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time (cost) o i o manufacturing seting, where o defective product esls i additional cost due toreproces-
sing. The decision maker, or planier, knows that component { s disrupted with probability p,

We consider the case in which the uncertainty about the disruptions can be mitigated by mmm\g resources,
into information collection before solving the combinatorial problem. We refer to any such acti ather
additional information as probing. Probing a given component confirms whether the component is disrupted.
Our main focus is to measure the value of information provided by probing.

In the first decision stage of our problem, the planner selects which components to probe subject to a limited
budget. Ther, the unceriainty i ralizel and the plannes olserves whetherthe probed comporents ae dis
rupted or not. n a second decision stage, the planner solves the combinatorial problem ba~ed on the partial

p " b vt

to minimize the

Havin partal,tathe thon full information, impliesthat the soluon plan i the second stage has t be made
by estimafing any uncertainty that was not revealed by probing. Once a solution plan is executed, the disruptions
oceur (or not) and the decision maker is able to observe the complete realization of the uncertainty and compute
the actual or frue cost for the solution plan selected. Consequently, an optimal solution plan in the second stage
(obtained based on estimated costs) might not necessarily minimize the actual realization of the costs. Because
the probing decisions are made in order to minimize actual rather than estimated costs, such a discrepancy
implies that the probing problem has a two-stage bilevel structure. Specifically, the probing problem can b
framed as a two-stage stochastic program where the second stage is a bilevel optimization problem. Next, we
present f the problem

1.1. Problem Statement
Let the occurrence of disruptions be represented by a random vector | = (] € ). We assume that the random
variables J, are independent, and J, has a Bernouli distribution with parameter p; 2 0, i € \'. That is, , takes the

value of one if a disruption impacts component i and takes the value of zero otherwise, and P! We
denote the realizations of by & € {0,1}"

For cach component i €.V, let z; be the first-stage binary decision variable that takes the value of one if the
planner deciden 10 probe componént 1 and. s¢ro sthermie. 1 - = 1 and component 1 15 not disrupted (Lc.
£ =0), then the cost at { is given by c. Elsc, if the planner probes { € A’ and i is disrupted (ic., & = 1), then the
cost at £ is given by c/. On the other hand, ,i the planner does not probe component i € A, then we assume that
the planner estimates the cost of i to be ¢(1 —p) +,. We define the estinated cost when the planner selects a
probing plan z, if scenario & happens, and it plan x € is exccuted, by

CeEx)= Z e - Es gl + Z a1 = poxi + cipixi]
Bt
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= Zla((l =&+ (1-p)1— z.)h. +cilEz+pil = z))x) @)

It can be shown that th in (2) is precisely the conditional expected value of the cos that
the planner selects x & A'and that = & for all / with = = 1 (see Ay

After a solution plan & ' is exccuted from the estimated cost, i plarner bserves the achual ust C(& ), cor-
responding to the realization of scenario & € Z, which is given by

€& =Y lell — &+l @
o

Observe that the estimated cost function C(z,¢,¥) depends on vector & however, it only observes the & compo-
nents for which z, = 1, that i, the occurrence or absence of disruptions for the components that are probed. On
the other hand, the actual cost function C(, ) is independent of the probing plan, because once the solution is
executed, the disruptions occur (or not) according to the realized scenario.

As an illustration, consider a planner seeking to solve a shortest path problem from node 1 to node 3 in the
graph of Figure 1, where costs ¢, and  are displayed alongside the arcs. Consider that the set of arcs is ordered
as {(1,2),(1,3),(2,3)) and that the disruption probability is p; = 1/2 for each arc i = 1, 2, 3. Suppose the planner
probes arc (1,3), that is, 2= (0,1,0), and that scenario & = (0,1,0) realizes, which means that arc (1,3) s disrupted,
whereas arcs (1,2) and (2,3) are not disrupted. In this case the planner estimates the costs of the arcs not probed
(1,2) and (23) to be 2 and 3, respectively. On the other hand, the cost estimate for arc (1,3 is 10, because (1,3) is
being probed, and in the realized scenario, a disruption is observed. If the solution plan s to use the path 1-2-3,
that s, x = (1,0,1), then the estimated cost C(z,&, ) in this scenario is five, whereas the actual cost C(x, &) s three,
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a knapsack constraint, or the case in which there are additional constraints on the probing plans, that is, con-
sidering that € 2 € (0.1 o the case in which nstead of having,a probing budet, the decision maker seeks to
ah probing cost and a P 1ge costs.

1.3. Statement of Contribution
‘The main contributions of this work are as follows. We propose a special class of two-stage stochastic programs
for combinatorial problems under uncertainty that can quantify the value of knowing with certainty whether dis-
ruptions impact a subset of the components of the cost function. We reformulate the two-stage stochastic prob-
lem as a bilevel problem with multiple followers and solve the problem using exact solution methods as well as
heuristic approaches

We derive upper and lower bounds on the value of information and the price of not having full information.
‘The first of these bounds does not depend on B, whereas the second one does. These results suggests that there
are instances where the value of information is independent on the number of probes, and that there are
instances where optimally placed probes always reveal at least some information about the remaining uncer-
tainty. We also derive an upper bound on the minimum value of B for which I = I, that is, the minimum bud-
get needed to obtain the same objective value as under full information.

In addition, we conduct computational experiments on two problem settings: a project selection problem,
which is modeled as a knapsack problem, and a routing under uncertainty problem, which is modeled as a short-
est path problem. Our computational results show that

1. Having full information often results in a considerable improvement to the optimal value.

2. Probing a small subset of the components can yield large improvements to the optimal value and in many

at06:46 . For personal use only, all rights reserved.

3. Ourproposed upper bound o the value of B for which =, shows hat often probingroughly less than
40%of hieve
lem g probing less than 6% o e components is to enough match the performance o fallinformation for the
project selection problem

Our exact solution approach for the bilevel problem with multiple followers is able to solve medium-sized

problem instances for both problem settings, and the computational effort is highly dependent on the number of

cenarios.

5. Our proposed heursis are abe to consistently find high-quality soluions for large problem nstances for
both

Tohie bt of Knowledge,our bivel ormultion i the st one o provide optmal probin plans (as
opposed to approximation algorithms) for these type of information discovery problems over indep
Uhcertan cvent, 4 wel 2 the frs one 10 conduct an extensve computationa] stady regarding he vatue of
information for the two problem settings selected.

on 19 December 2024

2. Literature Review
Our work is related to previous work in probing problems, stochastic programming, and bilevel optimization.
Regarding using probing to reduce uncertainty, Gupta et al. (2016) consider a probing setting with unlimited
budget for combinatorial problems. In their model, only “items” probed in the first stage can be included in the
objective function of the second stage. The authors propose an approximation algorithm and focus on bounding
n “adaptivity gap” between optimal online and offline policies. Similar models are studied by Gupta and
Nagarajan (2013) and Adamezyk et al. (2016), who also propose approximation algorithms. Guha and Munagala
(2012), and particularly, Goel et al. (2010), consider a probing setting that is closer to what we do in this paper.
‘The main differences s that their focus is on developing approximation algorithms. They show that for specific
combinatorial problems there is a constant-factor approximation algorithm (based on solving the “outlier
problen)for boththe online and offn versionsofth problm. We noe, however, that the complxiy of the
algorithm depends on the complexity of the ‘This complexity, in turn, is problem
ependent, thus constantfactor approximations might not be avaable o al problems. More gencral probing
problems with a pproach to Goel et al. (2010) have also been considered in the two-stage stochastic pro-
gramming literature. These problems are, as we do in this paper, formulated as two-stage stochastic problems,
Their focus is, however, on the statistical and mathematical properties of the model (Artstein and Wets 193; Art-
stein 1994, 1999).
Our work can e related. roblems with d
tainty (Jonsbraten et al. 1995, cOen "and Grossmann 2004, Hellemo ot 1. 2013). because by probing, he planner
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1. Introduction

We study a class of combinatorial optimization problems for which uncertain disruptions (or failures) can affect
the objective function coefficients. To describe our problem setting, we first consider the following deterministic
baseline combinatorial problem:

min Y (1)

stoxexco, (1)

where A" = {1,....,N}, ¢; denotes the nominal cost corresponding to binary variable x,, and X # 0 is the set of feasi-
ble solutions.

We consider the case in whxch di fails affect the ise; that

is,if a disruption impacts component i € ', then its cost is increased from ¢; o ¢, where ¢ > ;. This is a common

tin n the erature,for exampie, In shoree path problem, whee an e alare results n n inreaced tavel
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Figure 1. Shortest Path Example

110
Note, Overeach are, we dene the costs by .,
in scenario & = (0,1,0) arcs (1,2) and (23) are not disrupted. Alternatively, if the solution plan is to use path

13, that is, ' = (0,1,0), then for this scenario, the estimated and actual costs are both equal to 10 (for solution
plan x),

1.2. Mathematical Formulation
Let B,0 < B < N, be the available budget for probing in the first stage. We formulate the probing problem as a
two-stage stochastic problem of the form

Ty = min E[F(z,])] (4a)
st) = <B, (4b)
w
ze {01}, (49)
where
ElFGD = 27 F). 5)

In Equation (5), 7 is the probability of scenario &, which can be computed from the disruption probabilities p,,

ieN, by
I » H (1-p) se= ©

For each scenario & € &, the function F(z,&) in (5) is the actual cost incurred by the planner if the probing deci-
sions are given by = and the realized scenario is &

Flz,€) = min{C(£,2) : x € arg min{C(z,&,x):x € X}, @)

e “min’ in (7) break plans x tha
cost €.

The first-stage problem decides the probing plan z with the objective of minimizing the expected actual cost
(42), which is computed by solving the second-stage problem. In the second stage (7), for a given probing plan =
and a realization of the uncertainty, the planner first selects a solution plan that minimizes the estimated cost
and then computes the actual cost after executing the sclected solution plan. In contrast to standard two-stage
stochastic problems in which the second stage solves a single-level problem for each realization of the uncer-
tainty, our second-stage problem is defined by “argmin” constraints resulting in a bilevel structure.

Observe that I corresponds to the expected actual cost associated with  limited information (L) approach, in
which the planner is not able to perform any probing. In contrast, Iy is the expected actual cost under a fullinfor-
mation (F1) approach, in which the planner is able to completely remove the uncertainty from the problem. For
any B, we refer to T — T s the aalue of information associated with having B probes, whereas I ~ Ty is referred
as the price of not having full information associated with having B probes. The value of information measures the
largest possible expected cost v ngs associated with being able to probe B components. The price of not having
fullinf cost incurred due

We ol oot modeing i fmmewurk can be eaﬂly extended to accommadate multiple variations of the
problem such as the case in which probing. . thatis, C
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updates the probability distribution in the second stage. The main differences of these models with our work is

that not all uncertainty is evealed in the second sfage and that the actual distribution used n the frt stage
remains independent of the probing decisions. pro-
blems with decision-dependent uncertainty do not require a bilevel struture, 35w do'n Ih|5 case.

th levels (Gi

‘The second-stage problem in our setting is a bilevel ger
ad Floudas 2105, DeNegre and Ralphs 209, Fishet e L. 5017, Losamo and Smith Zﬂl?b ‘Tahernejad et al
2020). This class of probl rd (Caprara et al. 2013) and is normally solved by branch-and-cut methods
or iterative dm)mpuﬂlmn algomhn’h (Kleinert et al. 2021). Standard bilevel problems with integer requirements
at both levels are typically deterministic, and stochastic versions are analogous to two-stage stochastic integer
problems (Cormican et al. 1998, Janjarassuk and Linderoth 2008, Beck et al. 2023). On the other hand, two-stage
stochastic problems where the second-stage problem is a bilevel integer program (similar to what we consider in
this paper) have been studied rather scarcely in the literature (Alizadeh et al. 2013, Ozaltin et al. 2018).

3. Exact Solution Approach
We first reformulatc our problem as a bilevel problem with muliple followers and analyze two limiting cases
We then hes to solve the propose

3.1. Bilevel Reformulation of Problem (4)
A standard approach to solve programs is to use a equivalent monolithic for-
mulation, in which the expectation is represented by a weighted sum over all possible scenarios and copies of
the secondstage varichlesave intzodced for each scnarl, We genae such anolthic formalaton or Prck-
lem (4) as follows. For scenario & € 2, let * €  be the solution plan under scenario ¢ and letall olution plans be
represented by hat i, +* is an optimal solution to the inner problem in (7). Then

"Z\[c‘ﬂ — &t +gat] (8a)
st Y z<B, (8)
2
re arg min {E;[:,(u —&)z+(1—p)1 -z
ﬂ"'l{‘zﬁp,(lfzd)x‘j.xE.’(} VieE, ®9)
zefon)" (8d)

Formulation (8) describes a bilevel problem with multiple followers (one per scenario) under the so-called opti-
mistic assunption (Dempe 2002); that s, it breaks possible ties in the arg min by selecting the second-stage solu-
tion plans that minimize the objective function in (8a). The probing stage corresponds to the leader's problem,
whereas the original combinatorial problem corresponds to the follower’s problem. The objective s to minimize
the expected actual cost while ensuring that the second-stage solutions minimize the estimated cost for each

first analyze the two limiting cases of Problem (8) that can be readily solved as single-stage problems. For
the first limiting case, suppose that there is no probing budget, that is, B = 0, which implies that z; = 0 for all
€ AV In this case, the estimated cost function C simplifies to

Cle &)= Y [ol1 = pi+ipixi] ©
=

and evaluates to the same value under all scenarios for a given t-solution. As a result, optimal solution plans for
all scenarios coincide, and all constraints in (8c) can be replaced by the single constraint

\‘Earg{nm{zl(‘“*P\){,+L’,p‘\,’] x'e/v} (10)
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On the other hand, because we select a single solution plan x for all the scenarios, the objective function of ()
simplifies to

Zntg[m — &+ cEx] = 2\: < > an +: > q’x,) (11a)

= F o7

=3 lel - pisi + clpixil, (11b)
o

that s, the leader’s Objective (8a) of minimizing the expected actual cost coincides with the follower’s Objective
(10) of minimizing the estimated cost. As a result, if there is no probing (B = 0), then the two-stage problem (8)
simplifies to

r(,:mm{zk,(l — pox +cpixi] 'xeX}, (12)
o«

which is a single-stage combinatorial problem where an optimal solution plan is selected entirely based on the
estimated probabilities p, i € \'. An alternative interpretation of (12) is that, in the absence of probing, both the
actual cost and estimated cost functions simplify to a naive expected cost function based on the probabilities p,

For the second limiting case, consider that all nodes can be probed, that is, B = N. We have that =, = 1 f
#€N,and the estimated cost becomes

or all

Clz &)=Y lal - &+ ] a3
=

In other words, the estimated cost for each scenario is equal to the actual cost because there is full information,
and itis readily scen that Problem () becomes the single-stage problem

Iy= mm{zn‘z[:,(l —En +aad] it ex Ve eE} (14)
==y

M (14), there p between solution plans x*, and we have that

Zﬂ“mm{zlr‘ﬂfé,)‘{f+c"£xf] rée«v} (15)

As a result, T can be computed by decomposing Problem (14) and solving || single-stage combinatorial pro-
blems independently (and potentially in parallel).

3.2. Value Function Approach
One of the major challenges in solving discrete bilevel problems is the construction of valid relaxations. A com-
mon relaxation from the bilevel literature is known as the higi-point relaxation, which is obtained by dropping the
requitement of optimaliy n the lowerlevel problem enfored by Consrants (50, After removing these con-
straints in Problem (8), the probing y ippear in the -
tion, and the high-point relaxation reduces to

n’mm{zlc,(l —En b ix e .r} =Ty, (16)

it th ghpoint selaation s precily the full infomation probem Ty s Equatio 15), which geneally
yields weak lower bounds on the optimal value.

Value function approaches have been in the lterature with one follower
(Mitsos 2010, Lozano and Smith 20176). For our muliollower problem, aberve that Formulation (5 can be
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The major computational challenge for Algorithm 1 is solving RFV(.¥), because on the one hand enforcing x* €
X requires making copies of al the constraints needed to describe A for cach scenario. On the other hand, the
number of additional variables and constraints needed to lincarize the quadratic terms also grows as function of
the number of scenarios. As a result,as the number of scenarios grows, REV/(£) becomes prohibitively large and
considerably challenging to solve. In contrast, the lower-level problems solved at Step 3 are as difficult as the
original combinatorial problem. In our computations this amounts to solving a shortest path problem or a knap-
sack problem per scenario. Moreover, these problems could be solved independently, which could allow for effi-
cient multithread implementations.

4. Theoretical Bounds on the Performance of Probing

In this section, we derive theoretical bounds on the difference of objective value that can be attained with more
probing resources (Section 4.1). We also provide a scheme to find an upper bound on the budget B' that is
required to attain the same performance as full information, that s, to attain that ' = T'y (Section 4.2). The qual-
ity of some of these bounds are evaluated empirically in Section 6.3

4.1. Bounds on the Value of Information and on the Price of Not Having Full Information
We derive bounds on the value of information 'y ~ I and on the price of not having full information Ty ~ T
We first provide results for the effect of additional probing on the optimal estimated cost for a given scenario
and then construct bounds for the value of probing in terms of the expected actual cos

For any given subset of components P C.\" and any scenario £ € &, let ¢, be the optimal estimated cost for sce-
nario & when the components in P are probed. That is,

q‘;;:mm{z[nﬂf D&l Y [a(—p)+dpln xsX} (19)
= el

Let x*7 be an optimal solution plan associated with ¢ Lemma 1 presents upper and lower bounds on the dif-
ference in optimal estimated cost for two nested probing plans, that is, two plans such that one probes a subset
of the components probed by the other plan.

Lemma 1. Let &€ S and QC P C A be given. Then
(- e)pi- s < - 9h < Y (e - elpi - E)x (0
e e

Proof. For convenience, let us denote
C=cll-&)+q& ieN,EeZand C
then o = Yo CHei @ + Xy oCixiS. We have that

=all-p)+p i€N,

oy 3 G 1)
&e
< Zc»«” > Gl (21b)
&e
=Y CixT Y G- Y ol @10
=4 & e

3G 3 G Z CafTo S G @
i e
=0h+ Y (€ —alpi— T, (1e)
)
where the second line follows from the optimality of x*, the third by rearranging the terms, and the last one
from the definition of ¢. By doing similar steps, starting from ¢%, rather than ¢%, it can be shown that
< 0+ Niepole] — €& — pi)xi°. The combination of both inequalities gives the resul
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ol on Compute, Arcls it Adkancs, gp. 122 224 INFORME

10
Morcover,
YO = y(P) < Y (e = cpill ~ p). (29)
w
In particular, '
YQ-yP <53 (-, (30)
e
and |
YO -y(P) < {5 - 1)
e
Proof. By Theorem 1, we have that
N -y = Z"‘[Z (€ = c)lp - )T~ xF0) (32a)
2 &
= 3 @Y m - ST - 10 (32b)
ae =
= Z«r —c‘[ > mp- & -+ 3w E-pef - afT) (320)
Fix i €.\ and note that
Y mp- T = Y atp T -9 (33)

34

L
=pll-p), (35)
“® <1 and the final inequality because

where the first inequality follows because m‘p, 20 and x” —
i =1 py. Analogously,

Y - pE -

> A -p)—afT) (36)
= ¥ #fa-p 37)
<(-pop )

Thus, it can be concluded that
HOI=y(P) £ 3 2e— (1 - p).

‘The final inequality follows because p(1—p) < 1/4as pi €[0,1] forall i€ \V.
N =0. In this case, optimal solution plan x** do not depend on &, and therefore x* = ¥ for all
& € 2. In this case, Equation (32¢) becomes

7’1“’7)‘(1’!221:,’75)[ 3w —e Y mf-p)ad - ")] 39
- 2 kT
sZ(c;—m[ > - Y n‘ufmxf’fp‘nfpax:‘w‘ufm‘.‘] 0

SZ(A‘FC.)[ PR n‘llfy‘)xf’"] 1)
- « &

<Y -apt-p), @)

where the last inequality follows as 0 < x{"” < 1forall £€2. D

H
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equivalently posed as

Tp=min Y Y lall - &) +€exf] (17a)

st Y zusB 7o)

DLt = &z + (1= p)(1 = 2 + €6z + pi1 = 2]
@

£ 3l — &2+ (1= p)L - 2D + ez +pil — 2] Vxe X, VEEE, az)
P
zef0xter VEes, (17d)

which is a single-level nonlinear binary optimization problem with potentially exponentially many constraints,
Observe that the nonlinearities are products between binary variables (z:x/), which we linearize by introducing
one auxiliary binary variable wf per quadratic term and including standard McCormick envelopes (McCormick
1976), given by

wf <z, (18)
wf <, (150)
wizz+xi -1, (18¢)

forany i V' and £ € E.
We define a relaxed value function problem (RVF) by considering a subset of second-stage solution plans
& ¢ . Formally, RFV() is defined as (17), except that X is replaced by A’ in (17c). Let I's(¥) be the optimal
bjestve fcton vk of RV %) and note that for any ¥ € 2, it holds that I'() < T
propose  cting-plane agorithm that teratively explores secon-tage solution plans and adds thers to
A snmng RFV() for cach ¥ provides a sequence of nondecreasing lower bounds on I, Upper bounds are
btaned by consicering ied probing plans (obtained by sclving RFV( 1) an then solving the ngle evel com-
binatorial problems corresponding to each scenario for the fixed probing plan considered. Algorithm 1 forma-

lizes . Line 1 lower and upper bounds, sets ¥ = 0, and creates
a trivial pmhmg planz=0. Line 2¢ ﬂ)mp\lm~ alower bound by solving RVF for Ihe solution plans obtained thus
far in set £. Line 3 solves to minimize ost for the probing plan  found

in Line 2 Lin § computes the cxpected actual ost and updates the upper bound if ncccesary Line 5 sops the
execution of the algorithm if the lower bound is equal to the upper bound. Otherwise, it updates the set of
second-stage solution plans by adding all the solution plans discovered in Line 3 and goes back to Line 2 to con-
tinue with the cut-generation algorithm.

Aigorthm 1 (Cuting Plane mgomm)
: SetLB=—oo, 0, and incumbent probing plan

Sover RFV(2). Set LB = I5(¥) and record the optimal probing plan found 2

For each scenario & &, solve lower-level problem min(C(%,&,x): < ) and record the optimal solution

plrs found £*.

“C(&,£°) < UB, then update UB = ¥, sn*C(&,£) and

B, minate with an eptimal probivg plan given by = Otherwis, upcate

U (Usest’) and

4
retum to Line 2.

Algorithm 1 terminates finitely with an optimal probing plan because the set of al possible second-stage solu-
tion plans ¥ i finite. Note that all the problems solved are feasible (setting all the variables to zero gives a trivial
feasible solution) and bounded (all the variables are binary), and as a result, there is no need to check for
unboundedness or feasibility. On the other hand, because of the optimistic assumption that the follower breaks
ties among alternative optimal solution plans by selecting the one that minimizes the leader’s objective, we need

% careful when recording an optimal solution plan £ at Line 3 to account for the case in which there exist
alternative optimal x-solutions (see Appendix B). To the best of our knowledge, Algorithm 1 is among the first
act approaches for discrete bilevel problems with multiple followers, although it can be seen as a rather
straight forward extension of existing approaches for single-follower settings (Mitsos 2010, Lozano and Smith
20170).
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Now we tum our attention to the effects of probing on the expected actual cost. For a given P <\, let y(P) be
the expected actual cost corresponding to nodes in P being probed; that is, y(P) is the objective function in (5)
for the probing plan z = 1 for any i€ P and z, = 0 i ¢ P. From the definition of *” and Constraint (5c), it follows
that

yP)= Zn‘zu,u — &) e (22)
Note that the relationship between (P) and Ty is given by

Ty =min{y(P): |P| =B,PCN}. (23)

‘Theorem 1 presents upper and lower bounds for the change in optimal expected actual cost corresponding to
two nested probing plans.

Theorem 1. Let QC P C A’ be given. Then,

yont [ 3 el et "‘7] 7Q-¥(P)
= &

[eN)
¢ [Z (e —elps — &)
e
Proof. Note that
SociT =Y T z Caf?+ Z(c S (25a)
=4 = T
=0k 2 (,*t.)(u,*wn (25b)
&

Therefore,
yP) =Y nt (o‘w (el — (& - poxt ") (26)
= s

Because an analogous result holds for Q, we conclude that

7@ -y(P)= Em( =0t 3 (e —a)&—poC - Zu;zmwnm,‘") (27a)
&t A

<Z (6~ = E0x T+ 3 (6~ el —pt - 3 (C.'fmléwp‘)t"") @7b)

&) e e

B (Z (6 e —poxi® — Z(c#rﬂ(!r?,)ﬁ"), (@70)
E &

yihere 27) follows from the upper bound i Lemma 1, and thus the upper bound in (24 follows. The lowver
bound in (24) follows from a similar procedure, using the lower bound in Lemma

Theorem 1 can be used to provide nontrivial bounds on T's ~ Ty for any B> B> 0. These bounds, however,
require knowing in advance optimal solution plans to the second-stage problem. Corollary 1, shown next,
removes some of these limitations and provides upper bounds that only depend on the cost coefficients and on
the optimal probing plan associated with the smaller subset of components.

Corollary 1. Let Q € P € A" be given. Then,

Q) —y(P) 22 (¢ —cpill—pi). (28)
)
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B\’ denote the components probed in an optmal probing plan asociated with Iy, Corolary | implies
that the value of information, To ~ T, is upper bounded

1
To=T5 < 36 —alpll =p) < ;3 (el ~ i), 3)
@ @
Jforany1 < B < N. Similarly, for the price of not having full information, I's — ', we have
Ta-Tx <232 @ ~apli=p) EED Sy )
e e

Obs On the one hand, the bound on the value of infor-

mation does not dspend on the number of components that are probed, whereas the bound on the price of not

having full information does. The bound on the value of information might be explained from the observation

that, in general, one might gather all the relevant uncertain information of the system by just probing one compo-

nent (sce, for example, Remark 1). The bound for the price of not having full information might be interpreted as

implying that there exist instances where optimally placed probes always reveal at least some information about
Next, we ps pl bounds are tight.

Remark 1. Consider the shortest path problent in Figure 2 witl source node 1 and sink node 3 with ¢ > 0 arbitrary, where
ove ech ar e display the cots G and . On each arc her s a e it probbity 1/2. I there i o probing

s, if B =0, then the Jfor both paths is are estimated to be one), and both have
the same actual npnlrd costo o thergor To = 1. Nw consder 5. 1 andthat are (1,3) s pmhﬂl Then, in all scenar-
ios & with &,3 =0, the optimal path is 1-3, with a cost 1~ e. By contrast, in all scenarios & with & optimal
pathis 123, wnharov!ﬂ[l Tfltnrlnalurrnrdrm!m this case would be 1/2 (1~ €) +1/2 X ( /2. Moreouer,

it can be verified hat if B = 1 then probing (1, 3) is optimal; thercfore, Ty =1~ ¢/2 and To ~ Ty = /2. Evaluating the
upper bound proposed, we get that Y (¢ — c)/4 = /2, which is exactly the same as Ty T, and thus the upper bound
in Corollary 1, particularly pation (), s tight.

Note,orecer, o tis cxaple s shos thatte b i (4 i . Obsrt that fhe e s /“” -
o, that is, B = 3, then the solution is identical as with the case with B = 1. Therefore, Is =
this case, B= {(1,3)} and thus 3" e (e — )= (1/2—1/2)+ (1/2~1/2) = 0. Thercfore, the right- S st uf(44) is
also zero, and thus the bound in (44) i tight.

4.2. Upper Bound on Probing Budget
Next, e derive s bound on the amountof budget needed to achieve the same objective value as when solving
the problem under perfect information. Formally, we are interested in finding the minimum budget value B
such that T'y- = T. The problem of finding B* is at least as challenging as solving the original problem because
for any candidate budget value B, we must solve the original problem to optimality in order to obtain Ty As a
result, we propose a simpler approach to obtain an upper bound on B described in Algorithm 2.

Line 1 starts solving the problem information and recording the optimal solu-
tion plans found for each scenario denoted by #°. The intuition behind our proposed approach is that a probing
plan that probes all the components i €A for which at least one solution plan £ =1 is likely to achieve an

Figure 2. Another Shortest Path Example

Note, Over each arc we denotethe costs by ..
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objective value close to Ty For this reason, Line 1 defines set Q to contain all the components described above,
Line 2 sets a probing plan £ to probe all the components included in set Q and solves the follower problems of
minimizing the estimated cotfo cac scenaria Line 3 checky i, for esch scenaroy the aptimalesanated cst
biained isequal o the atimated o ftion eva]ualed at £, If this is the case, then probing plan £ achieves
an obj equal to T 1 solution plan fo the foloer problem
of minimizing the estimated cost and & \Q\ smbluhe~ an upper bound on B, Otherwise, there must exist at
least e scenario & €2 and one component /€ A"\ for which the solution plan that minimizes the cstimated
cost function 4 L ds it to set Q, and returns to Line 2 to update
probing plan and. Igorithy
Algorithm 2 (Budget Upper Bound Algorithm)
Solve the limiting case in which B = N and record the optimal solution plans found for each scenario £*

Defineset Q.= i€ A':
% Set probing plan £, 1 forall i< @ and = 0 otherwise. For each scenario & € 2, solve lower-level problem
) and record plans found ¥
%)= C(2,£,2) forall € € , then go to Line 5. Otherwise, g0 to Line

4 Identify a component; € A"\ © for which & # £ forsome. €2 Ut s 0= 0 ) and st o Line 2
5: Terminate with an upper bound on B* given by B =

‘The algorithm terminates in a finite number of steps because in the worst case it obtains © = A and returns the
B

trivial boun

5. Heuristic Approaches
We propose three heuristic solution approaches for the problem. Our first heuristic is a simple randomized
greedy constructive approach that prioritizes probing components with low nominal cost coefficients. Algorithm
3 describes our proposed heuristic approach.
Aigorthm 3 (Randomized reedy s
the components i € \' according to their nominal cost coefficients in a rondecressing fashion. Let 7 be
where
2 Fork=1,...,N set probing plan Zr, = 1 with probability . Stop once B components e been sclcted or

3: For each scenario & € 2, solve lower-level problem mm{C(z,g,x? x€ X} and record the optimal solution
plans found 7. tore the objective value given by e,

4 Repeat Lines 2.and 3 for a given number of erations. Rebues et probing plan found.

Line 2 introduces randomization, depending on the parameter A [0, 1], in order to add diversity to the pool
of probing plans explored. We consider this first approach as the most naive way in which a practitioner could
quickly obtain probing plans for their problem. Thus, we use this heuristic as a bascline to measure the perfor-
mane of our mare advanced heuistic approsches described eore

Our second follows the
is, the components for whu:h x slutions o the pefect nformation o setting are cqual o one could b good i
dates to be probed. Al

Aigorim 4 (eurstcSase on Prtec o)
Sclve the liikting cas iy which B = N and for esch sosnaro £ recond the optinal sltionplan found,
denuled by V. For each i € A’ record the number AN
2: Sort the components (e/v in noninresing oder accordin o 5. Lot be e ardering of the components,
wherens demonn e o
5 For ko1, N set probing plan 21 =1 with pmbahlﬂy "1 Stop once B components have been selected or
N.

¥ Forcach scenario £ €2, sove lowerdlevel problery min(C(,£,): € ) and record the optimal solution
plans found £°. Store the objective value given (e
5: Repeat Lines 2 to 4 for a given number of St R th bst sclation found.

In this case, the ordering prioritizes components for which x¢** = 1 across multiple scenarios. As with the first
heuristic, Line 3 introduces randomization in order to add diversity to the pool of probing plans explored.
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and 86 arcs) and 10 10 (102 nodes and 416 arcs) to test the exact value function approach and networks of size

20%20 (402 nodes and 1,826 arcs) and 30X 30 (902 nodes and 4,236 arcs) to test the heuristic approaches. For

cach network size, there are 10 different problem instances for which the values of ¢, and d, are randomly gener-

ated between [1,100], and for the probing budget, we consider values of B to be roughly in (0.05].A], 0.1].4],
A}

{0.1)] the set of scenarios of the SAA and consider problem configurations with
{100,500} to test the heuristi
set the probability of disruptions p, = 0.5 for every arc. As a result, for each scenario & & 2 and each arca € A, we.
randomly set £, = 1 with 50% chance or £, = 0 with 50% chance. Because we are using SAA, we set e = 11, for
allged.

Table 1 shows the result of our experiments for the exact approach. The first column presents the grid size.
‘The second and third columns show the number of nodes and arcs in the netwark. The fourth column shows the
number of scenarios. The fifth column presents the average optimal expected actual cost with no probing (To),
and the sixth column shows the average optimal expected actual cost with full information (I), where N = |4
for this problem. Columns 7 and 8 show the average bound on the minimum budget needed to obtain an optimal
value equal to Ty (denoted by B) and the value of the budget constraint (denoted by B). Columns 9 and 10 show
the average and maximum full information gap (FIG) computed as

Lo-Iy

FI

Ty “n

Columns 11 to 15 present for the value function approach the average CPU time, the average lower and upper
bounds obtained within the tme i, the average optimaly gap, and the number of insiances solved o
optimal

ot o iteestod n measuring the value of information and the price of not having full information. The
last two columns of Table 1 present two such measures. The first one is a standardized measure of the value of
information and is computed as

Probing Value (48)

To—Tg
To

Table 1. Assessing the Performance of the Value Function Exact Approach on Shortest Path Problems

HG Value function
Probing Price
cid M B B Avege Maimum Time(s) LB UB Gap solution value ga
sxs @ i 0% v 213 16 e
us 8 34 a3
222 287 16 7 a1
89 h @1 204 2%
3 262 289 MS 8 s 2189
262 289 16 S
55 2112 ¥ 2069
50 s 212 419 8 2251
285 2112 16 220
Wx10 02 46 w030 3050 2 s
10 430 30 650 0 13
50 3080 0 9
a9 3053 2 3600
3 a29 W53 109 0 3308
29 3053 ® 2
atis 305 2 3600
50 4146 05 157 0 3600
s 305 o 2 3600 25
Aversge 23 1580 i
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Probing value _Price gap
21 %
o
e
i
10
s
18%
0
s
1%
10%
s
0%

Objective

Time (9)

2
Time (5)_Objective

I
Objective

Maximum _Time

G

Aversge

1826

Table 2. Assessing the Performance of the Heuristic Approaches on Shortest Path Problems
]

0 w2
Wk w2 2%

S

Note
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Our third heuristic approach defines probing plans according to the estimated cost function. We consider the
problem of minimizing the expected estimated cost:

S~ &)z + (1~ 1~z + €+ pil1 — 2] )
=4

st Yush, (a50)
FeXx Veeg, (45¢)
zefo, (45d)

which is a single-level problem that can be readily solved with an off-the-shelf optimization solver. The intuition
behind our third heuristic approach is that (near) optimal probing plans from (45) have a high chance of perform-
ing well in the original problem. Algorithm 5 describes our third heuristic approach.

Algorithm 5 (Heuristc Based on Minimizing the Estimated Cost Funcion)
1: Solve Problem (45) and record the optimal probing plan Z and the optimal solution plans found for each
scenario £
For < S compute by FoenCE ).
3: Add a no-good cut Y,y 1% < i — 1 to Formulation (45). Repeat Lines 1 and 2 for a given number of
Scratons. Retura the best probing plar found.

6. Computational Results
We conduct a computational study to compare the performance of the proposed algorithms. We measure the
value of information and the price of not having full information over a set of instances from the literature for a
shortest path problem and over a set of synthetic instances for a project selection problem. We code our algo-
rithms in Java using Eclipse SDK version 4.7.1, and all optimization problems are solved using CPLEX 20.1 with
a time limit of one hour (3,600 seconds). All experiments are conducted on an Intel(R) Xeon(R) CPU E5-1650 v4
at 3.60GHz with 32 GB of memory. The source code and problem instances are publicly available at a GitHub
repository (Lozano and Borrero 2024).
We use sampleaversge approximation (SAA) 0 estimate the scond-stage expected value because E] grows
exponentially as N ncreases. We note that SAA s
o SAA s an oxponentially o convergnce ate i torms of the e o oo et (Kleywegt et al.
zonz) and has been shown to be highly accurate in routing problems (Verweij et al. 2003

6.1. Results for a Shortest Path Problem with Disruptions and Probing
We first study a shortest path problem in which arcs are susceptible to uncertain disruptions that increase their
cost and the decision maker is able to probe a limited set of arcs, revealing if a disruption impacts (or not) each
arc probed, before planning their route/path.

We consider a graph G = (¥, A), where V'is the set of nodes and A€ Vx V'is the set of arcs. The nominal cost
for arc a < A is denoted by ¢, and when a disruption impacts arc g, there is a cost increase of d, unis. Let x be
vector of variables corresponding to the flow on arcs in A4, s be the source node, f be the destination node, and
*(u)/y" () be the arcs directed out of /into node u. The set X of feasible solutions for this problem is given by

(6a)

)
Vuev\ (s, (460)

A e
xefoy (460)

We use a subset of problem instances from Lozano and Smith (2017), which is in turn based on a grid network
structure commonly used in the literature (Isracli and Wood 2002, Cappanera and Scaparra 2011). These net-
works have nodes arranged in a grid of i rows and 1 columns. We consider networks of sizes 55 (27 nodes
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‘The second measure standardizes the price of not having full information and is given by

Price Gap = To -y (49)

Ty

For instances not solved to optimality, we use the best solution available as a proxy for I's in the calculation of
the performance measures, which means that the computations of our performance measures are approximate:
‘The probing values we obtain are a lower bound on the true value, whereas the price gap values we obtain pro-
vide an upper bound for the true value. Each row in Table 1 summarizes the results for 10 different problem
instances

full information gap is on average 23%, with values as high as 34%, which indicates that there are consid-
erable potential improvement to be achieved by probing. Moreover, the bound on the minimum budget needed
to obtain an optimal value equal to Ty is consistently less than 50% of the total number of arcs, with values rang-
ing between roughly 16% and 45% depending on the number of scenarios, which shows that for this data set

of the total 0 match
o T ey s .~upp()n=d by the price gap measure, which shows that for most instances probing only
20% of the ancs yields objecve valuas eithan 3% o an i Some casen produces shutions with djectve cqual
to T'y. Regarding the value of information, probing leads to an 18% average improvement to the objective value
with respect to Iy, depending on the available budget. We remark that probing only 5% of the arcs achieves
improvements of up to 23% in some instances, and the only case in which the probing value s low (1%) corre-
sponds to a set of instances that are not solved to optimality by the exact algorithm and for which the average
optimality gap is 24%, suggesting that for these instances our method fails to obtain high-quality probing plans.
Our main fake away from the probing value measure i that probing a reltively small fracton of arcs often
value.

ngardmg the computational p:’rinrman(e o ot algorithm, Table 1 shows that we solve 119 of the 180
instances in this data set to optimality within the time limit. The solution time is highly dependent on the number
of scenarios and the budget. Instances with higher budgets seem to be solved faster than instances with tight
budgets, and the solution times for instances with ‘The average optimality

ap is 4%, with values ranging from 1% to 24%, where the worst optimality gaps correspond o instances with
tight budget, reinforcing the idea that instances with low budgets tend to be harder to solv

We now tum our attention to the heuristic approaches. We refer to the randomized greedy heuristic as H1, to
the heuristic based on a perfect information solution as H2, and to the heuristic based on minimizing the esti-
mated cost function as H3.

We first use the lower bounds obtained with the value function approach for the 5x 5 and 10x 10 instances to
assess the performance of the heuristics in terms of optimality gap. We find that for these problem instances, H1
finds solutions within 13% of the lower bound on average, H2 finds solutions within 6% of the lower bound, and
H3 is the best performer on average finding solutions within 4% of the lower bound. The detailed results of this
experiment are reported in Table C.1

We also compare the performance of the heuristic approaches over the larger problem instances 20 x 20 and
30x30. Table 2 reports the results of this experiment. Column “Obj” shows the average objective function value
for the best solution found by each heuristic. The remaining columns present the same information as before,

results for 10 tances. Bold
et performing heuristic for each row and are used to compute the average prnbmg s price
gap. In this experiment, we used a small subset of the scenarios in  when minimizing the estimated cost func-
tion for H3 because solving the resulting quadratic problem becomes too computationally taxing for
large values of ], in part because of the ‘adtional varables and constramts needed for linearizing the qua-
dratic terms and the number of variabl needed to describe * for cach scenario.

T o o gap for these larger problem instances is on average 31%, with values as high as 36%,
which is larger than for the smaller networks. The bound for the amount of budged needed to achieve I'y ranges
from roughly 21% to 33% of the total number of arcs, which again shows that for this problem, probing a rela-
tively small fraction of the arcs often guarantees the same performance as having full information. This idea is
again reinforced by the price gap, which is on average 10%, indicating that we are able to find solutions with
objective value within 10% of 'y on average with the proposed ha...sm We remark that cphmnl probmg plans
would probably yield even lower values for the price gap.
mcasre 13 condstently above 20% even for smal bucatts of xouzhly 3% of the ttal mumbe of sres. Thie again
shows that probing a small fraction of arcs can lead to considerable improvements to the objective value even
when using our proposed heuristics that do not guarantee an optimal probing plan.
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In terms of the computational performance, HI is the fastest with an average CPU time of 252seconds, fol-
Towed by H3 with 356 seconds, and H2 with 464seconds. Regarding solution quality, H2 is clearly the best per-
former finding the best solutions in 10 of 12 instance configurations, outperforming H1 on average by 11% and
H3 by 3%.

6.2. Results for a Project Selection Problem with Disruptions and Probin
We also study a project selection problem in which projects are susceptible to uncertain failures that reduce their
profitabili n, the d keris probe a limited set of projects, rev
if a failure impacts (or not) each project pr the expected actual profi.
consider a set of projects A’ N o Eroject 12 A1 has a nominal praft denoted by £, and. an
investment cost denoted by 0. When a project fails,its profi is reduced to zero, and the decision maker has a
total fund of W to invest among the projects. Let x; be a binary variable that takes the value of one f project i is
selected and a value of zero, otherwise. The set X of feasible solutions for this problem is given by a single knap-
sack constraint:

Dww s W, (50a)
P
xefo” (500)

We generate a set of synthetic instances as follows. We consider a number of projects N € {20,30,40} to test the
exact approach and N {100,200} to test the heuristics. For each project, we draw coefficients w, independently
at random from a discrete uniform distribution L(1, 50) and coefficients ¢, from a discrete uniform distribution
(50, 100). We then set the available funds W = 0.13",_ ;. We generate 10 different problem instances for each
value of N considered.

Table 3. Assessing the Performance of the Value Function Approach on Knapsack Problems

Value function

N 1B B B n Ty  Tmee 1B UB No.sol  Probing value _Price gap
» 19 271 2 m02 202 0 0 16%
oo 3 269 971 7 m2 w2 0 B

& 29 971 5 29 29 0

17 01 15 w9 209 0

» w2 3 w7 a0 6 a2 am2 0

6 27 1 1 20 0

120 w2 w05 205 0

o0 B3 a0 w2 By %67 267 0

& 20 2 35 awe 26 »

B 1 e s 7 72 w2 0

00 s 3 Mle  asis 0 a1 anl 10

&l 618 4w s 5

1 5 a2 n a7 amr 0

0 M4 3 5 82 2271 493 w3 0

6 35 as2 30 45 a7 2

1oMe3 ams w2 01 el i

00 w2 3 3 5 s ms4 a7 2

6 393 a5 30 pi5 165 0

W 1oams 63 3 ses 568 0

00 27 3 e 3 s 6 10

6 a6 683 360 seed 6B 0

190 el e 480 4930 1

o 24 3 400 eI 360 519 579 0

6 490 eI 360 Si4 63 o

1 se 665 359 462 574 5

S 248 3 4656 66s 360 Al w17 0

6 as6 s 507 @60 o

Towl 157 %6 4166 15
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Similar to our first problem, we consider scenario configurations with |Z| € {10,30,50} to test the exact
approach and |2 € {100,500} to test the heuristics. To generate the scenarios in 2, we set the probability of fail-
ure py =05 for every project and randomly set & =1 with 50% chance or & =0 with 50% chance.

Table 3 shows the results of our experiments for the exact approach. The first column shows the number of
projects and the remaining columns display the same metrics as Table 1 adjusted to reflect the fact that the pro-
Ject selection objective is to maximize the expected profit (as opposed to minimize the cost). As before, each line

summarizes the results for 10 different problem instances.
1p between Ty and Iy is on average 36%, which shows that in this problem setting there are also consid-
erable potential improvements to be achieved by probing. The bounds on the minimum budget needed to obtain
an optimal value equal to T are slightly larger than for the shortest path problem, with values ranging from
roughly 50% to 63% of the total number of projects. We believe that this is because of the lack of structure con-
g the different projects, opposed to the shortest path setting in which arcs interdependent because of the
underlying network structure. However, it is sill holds for these problem instances that the performance of per-
fect information can often be achieved without having to probe every single project (but about 60% of the pro-
jects). The price gap shows that probing a small fraction of the projects yields on average objective values within
15% of T'y and in some cases produces solutions with objective within less than 5% of T'. Regarding the value of
information, probing leads o 3 15% average improvement o the obeciv value with espec o I depending
onthe et, with values s high as 32%. We roblem
e ot prﬂbu\g a relatively small fraction of the projects can lead to considerable improvements to the
Objective value.

In terms of the computational performance, our proposed exact algorithm solves 187 of the 270 instances in
this data set to optimality within the time limit. The solution time is again highly dependent on the number of
scenarios and the budget. Contrary to the shortest path problem, instances with higher budgets seem to be more
challenging than instances with tght budgets (e for example, nsances with 1 = 30 and 10 scnario). As
before, solution times increase considerably for instances with m¢ i0s. The average uphmahty gapis 3%
with values as high as 21%, where 1o mstances it

We run two sts of experiments with the heurlsti approaches, The st one compares the best solutons
obtained by the heuristics against the upper bound from the value function approach. For this problem class, H1
finds solutions within 7% of the upper bound on average, H2 finds solutions within 5% of the bound, and H3 is

the best py ‘within 3% of the upp The detailed results of this exper-
iment are reported in Table C.2.
Our second the over the larger problem instances, Table 4

reports the results of this experiment. As before, each row summarizes the results for 10 diferent problem
instances

full information gap for these larger erage 29%, with values as high as 32%. The
bound fo the amount o budged necded to achieve T 1o consistently under 60 ol the total number of projects.

Table 4. Assessing the Performance of the Heuristics on Knapsack Problems

G m n s R
N Bl T Ty B B Aversge Mamum Time( Objctve Time(s) Objective Tme () Objecive
w s ess s 12784
W L1757 165 579 10 e
L7 s 2 17
L74s 16755 12733
0 11749 14575 613 10 13508
L7 1S 1657
n w0 w0 270
100 23976 33980 1059 20 28
2376 30 W0 029
23688 3367 10 2574
S0 23685 3367 1106 20 2776
s 367 w0 152
2072
Nt re
valieand price gop.
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7. Conclusions

We study a class of i to d s, in which the decision maker has the
ability to gather information (probing) to confirm the occurrence or absence of disruptions before solving the
combinatorial problem. The main focus of our work is on measuring the value of the information provided by
the probing stay

We represent the problem as a bilevel problen with multiple followers and provide an exact approach and

To . we are the first ones
this type of p with bounds on the value of information.

We condiet computational &xp&nmems on two problem classes for which the underlying problems are a
shortest path problem and a knapsack problem. Our computations suggest that even small pmbmg budgets
could yield considerable improvements in solution quality when compared with not doing any probing. This is
iruenotonly forth exat approach but s fr the euristics whichare ableto ind considerably et oluon
plans when

ot s oo developmg specialized exact algm-ﬂhms and acceleration techniques to tackle larger
problem instances. Anothr rescarch enue s pplying our modeling framework o problems stemimi from

uch logistics, in which uncertain disruptions

are likely to occur ::nd plcbmg Could play & major ele i mproving soltion qualy. One micresting research

avenue relates to business problems in which decision makers are able to take actions to reduce uncertainty, for

pl fme windows o produc-

tion times, performing preventive measures 1 avold defecs o manuficturing, o hiring third party companies

to gather additional business intelligence. These problems may be casted as information dlscnvery problems and
solved within our proposed modeling framework.

Appendix A. Cost Estima Is the Conditional Expecled Value
For any probing plan = define J. = /2 = 1) an 1). We have that

EICO01:

B[Sl — e+l
&
= latt -l

0, then the independence of the [ imply that E[J|J

1) an

T+ [

Observe that i = = 1, then EIJ|
L= Consequently,

EICU. 01

=4, whereas i

Yl -&mednl+ Y a0 —px+cpl,

which is precisely Equation (2).

Appendix B. Enforcing the Oplimistic Assumpion

‘To make sure that the optimistic assumption is safisfied we need to make a simple solution check in Line 3 of Algorithm 1.
Ler s e he soluton bined from soving the RV in Line 2 and let * be the solution obtained by solving the

lower-level problem in Line 3. For each scenario & (2,£,2°2); that s, the solution obtained

X
oy aclving RVE b 0 aliematos aptnl sl i thelowee vl prcbiem 1 s e cuse e e £ =21 other-

wise, we record £

D this nure ha the aptimistic assumption i satsfied by the optimal soluton obtined a the termination of the
algorithm. To show this consider an optimal solution Z obtained via Algorithm 1, and its corresponding second-stage
solution ¥ and optimal objective value . Assume by u)m-mdlchon that the optimisti assumption is not stisfed, that
15, there exists an alternative solution ¥* such that C(z, &, &) for all scenarios, and C(£,¥) < C(&,¥°) for at
least one scenario £ & =. This contradicts that [ is the optimal objective value, because solution ¥ i a feasible solution
to RVF that yields an upper bound strictly lower than [, In turn, following the update rule described above after solv-
ing the lower-level problems for = would yield an upper bound strictly lower than I as well,

Appendix C. Additional Tables
Table C.1 shows the results of the experiments for the heuristic approaches over the small- and medium-sized networks
for the shortest path problem. The column “gap” displays the optimality gap measured using the lower bound obained
via the exact value function algorithm. As before, cach row summarizes the results for 10 different problem instances
Table C.2 shows the results for the heuristic approaches over the small- and medium-sized project selection instances.
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Table 5. Solving Small Knapsack Problems with All the Scenarios

Value function

[ T [ Time (9 T Probing value Price gap
1 01 1206 a5 1062 12
2 01 1206 1038 143 50
H 01 1206 e 180 2
4 %01 1206 192 1195 s

The prie gap i an aversge 18% and im x many msl:m:es, we are able to find snluhnm with objective value
within 1% of Ty average 17%, and even for small
bucgets of roughly 5% of he toal Lot projects, he heuristics arc able o fnd solutions that axe ahmost
10% better than Ty,

of the computational performance, H1 is again the fastest with an average CPU time of 301 seconds,
followed by H2 with 200seconds, and H3 with 419 seconds. Regarding solution quality, this time H3 is clearly
the best performer, finding the best solutions for all instance configurations and outperforming H1 on average
by 6% and H2 by 5%.

6.3. Additional Experiments

We consider smaller instances of the project selection problem with N = 10 projects in order to solve them with

all possible scenarios rather than using SAA. The objective of this experiment is to check if using all scenarios,

instead of using SAA, leads to similar conclusions. In this case, |Z| = 1024 scenarios and we solve 40 instances

with different probing budgets. The results are in Table 5. For these experiments, the average and maximum FIG

(independently of the budget) are 36% and 51%, respectively. Also, the upper bound B is 5.2, and all 40 instances
olved to optimality.

“The results show that similar conclusions are obtained when one uses all scenarios rather than SAA. We got
walues for the FIG and B/N of around 30% and 50%, respectively, which are comparable to the corresponding
values in Tables 3 and 4. The average probing value is 27%, which is larger than the values obtained in the previ-
ous experiments; however, in this case, B is proportionally larger than the other experiments (in Tables 3 and 4,
the largest budget represented at most 20% of the number of projects, whereas here the largest budget represents
50% of the projects), which explains the increase. The average price gap is 5%, which is smaller than in the previ-
ous experiments, which can again be explained by the larger proportion of budget available in this experiment.
In conclusion, the results of this experiment give evidence to suggest that using all scenarios rather than SAA

Using the same small instances, we next evaluate the tightness of the bounds given in Section 4, specifically
that To~Ts < (1/9)T ey l: — ) (referred to as Bound 1) and that Iy Ty < (1/2)Y e\ s(€] — /) (referred as
Bound 2) (see E d (44). These values in Table

The resus in Tble & show that the theorrcal bo\mds, atleast in these instances, are fairly loose, being several
times larger than the true value. This suggest that the bounds, whereas tight in general (as shown by Remark 1),
might be very loose depending on the instance type and data. Consequently, tighter problem-dependent bounds
might be available. For instance, to derive tighter bounds in this class of problems, one might use the fact that
the variables in  are subject to a budget constraint.

Tl . Evaluating th Qusiy of e Bounds on Small Knapesck Prbles with All

the Scen:
5 non Bound 1 n-Te Bound 2
1 161 193 14 w77
2 22 1593 63 290
3 79 1593 26 2571
3 ) 193 07 217
Toul 215 1593 60 759
INFORMS Joumalon Computng, Aticies in Adhancs p. 1-22. & 2024 INFORMS. 21

Table C.1. Assessing the Performance of the Heuristic Approaches on Shortest Path Problems

Heul Hew Hews
[ B Objective Objective  Gap__ Objective
7 5 s 284 2352 6% 275

0 5 2001 263 s 204
16 268 179 o 17

3 5 236 5 310

E 5 265 2306 s 1
16 252 2176 3 2152

4 2552 5 2369

50 5 200 2350 s 263
16 285 m3 3 2152

mxw 2 2 70 395 1% ]
10 X 308 201 ™ 311
s Bas 3134 3 311

2 w6 12 12% 37

% W 3062 22 10
I 3442 3199 s 22

20 52 351 1% 3460

El W 307 s 6
B 3475 213 s 7

Total 02 14 P 55

Table C.2. Assessing the Performance of the Heuristic Approaches on Knapsack Problems.

HI o s
" [ Objective Gap Objective Gap Objective Gop.
» 1 2185 % 2092 0% 2185
0 3 2564 % 250 3% 710
6 293 s 282 2 218
1 2129 o o2 235
» 3 2523 ™ % 2654
6 2667 o 1% 289 1%
1 2105 o o 2005 o
B 3 15 % S 2660 o
6 1 s e 270 o
£l 1 5 1% % w16 1
10 3 52 ™ 5 84 1%
6 3 o s . 5
1 751 I s 752 1%
B 3 w7 o 1053 1
6 015 1% % 481 3
1 900 03% 01 o
£ 3 L1 o ™ 56 o
6 394 1% o 817 %
W 1 031 2 5054 0%
10 3 5105 5 74 1%
5 07 o 719 e
1 910 ¥ o1 02
2 3 035 0% 251 s
5 260 1% 5610 1%
1 54 1860 an
0 3 s 5196 2%
B 5192 52 %
9 w012 2




