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Abstract
The analysis of social and biological networks often involves modeling clusters of

interest as cliques or their graph-theoretic generalizations. The k-club model, which
relaxes the requirement of pairwise adjacency in a clique to length-bounded paths

inside the cluster, has been used to model cohesive subgroups in social networks

and functional modules or complexes in biological networks. However, if the graphs

are time-varying, or if they change under different conditions, we may be interested

in clusters that preserve their property over time or under changes in conditions.

To model such clusters that are conserved in a collection of graphs, we consider a

cross-graph k-clubmodel, a subset of nodes that forms a k-club in every graph in the
collection. In this article, we consider the canonical optimization problem of find-

ing a cross-graph k-club of maximum cardinality in a graph collection. We develop
integer programming approaches to solve this problem. Specifically, we introduce

strengthened formulations, valid inequalities, and branch-and-cut algorithms based

on delayed constraint generation. The results of our computational study indicate the

significant benefits of using the approaches we introduce.
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1 INTRODUCTION

In graph-based data mining (or graph mining), a node models a data item with different attributes, and two nodes are joined by

an edge if they are “close” to each other based on similarity measures. Graph mining in social and biological networks involves

modeling clusters of interest using cliques and their graph-theoretic generalizations. In these graphs, a cohesive/tight-knit sub-

group is a subset of nodes whose members are believed or verified to intimately cooperate with each other toward some specific

goal. Cohesive subgroups in social networks could be identified for use in recommender systems, marketing campaigns, com-

munity detection, influence maximization, and so forth [3]. In biological networks like protein interaction networks, gene

co-expression networks, andmetabolic networks, clusters and network motifs are commonly used to identify functional modules

that could represent protein complexes, transcriptional modules, or signaling pathways [19]. The clique and its graph-theoretic

relaxations have been extensively studied and used as models of cohesive subgroups or clusters in diverse fields including

social and biological network analysis [36]. Major categories include the distance based relaxations k-clique and k-club [8],
and the edge count, degree, and edge density based relaxations k-defective clique [45], k-plex [7], and quasi-clique [28],
respectively.

A significant body of literature on optimizationmethods for cluster detection seeks to find a subset of nodes satisfying a graph

property while optimizing a measure of fitness like cluster size or weight. One common characteristic shared by optimization

approaches to graph mining is that they identify cohesive subgraphs, critical nodes, most central actors, or other graph structures

of interest in a single graph. However, in many settings the graphs are time-varying as the underlying dynamic systems they
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are modeling evolve over time. In this case, the single graph under consideration is typically a snapshot that reflects node

relationships at the point in time it is recorded, or it aggregates information over a period of time in some manner.

Alternatively, relationships between pairs of nodes (and hence the graph model) may be different under different conditions.

Jointlymining the graphs corresponding to different conditionsmight uncover novel clusters that cannot be found by individually

analyzing the network corresponding to each condition. An example in cross-market customer segmentation is finding customers

who have similar behaviors across different markets as a more robust cohesive subgroup than those found in a single market [38].

Similarly, systems biologists are interested in finding groups of co-expressing genes or interacting proteins that are conserved

under different biological conditions or between different species [37]. These approaches are based on the belief that conserved

modules are more likely to govern core biological functions [29, 43].

Broadly, we call the process of simultaneously mining a collection of two or more graphs for conserved structures and pat-

terns as cross-graph mining. Despite its potential applications previous work on this topic is limited in the literature. Algorithms
for enumerating cross-graph quasi-cliques to extract hidden patterns crossing multiple pieces of data were developed in [37,

38]. This work was extended in [18] for finding frequent cross-graph quasi-cliques, wherein the detected clusters are required

to form a quasi-clique in at least a fixed number of graphs in the collection. An approach to clustering stocks that exhibit homo-

geneous financial ratio values by mining the complete set of cross-graph quasi-bicliques in a bipartite graph was introduced in

[44]. This bipartite graph has stocks as nodes in one partition and different features of the stock data in the other partition. The

cross-graph quasi-biclique model was used to handle the issue of missing values in stock data. Models and methods for mining

conserved clusters in a collection of graphs without strictly imposing the cross-graph requirement can also be found in [9, 16,

17, 41, 48].

In this article, we consider a cross-graph k-club model to represent low-diameter clusters that are conserved in a collection
of graphs. Note that the graph collection may represent temporal graphs with an implicit ordering, or may be obtained under

different (experimental) conditions without any natural ordering. Although our focus is on clusters that induce low-diameter

subgraphs, one may investigate any clique relaxation or another graph property in the same setting. Our main contributions in

this article1 are integer programming (IP) approaches to find a cross-graph k-club of the largest cardinality in a given collection
of graphs. Specifically, we introduce strengthened formulations, valid inequalities, and branch-and-cut algorithms based on

delayed cut generation that are evaluated on a test bed of instances in our computational study (see also [33].).

The remainder of this article is organized as follows. We formally define the problem of interest and briefly review IP

formulations for the maximum k-club problem in Section 2. In Section 3, we introduce a straightforward conjunctive formulation
for the maximum cross-graph k-club problem and propose techniques to strengthen the constraints. Then in Section 4, we
discuss valid inequalities for the problem, including extensions of those known in the literature for the single-graph problem. In

Section 6, we introduce branch-and-cut algorithms together with preprocessing techniques to solve the problem.We compare the

computational results from using the algorithms based on different IP formulations, and verify the computational effectiveness

of approaches we developed for the cross-graph k-club problem in solving another related problem in temporal graph mining
called the k-club signature problem [6]. We conclude this article with a summary of our contributions and identify future

extensions in Section 7.

2 BACKGROUND

For a simple graph G, we use V(G) and E(G) to denote its node and edge sets respectively. For simplicity we use uv to denote
an edge {u, v} ∈ E(G). For a subset of nodes S ⊆ V(G), we use G ⧵ S to denote the graph obtained from G by deleting the

nodes in S along with its incident edges and we let G[S] denote the subgraph induced by S (obtained by deleting nodes outside
S with the edges incident to these nodes). We use G and NG(u) to denote the complement of graph G and the neighborhood of
node u in G, respectively. We use NG(u, v) = NG(u) ∩ NG(v) to denote the common neighborhood of u and v in graph G. We
denote by distG(u, v) the minimum number of edges on a path connecting nodes u and v in graph G, and its diameter is given
by diam(G) ∶= max{distG(u, v) ∶ u, v ∈ V(G)}.

Definition 1 ([25]). Given a graph G and a positive integer k, a subset of nodes S ⊆ V(G) is called a k-clique if
distG(u, v) ≤ k for every pair of nodes u, v ∈ S.

Definition 2 ([2], [30]; see also [8]).Given a graphG and a positive integer k, a subset of nodes S ⊆ V(G) is called
a k-club if diam(G[S]) ≤ k.

A k-clique S allows two nodes u and v to be included even if every path between u and v of length at most k in G includes
nodes outside S (see Figure 1). By contrast, in the k-club model at least one of those paths should be contained inG[S]. Together,
k-cliques and k-clubs are well-known distance-based clique relaxations [42]. The structural guarantees they provide typically
determine their suitability for any particular graph mining application. The k-cliques, for instance, are hereditary; that is, the
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FIGURE 1 The set {1, 2, 3, 4, 5} on the left forms a 2-club; the set {2, 3, 4, 5, 6} on the right forms a 2-clique, but does not induce a 2-club [2].

property is preserved under vertex deletion. In contrast, the k-club property is not preserved under node deletion. Nonetheless,
the lack of heredity may be acceptable when it is more important to ensure that nodes on at least one of the length-bounded

paths is completely contained within the subgraph induced by the club [2]. Since their introduction in social network analysis

[49], these distance-based clique relaxations have been used in social and biological network analysis [8, 21, 35], as well as

other areas. For low values of parameter k, typically no more than four, the k-club can be an appropriate choice for modeling
tightly-knit clusters.

We define the cross-graph counterpart of the k-club, based on the cross-graph quasi-clique model introduced by Pei et al
[38], which also appears to be the earliest formal study of a cross-graph model. Let G = {G1,G2, … ,Gp} denote a collection
of p simple, undirected graphs, all defined on a common node set denoted by V(G).

Definition 3. A subset of nodes S ⊆ V(G) is called a cross-graph k-club if S is a k-club in each graph in
collection G.

This article focuses on the maximum cross-graph k-club problem, which seeks to find a cross-graph k-club of maximum
cardinality in G. We use the alternate term “p-graph” k-club if we wish to specify that there are p graphs in the collection.
Otherwise, in line with past usage, we simply refer to it as a cross-graph k-club [38]. The (1-graph) maximum k-club problem
is NP-hard for every fixed k [11], and remains so on graphs of diameter k + 1 [8]. Consequently, the maximum cross-graph
k-club problem is NP-hard for every fixed positive integer k as it includes the maximum k-club problem as special case when
G is a singleton. In our previous study on this topic we show that this problem is NP-hard even if G contains exactly two
distinct graphs [32]. Moreover, verifying if a given cross-graph k-club can be strictly enlarged (the complementary problem to
verifying maximality by inclusion) is also shown to be NP-complete for a collection containing two distinct graphs [32]. This

result extends the analogous result known for (1-graph) 2-clubs to the cross-graph setting [26].

The first IP formulation in the literature for the maximum k-club problem was introduced in [11]. This so-called chain
formulation introduces a binary variable for each path of length at most k connecting a nonadjacent pair of nodes. For the special
case of k = 2, this reduces to the so-called common neighbor formulation for themaximum2-club problem. As path enumeration
gets increasingly challenging as k takes values larger than 2, it can take up to O(nk+1) binary variables and constraints to fully
describe the chain formulation. To the best of our knowledge, no systematic computational studies have been reported on the

chain formulation when k ≥ 3.

Two polynomial-sized IP formulations, one using binary variables and the other using integer variables were introduced

in [46]. Fully described by O(kn2) variables and constraints, these are the first compact formulations for the maximum k-club
problem for general k. A decomposition and branch-and-cut algorithm to find a maximum k-club that employs canonical hyper-
cube cuts as delayed constraints is introduced in [31] (see also[23]). A cut-like formulation and a path-like formulation that use

respectively, length-bounded separators and length-bounded connectors are introduced in [39]. The cut-like formulation could

use exponentially many constraints, but only n binary variables. The computational superiority of this formulation is demon-
strated by the numerical results reported in [39], which makes this the state-of-the-art mathematical programming approach to

solve the maximum k-club problem for general k.

3 INTEGER PROGRAMMING FORMULATIONS

An IP formulation for the maximum cross-graph k-club problem can be obtained by simply taking the conjunction of any IP
formulation for the maximum k-club problem over all graphs in the collection. We refer to this straightforward approach as the
conjunctive formulation. In this section, we first extend the cut-like formulation of the maximum k-club problem [39] to the
cross-graph setting through conjunction. We present ideas which strengthen this formulation, and eventually arrive at a new

formulation based on a preprocessing procedure that we call pairwise peeling. We also identify new valid inequalities for the
problem and cross-graph extensions of existing valid inequalities from the literature.

Definition 4. Given a graph G and a pair of nonadjacent nodes u and v, a subset of nodes S ⊆ V(G) ⧵ {u, v} is
called a length-k u, v-separator if distG⧵S(u, v) > k.
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Definition 4 implies that every path of length at most k in G between nodes u and v, uses nodes from S. Let SG(u, v) denote
the collection of all length-k u, v-separators that are minimal by exclusion. For the case k = 2, the unique minimal length-2

u, v-separator is the common neighborhood NG(u, v).
Formulation (1) that follows is the conjunctive cut-like formulation (CCF) of the maximum cross-graph k-club problem

over a collection G. For a subset of nodes S ⊆ V(G), we use the shorthand x(S) ∶=
∑

u∈S xu. It is readily verified that x is an
incidence vector of a cross-graph k-club if and only if it is feasible to the CCF.

max x(V(G)), (1a)

s.t. xu + xv − x(S) ≤ 1, ∀S ∈ SG(u, v), uv ∈ E(G),G ∈ G, (1b)

xu ∈ {0, 1}, ∀u ∈ V(G). (1c)

Formulation (1) can be strengthened by noting that if a nodew that belongs to some minimal length-k u, v-separator of graph
G ∈ G (i.e., w ∈ S ∈ SG(u, v)) is also at a distance strictly greater than k from either u or v in some other graph H ∈ G in the
collection, then w cannot be included in a cross-graph k-club that contains both u and v. Consequently, constraints (1b) can be
replaced by

xu + xv − x(S ∩ Duv) ≤ 1, (2)

where Duv is the set of nodes that are at distance at most k from u and v in all the graphs in G, defined as:

Duv ∶= {w ∈ V(G) ⧵ {u, v} ∶ distG(u,w) ≤ k and distG(v,w) ≤ k ∀G ∈ G}.

The validity of constraints (2) follows from the validity of (1b) and from the observation that if xu = xv = 1, then x(S⧵Duv) = 0,
because no nodes from the set S ⧵ Duv can be included in a cross-graph k-club containing u and v. Alternately, we can think of
S ∩ Duv as further reducing the size the separator S by removing nodes that are not in any path of length at most k between u
and v, in some graph in the collection. Observe that the resulting formulation is at least as tight as the CCF. Moreover, there are
instances where S ∩ Duv ⊂ S for at least one separator S ∈ SG(u, v), as illustrated in the following example, which means that
there are instances where the resulting formulation is strictly tighter than (1).

Consider the maximum 2-graph 2-club problem on the graph collection in Figure 2. Formulation (1) includes the constraint

x1 + x2 − x3 ≤ 1 due to node pair 1 and 2 in G and constraint x1 + x2 − x6 ≤ 1 due to the same pair of nodes in H. Note that
distH(1, 3) = 3. We can therefore tighten the first constraint by intersecting the minimal separator {3} with D1,2 = {5, 6, 7} to
obtain the constraint x1 + x2 ≤ 1 that dominates both previous constraints.
Based on the foregoing observations, we can now envision an approach in which we further tighten the constraints with

respect to each u, v pair, by recursively deleting nodes which are too far away from either u or v in any graph in the collection.
This is a recursive operation because the deletion of nodes can have a domino effect on pairwise distances in graphs, leading

to more nodes meeting the condition for deletion. The resulting inequalities will be at least as strong as their counterpart in

constraints (2). However, it is important to recognize that this operation is node pair specific, that is, the graph collection

obtained by deleting nodes based on a particular u, v pair is only valid for generating constraints with respect to that pair. This
is because nodes deleted based on u and v might be within distance k of a different node pair.
To illustrate this idea, consider the maximum 2-graph 3-club problem on the graph collection in Figure 3. Con-

straints (2) are listed below for the node pair 1 and 6, for graphs G and H, by noting that D1,6 = {3, 4, 5}, SG(1, 6) =

FIGURE 2 Inequality x1 + x2 ≤ 1 is valid for the problem onG = {G,H} when k = 2.
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FIGURE 3 Inequality x1 + x6 ≤ 1 is valid for the problem on {G,H} when k = 3.

{{2, 3}, {2, 5}, {3, 4}, {4, 5}}, and SH(1, 6) = {{3}, {4}}.
x1 + x6 − x3 ≤ 1,
x1 + x6 − x5 ≤ 1,
x1 + x6 − x3 − x4 ≤ 1,
x1 + x6 − x4 − x5 ≤ 1,
x1 + x6 − x3 ≤ 1,
x1 + x6 − x4 ≤ 1.

However, the inequality x1 + x6 ≤ 1 that can replace all of the foregoing constraints for the node pair 1 and 6 can be derived
as follows: observe that distH(2, 6) = 4 > 3, thus if we want to simultaneously include nodes 1 and 6 in a 2-graph 3-club,

then we cannot include node 2 and it can be deleted from G and H. Then, the distG⧵{2}(1, 4) = 4 > 3, and consequently we

cannot include node 4 either. Upon deleting nodes 2 and 4 from G and H, we find that nodes 1 and 6 are disconnected in H; so,
x1 + x6 ≤ 1 is valid.
Algorithm 1 formalizes the idea illustrated by the foregoing example to generate tighter constraints, and we refer to it

as the pairwise peeling algorithm. Let us denote the node pairs that are nonadjacent in some graph in the collection G by
J ∶= {{u, v} ⊂ V(G) ∶ uv ∈ E(G) for some G ∈ G}. The algorithm takes a graph collectionG, a positive integer k, and a node
pair uv ∈ J as input, and creates an auxiliary graph collection Guv by recursively deleting from every graph in the collection,

nodes that are more than distance k from either u or v in some graph in the collection. The constraints for the node pair u
and v can then be generated based on the minimal separators of graphs in this auxiliary collection Guv. Thus, we can replace

constraints (1b) by the following based on the pairwise peeled collection:

xu + xv − x(S) ≤ 1 ∀S ∈ SG(u, v) and G ∈ Guv such that uv ∈ E(G), uv ∈ J. (3)

Proposition 1. Replacing constraints (1b) in formulation (1) by constraints (3) produces a correct formulation for
the maximum cross-graph k-club problem.

The claim follows from the observation that the incidence vector of a cross-graph k-club satisfies constraints (3) and every
binary vector satisfying these constraints also satisfies constraints (1b). Furthermore, constraints (2) and (3) coincide when

k = 2, because the unique minimal length-2 u, v-separator in G is the common neighborhood NG(u, v). Its intersection with Duv
remains undisturbed after pairwise peeling is applied for this node pair, that is, NG(u, v)∩Duv ∈ SG(u, v) for the graphG ∈ Guv.

Algorithm 1. Pairwise peeling

Input: G, k, uv ∈ J
Output: Guv

1 do
2 W ← ⊘

3 for G ∈ G do
4 for w ∈ V(G) ⧵ (W ∪ {u, v}) do
5 if distG(u,w)> k or distG(v,w)> k then
6 W ← W ∪ {w}
7 delete w from every graph in G

8 while W ≠ ⊘;

9 return Guv ← G
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Pertinently, given a graph G, a positive integer k, and a (possibly fractional) point x∗ ∈ [0, 1]|V(G)|, finding a length-k
u, v-separator S for some node pair u, v such that x∗u + x∗v − x∗(S) > 1 is known to be NP-hard for k ≥ 5 and is solvable in

polynomial-time for k ∈ {2, 3, 4} (see [5, 39]). The case k = 2 is straightforward, as the common neighborhood NG(u, v) is
the unique minimal separator. The cases k ∈ {3, 4} require solving the maximum flow problem on an auxiliary network and
applying the maximum flow–minimum cut theorem to identify a “violated separator”, or conclude that none exists.

Proposition 2. The pairwise peeling algorithm will delete the same set of nodes independent of the order in which
the graphs in G are processed by the algorithm.

Proof. Suppose for a specific uv ∈ J, (w1,w2, … ,wq) is the order in which nodes were deleted using an ordering
𝜋 of the graphs in G. Then, w1 is too far from either u or v in some graph in the original collection, and hence,
must be deleted by Algorithm 1 using any other ordering of graphs in G. If w2 was deleted following w1 when
using 𝜋, then in any other ordering, after w1 is deleted, we know that w2 must be too far from either u or v, and
therefore, must also be deleted. By repeating this argument, {w1,w2, … ,wq} must be deleted under any ordering
that is different from 𝜋. As 𝜋 is arbitrary, we can conclude that the final outcome of Algorithm 1 is independent of

the order in which graphs in G are processed. ▪

Henceforth, we refer to this new formulation as the pairwise peeled cut-like formulation (PPCF). For each uv ∈ J, con-
straint (3) is at least as strong as constraint (2) (which in turn dominates constraint (1b)). In our computational experiments

reported in Section 6, we assess the gains made by using Algorithm 1 to generate potentially stronger constraints.

4 VALID INEQUALITIES

In this section, we introduce a family of valid inequalities for arbitrary k obtained by lifting selected zero coefficient variables
in inequality (3) and another for the special case k = 2 that extends a result from the literature for the 2-club polytope [27].

4.1 Lifted cut-like constraints
We can strengthen constraint (3) by lifting the coefficients of some of the variables under certain conditions, similar to the

approach taken in [39]. Consider a pair of nodes u, v for which we have produced a peeled collection Guv. For graphs G,H ∈ G
(not necessarily distinct), consider a node w with distG(u,w) > k and distH(v,w) > k. We know that w cannot belong to any
minimal length-k u, v-separator in G or H, before the collection is peeled for the pair u, v. After peeling, w will no longer exist
in any of the graphs, and therefore cannot belong to S ∈ SG(u, v) for any G ∈ Guv. We are interested in finding an 𝛼w such that

inequality xu + xv + 𝛼wxw − x(S) ≤ 1 remains valid. Let XCLUBk(G) denote the cross-graph k-club polytope of G, that is, the
convex hull of feasible solutions to formulation (1). We need,

𝛼w ≤ 1 −max{xu + xv − x(S) ∶ x ∈ XCLUBk(G), xw = 1} = 1,

because xu = xv = 0 for every feasible x with xw = 1 by our choice of w. We can repeat this argument by lifting another node at
distance greater than k from each of the nodes u, v, and w in some graph in the collection, also with coefficient one. We can now
generalize this observation to based on the following definition to yield valid inequality (4). Define a subset of nodes I ⊆ V(G)
as a cross-graph distance-k independent set if every pair of distinct nodes in I are at distance greater than k in some graph in G.

Proposition 3. Given a collection G, a positive integer k, let Guv denote the collection peeled for the node pair
u, v. Consider a length-k u, v-separator S ∈ SG(uv) for some G ∈ Guv. Suppose I ⊆ V(G) ⧵ {u, v} is a maximal
subset (by inclusion of nodes) such that I ∪ {u} and I ∪ {v} are cross-graph distance-k independent sets in G. The
following inequality is valid for XCLUBk(G):

xu + xv + x(I) − x(S) ≤ 1. (4)

If distG(u, v) > k for some graphG ∈ Guv, the empty set is the unique minimal length-k u, v-separator inG and inequality (4)
includes the special case xu + xv + x(I) ≤ 1, where I ∪ {u, v} forms a maximal cross-graph distance-k independent set.

4.2 Independent set inequality for cross-graph 2-clubs
Mahdavi Pajouh et al. [27] introduced the following independent set valid inequality for the (single graph) 2-club polytope of
graph G:

x(C) −
∑

u∈V(G)⧵C
(|NG(u) ∩ C| − 1)+xu ≤ 1, (5)
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where C is an independent set in graph G and the notation (t)+ denotes the max(t, 0) given some real number t. Inequality (5) is
valid for XCLUB2(G) if C is an independent set in some graph G ∈ G because it is satisfied by every 2-club in G based on the
result in [27], and every cross-graph 2-club of G is a 2-club in G. The following theorem shows that we can further strengthen
this valid inequality for our setting. We use N2G(u) to denote the subset of nodes at distance at most two from vertex u in every
graph in the collection, that is, N2G(u) ∶= {v ∈ V(G) ∶ distG(u, v) ≤ 2 ∀G ∈ G}.

Theorem 1. Given a graph collection G and a set C ⊂ V(G) that is independent in some graph G ∈ G,
inequality (6) is valid for XCLUB2(G):

x(C) −
∑

u∈V(G)⧵C

(|NG(u) ∩ C ∩ N2G(u)| − 1)+xu ≤ 1. (6)

Proof. Let S be an arbitrary cross-graph 2-club of G and xS be its incidence vector. It suffices to show that the

following inequality holds in order to show that xS satisfies inequality (6):

|C ∩ S| − ∑
u∈S⧵C

(|NG(u) ∩ C ∩ N2G(u)| − 1)+ ≤ 1.

As u ∈ S and S is a cross-graph 2-club, we know that S ⊆ N2G(u). Therefore,

|C ∩ S| − ∑
u∈S⧵C

(|NG(u) ∩ C ∩ N2G(u)| − 1)+ ≤ |C ∩ S| − ∑
u∈S⧵C

(|NG(u) ∩ C ∩ S| − 1)+.
Next, we use induction on the cardinality of C ∩ S to prove that:

|C ∩ S| − ∑
u∈S⧵C

(|NG(u) ∩ C ∩ S| − 1)+ ≤ 1.

If |C ∩ S| = 1, the inequality is trivially true. For some integer q ≥ 2, we prove the claim for |C ∩ S| = q, by
assuming the claim to hold for all C and S such that |C ∩ S| ≤ q − 1.
Arbitrarily pick a node a ∈ C ∩ S and let Ca ≔ C ∩ S ⧵ {a}. Note that Ca ⊂ S is a nonempty independent set in

G. By induction hypothesis,
|Ca ∩ S| − ∑

u∈S⧵Ca

(|NG(u) ∩ Ca ∩ S| − 1)+ ≤ 1.

We can now rewrite the inequality above as:

|C ∩ S| − 1 − (|NG(a) ∩ Ca ∩ S| − 1)+ −
∑

u∈S⧵C
(|NG(u) ∩ Ca ∩ S| − 1)+ ≤ 1, or

|C ∩ S| − 1 − ∑
u∈S⧵C

(|NG(u) ∩ Ca ∩ S| − 1)+ ≤ 1,
(7)

because node a belongs to the independent set C implying that NG(a) ∩ Ca = ∅.
Now, consider a node b ∈ Ca. As nodes a and b are contained in the independent set C and the cross-graph

2-club S, distG(a, b) = 2 and a common neighbor w of nodes a and b must exist in S and that node w cannot be
inside the independent set C. Hence, we know that w ∈ S ⧵C and that |NG(w) ∩C∩ S| = |NG(w) ∩Ca ∩ S|+ 1 ≥ 2.
From inequality (7) we obtain,

1 ≥ |C ∩ S| − 1 − ∑
u∈S⧵C

(|NG(u) ∩ Ca ∩ S| − 1)+

= |C ∩ S| − 1 − (|NG(w) ∩ Ca ∩ S| − 1) − ∑
u∈S⧵(C∪{w})

(|NG(u) ∩ Ca ∩ S| − 1)+

= |C ∩ S| − (|NG(w) ∩ C ∩ S| − 1) − ∑
u∈S⧵(C∪{w})

(|NG(u) ∩ Ca ∩ S| − 1)+

≥ |C ∩ S| − ∑
u∈S⧵C

(|NG(u) ∩ C ∩ S| − 1)+, establishing our claim.
▪

Theorem 1 includes as a special case, the independent set valid inequality (5) for the single-graph 2-club polytope established

in [27] by observing that if G is a singleton, then NG(u) ⊆ N2G(u). The induction approach used offers an alternate proof of that
result. Another consequence is that the separation of these more general inequalities is also NP-hard, as inequality (5) is known

to be NP-hard to separate [27].
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It is also worth noting that our valid inequality (6) dominates inequality (5), which is also valid for XCLUB2(G). Consider
the two-graph collection G = {G,H} in Figure 2. For the set C = {1, 5, 6}, which is independent in G, inequality (5) yields
x1 + x5 + x6 − x3 − x4 − x7 ≤ 1, whereas inequality (6) yields x1 + x5 + x6 − x4 − x7 ≤ 1.
Both valid inequalities (4) and (6) we have considered in this section relate to inequalities established in the literature

for single-graph k-clubs [27, 39]. These inequalities, under suitable conditions, are also known to induce facets of the 2-club
polytope. However, we have not identified nontrivial sufficient conditions that do the same in the cross-graph setting. The

primary challenge is with identifying the required number of affinely independent incidence vectors of cross-graph k-clubs that
lie on the face of the convex hull induced by our valid inequalities, in order to demonstrate the dimension of that face. In contrast

to the single-graph counterpart, the shortest paths that connect the same pair of nodes in a cross-graph k-club can be different in
each graph in the collection, making the task of identifying affinely independent feasible solutions very challenging. Identifying

facets of XCLUBk(G), especially when k = 2, is an interesting problem for future study.

5 DELAYED CONSTRAINT GENERATION

The main goal of our computational study in Section 6 is to compare the performance of a general purpose IP solver when using

CCF and PPCF to solve the maximum cross-graph k-club problem. As both formulations use exponentially many constraints
in the worst case, we implement them in a delayed fashion in the two decomposition branch-and-cut (BC) algorithms that

use the same initial root node relaxation based on cross-graph k-cliques. These delayed constraint generation approaches and
preprocessing ideas are described in this section.

5.1 Preprocessing
Before applying the decomposition BC algorithms, we apply extensions of some preprocessing techniques that are known to

be effective for the single-graph counterpart to our cross-graph setting [23, 31, 39]. Algorithm 2 describes this preprocessing

scheme based on a feasible solution S obtained using the “DROP heuristic” [10] for k-clubs, applied to the intersection graph
J(G) with node set V(G) and edge set ⋂

G∈G
E(G). Every k-club in J(G) is a cross-graph k-club in G, although the converse is not

true.

Peeling based on this cross-graph k-club S is designed to remove nodes and edges from graphs in the collection without
affecting any feasible solution of size more than |S|. To this end, we first construct the power intersection graph of G, denoted
by J(Gk). The node set of J(Gk) is V(G) and a pair of nodes are made adjacent in J(Gk) if the distance between them is at most
k in every graph in the collection. Finally, we use the observation that every cross-graph k-club (and every cross-graph k-clique
defined next) forms a clique of the same size in J(Gk), allowing us to apply peeling ideas from the maximum clique literature.

Definition 5. Given a graph collection G, a subset of nodes S ⊆ V(G) is called a cross-graphk-clique if S is a
k-clique in each graph in G.

Once a feasible solution S is available, we implement core peeling [1] followed by community peeling [47] procedures on
J(Gk); the peeling actions are mirrored on G. If node u has fewer than |S| neighbors in J(Gk), it cannot belong to a cross-graph
k-club larger than S (because if it did, node u would have degree at least |S| in J(Gk)). Core peeling recursively deletes nodes

Algorithm 2. Preprocessing

Input: A graph collection G, a positive integer k ≥ 2

Output: A preprocessed graph collection G
1 obtain the intersection graph J(G)
2 compute a k-club S of J(G) using the DROP heuristic
3 do
4 obtain the power intersection graph J(Gk)
5 CorePeel(G, J(Gk), |S|)
6 CommunityPeel(G, J(Gk), |S|)
7 CrossEdgePeel(G, J(Gk))
8 while G is modified;
9 return G
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with degree less than |S| in J(Gk), and also from every graph in G. After core-peeling, J(Gk) will be an |S|-core as long as it is
not null. Next, a pair of nodes u and v that are adjacent in J(Gk) can belong to a cross-graph k-club larger than S only if they
have at least |S|− 1 common neighbors in J(Gk). If not, during community peeling step, the edge uv can be deleted from J(Gk)
and from every graph in the collection in which u and v are adjacent.
The power intersection graph J(Gk)may contain more connected components after core and community peeling than before.

As a result, there may exist an edge uv ∈ E(G) for some G ∈ G whose end points u and v belong to different connected
components of J(Gk). The edge uv can be removed from every G ∈ G containing the edge. Doing so may disconnect a graph
G ∈ G so that not only u and v belong to different components, but so do some other nodes a and b that are adjacent in J(Gk);
then, we can delete edge ab from J(Gk). In other words, during the “cross edge” peeling step, we recursively delete an edge uv
from every graph in the expanded collection G∪{J(Gk)} in which it is present, if u and v are in different connected components
of some graph in G or J(Gk). When this recursive procedure finishes, every graph in the expanded collection G ∪ {J(Gk)} will
have connected components with identical node subsets inducing the components (see also [22] for a similar approach used

in a different context). As this may result in changes to the graphs in G, we iterate over these peeling steps until G no longer
changes. Although, we chose not to do so, one might also look for a new feasible solution in J(G) before repeating the peeling
steps. Next, we describe our decomposition BC algorithms as applied to the collection of graphs G output by Algorithm 2.

5.2 Initial root node relaxation
Denote by E, the edge set of the complement graph of the power intersection graph of J(Gk), that is, E ∶=
{{u, v} ⊆ V(G) ∶ distG(u, v) > k in some graph G ∈ G} . Like the single-graph counterparts, a cross-graph k-clique is a
graph-theoretic relaxation of a cross-graph k-club. The maximum cross-graph k-clique problem is equivalent to the classical
maximum clique problem on J(Gk) formulated as:

max {x(V(G)) ∶ xu + xv ≤ 1 ∀uv ∈ E, xu ∈ {0, 1} ∀u ∈ V(G)},
where x is the incidence vector of cross-graph k-cliques in G. This formulation based on conflict constraints serves as the initial
root relaxation that we start solving in both variants of our decomposition BC algorithms. To avoid having conflict constraints
in the initial root relaxation for pairs of nodes that reside in different components of J(Gk), we extend the initial relaxation
by using a binary variable for each connected component of J(Gk) and enforce that nodes selected must belong to the same
component. Let C denote the set of components of J(Gk). The initial root relaxation problem we use is given in formulation (8).

max x(V(G)), (8a)

s.t. xu + xv ≤ 1, ∀uv ∈ E(H) and H ∈ C, (8b)

y(C) ≤ 1, (8c)

xu ≤ yH , ∀u ∈ V(H) and H ∈ C, (8d)

xu ∈ {0, 1}, ∀u ∈ V(G), (8e)

yH ∈ {0, 1}, ∀H ∈ C. (8f)

Recall that every G ∈ G and the graph J(Gk) have a set of connected components that are induced by the identical node
subsets ofV(G). Therefore, we could alternatively solve themaximum cross-graph k-club problem on the collection of connected
components corresponding to one such identical node subset at a time. We chose to use the extended formulation (8) in order

to eliminate from experimental consideration, variations that consider greedy or reverse greedy orderings based on component

sizes, and those that iteratively fix a node to be included in the solution permitting us to solve the problem in the k-neighborhood
of the fixed node. Although, our purpose here is to demonstrate the effectiveness of using one formulation over another in a

decomposition BC algorithm, we do recognize that incorporating more ideas from the literature on k-clubs and its variants [15,
20, 24, 31, 39, 40] could potentially improve the effectiveness of our methods.

The two decomposition BC algorithms, henceforth referred to by the underlying formulations CCF and PPCF, would detect

a violated constraint (1b) and (3), respectively, whenever an integral solution is encountered in the BC tree that corresponds to
a cross-graph k-clique that is not a cross-graph k-club. We chose not to separate fractional solutions based on our preliminary
experiments that did not indicate noticeable performance gains for our test bed. For the special case k = 2, we also separate the
independent set valid inequality (6). We discuss our separation procedures next.

5.3 Separation procedures
Given a graph G, a positive integer k, and a (possibly fractional) point x∗ ∈ [0, 1]|V(G)|, finding a length-k u, v-separator S in G,
for some node pair u, v such that x∗u + x∗v − x∗(S) > 1 is known to be NP-hard for k ≥ 5 and is solvable in polynomial-time for
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k ∈ {2, 3, 4} (see [5, 39]). The case k = 2 is trivial as a unique minimal separator exists in the form of the common neighborhood
NG(u, v). The cases k ∈ {3, 4} require a transformation to an auxiliary network on which we need to solve the maximum
flow problem. However, we solved the separation problems using a heuristic procedure following the approach taken in [39].

Moreover, we separate constraint (1b) in CCF and constraint (3) in PPCF using Algorithm 3 and Algorithm 4, respectively, only

if the BC node linear programming (LP) relaxation optimum x∗ is binary. The BC root node initial relaxation (8) ensures that such
an x∗ corresponds to a cross-graph k-clique. All violated constraints that are detected if x∗ is not a cross-graph k-club are added
to the lazy-cut pool. The BC node relaxation is re-solved by applying at least some of these cuts, as determined by the solver.

The separation problem for valid inequality (5) for the maximum (single graph) 2-club problem was shown to be NP-hard,

and its exact and heuristic separationwas computationally investigated in [27]. The separation problem for valid inequality (6) for

the special case k = 2 can be formulated as a mixed-integer nonlinear program (MINLP) similar to the single-graph counterpart
introduced in [27]. The following MINLP formulation (10) is the starting point for our approach to using them as cutting

planes. However, our subsequent linearization uses fewer variables to handle the nonlinear objective compared to the approach

used in [27]. Furthermore, based on the computational experience reported in [27], in our experiments, we favor the use of

general-purpose mixed-integer linear programming (MILP) rounding heuristics available in the solver rather than attempting

exact solution, or using simple greedy combinatorial heuristics for this separation problem.

Iterating over each graph G ∈ G, we seek an independent set in G that underlies inequality (6), in order to separate the point
x∗ ∈ [0, 1]|V(G)|. Let the binary variable zi indicate if node i is selected in the independent set in graph G ∈ G.

𝜁(x∗,G) ∶= max
∑

i∈V(G)
x∗i zi −

∑
i∈V(G)

x∗i (1 − zi)
⎛⎜⎜⎝

∑
j∈NG(i)∩N2G(i)

zj − 1
⎞⎟⎟⎠

+

. (9)

A violated independent set inequality exists for graphG if and only if 𝜁(x∗,G) > 1.We can introduce variableswi to linearize

the objective function and obtain the following separation MILP.

𝜁(x∗,G) ∶= max
∑

i∈V(G)
x∗i zi −

∑
i∈V(G)

x∗i wi, (10a)

s.t. wi ≤ |NG(i) ∩ N2G(i)|(1 − zi), ∀i ∈ V(G), (10b)

Algorithm 3. CCF separation heuristic

Input: G, k, x∗ ∈ {0, 1}|V(G)|
1 K ← {u ∈ V(G) | x∗u = 1} ⊳ K is a cross-graph k-clique
2 for each u, v ∈ K and G ∈ G do
3 if distG[K](u, v)> k then
4 Apply MINIMALIZE from 39 to the trivial length-k u, v separator V(G) ⧵ K to obtain a minimal

separator S in G
5 add constraint xu + xv − x(S) ≤ 1 violated by x∗ to lazy-cut pool

6 return x∗ corresponds to a cross-graph k-club

Algorithm 4. PPCF separation heuristic

Input: G, k, x∗ ∈ {0, 1}|V(G)|
1 K ← {u ∈ V(G) | x∗u = 1} ⊳ K is a cross-graph k-clique
2 for each u, v ∈ K and G ∈ G do
3 if distG[K](u, v)> k then
4 Apply Pairwise Peeling Algorithm 1 on ⟨a copy of G, k, uv⟩ to obtain Guv
5 Let G′ ∈ Guv correspond to G ∈ G
6 Apply MINIMALIZE from 39 to the trivial length-k u, v separator V(G′) ⧵ K to obtain a minimal

separator S in G′

7 add constraint xu + xv − x(S) ≤ 1 violated by x∗ to lazy-cut pool

8 return x∗ corresponds to a cross-graph k-club
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Algorithm 5. Independent set inequality separation heuristic

Input: G, k, x∗ ∈ {0, 1}|V(G)|, minimum cut violation 𝜖, time limit t̄
1 for G ∈ G do
2 Find a “good” feasible solution by solving formulation (10) for input ⟨x∗,G⟩ with time limit t̄ and

minimum objective target of 1 + 𝜖 to obtain (z∗,w∗) ⊳ Feasibility of (10) is guaranteed
3 if objective value at (z∗,w∗) is at least 1 + 𝜖 then
4 return Cutting plane (6) for independent set C ∶= {i ∈ V(G) ∶ z∗i = 1}

wi ≥
∑

j∈NG(i)∩N2G(i)
zj − 1 − |NG(i) ∩ N2G(i)|zi, ∀i ∈ V(G),

(10c)

wi ≥ 0, ∀i ∈ V(G), (10d)

zi + zj ≤ 1, ∀{i, j} ∈ E(G), (10e)

zi ∈ {0, 1}, ∀i ∈ V(G). (10f)

Rather than attempting to solve the separation MILP (10) to optimality, we utilize it in a heuristic. Our approach, summarized

in Algorithm 5, is to solve formulation (10) on each graph G ∈ G whenever the LP relaxation optimum x∗ at a BC node is
binary, with the aim of finding a good feasible solution or fail to find one after |G| attempts. Hence, we terminate the Gurobi
solver early once a feasible solution of objective at least 1 + 𝜖 is detected or the time limit t is reached.

6 COMPUTATIONAL STUDY

We report results from our computational experiments conducted on 64-bit Linux
®
compute nodes with dual Intel

®
“Skylake”

6130 CPUs with 96 GB RAM. The algorithms are implemented in C++ and the optimization models are solved using GurobiTM
Optimizer v9.0.1 [14] with a solve time limit of 7200 s. The global cut aggressiveness parameter in Gurobi is configured to shut

off all general purpose cutting planes in order to ensure that our comparisons are a better representation of the effectiveness of

the user-defined cutting planes added. All unspecified Gurobi settings, including rounding heuristics and number of threads are

left at their default settings.

In general, we consider the following parameter values in our experiments: k ∈ {2, 3, 4} and the number of graphs in the col-
lection p ∈ {2, 3, 4, 5}. Our test bed is generated from the following three groups of graphs: the Tenth DIMACS Implementation
Challenge benchmarks [4] (DIMACS-10 graphs), graphs used in computational studies in [46] (VB graphs), and graphs used

in computational studies in [23, 27, 31] (BG graphs). These graphs are commonly used benchmarks for the maximum k-club
problem. It is also known that the edge densities of these graphs have a discernible impact on whether or not the instances are

challenging for particular values of parameter k [26]. We incorporate this observation by appropriately matching the BG graphs
to the value of parameter k for which we solve the maximum cross-graph k-club problem. For DIMACS-10 and VB graphs,
we first conduct a set of preliminary experiments to recognize challenging graph and k combinations. Graph collections for
our computational experiments are generated from these graphs, and the generation procedure varies by group. In Sections 6.1

and 6.2, we discuss our experimental results by groups of graphs in our test bed, explain the generation procedures, and the

selection of challenging instances in greater detail. In Section 6.3, we consider the impact of the independent set inequality on

PPCF for the special case of k = 2. In Section 6.4, we conduct a computational case study on the effectiveness of PPCF on a
related problem of finding maximum k-club signature, which can be reduced to solving a series of maximum cross-graph k-club
problems. Codes and instances used in our computational experiments are publicly available on GitHub [34].

For most of our experiments, we report results averaged over 11 − p runs, that is, on graph collections

{G1, … ,Gp},{G2, … ,Gp+1},… ,{G11−p, … ,G10}. The only exception being the results reported from solving the maximum
k-club signature problem in Section 6.4, where we report the largest solution from solving a series of maximum cross-graph
k-club problems, following the definition of a signature. We use consistent column headings in all tables reported in this section,
with any differences in the club signature results identified in corresponding table notes. We report under column headings “k”
and “p” the corresponding parameter values and the graph collection is indicated under the column labeled “Collection.” Under
the columns labeled “#Nodes” and “#Edges” we report the number of nodes and edges, respectively, that were removed from

the graph collection in the preprocessing step using the pairwise peeling Algorithm 2. Columns labeled “obj” and “time (s)”,

respectively report the average optimal objective value and average running time in seconds of the corresponding approach,
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unless indicated otherwise in the table notes. Columns labeled “#LC” under CCF and PPCF report the average number of lazy

constraints added, namely CCF constraint (1b) and PPCF constraint (3), respectively. The average number of branch-and-cut

nodes enumerated is reported under the column heading “#BCN.” The columns labeled “#NCT” report the average number of

terms with coefficient −1 on the left hand side of the added lazy constraint xu+xv−x(S) ≤ 1, that is, |S|. This is an indirect indi-
cator of the strength of the constraints. Generally, the smaller this number, the stronger the constraint. The extra column labeled

“#SLC” (only under PPCF) reports the average number of strengthened PPCF constraints of type (3) added. In order to count the

constraints of type (3) that are not of type (1b), we check if the length-k u, v-separator S in G′ obtained in step 6 of Algorithm 4

is not a length-k u, v-separator in any G ∈ G. That is, we only count under #SLC if for every G ∈ G, distG⧵S(u, v) ≤ k. This
implies that such a PPCF constraint could not have been obtained as a CCF constraint from any graph.

6.1 BG graphs
The BG graphs we use are part of the test bed used in [31], which was generated based on the procedure outlined in [11] (see

also [13]). There are four classes of 200-node BG graphs, with 10 samples each from a random generation procedure, designated

by their (average) edge density: BG_15 and BG_10 have densities 15% and 10% respectively and are challenging when k = 2;
BG_5 have densities of 5% and are challenging for k = 3; BG_2.5 with densities around 2.5% are challenging for k = 4. We
report results for the challenging instances in Table 1.

PPCF based branch-and-cut takes, on average, 47.2% less time than CCF for instances solved to optimality. Note that the

wall-clock time for PPCF also includes the time spent in computing the statistics reported under column #SLC. PPCF and CCF

did not reach optimality for five and six BG_15 instances, respectively, for the case p = 2 and k = 2, and the statistics for

these cases are very similar between the two approaches. For PPCF, over 72% of the lazy constraints added are of the stronger

type (3), which could explain the noticeably better running time performance of this approach. For most of the instances, we

observe a smaller value under #NCT for PPCF than CCF. Note that the value of #NCT is zero for six groups of instances under

PPCF. The lazy constraints of this type are actually conflict constraints with no negative terms on the left hand side. Across all

instances solved to optimality, CCF enumerated over 21% more BC nodes on average than PPCF. The foregoing observations

strongly suggest that PPCF approach based on pairwise peeling constraints significantly improves our ability to find maximum

cross-graph k-clubs on this group of instances.

TABLE 1 Comparison of CCF and PPCF on BG instances.

Reduction by peelg CCF PPCF
k p Collection #Nodes #Edges obj time (s) #LCa #NCTb #BCNc obj time (s) #LCa #SLCd #NCTb #BCNc

2 2 BG_10 0 0 9.4 102.8 12 043 2.3 29 276 9.4 79.6 11 241 9421 0.7 16 411

2 2 BG_15 0 0 16.7e 175.2%e 17 334 4.0 6 301 030 16.4f 172.0%f 17 377 1291 3.9 6 321 129

2 3 BG_10 0 0 4.6 56.1 24 381 2.3 14 768 4.6 38.7 25 076 25 056 0.0 15 293

2 3 BG_15 0 0 7.9 948.5 25 544 4.1 337 562 7.9 977.2 25 224 4241 3.9 343 897

2 4 BG_10 0 0 2.0 96.9 38 205 2.3 15 475 2.0 32.3 38 316 38 316 0.0 16 418

2 4 BG_15 0 0 4.4 453.1 43 709 4.3 75 002 4.4 388.0 43 698 12 654 3.9 58 895

2 5 BG_10 0 0 1.2 92.9 44 370 2.3 14 099 1.2 32.4 44 424 44 424 0.0 14 362

2 5 BG_15 0 0 2.3 352.2 64,949 4.3 48 562 2.3 296.2 64 846 29 274 3.4 36 145

3 2 BG_5 0 0 12.0 725.7 23 617 4.0 244 328 12.0 547.8 23 343 6130 3.6 194 812

3 3 BG_5 0 0 2.4 256.0 51 806 3.9 44 706 2.4 135.5 51 537 34 877 2.0 31 791

3 4 BG_5 0 0 1.0 290.9 71 580 3.9 43 299 1.0 54.5 71 639 65 718 0.6 31 516

3 5 BG_5 0 0 1.0 310.1 88 124 4.0 41 397 1.0 33.0 88 152 87 022 0.1 24 751

4 2 BG_2.5 5 31 8.8 113.7 19 605 3.2 19 287 8.8 60.5 17 094 14 920 0.9 16 069

4 3 BG_2.5 0 85 1.1 142.9 37 352 2.8 19 743 1.1 48.2 37 175 37 150 0.0 18 930

4 4 BG_2.5 0 160 1.0 95.8 41 928 2.8 20 527 1.0 35.6 41 928 41 928 0.0 17 332

4 5 BG_2.5 0 258 1.0 88.6 43 211 2.7 12 490 1.0 20.2 43 247 43 247 0.0 12 127

aAverage number of lazy constraints added.
bAverage number of negative terms in a lazy constraint.
cAverage number of branch-and-cut tree nodes.
dAverage number of lazy constraints added that were strictly strengthened by pairwise peeling.
eAverage MILP gap over 6 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average of

the best solutions found for all 9 instances under the obj columns. The average running time is 6,102.8 seconds over 3 out of 9 instances that were solved to optimality.
fAverage MILP gap over 5 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average of

the best solutions found for all 9 instances under the obj columns. The average running time is 6,069.4 seconds over 4 out of 9 instances that were solved to optimality.
gPeeling was not very effective on BG instances.
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TABLE 2 DIMACS-10 seed graphs used in generating graph collections.

G |V(G)| |E(G)| Edge density (%)

karate 34 78 13.90

lesmis 77 254 8.68

polbooks 105 441 8.08

adjnoun 112 425 6.84

football 115 613 9.35

celegans 453 2025 1.98

email 1133 5451 0.85

polblogs 1490 16 715 1.51

netscience 1589 2742 0.22

power 4941 6594 0.05

hep-th 8361 15 751 0.05

PGPgiantcompo 10 680 24 316 0.04

6.2 DIMACS-10 and VB graphs
We used 12 graphs from the DIMACS-10 benchmarks, listed in Table 2, each serving as a “seed graph” to generate a corre-

sponding total of 10 graphs. The edge set of each graph in the collection is constructed at random; we start with an empty graph

and add edges from the seed graph with a probability of 0.8. These are the same graph collections used in the computational

studies reported in [6]. VB graphs are from the test bed used in [46], and all three subclasses in this group contain 10 graphs

randomly generated with the same target (average) edge density using the same generation procedure as BG graphs [11, 13].

Each of these graphs has 300 nodes and the three classes are designated as VB_0.5, VB_1.0, and VB_1.5, respectively for their

edge densities 0.5%, 1.0%, and 1.5%.

The results from our preliminary experiments to identify challenging collections based on DIMACS-10 and VB graphs

for the cross-graph problem are reported in tab. 10–21 in [32]. We solve the collection {G1, … ,Gp} (recall that we have 10
graphs corresponding to each subclass inside each group) for each value of parameters k and p of interest using both algorithms.
We observe that when solving most of these instances there are very few (sometimes zero) lazy constraints added by both
CCF and PPCF. If the initial relaxation is practically sufficient to solve the problem using both approaches, we consider these

instances not to be sufficiently challenging for the problem, and therefore no meaningful distinction can be made between the

performance of the two algorithms. Based on our preliminary experiments, we only include those instances that required over

100 lazy constraints using either CCF or PPCF. We rerun the two BC algorithms and report results averaged over 11 − p runs
(as described before) in Table 3. As a larger number of lazy constraints are needed to solve these instances, the benefits of using

PPCF over CCF is also observed in the results in Table 3. Across this test bed, on average, PPCF is 12.8% faster and over 33%

of the lazy constraints added by PPCF are the stronger type (3) constraints.

6.3 PPCF with independent set inequality for cross-graph 2-clubs
In this section, we report on our experiment adding the independent set inequality (6) to our PPCFmethod for the special case of

cross-graph 2-clubs and assess its performance on the BG instances, which are among the more challenging instances in our test

bed. In our experiments, we set the minimum constraint violation parameter 𝜖 = 0.5 with a time limit of t = 30 seconds for each
G. As we only separate binary points, constraint violation will always be a positive integer (within numerical tolerance). We
also apply the PPCF separation Algorithm 4 to generate violated PPCF constraints following the attempt at finding a violated

independent set inequality using Algorithm 5 to ensure the overall correctness of our algorithm. MILP formulation (10) is also

incrementally updated before it is solved as the integral point x∗ being separated only influences the objective function of this
MILP. The results are reported in Table 4.

Although, we expected these cuts to improve overall performance for k = 2 for the challenging BG instances in our test bed,
we observed a deterioration in performance in terms of average running time/optimality gap and tree size. We observed similar

performance losses for other values of 𝜖 and termination time limit. It also appears based on the numbers reported under the col-

umn labeled #ISLC that a relatively small number of violated independent set cuts were found. The average ratio of #ISLC/#LC

is just 3.3%. Adding only the PPCF constraints and letting the tree enumerate appears to be the better choice in our experimental

set up. However, it is possible that an entirely different approach to adding these cutting planes could lead to better performance.

For instance, we could attempt aggressive fractional separation at the root, adding a round of cutting planes simultaneously by

generating one for each graph, and/or adding these cutting planes only at the top levels of the tree. These are directions worth
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TABLE 3 Comparison of CCF and PPCF on DIMACS and VB instances.

Reduction by Peele CCF PPCF
k p Collection #Nodes #Edges obj time (s) #LCa #NCTb #BCNc obj time (s) #LCa #SLCd #NCTb #BCNc

3 2 email 259 825 127.2 664.3 4830 3.1 48 617 127.2 660.1 5213 308 3.0 49 894

3 2 football 0 0 30.7 0.5 1428 2.2 438 30.7 0.6 1468 83 2.1 452

3 3 email 247 1132 113.0 791.8 7896 3.4 70 188 113.0 841.2 7674 820 3.3 86 506

3 3 football 0 0 26.1 0.6 1512 2.4 395 26.1 0.6 1612 204 2.1 417

3 4 email 248 1485 104.1 950.5 8870 3.6 51 937 104.1 750.2 9552 1411 3.3 32 434

3 4 football 0 0 25.1 0.5 1616 2.5 199 25.1 0.5 1350 255 2.2 183

3 5 email 249 1824 97.3 1, 003.9 13 026 3.8 49 815 97.3 915.9 12 322 2219 3.4 34 256

3 5 football 0 0 24.7 0.5 1695 2.6 220 24.7 0.5 1612 396 2.1 164

4 2 VB_1.0 0 169 2.1 9.9 3399 1.2 1525 2.1 7.8 3320 3320 0.0 1555

4 2 VB_1.5 6 35 4.3 336.8 27 301 1.9 22 386 4.3 155.1 27 421 27 417 0.0 21 598

4 2 email 183 462 462.9 15.6 1310 3.7 550 462.9 16.8 1303 29 3.6 546

4 3 VB_1.5 0 110 1.6 228.3 35 568 1.8 17 136 1.6 72.2 36 009 36 009 0.0 19 497

4 3 email 167 570 432.5 23.4 2211 6.3 912 432.5 25.0 2189 82 6.4 798

4 3 hep-th 7384 29 569 175.9 209.8 2315 3.4 1007 175.9 216.3 3310 240 3.2 954

4 4 VB_1.5 0 240 1.0 187.7 29 629 1.7 8335 1.0 47.9 29 630 29 630 0.0 9643

4 4 email 150 595 411.1 27.0 2615 6.0 1284 411.1 29.1 2596 195 5.9 1156

4 4 hep-th 7248 38 182 154.6 339.2 4073 3.2 2251 154.6 336.5 3665 490 3.1 1600

4 5 VB_1.5 0 466 1.0 91.1 20 184 1.7 3928 1.0 35.8 20 187 20 187 0.0 4609

4 5 email 152 729 396.2 26.6 2642 5.2 1454 396.2 29.0 2349 213 4.9 1392

4 5 hep-th 7016 44 855 139.5 607.8 5489 3.8 2298 139.5 555.9 4049 717 3.7 1921

aAverage number of lazy constraints added.
bAverage number of negative terms in a lazy constraint.
cAverage number of branch-and-cut tree nodes.
dAverage number of lazy constraints added that were strictly strengthened by pairwise peeling.
ePeeling was effective on most of these instances, with the exception of the VB graphs and the football graph.

TABLE 4 Comparison of PPCF and PPCF + Independent Set Cut on BG instances for k = 2.

PPCF PPCF + Independent Set Cut
k p Collection obj time (s) #BCNa #LCb obj time (s) #BCNa #LCb #ISLCc

2 2 BG_10 9.4 79.6 16 411 11 241 9.4 106.3 17 987 11 350 249

2 2 BG_15 16.4d 172.0%d 6 321 129 17 377 16.4e 209.7%e 4 732 194 17 319 491

2 3 BG_10 4.6 38.7 15 293 25 076 4.6 48.4 16 371 24 102 626

2 3 BG_15 7.9 977.2 343 897 25 224 7.9 1212.0 353 595 25 217 468

2 4 BG_10 2.0 32.3 16 418 38 316 2.0 55.5 15 962 38 153 1964

2 4 BG_15 4.4 388.0 58 895 43 698 4.4 473.6 61 862 44 109 1087

2 5 BG_10 1.2 32.4 14 362 44 424 1.2 60.9 15 334 44 444 2543

2 5 BG_15 2.3 296.2 36 145 64 846 2.3 382.8 37 918 66 588 2329

aAverage number of branch-and-cut tree nodes.
bAverage number of PPCF lazy constraints added. This does not include the independent set cuts added.
cAverage number of violated independent set cuts added.
dAverage MILP gap over 5 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average of the

best solutions found for all 9 instances. The average running time is 6069.4 s over 4 out of 9 instances that were solved to optimality.
eAverage MILP gap over 8 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average of the

best solutions found for all 9 instances. The one instance solved to optimality took 5804.9 s.

exploring for the special case of k = 2. Even for the single-graph counterpart, there is currently no known branch-and-cut

implementation that successfully exploits independent set cuts for the maximum 2-club problem, to our best knowledge.

6.4 Club signatures case study
In this section, we conduct a computational case study to assess the effectiveness of the approaches developed in this article, in

solving a closely related problem—the maximum k-club signature problem. The approach we developed to solve this problem
in [6] requires solving a series of maximum cross-graph k-club problems, thus motivating the present study. We introduce the
necessary background before presenting our computational results on this problem, and use the notation [T] to denote the index
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TABLE 5 Comparison of MW-CCF and MW-PPCF on BG instances.

MW-CCF MW-PPCF
k 𝝉 Collection objb time (s)c objb time (s)c

2 2 BG_10 10 927.1 10 717.3

2 3 BG_10 5 447.3 5 309.4

2 4 BG_10 3 673.9 3 226.9

2 5 BG_10 2 551.5 2 193.8

2 2 BG_15 ≥ 17a 7202.7 ≥ 17a 7203.1

2 3 BG_15 10 7567.5 10 7893.7

2 4 BG_15 5 3159.2 5 2708.7

2 5 BG_15 3 2121.6 3 1785.5

3 2 BG_5 14 6550.2 14 4961.0

3 3 BG_5 4 2055.4 4 1077.8

3 4 BG_5 1 2037.8 1 379.8

3 5 BG_5 1 1849.8 1 197.7

4 2 BG_2.5 11 1030.3 11 559.4

4 3 BG_2.5 2 1146.5 2 344.3

4 4 BG_2.5 1 664.8 1 247.2

4 5 BG_2.5 1 518.9 1 121.1

aInstance not solved to optimality; the best solution found (a valid lower bound) is reported.
bThis column reports the optimal size of a 𝜏-persistent k-club signature.
cThis column reports the wall-clock running time (in seconds) of the moving window algorithm.

TABLE 6 Comparison of MW-CCF and MW-PPCF on DIMACS-10 and VB instances.

MW-CCF MW-PPCF
k 𝝉 Collection obja time (s)b obja time (s)b

3 2 email 135 2441.8 135 2893.0

4 2 email 473 133.6 473 128.8

3 3 email 123 4528.5 123 3589.7

4 3 email 440 129.6 440 127.1

3 4 email 114 3428.0 114 1392.3

4 4 email 419 128.6 419 135.8

3 5 email 107 3122.2 107 2979.2

4 5 email 403 112.7 403 133.9

3 2 football 35 7.5 35 4.7

3 3 football 28 5.6 28 5.0

3 4 football 26 5.4 26 3.4

3 5 football 25 6.2 25 3.1

4 3 hep-th 198 1310.2 198 1277.4

4 4 hep-th 171 1465.0 171 1365.0

4 5 hep-th 143 1854.8 143 1710.8

4 2 VB_1.0 3 52.7 3 40.8

4 2 VB_1.5 7 3144.4 7 1539.3

4 3 VB_1.5 2 1523.0 2 752.6

4 4 VB_1.5 1 1374.4 1 336.1

4 5 VB_1.5 1 584.1 1 214.6

aThis column reports the optimal size of a 𝜏-persistent k-club signature.
bThis column reports the wall-clock running time (in seconds) of the moving window algorithm.
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set {1, 2, … , T} in the following discussion. We also emphasize here that graph signatures are defined on sequences of graphs
(e.g., temporal graphs) as opposed to an unordered collection.

Definition 6. Given a graph sequence G = (Gt, t ∈ [T]) and positive integers k and 𝜏, we call a subset of nodes
S a 𝜏-persistent k-club signature in G if there exists a subsequenceH = (Gt, … ,Gt+𝜏−1) of G such that S forms a
k-club in every graph in the subsequence.

The maximum k-club signature problem seeks to find a maximum cardinality 𝜏-persistent k-club signature of G. By
definition, a 𝜏-persistent k-club signature of G is also a 𝜏-graph k-club on a consecutive subsequence of 𝜏 graphs; or more pre-
cisely on the graph collection obtained by ignoring the ordering. A monolithic IP formulation and a moving window (MW)

method are introduced to solve the maximum 2-club signature problem in [6]. Given a graph sequence G, the MW method

involves solving T −𝜏+1 maximum 𝜏-graph k-club problems (window problems) on the T −𝜏+1 consecutive subsequences of
length 𝜏 (windows). Two versions of the MWmethod, MW-2CLB and MW-F2, are compared for solving the maximum 2-club

TABLE 7 Comparison of MW-CCF and MW-PPCF on DIMACS-10 instances with T = 100 and 𝜏 = 10.

MW-CCF MW-PPCF
k Instance objb time (s)c objb time (s)c

2 adjnoun_100 14 6.0 14 5.5

3 adjnoun_100 54 8.0 54 8.1

4 adjnoun_100 89 2.5 89 2.5

2 celegans_metabolic_100 41 28.1 41 37.0

3 celegans_metabolic_100 188 174.4 188 184.4

4 celegans_metabolic_100 361 153.9 361 207.1

2 email_100 21 205.6 21 221.8

3 email_100 90 18 342.1 90 17 371.9

4 email_100 373 3037.7 373 3750.3

2 football_100 13 1.6 13 1.7

3 football_100 24 29.9 24 34.3

4 football_100 86 555.4 86 582.0

2 hep-th_100 24 608.3 24 632.4

3 hep-th_100 44 35 011.6 44 34 786.5

4 hep-th_100 ≥ 119a 64 143.6 119 65 629.1

2 karate_100 8 0.7 8 0.6

3 karate_100 17 0.6 17 0.6

4 karate_100 24 0.5 24 0.5

2 lesmis_100 14 1.1 14 1.2

3 lesmis_100 32 0.9 32 0.9

4 lesmis_100 51 1.0 51 1.1

2 netscience_100 21 24.0 21 25.0

3 netscience_100 27 34.0 27 35.7

4 netscience_100 40 37.4 40 38.4

2 PGPgiantcompo_100 65 11 701.3 65 11 810.1

3 PGPgiantcompo_100 196 6283.7 196 6536.6

4 PGPgiantcompo_100 387 38 307.6 387 43 014.0

2 polblogs_100 161 3253.2 161 3857.7

3 polblogs_100 581 2334.3 581 2576.6

4 polblogs_100 945 1983.4 945 2127.9

2 polbooks_100 15 1.6 15 1.9

3 polbooks_100 36 1.4 36 1.5

4 polbooks_100 52 2.1 52 2.3

2 power_100 8 208.4 8 213.7

3 power_100 16 426.8 16 443.2

4 power_100 28 571.5 28 599.5

aInstance not solved to optimality; the best solution found (a valid lower bound) is reported.
bThis column reports the optimal size of a 𝜏-persistent k-club signature.
cThis column reports the wall-clock running time (in seconds) of the moving window algorithm.
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signature problem in [6]. Each of the subproblems in MW-F2 is solving a conjunction of 𝜏 common neighbor formulations,

while a subproblem of MW-2CLB exploits decomposition and preprocessing techniques by adding the common neighbor con-

straints in a delayedmanner similar to CCF. The computational results in [6] show thatMW-2CLB, which is essentially the same

as using CCF for each window problem, is preferable over MW-F2 and directly solving the monolithic IP formulation of the

problem. In this section, we compare the performance of the moving window counterparts (MW-CCF and MW-PPCF) of the

decomposition BC algorithms with preprocessing introduced in this article in solving the maximum k-club signature problem.
Although, a maximum k-club signature problem can be solved by decomposing it into a series of maximum 𝜏-graph k-club

problems, it is preferable to not treat them independent of each other. As the preprocessing/peeling procedures between two

consecutive window problemsmay reduce the size of the subsequent window problemsmore effectively if given a better feasible

solution found in one of the previous window problems. Therefore, we use the DROP heuristic [10] on the intersection graph of

the very first window to find a feasible solution used in preprocessing, and subsequently update it with the best feasible solution

found as we sequentially solve the window problems.

In the rest of this section, we report our results from two experiments comparing the performance of MW-CCF and

MW-PPCF in solving the maximum k-club signature problem. Generally, we consider k ∈ {2, 3, 4} and 𝜏 ∈ {2, 3, 4, 5} in our
first set of experiments on only the challenging instances identified for each k from our foregoing experiments. We consider
longer graph sequences (i.e., larger T) with a larger value of 𝜏 in the second set of experiments. We remark that the results
reported in this section are not averaged like in the previous tables, as we are now solving the club signature version with a mov-

ing window of length 𝜏 over a T-graph sequence seeking a window containing the largest cardinality 𝜏-graph k-club. For each
window problem, we allow a Gurobi solve time limit of 3600 seconds and terminate the algorithm if two consecutive window

problems are not solved to optimality. Tables 5 and 6 summarize the results. Both MW-CCF and MW-PPCF did not solve one

instance from the BG collections to optimality. Overall,MW-PPCF is over 47% faster on average thanMW-CCF onBG instances

that were solved to optimality, and over 23% faster on average on DIMACS-10 and VB instances. The advantage of MW-PPCF

on DIMACS-10 and VB instances are not as obvious because significantly fewer lazy constraints were added on these instances.

The aim of our second set of experiments is to explore the impact of larger values of 𝜏 on real-life graphs, especially if

nontrivial (in terms of size) solutions are detected. We use the same sequence generator as before to generate 12 sequences

based on the 12 DIMACS-10 graphs identified in Table 2 that includes many social and biological networks. Each instance is

a sequence containing 100 graphs. For these instances, we consider 𝜏 = 10 and k = 2, 3, 4. Results are reported in Table 7.

Interestingly, we find that MW-CCF is 7% faster than MW-PPCF on average, although there is one instance hep-th_100
that MW-CCF did not solve to optimality, but MW-PPCF did. Although not significantly behind, the additional time spent

generating PPCF constraints was not worthwhile in this experiment. Nonetheless, it is interesting to see that the size of the

optimal k-club signature identified is not very small despite using a larger 𝜏.

7 CONCLUDING REMARKS

The cross-graph k-club model is designed to mine low-diameter clusters conserved in graph collections. Such a collection
may represent a time-varying graph or a graph where node relationships change under different conditions. This article devel-

ops integer programming approaches to find a maximum cardinality cross-graph k-club from a given graph collection. Our
main contribution is the strengthening of a well-known cut-like formulation for the single-graph counterpart through what we

call pairwise peeling and assessing its computational performance in conjunction with preprocessing and delayed constraint
generation. Our results strongly suggest that there is significant advantage to using the approaches we introduce in this article.

We also identify valid inequalities for the problem for general k and if k = 2, essentially extending single-graph counterparts.
An important by-product is an alternative proof of validity of the independent set inequality proved in [27] for the maximum

2-club problem. At this time, we are unable to establish facet-inducing conditions for these inequalities, and consider it an

important next step to advance this study. Similar to what has been observed in the context of single-graph counterpart of

the independent set inequalities, we have been unable to make effective use of these cuts in a branch-and-cut algorithm that

outperforms our delayed constraint generation algorithm using the original constraints.We expect these inequalities to contribute

to our ability to solve challenging instances of the problem as we better understand their strength and devise effective separation

procedures.

Motivated by detection and deactivation of fake accounts in social media, a methodology which interdicts k-clubs of max-
imum cardinality in a given graph is studied in [12]. As relationships between accounts in social media are time varying, one

could consider interdicting a cross-graph maximum k-club over a collection of snapshot graphs in order to identify a more
robust interdiction policy. Likewise, one may consider interdiction problems in temporal graphs like the interdiction of atomic

k-clubs [22] or k-club signatures [6]. The maximum cross-graph k-club problem can serve as the separation problem in these
broad future directions for this study. Although our focus in this article is on clusters that induce low-diameter subgraphs, one
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may investigate any clique relaxation or another graph property in the cross-graph setting depending on the domain or data

underlying the graph models.
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