is on average 36%, which shows that in this problem setting there are also consid-
erable potential improvements to be achieved by probing. The bounds on the minimum budget needed to obtain 
an optimal value equal to ΓN are slightly larger than for the shortest path problem, with values ranging from 
roughly 50% to 65% of the total number of projects. We believe that this is because of the lack of structure con-
necting the different projects, opposed to the shortest path setting in which arcs interdependent because of the 
underlying network structure. However, it is still holds for these problem instances that the performance of per-
fect information can often be achieved without having to probe every single project (but about 60% of the pro-
jects). The price gap shows that probing a small fraction of the projects yields on average objective values within 
15% of ΓN and in some cases produces solutions with objective within less than 5% of ΓN. Regarding the value of 
information, probing leads to a 15% average improvement to the objective value with respect to Γ0, depending 
on the available budget, with values reaching as high as 32%. We conclude that for this project selection problem 
it is also true that probing a relatively small fraction of the projects can lead to considerable improvements to the 
objective value.

In terms of the computational performance, our proposed exact algorithm solves 187 of the 270 instances in 
this data set to optimality within the time limit. The solution time is again highly dependent on the number of 
scenarios and the budget. Contrary to the shortest path problem, instances with higher budgets seem to be more 
challenging than instances with tight budgets (see, for example, instances with n � 30 and 10 scenarios). As 
before, solution times increase considerably for instances with more scenarios. The average optimality gap is 3% 
with values as high as 21%, where the worst optimality gaps correspond to instances with larger budget values.

We run two sets of experiments with the heuristic approaches. The first one compares the best solutions 
obtained by the heuristics against the upper bound from the value function approach. For this problem class, H1 
finds solutions within 7% of the upper bound on average, H2 finds solutions within 5% of the bound, and H3 is 
the best performer on average finding solutions within 3% of the upper bound. The detailed results of this exper-
iment are reported in Table C.2.

Our second experiment compares the performance of the heuristics over the larger problem instances. Table 4
reports the results of this experiment. As before, each row summarizes the results for 10 different problem 
instances.

The full information gap for these larger problem instances is on average 29%, with values as high as 32%. The 
bound for the amount of budged needed to achieve ΓN is consistently under 60% of the total number of projects. 

Table 4. Assessing the Performance of the Heuristics on Knapsack Problems

N |Ξ̂ | Γ0 ΓN B̂ B

FIG H1 H2 H3
Probing 

value
Price 
gapAverage Maximum Time (s) Objective Time (s) Objective Time (s) Objective

100 1,175.7 1,654.5 5 29% 32% 9 1,240.4 9 1,240.0 17 1,278.4 9% 23%
100 1,175.7 1,654.5 57.9 10 29% 32% 35 1,279.9 27 1,293.8 46 1,351.4 15% 18%

1,175.7 1,654.5 20 29% 32% 48 1,354.3 35 1,403.7 56 1,472.7 25% 11%
1,174.9 1,657.5 5 29% 32% 26 1,240.0 58 1,242.5 116 1,273.3 8% 23%

500 1,174.9 1,657.5 61.3 10 29% 32% 515 1,282.0 340 1,294.0 592 1,350.8 15% 19%
1,174.9 1,657.5 20 29% 32% 927 1,357.3 556 1,397.1 1,044 1,469.7 25% 11%

200 2,397.6 3,398.0 10 29% 31% 23 2,522.2 24 2,519.0 57 2,607.0 9% 23%
100 2,397.6 3,398.0 105.9 20 29% 31% 40 2,622.5 33 2,631.0 77 2,773.8 16% 18%

2,397.6 3,398.0 40 29% 31% 53 2,775.8 38 2,868.5 93 3,032.9 26% 11%
2,368.8 3,386.7 10 30% 32% 325 2,500.5 246 2,496.0 579 2,577.4 9% 24%

500 2,368.8 3,386.7 110.6 20 30% 32% 680 2,588.0 441 2,611.8 1,005 2,747.6 16% 19%
2,368.8 3,386.7 40 30% 32% 933 2,754.0 592 2,845.2 1,342 3,015.2 27% 11%

29% 32% 301 1,959.7 200 1,986.9 419 2,079.2 17% 18%

Note. Bold numbers in the objective column indicate the best performing heuristic for each row and are used to compute the average probing 
value and price gap.
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The price gap is on average 18%, and for many instances, we are able to find solutions with objective value 
within 11% of ΓN with the proposed heuristics. The probing value measure is on average 17%, and even for small 
budgets of roughly 5% of the total number of projects, the heuristics are able to find solutions that are almost 
10% better than Γ0.

In terms of the computational performance, H1 is again the fastest with an average CPU time of 301 seconds, 
followed by H2 with 200 seconds, and H3 with 419 seconds. Regarding solution quality, this time H3 is clearly 
the best performer, finding the best solutions for all instance configurations and outperforming H1 on average 
by 6% and H2 by 5%.

6.3. Additional Experiments
We consider smaller instances of the project selection problem with N � 10 projects in order to solve them with 
all possible scenarios rather than using SAA. The objective of this experiment is to check if using all scenarios, 
instead of using SAA, leads to similar conclusions. In this case, |Ξ | � 1024 scenarios and we solve 40 instances 
with different probing budgets. The results are in Table 5. For these experiments, the average and maximum FIG 
(independently of the budget) are 36% and 51%, respectively. Also, the upper bound B̂ is 5.2, and all 40 instances 
are solved to optimality.

The results show that similar conclusions are obtained when one uses all scenarios rather than SAA. We got 
values for the FIG and B̂=N of around 30% and 50%, respectively, which are comparable to the corresponding 
values in Tables 3 and 4. The average probing value is 27%, which is larger than the values obtained in the previ-
ous experiments; however, in this case, B is proportionally larger than the other experiments (in Tables 3 and 4, 
the largest budget represented at most 20% of the number of projects, whereas here the largest budget represents 
50% of the projects), which explains the increase. The average price gap is 5%, which is smaller than in the previ-
ous experiments, which can again be explained by the larger proportion of budget available in this experiment. 
In conclusion, the results of this experiment give evidence to suggest that using all scenarios rather than SAA 
does not result in a significant different performance.

Using the same small instances, we next evaluate the tightness of the bounds given in Section 4, specifically 
that Γ0 � ΓB ≤ (1=4)Pi∈N (c′i � ci) (referred to as Bound 1) and that ΓB � ΓN ≤ (1=2)Pi∈N \B(c′i � ci) (referred as 
Bound 2) (see Equations (43) and (44)). These values are shown in Table 6.

The results in Table 6 show that the theoretical bounds, at least in these instances, are fairly loose, being several 
times larger than the true value. This suggest that the bounds, whereas tight in general (as shown by Remark 1), 
might be very loose depending on the instance type and data. Consequently, tighter problem-dependent bounds 
might be available. For instance, to derive tighter bounds in this class of problems, one might use the fact that 
the variables in X are subject to a budget constraint.

Table 6. Evaluating the Quality of the Bounds on Small Knapsack Problems with All 
the Scenarios

B ΓB � Γ0 Bound 1 ΓN � ΓB Bound 2

1 16.1 189.3 14.4 337.7
2 24.2 189.3 6.3 299.0
3 27.9 189.3 2.6 257.1
4 29.8 189.3 0.7 221.7
Total 24.5 189.3 6.0 278.9

Table 5. Solving Small Knapsack Problems with All the Scenarios

B Γ0 ΓN

Value function

Time (s) ΓB Probing value Price gap

1 90.1 120.6 615 106.2 18% 12%
2 90.1 120.6 1,038 114.3 27% 5%
3 90.1 120.6 334 118.0 31% 2%
4 90.1 120.6 192 119.9 33% 1%
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7. Conclusions
We study a class of combinatorial problems subject to uncertain disruptions, in which the decision maker has the 
ability to gather information (probing) to confirm the occurrence or absence of disruptions before solving the 
combinatorial problem. The main focus of our work is on measuring the value of the information provided by 
the probing stage.

We represent the problem as a bilevel problem with multiple followers and provide an exact approach and 
three heuristic approaches. To the best of our knowledge, we are the first ones to contribute exact approaches for 
this type of probing problems. We complete our contributions with bounds on the value of information.

We conduct computational experiments on two problem classes for which the underlying problems are a 
shortest path problem and a knapsack problem. Our computations suggest that even small probing budgets 
could yield considerable improvements in solution quality when compared with not doing any probing. This is 
true not only for the exact approach but also for the heuristics, which are able to find considerably better solution 
plans when probing is allowed, compared with the baseline in which there is no probing.

Future research includes developing specialized exact algorithms and acceleration techniques to tackle larger 
problem instances. Another research venue is applying our modeling framework to problems stemming from 
domain areas such as defense, surveillance operations, or humanitarian logistics, in which uncertain disruptions 
are likely to occur and probing could play a major role in improving solution quality. One interesting research 
avenue relates to business problems in which decision makers are able to take actions to reduce uncertainty, for 
example, negotiating priority service for an appointment, renegotiating predetermined time windows or produc-
tion times, performing preventive measures to avoid defects in manufacturing, or hiring third-party companies 
to gather additional business intelligence. These problems may be casted as information discovery problems and 
solved within our proposed modeling framework.

Appendix A. Cost Estimate Is the Conditional Expected Value
For any probing plan z define Jz � (Ji : zi � 1) and ξz � (ξi : zi � 1). We have that

[C(J, x) | Jz � ξz] �
X
i∈N

[ci(1� Ji)xi + c′i Jixi] | Jz � ξz

" #

�
X
i∈N

[ci(1� [Ji | Jz � ξz])xi + c′i [Ji |Jz � ξz]xi]: (A.1) 

Observe that if zi � 1, then [Ji | Jz � ξz] � ξi, whereas if zi � 0, then the independence of the Jis imply that [Ji |Jz � ξz]
� [Ji] � pi. Consequently,

[C(J, x) | Jz � ξz] �
X

i∈N ,zi�1

[ci(1� ξi)xi + c′iξixi] +
X

i∈N ,zi�0

[ci(1� pi)xi + c′i pixi], 

which is precisely Equation (2).

Appendix B. Enforcing the Optimistic Assumption
To make sure that the optimistic assumption is satisfied we need to make a simple solution check in Line 3 of Algorithm 1.

Let x1 be the solution obtained from solving the RVF in Line 2 and let x2 be the solution obtained by solving the 
lower-level problem in Line 3. For each scenario ξ ∈ Ξ, we check if Ĉ(ẑ,ξ, xξ, 1) � Ĉ(ẑ,ξ, xξ, 2); that is, the solution obtained 
by solving RVF is an alternative optimal solution to the lower-level problem. If this is the case, we record x̂ξ � xξ, 1; other-
wise, we record x̂ξ � xξ, 2.

Doing this ensures that the optimistic assumption is satisfied by the optimal solution obtained at the termination of the 
algorithm. To show this consider an optimal solution z obtained via Algorithm 1, and its corresponding second-stage 
solution x and optimal objective value ΓB. Assume by contradiction that the optimistic assumption is not satisfied, that 
is, there exists an alternative solution x′ such that Ĉ(z,ξ, xξ) � Ĉ(z,ξ, x′ξ) for all scenarios, and C(ξ, x′ξ) < C(ξ, xξ) for at 
least one scenario ξ ∈ Ξ. This contradicts that ΓB is the optimal objective value, because solution x′ is a feasible solution 
to RVF that yields an upper bound strictly lower than ΓB. In turn, following the update rule described above after solv-
ing the lower-level problems for z would yield an upper bound strictly lower than ΓB as well.

Appendix C. Additional Tables
Table C.1 shows the results of the experiments for the heuristic approaches over the small- and medium-sized networks 
for the shortest path problem. The column “gap” displays the optimality gap measured using the lower bound obtained 
via the exact value function algorithm. As before, each row summarizes the results for 10 different problem instances.

Table C.2 shows the results for the heuristic approaches over the small- and medium-sized project selection instances.
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Table C.1. Assessing the Performance of the Heuristic Approaches on Shortest Path Problems

Grid |V | |A | |Ξ̂ | B

Heu1 Heu2 Heu3

Objective Gap Objective Gap Objective Gap

5 × 5 27 86 4 248.4 11% 235.2 6% 227.8 3%
10 8 240.1 11% 226.3 6% 220.4 3%

16 226.8 8% 217.9 4% 213.7 2%
4 252.5 9% 243.6 5% 234.0 2%

30 8 246.5 11% 230.6 5% 223.1 2%
16 235.2 10% 217.6 3% 215.2 2%
4 255.2 8% 246.9 5% 236.9 1%

50 8 250.0 11% 235.0 5% 226.3 2%
16 238.5 10% 221.3 3% 218.2 1%

10 × 10 102 416 20 373.0 18% 339.8 10% 325.9 6%
10 40 360.8 16% 324.1 7% 311.1 3%

80 334.4 9% 313.4 3% 311.1 3%
20 382.6 19% 351.2 12% 344.7 10%

30 40 366.2 16% 332.2 8% 331.0 7%
80 344.2 11% 319.9 5% 322.2 5%
20 385.2 20% 355.1 14% 346.0 11%

50 40 369.7 18% 333.8 9% 329.6 8%
80 347.5 13% 321.3 5% 321.7 6%

Total 303.2 13% 281.4 6% 275.5 4%

Table C.2. Assessing the Performance of the Heuristic Approaches on Knapsack Problems

n |Ξ̂ | B

H1 H2 H3

Objective Gap Objective Gap Objective Gap

20 1 248.5 1% 249.2 0.4% 248.5 1%
10 3 256.4 6% 265.0 3% 271.0 1%

6 269.3 8% 288.2 2% 291.8 0.4%
1 242.9 0% 243.5 0.2% 243.5 0.2%

30 3 252.3 7% 261.7 3% 268.4 1%
6 266.7 8% 286.8 1% 288.9 1%
1 240.5 0% 240.5 0% 240.5 0%

50 3 251.8 6% 259.8 3% 266.0 0%
6 265.1 8% 283.6 1% 287.0 0%

30 1 381.5 1% 385.0 1% 384.6 1%
10 3 395.2 7% 402.7 5% 418.4 1%

6 414.3 9% 434.4 4% 443.5 2%
1 375.1 1% 375.3 1% 375.2 1%

30 3 382.7 7% 393.3 4% 405.3 1%
6 404.5 10% 424.7 6% 438.1 3%
1 369.0 0% 367.9 0.3% 369.1 0%

50 3 381.4 8% 385.6 7% 398.6 4%
6 399.4 14% 421.3 9% 431.7 7%

40 1 503.1 1% 499.1 2% 505.4 0.3%
10 3 510.5 6% 516.7 5% 537.4 1%

6 530.7 12% 553.8 9% 574.9 5%
1 491.0 0% 490.4 1% 492.1 0.2%

30 3 503.5 11% 511.0 10% 525.1 8%
6 526.0 16% 540.5 14% 564.0 10%
1 485.4 4% 485.1 4% 486.0 4%

50 3 498.8 16% 502.4 15% 519.6 12%
6 519.2 18% 534.5 16% 558.2 12%

383.9 7% 392.7 5% 401.2 3%

Lozano and Borrero: Combinatorial Problems with Disruptions and Probing 
INFORMS Journal on Computing, Articles in Advance, pp. 1–22, © 2024 INFORMS 21 

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

60
7:

fe
50

:0
:6

10
0:

3c
9b

:6
7c

1:
1c

6c
:5

84
4]

 o
n 

19
 D

ec
em

be
r 2

02
4,

 a
t 0

6:
46

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

References
Adamczyk M, Sviridenko M, Ward J (2016) Submodular stochastic probing on matroids. Math. Oper. Res. 41(3):1022–1038.
Alizadeh SM, Marcotte P, Savard G (2013) Two-stage stochastic bilevel programming over a transportation network. Transportation Res. Part B 

Methodological 58:92–105.
Artstein Z (1994) Probing for information in two-stage stochastic programming and the associated consistency. Asymptotic Statist.: Proc. 5th 

Prague Sympos. (Springer, Berlin), 21–33.
Artstein Z (1999) Gains and costs of information in stochastic programming. Ann. Oper. Res. 85(0):129–152.
Artstein Z, Wets RJ (1993) Sensors and information in optimization under stochastic uncertainty. Math. Oper. Res. 18(3):523–547.
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