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S O 88 e The analyss of social and biological networks often involves modeling clusers of

or their graph ‘The k-club model, which
b, USA relaxes the requirement of pairwise adjacency in a clique to length-bounded paths.
Depaadof i o Mgt inside the cluster, has been used to model cohesive subgroups in social networks.
e oy (v s o | and functional modules or complees i biological networks. However, f the graphs

ime-varying, or if they change under different conditions, we may be interested

Corvespondence

Babratar B, Schol o ius | i clusters that preserve their property over time or under changes in conditions,

Engincring aod Mg, OKshr St To model such clusters that are conserved in a collection of graphs, we consider a
TUNTN o~

[r—— ol
Funding nformation collection. In this article, we consider the canonical optimization problem of find-

The s offen . Bt s e mg a :ms&gnph keclub of maximum cardinality in a graph collection. We develop
spproaches 10 solve this problem. Specifically, we introduce
it e e meq\lalmex, and brancheand-cutalgorithms based

Rescuh,GranAvard Number,
0210t e e e S
significant benefits of using the approaches we introduce.
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1 | INTRODUCTION

In graph-based h de models a data item with different attributes, and two nodes are joined by
an edg:l’lhey e ~lone 10 cach xber b on similrity measures. Graph ining inssial nd ioogicalneworks nsolves
interest using cli  their graph. I these graphs,a coh

group is  subset of nodes verified

>
‘goal. Cohesive subgroups in social networks could be identified for ccommender systems, marketing campaigns, com-

munity detection, influence maximization, and so forth [3]. In hm\nn\cnl networks like ..mmn interaction networks, gene

that dul P 119]
s have been extensively studied and used as models of cohesive subgroups o clusters in dive

elds including
o iogin nework analyis (361 Msjorctegoris e th dsane e elion -t and el )
and the edge count, degree, and edge density based relaxations k-defective clique [45), k-plex (7], and quasi-clique 28],
respecivly.

thody of e i

property while optimizing a measure of fitness like cluster size or weight. One common characteristic shared by optimization
tical nod or other
of interest in a single graph. However, in many settings the graphs are time-varying as the underlying dynamic systems they
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property

preserved under vertex deletion. In contrast, the k-club property is not preserved under node deletion. Nonetheless,
the lack of heredity may be acceptable when it is more important (o ensure that nodes on at least one of the leny inded
ot s compltely contsined withn he subgraphnducc by the cub 21 Sin thels oducton i scil setwork nyss
[49),these distance-based clique relaxations have been used in social and biological network analysis [8, 21, 35], as well as
ther areas. For low values of parameter k. typically no more than four, the A-club can be an appropriate choice for modeling
ehdy-fonit clsiers
We define the cross-graph counterpart of the A-club, based on the cross-graph quasi-cliue model introduced by Pei et al
1381, which also appears to be the earliest formal study of a cross-graph model. Let G = {Gy. G, ... .Gy denote a collection
of p simple, undirected graphs, al defined on a common node set denoted by V(@)

Definition 3. A subset of nodes § € V(@) is called a cross-graph k-club if § is a k-club in cach graph in
collection G.

“This article focuses on he maximiun cross-graph k-club problem, which seeks to find a cross-graph A-club of maximum
cardinality in . We use the alternate term “p-graph” k-club if we wish to specify that there are p graphs in the collection.
Otherwise, in line with past usage, we simply refer (0 it as  cross-graph k-club [381. The (1-graph) maximum k-club problem
is NP-hard for every fixed k [11], and remains so on graphs of diameter & + 1 [8]. Consequently, the maximum cross-graph
keclub problem is NP-hard for every fixed postve incgsr ks it includes the maximum k-club problem as special case when
G is a singleton. In our previous study on this topic we show that this problem is NP-hard even if G contains exactly two
distinet graphs [32]. Moreover, verifying s v crove-srph e <an e sty elged (he complementary problem 1o
veritying masinaity by nlosion) s o show 10 b NP-complete for a collection on cominin o distinct graphs 121, Thi
At known for (I-graph) 2-clubs 2 (26]
Tl\e first w formulaton i he e o he maxinom k-<lub problem was e inroduced in o J Tlm so-called chain
I pec

cascofk =2, lub probl
gets increasingly challenging as & takes values larger than 2, it can take up to O(*+!) binary variables and constraints to fully
dosrie e i formulaton. To the best o e R, 0 Syt compuond s v b e n he
chain fo

Two pe!ymmml sized IP formulations, one using binary variables and the other using integer variables were introduced
in [46. Fu\ly described by O(kr) variabesand constints, these re the st compac ormlstions o the mairum k club

kA hyper-
i cutsa delaed containts s toduced n {31 e lol24). A cut hke 1ormulamm and a pathlike formulation that use:
respectively, an n [39]. ould
use exponentially many constraints, but only n binary variables. The c(\mpnmumml \u])grlomy of hs formulation s demon-
strated by the numerical resul din (391, which makes this hto
solve the maximurm k-club problem for general .

3 | INTEGER PROGRAMMING FORMULATIONS

An TP formulation for the maximum cross-graph k-club problem can be obtained by simply taking the conjunction of any IP

formulation for the maximum k-club problem over all graphs in the collection. We refer to this straightforward approach as the

conjuncive formulation. In this section, we first extend the cut-like formulation of the maximum k-club problem [39] to the

cross-graph setting through conjunction. We present ideas wmch strengthen this formulation, and eventually arrive at a new

formulation based on a preprocessing p pairwise peeling. We also identify new valid inequalites for the
roblem and cross-graph extensions of existing valid mequnlvhee from the literature.

%

Definition 4. Given a graph G and a pair of nonadjacent nodes w and v, a subset of nodes § € V(G) \ (u,v) i
called a length-k u, v-separator f distes(u,v) > k.
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. the inequality 11+ < | that can replace all o the
as rnum abserv that dis(2,6) = 4 > 3. tus if e want to smultanouly nclude nodes 1 and o in a 2-graph 3-club,
then we cannol include node 2 and it can be deleted from G and H. Then, the distgyi2(1,4) = 4 > 3, and consequently we.
cannot include node 4 cither. Upon deleting nodes 2 and 4 from G and H, we find that nodes | and 6 are disconneeted in H: so,
14 < 1 valid.

Algorithm 1 formalizes the idea illusrated by the foregoing example (o generate tighter constraints, and we refer 10 it
as the pairwise peeling algorithm. Let us denote the node pairs that are nonadjacent in some graph in the collection G by
I i= v} C V(@) : uv € EG) for some G € ) danods
pair v € 7 as input, and creates an auxiliary graph collection G by recursively deleting from every graph in the collection,
nodes that are more than distance k from either u or v in some graph in the collection. The constraints for the node pair
and v can then be generated based on the minimal separators of graphs in this auxiliary collection Gia. Thus, we can replace
constraints (1b) by the following based on the pairwise peeled collection:

H 45 =S <1 VS € Slu,v) and G € Gy such that uv € EG), uv € 7. @)

Proposition 1. Replacing
the maximum cross-graph k-club problem.

“The claim follows from the observation that the incidence veetor of a cross-graph k-club satis

constaints (3) and every

binary vector satisfying these constraints also satisfies constraints (11). Furthermore, constraints (2) and (3) coincide when

= 2, because the unique minimal length-2 . v-separator in G i the common neighborhood No(u, v).Is interscction with Dy,
isapp pair, that i, N, )1 Dy € S, ) for the graph G € G

Algorithm 1. Pairwise peeling

Tnput: G, kv € 7

Output: G,
1do

Weo

3| forGegdo
| | forwe V@ WU (v do
s i distlu,w) > k or distc(v,w) > k then
« W= WU )
, delete w from every graph in G

s while W £ 0;
9 return G, — G
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are modeling evolve over time. In this case, the single graph under consideration is typically a snapshot that reflects node
relationships at the point i time it is recorded, o it aggregates information over a period of time in some manner.
ternatively,relationsh nodes (and.
2 g

1381
Similarly, systems biologists are interested in finding groups of co-expressing genes or interacting proteins that are conserved
based on the belief

‘modules are more likely to govern core biological functions [29, 431,
Broudly, we call the process of simultancously mining a collection of two or more graphs for conserved structures and pat-

" literature. Algorith
for enumerating cross-graph quasi-cliques to extract hidden pattemns crossing multiple pieces of data were developed in [37,
381, This work vasexende i (18 forfindin froqunt crosrsph g, whereinte detetedclustrs s eired

of,
‘geneous financial ratio values by mining the cnmplﬂe st o cros-graph quasi-biclques ina bipartte graph was introduced in
[44). This bip: iph has stocks as nodes and atures of the stock data in the other partition. The
st graph quasi-bicique odel was used 1 handlethe ssu ofissing value i took data Models and methodsfo ieing
conserved clusters in a collection of graphs without stritly imposing the cross-graph requirement can also be found in [9, 16,
17,41,48)

In this article, we consider a cross-graph k-club model to represent low-diameter clusters that are conserved in a collection
of graphs. Note that the graph collection may represent temporal graphs with an implicit ordering. or may be obtained under

ifferent (experimental) conditions without any natural ordering. Although our focus is on clusters that induce low-diameter
subgraphs, one may investigate any clique relaxation or another graph property in the same setting. Our main contributions in
this article’ are integer programming (IP) approaches to find a cross-graph k-club of the largest cardinality in a given collection
of graphs. Specifically, we introduce strengthened formulations, valid inequalities, and branch-and-cut algorithms based on
delayed cut generation that are evaluated on a test bed of instances in our computational study (see also [33].)

he remainder of this arile is rganized s follows. We formally define he roblem of st and brefly review 1P

InSection 3,

for the maxinum crosgraph Kclub problem and propos techmiques tostcgthen the constraints. Then in Sction 4, we

discus proble, he singl In
Seciont.

results from using the algorith e . and verify effectiveness
of approaches we developed for in solving problerm in temporal graph mining
calld the -club ignatue problem (6. We conclude his aricle with a summary of our conributions and identy fuure
extensions in Section 7

2 | BACKGROUND

For a simple graph G, we use V(G) and E(G) o denote its node and edge sets respectively. For simplicity we use uv to denote:
an edge {,v) € E(G). For a subset of nodes S € V(G), we use G \ § 1o denote the graph obtained from G by deleting the
nodes in S along with s incident edges and we let GIS] denote the subgraph induced by S (obtained by deleting nodes outside
S with the edges incid We use G and ‘raph G and of
node uin G, ‘N'wweb We use No(u,v) = No(u) n N(,(v') to denote the common neighborhood of  and v in graph G. We
denote by distg(u, ) the minimum number of edges on a path connecting nodes u and v in graph G, and its diameter s given
by diam(G) := max{disto(u,1) : 1,v € V(G)).

Definition 1 (125]). Given a graph G and a positive integer k,a subsetof nodes § € V()i called a k-cligue if
distg(u,v) < k for every pair of nodes u, v € §.

Definition 2 (2], [30];sce also ) 5 . asubset of nodes S € V(G) i called
akeclub if diam(GIS)) < k.

A keclique § allows two nodes u and v to be included even if every path between u and v of length at most k in G includes
nodes outside S (see Figure 1). By contrast, i the k-club model at least one of those paths should be contained in GIS], Together,
fecligues and k-clubs are well-known ditanee-based clique elatons 421, The siructural gusrantees e provide typically
determine their suitabilty for any particular graph mining application. The k- itary: that i, the
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Definition 4 implics that every path of length at most & in G between nodes 1 and v, uses nodes from . Let Sg(i.v) denoe
the collection of all ength-k i, v-separators that are minimal by exclusion. For the case k = 2, the unique minimal length-2
v-separator s the common neighborhood No(u. ).

Formulation (1) that follows is the conjunctive cut-like formulation (CCF) of the maximum cross-graph A-club problem
over a callection G For a subsetof nodes 5 C V(G), we use the shorthand (8) := Ty . 1t s readly veriied tha v is an
incidence vector of  cross-graph k-club if and only if it is easible to the CCF.

max x(V(G). a
Stntn x9S VSE Sl € EGLGEG, (1b)

xel0), Vue Vo). )

Formulation (1) can length-k ,v-separator of graph

€G iie.w €5 € Sqle,) is also at a distance stritly reater
collection, then w cannot be included in a cross-graph k-club that contains both u and v. Consequenly, constraints (10) can be.
replaced by

& from either  or v in some other graph H € G i the

D CLIJNESN @
where D, i the set of nodes that are at distance at most & from « and v in all the graphs in G, defined as:

Dy 1= {w € VIG)\ (v} distaln,w) < k and distg(v,w) < k VG € G}

“The validity of by and =% = 1 thenx(§\ D) =0,
b nonodesfom th st 5\, Do can be mclndcd in a cross-graph A-club containing u and v. Alternately, we can think of
501D, as further reducing the size the by removing nodes that are not in any path of length at most & between 1
and v, in some graph in the collection. Observe :hm the resulting formulation i at least astight as the CCF. Moreover, there are
instances where § 0 Dy, C § for at least one separator S € Sq(w, ), as llustrated in the following example, which means that
there are instances where the resulting formulation is strictly tighter than (1).

‘onsider the maximum 2-graph 2-club problem on the graph collection in Figure 2. Formulation (1) includes the constraint

x1+32 — 33 < 1 due to node pair | and 2 in G and constraint x, + x> ~ x5 < | due to the same pair of nodes in H. Note that
disty(1,3) = 3. We can therefore tighten the first constraint by intersecting the minimal separator [3] with Dy = {5.6,7} to
obtain the constraint x; + x> < 1 that dominates both previous constraints

Based on the foregoing observations, we can now envision an approach in which we further tighten the constraints with
respect to each u, v pair, by recursively deleting nodes which are (00 far away from either u or v in any graph in the collection.
“This is a recursive operation because the deletion of nodes can have a domino effect on pairwise distances in graphs, leading
to more nodes meeting the condition for deletion. The resulting inequalities will be at least as strong as their counterpart in
. that i, the graph collection
obtained by deleting nodes based on a particular u, v pairis only valid for generating constraints with respect to that pair, This

don wand v might be K of a different node pai.

o illustate his ides, consider the maximum 2-graph 3-<lub problem on the graph collcton i Figure 3. Con-

straints (2) ar listed below for the node pair 1 and 6, for graphs G and H, by noting that Dyg = [3.4,5). Sa(1.6) =

constraints (2). However, it is important to recognize that this operation is node pair specif

FIGURE 2 ncquality , +.: < | i ald forthe probiem on G =
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Pertinently, given a graph G, a positive integer k, and a (possibly fractional) point x* € [0, 11V, finding a length-k
,v-separator § for some node pair u, v such that x; + x; — x°(5) > 1 is known to be NP-hard for k > 5 and is solvable in
polynomial-time for k € (2,3,4] (see [5, 39]). The case k = 2 is straightforward, as the common neighborhood Ng(i,) is
the unique minimal separator. The cases k € [3,4] require solving the maximum flow problem on an auiliary network and
applying the maximum flow-minimum cut theorem o identify a “violated separator”, or conclude that none exists

n 2. The pairwise peeling algorithm will delete the same set of nodes independent of the order in which
Alw cruph( in G are processed by the algorithm.

Proof. Suppose for a specific uv € 7, (w1, w3, ... ,w,) is the order in which nodes were deleted using an ordering
x of the graphs in G Then, w, is too far from either u or v in some graph in the original collection, and hence,
must be deleted by Algorithm 1 using any other ordering of graphs in G. If wa was deleted following w; when
using 7, then in any other ordering, after w is deleted, we Know that wa must be t0o far from either u or v, and

lhcrclor:. must also be deleted. By repeating this argument, (i, wa, ... ] must be deleted under any ordering
hat As xis arbitrary, Algorithm |
the arer i which graphs in G are processed. .

Henceforth, we refer o this new formulation as the pairwise peeled cut-like formulation (PPCF). For each us € . con-
straint (3)is at least as strong as constraint (2) (which in turn dominates constraint (1b). In our computational experiments
reported in Section 6, we assess the gains made by using Algorithm 1 to generate potentially sironger consiraints.

4 | VALID INEQUALITIES

T thissection, we introduce & furily of vl nequaliies for arbitary & obtaned by lfing selcted sero coffcent variales
in inequality (3) and another for the special case & = 2 that extends a result from the literature for the 2-club polytope [2

4.1 | Lifted cut-like constraints

We can strengthen constraint (3) by lifting the coefficients of some of the variables under certain conditions, similar to the
approach taken in [39]. Consider a pair of nodes u, v for which we have produced a peeled collection G, For graphs G, H € 6
(not necessarily distinct), consider a node w with distg(u, w) > k and disty(v,w) > k. We know that w cannot belong to any
minimal length-k i, v-separator in G or H, before the collection is peeled for the pair u, v. After peeling, w will no longer exist
in any of the graphs, and therefore cannot belong 10 5 € Sc(u, ) for any G € G, We are interested in finding an , such that
inequality x, +x, + a5, — () < | remains valid. Let XCLUBL(G) denote the cross-graph k-club polytope of G. that s, the
convex hull of feasible solutions to formulation (1). We need.

@y < 1= max(x, +x, = x(5) : ¥ € XCLUB(G), v, = 1}

Do, =, = 0 fo every bl i = by urcoiof . We cun et i rumen by ifing anoter e
distance greaer than kfrom each of the nodes ,, and in the collect We can now
o based on the 10 yield valid inequality (4» Define a subset of nodes / € V(@)
a8 a cross-graph distance-k independent set if exery pair of distinct nodes in I are at distance greater than  in some graphin 6.
Proposition 3. Given a collection G. a positive integer k. let G, denote the collection pecled for the node pair
w.v. Consider a lengihk u,v-separaior § € Seuv) for some G € Gu. Suppose I € V(G)\ (u.v) is a maximal
subset (by inclusion of nodes) such that 1U (u} and 1U {v) are cross-graph distance-k independen sets in G. The
Jollowing inequality i valid for XCLUBy

G+ 2l =) < 1 @

i, ) > kfor some graph G € G, the empry set i the unique minimal length-k u, v-separator in G and inequality (4)
includes the special case x, + %, + x(1) < 1, where 1U {u, v) forms a maximal cross-graph distance-k independent set

42 | Independent set inequality for cross-graph 2-clubs
Mahdavi Pajouh et al. [27) introduced the following independent set valid inequality for the (single graph) 2-¢lub polytope of
2raph G:

HO= ¥ (Naw@nCl= 1) <1, )

weldne
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where C is an independent st in graph G and the notation ()* denotes the max(r,0) given some real number 1. Inequality (5) is
valid for XCLUBS(G) if C is an independent set in some graph G € G because it i satisfed by every 2-club in G based on the
result in [27], and every cross-graph 2-club of G is a 2-club in G. The following theorem shows that we can further strengthen
this valid inequality fo our stting. We use V() to denote the subsetof nodes at distance at most o from vertex u i every
‘raph in the collection, that is, N3 (i) isto(u,) <2 ¥G € 6).

‘Theorem 1. Given a graph collection G and a set C C V(G) that is independent in some graph G € G.
inequality (6) is valid for XCLUB:(G):

MO = Y (Va0 CONG] - 1)*x, < ©
welghe

Proof. Let § be an arbitrary cross-graph 2-club of G and x¥ be its incidence vector. It suffices to show that the
following inequality holds in order to show that xS satisfies inequality (6):

Icnsi- ¥ (Newncn
e

D=1 <1

Asu e Sand § is a cross-graph 2-club, we know that S € Nj(u). Therefore,
1CnsI- ¥, (Nen CANZ@I - 17 <1CASI= Y, (Ne@nCs| -1y
e e

Next, we use induction on the cardinality of C 0§ to prove that:

Icasi= ¥ (Nancasi-n* <1
S

IF|C S| = 1, the inequality is trivially true. For some integer g > 2, we prove the claim for |[C 1 S| = g, by
assuming the claim to hold for all C and S such that [C 5] < g ~ 1

Asbitrarily pick a node a € CASand let C, += €1 S\ {a). Note that €, C S is a nonempty independent s
G. By induction hypothesis,

1Cnsl= ¥ (Ve Cnsi-1* <1
e,

We can now rewrite the inequality above a:

Icns -

~(Ne@n C,nSI=1)* = F (INew N Cyn Sl =D <1, or
&e

@

Icnsi-

- X NewnC,ns|=h* <1,
&e

because node a belongs to the independent st C implying that Nq(@) 1 C, = 6.
Now, consider a node b € C,. As nodes a and b are contained in the independent set C and the cross-graph
2-club 5, distg(a, ) = 2 and a common neighbor w of nodes a and b must existin § and that node w cannol be.
inside the independent st C. Hence, we Know thatw € $'\ Cand that [NG(#)1 18] = ING()1C, 18] +1 2 2
From inequality (7) we obtain,

12(cns| 3 (Newn €, nsi- 1"
&e
=1CASI- 1= (NGNSl == ¥ (NN Cansl -1
s
=lcnsi=(NamnCasi == Y (INawnCan S| = 1)*
s

21CnS|- ¥ (INow N €S| = 1), establishing our claim.
e

Theorem |
0 271 by observing that if G s a inglton,then No() & N2, The induction approsch used offers anslernate proofofthat
result. Another consequence is that the separation of these more general inequalitis is also NP-hard, as inequality (5)is known
to be NP-hard to separate [27],
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it e e hn 10 ("), and also from every graph in 6. After core-pecling, J(G*) will be an [S|-core as long as it is

null. Next a pair of nodes u and v that are adjacent in J(G) can belong 10 a cross-graph k-club larger than § only if they
Pvetlenn 151~ 1 common neighbors in J(G*). I not. during community pecling step. the edge u can be deleted from J(G*)
and from every graph in the collection in which i and v are adjacent

P
As @ result, there may exist an edge uv € E(G) for some G € G whose end points u and v belong to different connected
components of J(G*). The edge uv can be removed from every G € G containing the edge. Doing so may disconnect a graph

G s0 that not only u and v belong to different components, but so do some other nodes a and b that are adjacent in /(G*):
then, we can delete edge ab from J(G). In other words, during the “cross edge” peeling step, we recursively delete an edge i
from every graph i the expanded collection GU (J(_t}‘n inwhich itis pmm .ru and v are indifferent connected components
of some graph in G or J(G*). When this recursiv U @) will
e commected omponerts with denial node ubrs ducng he comvnn:ul\ e st 22 o sl approsch e
in iffrentcotex). A= s may sl i chinges 1 the graphs n . Ve e ove these peclin s unl G o longer
h lthough, doso, htalso look for a new in J(G) before repeating the peeling
steps. Next, BC algorithms as applied to the collection of grap iput by Algorithm

5.2 | Initial root node relaxation
Denote by & the edge set of the complement graph of the power intersection graph of J(GY), that s, &
{{.v) € V(G) : distg(u.v) > k in some graph G € G) . Like the single-graph counterparts. a cross-graph k-clique
graph-theoretc relaxation of a cross-graph A-club. The maxinuum cross-graph A-clique problem s equivalent to the classical
maximum clique problem on J(G*) formulated as:

max (x(VG) ¥+ < 1 Vi € 8,3, € 0.1) Vi € V(G

where xis the incidence vector of cross-graph k-cliques in G. Thi e
root relaxation that we start solving in both variants of our decomposition BC algorithms. To avoid having conflict consiraints
in the initial root relaxation for pairs of nodes that reside in different components of J(GY), we extend the initial relaxation

sing a binary variable for each connected component of J(G*) and enforce that nodes selected must belong to the same

component, Let C denote the set (GY). The we use s given in
max x(V(G). (®a)

SUoxoen <l Vv € El) and H € C, (80)

o<1 (8¢)

X Sy Ve ViH) and H € C, (3d)

el Vu € ViG), (8¢)

v €10.1). VHeC. 80

el hat very G G andthe graph J(6°) hive st of comeeted components ha e duced by he dencal node
subsets of V(G). Therefore,
components corresponding 1o one such idenical node subsctat & time. We chose (0 use the cxtended formalstion (8) in order

o climinate X hat consider greedy or orderings based
h iteratively iborhood
of the fixed node. Although, our purpose here is to demonstate the effectiveness of using one formulation over another in a
C algorithm, porating more ideas from Keclubs and is varians 15,
2024 51,39, 01 coud pocnaly mprove hefcivenes of o methods

u iy CCF and PPCF, would detect

aviolated constraint (1b) and( \ev‘unve!y,whengvu an din the
a cross-graph k-clique that is not a cross-graph k-club. We chose not to separate fractional solutions based on our preliminary
experiments for our test bed. For the

independent set valid inequality (). We discuss our separation procedures next

53 | Separation procedures
Given a graph G, a positive integer &, and a (possibly fractional) point «* € [0, 111, finding a length-k u, v-separator S in G,
for some node pair u, v such that x; + x; —°(S) > 1 is known to be NP-hard for & 2 5 and is solvable in polynomial-time for
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Algorithm 5. Independent set inequality separation heuristic

Input: G.k,x* € (0,1}, minimum cut violation e, time limit 7

1for G eGdo
2 | Find a “good” feasible solution by solving formulation (10) for input (x*, G) with time limit 7 and
‘minimum objective target of 1+ ¢ o obtain (*,w*) > Feasibility of (10) is guaranteed

if objective value at (", w*) is at least 1 + ¢ then
| return Cusin plane (6)for independent st C := {i € V(G) :

-1

~ING() NG (Dl Vi€ VG).

* g’ (100
wiz0, Viev@) (10
aty <1 Vi) €EG), (106)
el VievE) «aon)

Rather than attempling to solve the separation MILP (10) to optimality, we utilze it in a heurisic. Our approach, summarized
in Algorithm 5, is t0 solve formulation (10) on each graph G € G whenever the LP relaxation optimum x* at a BC node is
binary, with the aim of finding a good feasible solution or fail to find one after |G attempts. Hence, we terminate the Gurobi
solver early once a feasible solution of objective at least 1 +¢ is detected o the time limit 7 is reached.

6 1 COMPUTATIONAL STUDY

We mpon results from \ducted on 64-bit Linux” with dual Intel” “Skylake”
RAM.
Opmmzer ¥9.0.1 [14] with a olve time imitof 7200, The global cut aggressiveness paramete in Gurob s configured o st
offall el purpose ctin planes i rder 0 csurs Ut o are a better
planes added. e e are
m‘ at their default settings.
eral, ke (2.3.4)

Lectony € (3.5.4.5). Our i hed s senerted rom he following three groups of graphs: the Tenth DIMACS Implementation
Challenge benchmarks [4] (DIMACS-10 graphs). graphs used in computational studies in [46] (VB graphs), and graphs used
in computational studies in [23, 27, 31] (BG graphs). These graphs are commonly used benchmarks for the maximum k-club
roblem. It i also known that the edge densities of these eraphs have a discernible m)pacl on whether or not the instances are

challenging for particular values of parameter k [26], G grap
{0 the valaeof parametr k for which we solve he maimum cross graph & <lub problem. For DIMACS. 10 and VB graphs,
we first conduct a set of preliminary experiments to recognize challenging eraph and k combinations. Graph collections for
our computational experiments are generated from these graphs, and the generation procedure varies by group. In Setions 6.1
and 6.2, we discuss our experimental results by groups of eraphs in our test bed, explain the generation procedures, and the
selection of challenging instances in ereater detail. In Section 6.3, we consider the impact of the independent set inequality on
PPCF for the special case of & = 2. In Section 6.4, we conduct a computational case study on the effectiveness of PPCF on a
aph k-club

problems. Codes and instances used in our computational experiments are publicly available on GitHub [34]
For most of our experiments, we report resulis averaged over 11 — p runs, that is, on i colections

{Grs e GG e Gt Gui—p. . Guo). from solving the maximum

club signature problem in Section 6.4, where We port the larget oluion from solvin a seies o maximum crossgraph

withany diferences in identified table notes. We report headin

andp eter values and Coumn aheled“Collecion” Under
(R columns Hibeled -#Nodes” and “AEdes” e report te umber of nde and des, espctvel: hat were removed rom
the graph collection in the preprocessing step using the pairwise peeling Algorithm 2, Columns labeled “obj” and “time (5)°,
respectively report the average optimal objective value and average running time in seconds of the corresponding approach,

s | wiLEy Pavvra

Itis also worth noting that our valid inequality (6) dominates inequality (5), which is also valid for XCLUB3(6). Consider
the two-graph collection g = [G.H) in Figure 2. For the set C = (1,5.6), which is independent in G, inequality (5) yields
X1+ x5 X6 =3 = ¢ = < 1, whereas inequality (6) yields xi + .5 + 6 = x4 =7 < |

Both valid mtqnxhllm () and (6) we have considered in this section relate to inequalties established in the literature.
for single-graph k-clubs [27, 39]. These inequalities, under suitable conditions, are also known to induce facets of the 2-club
poloe. Howers, we e ot identified concvial sufficient condions that o the same in the ross-graph setin. The

Teonthe o of he hull induced by ou that face. In contrast
different in

o the single-graph counterpart, the shortest paths that connect the same pair of nodes in a cross-graph k-club can
each graph i the collection, making the task of Identifying
facets of XCLUBY(G), especially when aninteresting problem for future study.

5 | DELAYED CONSTRAINT GENERATION

“The main goal wa a P
CCF and v-ch 10 solve the maximum cross-graph A-club problem. As both formulations use exponentally many constraints
in the worst case, we implement them in a delayed fashion in the two decomposition branch-and-cut (BC) algorithims that
use the same iniial root node relaxation based on cross-graph k-cliques. These delayed consiraint generation approaches and
preprocessing ideas are described in this section.

5.1 | Preprocessing

Before applying the decomposition BC algorithms. we apply extensions of some preprocessing techniques that are known to

be effective for the single-graph counterpart to our cross-graph seting [23. 31, 39]. Algorithm 2 describes this preprocessing,

scheme based on a feasible solution § obtained using the “DROP heuristic™ [10] for k-clubs, applied to the intersection graph

J(G) with node set V(G) and edge set. [ E(G). Every k-club in J(G) is a cross-graph k-club in G, although the converse is ot
e

.

Peeling based on this cross-graph k-club S is designed to remove nodes and edges from graphs in the collection without
affecting any feasible solution of size more than [S]. To this end, we first construct the power intersection graph of G, denoted
by J(GY). The node set of J(G") is V() and a pair of nodes are made adjacent in J(6*) if the distance between them is at most
Kin every graph in the collection. Finally, we use the observation that every cross-graph k-club (and every cross-graph k-clique
defined next) forms a clique of the same size in J(G*). allowing us to apply peeling ideas from the maximum clique literature.

Definition 5. Given a graph collection G, a subset of nodes S € V(@) is called a cross-graphk-clique if § is a
keclique in each graph in

Once a feasible solution § is available, we implement core peeling [1] followed by community peeling [47] procedures on
J(G: the peeling actions are mirrored on e u has fewer than 15| neighbors in ot belong 0 cross-graph
keclub larger than S (because iF it did, node u would have degree at least ] in J/(G). Core peeling recursively deletes nodes.

Algorithm 2. Preprocessing

Input: A graph collection G, a positive integer & 2
Output: A preprocessed graph collection G

1 obtain the intersection graph J(6)

2 compute a k-club § of J(G) using the DROP heuristic:

1do

4| obain the power intersection graph J(G*)

s | CorePeel(, /(GY). IS])

CommunityPecl(G./(G").1S1)

7| CrossEdgePeel(G, J(G")

s while G is modified:

9 return G

@ wiLEy Pavvra

k€ (2,3.4) (see 5,39 Thecasck

No(uv). The cases k € (3,4) require a transformation to an auxilary network on which we need 1o solve the maximum

flow problem. However, we solved the separation problems using  heuristc procedure following the approach taken in [39],

s, spsste consrit 1) nCCFsnd constait ) in PPCF wing Algrt 3 nd Algort . respecivly. oy

ifthe BC i binary. The BC:

any h k-clique. All violated it is not h

1o the lazy-cut pool. The BC node rlaxation i r-solved by applying at last some of these cuts, as deermined by the solver.
“The separation problem for valid inequality (5) for the maximum (single graph) 2-club problem was shown to be NP-hard,
ditsexuct 27,

=2en nonline P o
introduced in [27]. The [ulluwmg MINLP formulation (10) is the starting point for our approach to using them as culting
planes. However,
usedin [27] Farthermre, based on he computationl experienc repted in 271, in our expeiments, we v the us of
‘general-purpose mixed-integer linear programmiing (MILP) rounding heuristics available in the solver rather than attempting
exact solution, or using simple greedy combinatorial heuristics for ths separation problem.

Terating over each graph G € G, we seek inG that liy (6),in order point
x* € 10,116, Let the binary variable 2 indicate if node i is sclected in the independent set in graph G € .

", G) 1= max 2 - Y wd- ©
) enaonzn
A P 6> 1
the objective function and obiain the following separation MILP.
.6 = max Y xn— Y .
R
st € NG NNGOI —2). Vi€ VIG). (106)

Algorithm 3. CCF separation heuristic

Tnput: Gk, x* € (0,1}VO)
VK WeV@) =1 b K is a cross-graph k-clique
2 for each 1, € K and G GGdo
3 | i distcyeg . ) > k th

a| | Avpy NINIMALIZE fom 39 10 the i lengthk u, v separator V(G) \ K 1o obtain a minimal
separator § in G

s | [ add constraintx, +x, —x(5) < 1 violated by " to lazy-cut pool

& return x* corresponds (0 a cross-graph k-club

Algorithm 4. PPCF separation heuristic

Input: G, k.x* € (0,1)"1

1K< (ueV@|xi=1} & K is a cross-graph k-clique
2 for cach 1, € K and G € G do

3 | if diste (e, v) > & then

4| | Apply Painwise Pecling Algorithm 1 on (a copy of G. k. 1) to obtain G

s| | LetG € G comrespondto G €

o || Apply MINIMALIZE from 39 to the trivial length-k u, v separator V(G') \ K to obtain a minimal
separator § in G'

7| | add constraint 5, +x, = x(5) < 1 violated by +* to lazy-cut pool

5 return 1" corresponds (0 a cross-graph k-club

= | wiLey Pavvra

unless indicated otherwise in the table notes. Columns labeled “#LC" under CCF and PPCF report the average number of lazy
constraints added, namely CCF constraint (1) and PPCF consiraint (3), respectively. The average number of branch-and-cut
nodes enumerated is reported under the column hemimg “#BCN.” The columns labeled “#NCT” report the average number of

h the added Xu+5,=x($) < 1, thatis, [S]. This is an indireet indi-
aoro ofthe strengthof Generally, the s : constaint. labeled
#SL dded. In order o count the

ot o tpe 1 hat e ot e (19, e chuck b et vseputon 0. obtained in scp 6 of Aloritm 4
i ot a lengthk u, v-separator in any G € G. That is, we only count under #SLC if for every G € G, distgys(uv) < k. This
implics that such a PPCF constraint could not hase ben obtained as a CCF constraint from any graph.

6.1 | BG graphs
‘The BG graphs we use are part of the test bed used in [311, which was generated based on the procedure outlined in [11] (see
also [13]) There are four classes of 200-node BG graphs, with
ige density: BG_15 and BG_10 have d

BG_S have densities of 5% and are challenging for k = 3; BG,
report results for the challenging instances in Table |

PPCF based branch-and-cut takes, on average, 47.25% less time than CCF for instances solved to optimality. Note that the
wall-clock time for PPCF also includes the time spent in computing the statstics reported under column #SL.C. PPCF and CCF
did not reach optimality for five and six BG_1S instances, respectively, for the case p = 2 and k = 2, and the statistics for
these cases are very similar between the two approaches. For PPCF, over 725 of the. Iazy constraints added are of the stronger
st of the instances, we.

15% and 10% respectively and are challenging when & = 2;
2.5 with densities around 2.5% are challenging for k =

type (3), which could explain the noticeably better running time performance of thi
amersc 2 smalle vl under SNCT for PRCT han CCF. Note i th vl o $NCT s for s ‘roups of instances under
PPCE. The lazy constraints of this type the left hand side. Across all
instances solved to optimality, CCF enumerated over 21% more BC nodes on average than PPCE. The forcgoing observations
strongly suggest that PPCF approach based on pairwise peeling constraints significantly improves our ability to find maximum
cross-graph k-clubs on this group of instances.

TABLE 1 Comparison of CCF and PPCF on BG insances

cor prcr
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6.2 | DIMACS-10 and VB graphs

We used 12 graphs from the DIMACS-10 benchmarks, lised in Table 2, each serving as a “seed graph’” to generate a corre-
sponding total of 10 graphs. The ede setof each graph in the colleetion is constructed at randony; we start with an empty graph
and add edges from the seed graph with a probability of 0.8, These are the same graph collections used in the computational
st st i 6] VD srphs o e st b s i 1], l s sbclscs i s o contn 10 i
radoity generd i he s st verne) dg deniyuig e samegeeraion procecors s BG g 1,
Eac VB_0.5, VB_10,and VB_LS, respecively o
cdge i o %, 1%, 15

‘The resuls from our preliminary experiments o idenify challenging collections based on DIMACS-10 and VB graphs
for e cosegraph problens e €poncd n . 10-21 in (321 We s tecllecton (G1. .. Gy) sl ht ve e 10

i

We observe that when solving most of these instances there are very few (sometimes zero) Ialy constraints added by borh
CCF and PPCF. If the iniial relaxation is practically sufficient to solve the problem using both approaches nsider these
intance not 10 besufcenly chllngin for th poblem. nd therlo o mesningfl disincton an b made between he
performance of the two algorithms. Based on our preliminary experiments, we only include those instances that required over
100 lazy constraints using either CCF or PPCF. We rerun the two BC algorithms and report results averaged over 11— p

uble 3. Asa instances, the benefits of using
PPCF over CCF is also observed in the results in Table 3. Across this test bed, on average, PPCF is 12.8% faster and over 33%
of the lazy constraints added by PPCF are the stronger type (3) consiraints.

6.3 | PPCF with independent set inequality for cross-graph 2-clubs

Inthis sect PPCF method for

cross-graph 3

bed.In our exp e sel lat tere = 0.5 with  time limit of7 = 30 seconds for cach

‘As we only separate binary points, constraint violation will always be a positive integer (within numerical tolerance). We.
also apply the PPCF separation Algorithm 4 to generate violated PPCF constraints ﬁmowmg the aenpt mmmg aviolated
independent set inequality using Algorithm 5 to ensure the overall correetness of our algor LP

incrementally updated before it is solved as the integral point * being separated only nuence the o\uecmve function of this
MILP. The results are reported in Table 4.

Although, 2for testbed,
we observed terms of a gap and tree size. We observed similar
talso appea col-
umin labeled #1SLC that a relaively small number o violated independent st s wer ound The verge o of ASLCLC
s just3.3% in our exp
Lup. Ho these cutting

Fornstance, we couldatmmp ageressive factional eparation a the oot ading  ound o cutin planes umulungouely by

‘generating one for each graph, and/or adding these cutting planes only at the top levels of the tree. These are directions worth

e
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TABLE S Comparisan of MW-CCF and MW-PPCF on BG instances
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TABLE G Comparisnof MW-CCE and MV-PPCE on DIVACS1030 VB nsacs
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signature problem in m Esch ofthe subproblms in MW-F2 s soing conuncion of « common cighor ormultion

while a subproblem of MW- techniques by ncighbor con-
2CLB,

as using CCF for each window problem, is preferable over MW-F2 and directly solving the monolithic IP formulation of the

s (MW-CCF and MW-PPCF) of the

dgcompoﬂllon BC algomhm« with preprocessing introduced in this article in solving the maximum k-club signature problem.

num k- P can be solved by nto a series of maximum 7-graph k-club

pmmﬂm, itis pr:lznhlz to not treat them independent of each other. As the preprocessing/peeling procedures between two

problem. In this section, we compare the performance of the moving window counterpart

s P
solution found in one of the previous window problems. Therefore, we use the DROP heuristic [10] on the intersection graph of

P
found as we sequentially solve the window problerns.

In the rest of this section, we report our results from two experiments comparing the performance of MW-CCF and
MW-PPCF in solving the maximum k-club signature problem. Generally, we consider & € (2,3,4) and ¢ € (2,3,4,5) in our
firstset of experiments on ony the challenging instances dentiied for each K rom our forcgoing cxperiments. We consider
longer graph sqences ., g ) with g vale of « in the sscond st of c(pcrm\cm We remark that the results

i lik as weare rsion with a mov-
ing window uf Jemeh = over . T-graph s sekinga window contuning th arce canlnaity -aph -club. Forcach
window problem, we allow a Gurobi solve time limit of 3600 seconds and terminate the algorithm if two consecutive window
problems are not solved to optimality. Tables 5 and 6 summarize the results. Both MW-CCF and wam did ot e one

Overall, MW-PFC] y

that were solved to opimality. and over 237 faster on average on DIMACS.-10 and VB nstances. m advanmg: of MW-PPCF
on DIMACS-10 and were added on
“The aim of our second set of experiments is to explore the impact of larger values of 7 on real-lfe graphs, upuunl\) i

nontrivial (in terms of size) solutions are detected. We use the same sequence generator as before to generate 12 sequer
based on the 12 DIMACS-10 graphs identified in Table 2 that includes many social and biological networks. Each instance is
a sequence containing 100 graphs. For these instances, we consider 7 = 10 and k = 2,3,. Results are reported in Table 7.
we find that MW-CCF is 7% faster than MW-PPCF on average, although there is one instance hep-th_100
F did not solve to optimality, but MW-PPCF did. Although not significantly behind, the additional time spent
‘generating PPCF constraints was not worthwhile in this experiment. Nonetheless, it is interesting to see that the size of the
optimal k-club signature idenified is not very small despite using a larger =

7 | CONCLUDING REMARKS

‘The cross-graph k-club model is designed to mine low-diameter clusters conserved in graph collections. Such a collection
may represent a time-varying graph or a graph where node relationships change under different conditions. This article devel-
ops integer programming approaches to find a maximum cardinality cross-graph k-club from a given graph collection. Our
‘main contribution is the strengthening of a well-known cut-like formulation for the single-graph counterpart through what e
call pairwise peeling and assessing its computational performance in conjunction with preprocessing and delayed constraint
goneraion.Our el atronly st bt s it advanas o i he pprosches we eodce i s

o mporan by prodctis i alternative pmei of validity of the mdepcndem set inequality pm»ed o127 for the maximum
—club problem. Al this time, we are unable to establish facet-inducing conditions for these inequaliti

m\pmmm next sep to e study, Similar 10 what ha b oservd i he coment of #mg\g—g)aph counterpart of
the independent set inequalities, we have been unable to make effective use of these cuts in a branch-and-cut algorithm that

and consider it an

toour ability
procedures.
Motivated by detection and deactivation of fake accounts in social media, a methodology which interdicts k-clubs of max-
imum cardinality in a given graph i studied in [12]. As relationships between accounts in social media are time varying, one
could consider interdicting a cross-graph maximum k-club over a collection of snapshot graphs in order to identify a more
robust interdiction policy.
keclubs [22] or k-club signatures [6]. The maximum cross-graph k-club problem can serve s the separation problem in these
broad future directions for this study. Although our focus in this artcle is on clusters that induce low-diameter subgraphs, one

ewise, one may consider interdiction problems in temporal graphs like the interdiction of atomic

2 LwiLey
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exploring for the special case of k = 2. Even for the single-graph counterpart, there is currently no known branch-and-cut
implementation that successfully exploits independent set cuts for the maximum 2-club problem, to our best knowledge,

6.4 | Club signatures case study

In this section, we conduct study r in this article, in

solving a closely related problem—the maximum k-club signature problem. The approach we developed to solve this problem

in (6] requires solving a series of maxinum cross-graph k-club problems, thus motivating the present study. We introduce the
presenting ]

2 | wiLey Paver

set{1.2, ... T} inthe here that graph tefined of graphs
(e:2. temporal graphs) as opposed to an unordered colction.

Definition 6. Given a graph sequence G = (Gr,1 € [T1) and posiive integers k 1|vd v, we call a subset of nodes
S a v-persistent k-club signature in G if there exists a subsequence = (G, ... . G"*"~1) of G such that § forms a
keclub in every graph in the subsequence.

The maximum k<lub signature problem seeks to find a maximum cardinality T-persistent A-club. b sigaure of G. By

definition, a 7-persistent k-club signature of G s also a 7-graph k-club utive subseque raphs; or more pr

cisely on the graph ellecion omeined oy iznorin the ondring. A monolti 1 formulation and & moving window (MW)

method are introduced to solve the maximum 2-club signature problem in [6]. Given a graph sequence G, the MW method
wm T-r+1

length ¢ (windows). Two versions of the MW method, MW-2CLB and MW-F2, are compared for solving the maximum 2-club

TABLE 7 Comparison of MW-CCF and MW-PPCF on DIMACS- 10 instanes with T
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may investigate any clique relaxation o another graph property in the cross-graph setting depending on the domain or data
underlying the graph models
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