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chooses a neighboring vertex in each step to build their path from designated source(s) to terminal(s). 
The interdictor’s goal is to maximize the evader’s minimum expected first passage time. We establish 
sufficient conditions for the interdiction to not be counter-productive, prove that the problem is NP-hard, 
and demonstrate the model’s usefulness by solving a mixed-integer programming formulation on a test 
bed of social networks.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Consider a network in which a ‘Markovian evader’ moves from 
one vertex to another vertex along an arc. In this setting the ver-
tices of the network form the state space of this Markov chain 
and transitions happen from a vertex to its (out) neighbor with 
known one-step transition probabilities. This stochastic model un-
derlies many approaches analyzing misinformation and influence 
spread in social networks, cluster analysis of hyperlink networks 
found in the World Wide Web [3], and controlling infectious dis-
eases where the Markov chain describes the disease spread [13]. 
In particular, this study is motivated by the use of Markov chains 
in the stochastic variants of attack graphs used in cybersecurity 
analysis [1,7,10,17]. Specifically, a probabilistic attack graph can be 
modeled as a Markovian evader moving in the graph. Each state 
of the graph represents a vulnerability of the system (with one 
absorbing state representing the violated security goal); and the 
transition probabilities are a function of the exploitability scores of 
the vulnerabilities [1].

A relevant question from the point of view of a network man-

ager is to allocate resources to maximally disrupt, or interdict, the 
evader’s operation, and several variants of the Markovian evader 
interdiction framework are available in the literature on network 
interdiction. For example, Gutfraind et al. [6] consider multiple 
Markovian evaders who choose edges to traverse based on a ran-
dom walk defined by a Markovian transition matrix. Each evader 
has a target in the network, and the goal of the interdictor is to in-
terdict edges using a limited budget to increase the probability of 
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capturing evaders before reaching their targets. Johnson et al. in-
troduce two interdiction problems with Markovian evaders in [8], 
wherein one problem maximizes the number of captured evaders 
under a limited budget for vertex interdiction and the other prob-
lem focuses on capturing all the evaders at a minimum cost. Sefair 
et al. [16] consider a setting where the interdictor protects a sub-
set of vertices with a limited budget while the evader attacks a set 
of unprotected vertices leading to changes in the transition prob-
abilities. The evader’s goal is to minimize the weighted expected 
hitting time, while the interdictor seeks to maximize it.

In this paper, we introduce a new variant of Markovian evader 
interdiction where the interdiction of a vertex increases the prob-
ability that the Markov chain remains in said vertex and decreases 
the probability that the Markov chain jumps to other vertices. As a 
consequence, interdiction ‘slows down’ the evolution of the chain. 
In particular, we consider the expected first passage time as the 
metric of performance of the evader, and the interdictor aims to 
maximize the minimum expected first passage time between two 
given sets of vertices. For instance, in the context of attack graph 
interdiction, our model could serve to identify the vulnerabilities 
where a network manager should invest his/her limited resources 
to reduce exploitability scores, in order to maximize the time it 
takes to attackers to reach their objective.

Previous papers have considered an approach to Markov chain 
interdiction analogous to the one we propose. For instance, Maga-

zev and Tsyrulnik [12] and Kasenov et al. [9] consider interdiction 
to maximize the expected first passage time between two fixed 
nodes in the context of attack graph interdiction. These works, 
however, assume specific simple Markov chains and their results 
cannot be employed in general Markov chains. On the other hand, 
works that consider interdiction in general Markov chains to opti-
mize first passage times, such as [16], focus on developing solution 
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algorithms but provide no general properties about the model nor 
its computational complexity. In this sense, our work complements 
existing literature by providing a general model and theoretical 
analyses for first passage time interdiction in Markov Chains.

Specifically, the main contributions of this paper are: (i) we 
demonstrate that, under some circumstances, interdiction could 
improve the evader’s performance contrary to expectation. We then 
provide sufficient conditions for designing an interdiction policy 
that prevents counter-productive interdiction; namely, that the 
interdiction penalties only depend on the departing state (Sec-
tion 3.1); (ii) we show that the optimal interdiction problem is 
NP-hard by a reduction from vertex cover (Section 3.2); and (iii) 
we introduce a mixed-integer programming (MIP) formulation and 
use it to demonstrate the usefulness of this interdiction framework 
on a test bed of benchmark social and biological networks (Sec-
tions 4 and 5).

The remainder of the paper is organized as follows. Section 2

introduces the problem formally and Section 3 contains our theo-
retical results. Section 4 has the MIP formulations which are tested 
in the numerical experiments in Section 5. Section 6 presents our 
concluding remarks.

2. Problem statement

Consider a digraph D = (V , A) with vertex set V and arc set 
A ⊆ V × V [2]. We assume that every vertex i ∈ V has a self-
loop (i, i) ∈ A, but D contains no parallel arcs. The open out-

neighborhood of vertex i is defined as N+(i) := { j ∈ V \ {i} : (i, j) ∈
A} and N+[i] := N+(i) ∪ {i} is the closed out-neighborhood. We as-
sume that the stochastic process {Xn : n = 0, 1, 2, . . .} is a discrete-
time Markov chain (DTMC) with state space V . The transition 
probability matrix is denoted by P , where Pij = 0 if (i, j) /∈ A.

For j ∈ V let τ j be the first time by which the DTMC visits 
vertex j, which is defined as τ j := min{n ≥ 0 : Xn = j}. For i ∈ V , 
we define ti j := E[τ j |X0 = i], thus ti j is the expected first passage 
time (FPT) to j given that the chain initially is at state i. For con-
venience, hereafter we omit the word ‘expected’ when referring 
to first passage times. Consider two disjoint, nonempty subsets 
of vertices denoted by S and T . In the context of misinformation 
spread, subset S can be considered as malicious users from which 
misinformation originates, whereas those in T can be considered 
as users vulnerable to misinformation. In attack graphs, S can be 
considered as a set of initial vulnerability states, whereas T is a 
set of states representing the completion of the attack. We assume 
that P [τ j < ∞|X0 = i] = 1 for all i ∈ S and j ∈ T , which, because 
|V | < ∞, can be ensured if there is at most one closed communi-

cating class in C ⊆ V such that T ⊆ C [15]. Under this assumption, 
for j ∈ T , the FPT to j starting in i ∈ S can be computed by solving 
the following system of linear equations (Theorem 3.3, [11]):

ti j = 1+ Piiti j +
∑

k∈N+(i)

Piktkj, ∀i ∈ V \ { j}, (1a)

t j j = 0. (1b)

The goal of the interdiction problem is to disrupt vertices in 
V to increase the first passage times from vertices in S to ver-
tices in T . We assume that interdicting vertex i ∈ V decreases 
the transition probability Pij to Pij(1 − �i j) for every j ∈ N+(i), 
where �i j ∈ [0, 1) is a known interdiction penalty parameter asso-
ciated with every outbound arc at vertex i. (Note that we do not 
consider the self-loop an outbound arc, and self-loops are not as-
sociated with any interdiction penalty.) Consequently, interdicting 
vertex i increases the probability of traversing the self-loop at i
to Pii +∑

j∈N+(i) Pij�i j to ensure that the total one-step transition 
probability at i equals one. This is illustrated in Fig. 1. Furthermore, 

as �i j < 1, the DTMC has the same class decomposition pre- and 
post-interdiction.

The motivation behind the proposed model of interdiction is 
to ‘slow down’ the evolution of the chain in the following sense. 
Whenever the DTMC visits an interdicted vertex, it will remain at 
the interdicted vertex for more time periods (in expectation) be-
cause we have Pii ≤ Pii + ∑

j∈N+(i) Pij�i j for any admissible value 
of �i j . Furthermore, the expected number of time periods that 
the DTMC remains at an interdicted vertex can be made arbitrar-
ily large by making all the �i j arbitrarily close to 1. However, as 
we elaborate in Section 3.1, interdiction might not necessarily in-
crease the first passage times and conditions are needed to ensure 
this happens.

Based on this interdiction model, we introduce the optimiza-

tion problem (2) with the objective of interdicting at most b
vertices to maximize the smallest FPT from S to T . Let B :={
x ∈ {0,1}|V | : ∑i∈V xi ≤ b

}
denote the set of feasible interdiction 

policies. Then, we aim to solve:

t∗S,T := max
x∈B

⎧⎨
⎩min

i∈S
j∈T

{
ti j(x) : ti j(x) satisfies equations (3)

}⎫⎬⎭ , where,

(2)

ti j(x) = 1 +
⎛
⎝Pii +

∑
k∈N+(i)

Pik�ikxi

⎞
⎠ ti j(x)

+
∑

k∈N+(i)

Pik(1 − �ikxi)tkj(x)

∀(i, j) ∈ V × V : i 
= j, (3a)

t j j(x) = 0 ∀ j ∈ V . (3b)

Observe that system of equations (3) is analogous to the system of 
equations in (1), with the difference that (3) captures the effect of 
interdiction according to policy x ∈ B .

3. Properties of the interdiction problem

In this section, we focus on the following: (i) establishing suf-
ficient conditions under which interdicting a vertex does not de-
crease the FPTs; and (ii) proving that the optimization problem (2)

is NP-hard.

3.1. Preventing counter-productive interdiction

In general, interdiction of a vertex might not ensure that the 
FPTs increase. Consider the digraph in Fig. 2. Let S = {1}, T = {3}, 
and for every i ∈ V let Pij = 1/3 for each j ∈ N+[i]. We can solve 
system (1) to find that t13 = 4.5. Indeed, note that the system of 
equations in this case is

t13 = 1+ 1

3
t13 + 1

3
t23

t23 = 1+ 1

3
t23 + 1

3
t13 + 1

3
t43

t43 = 1+ 1

3
t43 + 1

3
t23,

and consequently, t13 = 4.5, t23 = 6 and t43 = 4.5.

Now, suppose that �12 = 4/5, �13 = 1/10 and that vertex 1 is 
interdicted, that is, x = (1, 0, 0, 0)′ . The probabilities for the arcs 
leaving vertex 1 including the self-loop change to
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Fig. 1. By interdicting vertex 1, self-loop transition probability at vertex 1 increases, while transition probabilities on outbound arcs {1,2} and {1,3} decrease.
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Replacing these probabilities in the equations results in:

t13(x) = 1+ 19

30
t13(x) + 1

15
t23(x)

t23(x) = 1+ 1

3
t23(x) + 1

3
t13(x) + 1

3
t43(x)

t43(x) = 1+ 1

3
t43(x) + 1

3
t23(x),

which gives that t13(x) = 3.72, t23(x) = 5.48, and t43(x) = 4.24. 
Therefore, t13(x) < t13, and the FPT from between S and T in this 
case has decreased after interdiction according to x.

Intuitively, in the example in Fig. 2, interdiction of vertex 1 
makes it more likely for the DTMC to remain in vertex 1 (increas-
ing the probability from 1/3 to 19/30) while at the same time 
decreasing the probability of transitioning from 1 to 3 only by 
small amount (from 1/3 to 3/10). This imbalance is because �13 is 
much smaller compared to �12. Thus, one can expect interdiction 
to be successful, if for any i ∈ V , all the �i j have similar values 
across all the outbound arcs. This observation is made precise in 
Theorem 1. Subsequently, in Theorem 2, we show that FPT inter-
diction is NP-hard even when restricted to such instances.

12

34

Fig. 2. An example to illustrate that FPT may decrease upon interdiction in some 
cases.

Theorem 1. If the interdiction penalties �i j on the outbound arcs de-
pend only on the departing state, that is, for every i ∈ V , we have 
�i j = �i ∈ [0, 1) for all j ∈ N+(i), then the FPTs are monotonically 
non-decreasing functions of the interdiction policies (partially) ordered 
by vertex inclusion. That is, for distinct i ∈ V and j ∈ T , ti j(x̄) ≥ ti j(x̃)

for x̄, ̃x ∈ {0, 1}|V | such that x̄ ≥ x̃.

Proof. For an arbitrary fixed vertex j ∈ T , after enforcing t j j(x) = 0

and Pii +∑
k∈N+(i) Pik = 1, we can rewrite equations (3) as follows:

ti j(x) − 1

(1 − Pii)

∑
k∈N+(i)\{ j}

Piktkj(x) = 1

(1− �i xi)(1 − Pii)

∀i ∈ V \ { j}.
For given x and j, we express the foregoing system of |V | −1 equa-

tions in as many unknown FPTs in matrix notation to facilitate our 
arguments. Let the unknown FPTs be denoted by the (|V | − 1)-

dimensional column vector:

T (x) := [t1 j(x), t2 j(x), · · · , t j−1, j(x), t j+1, j(x), · · · , t|V |, j(x)]�,

and let Q denote the (|V | − 1) × (|V | − 1) matrix whose entries 
are defined below (with rows and columns indexed by V \ { j} for 
convenience):

Q ik :=
{

Pik
1−Pii

, for k ∈ N+(i) \ { j},
0, otherwise,

∀i ∈ V \ { j},

and let I denote the (|V | −1) × (|V | −1) identity matrix. Note that 
Q is well-defined because, from our assumptions, Pii = 1 if and 
only if i = j and T = {i}. Furthermore, let R(x) denote the right-
hand side column vector with its i-th element defined as:

R(x)i := 1

(1 − �i xi)(1 − Pii)
∀i ∈ V \ { j}.

Then, the equations of FPTs in the new notations are as follows:

(I − Q )T (x) = R(x).

Since V is finite, the rows of Q sum to at most one, and at least 
one row of Q sums to strictly less than one (otherwise, the prob-
ability of reaching state j will be zero), then the absolute value 
of all eigenvalues of Q is strictly less than one (see e.g., Theorem 
2.8 of [11]). Thus, (I − Q )−1 exists and is given by the following 
geometric series expansion:
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(I − Q )−1 =
∞∑

�=0

Q �.

Consequently,

T (x) =
∞∑

�=0

Q �R(x).

For i such that x̄i > x̃i , we see that R(x̄)i > R(x̃)i ; with the com-

ponents being equal otherwise. As each element in Q � is non-
negative for all � ≥ 0 and R(x̄) ≥ R(x̃), we conclude that T (x̄) ≥
T (x̃), establishing our claim. �
Corollary 1. If the assumptions of Theorem 1 hold, then for any interdic-
tion decision x, we can compute lower and upper bounds on FPTs based 
on the inequality: ti j(
0) ≤ ti j(x) ≤ ti j(
1), where 
0 and 
1 are the |V |-
dimensional all-zero and all-one vectors, respectively.

3.2. FPT interdiction problem is NP-hard

In this section, we show that problem (2) is NP-hard using a 
polynomial-time reduction from vertex cover [4]. Consider the fol-
lowing decision problems as given below. We assume that all data 
are rational.

Vertex Cover: Given a simple, undirected graph G = (V , E) and 
a positive integer b, does G contain a vertex cover of size at most 
b? In other words, is there a subset C with at most b vertices that 
contains at least one end point of every edge in G?

FPT Interdiction: Given a digraph D = (V , A), a DTMC {Xn : n ≥
0} with state space V and one-step transition probability matrix 
P , interdiction penalties �i j ∈ [0, 1) for i ∈ V , j ∈ N+(i), disjoint 
nonempty vertex subsets S, T , a positive integer b, and a positive 
rational number �, does there exist a feasible interdiction policy 
x ∈ B such that ti j(x) ≥ � for all i ∈ S and j ∈ T ?

Theorem 2. FPT Interdiction is NP-complete.

Proof. Given an interdiction policy x, in polynomial time we can 
verify its feasibility, compute the minimum FPT from S to T using 
the system of linear equations (3), and verify whether or not it is 
at least �. Therefore, FPT Interdiction belongs to class NP.

We demonstrate a polynomial time reduction from Vertex 
Cover to establish NP-hardness. Let 〈G = (V , E), b〉 denote the
Vertex Cover instance. Without loss of generality, we assume that 
G contains no isolated vertices. We create the digraph by adding 
self-loops at every vertex of G and replacing every edge of G with 
anti-parallel arcs. We also create a new auxiliary vertex w /∈ V to 
which every vertex in G has outbound arcs (see Fig. 3). Denote this 
digraph by D = (V ∪ {w}, A), where,

A :=
⋃

i∈V∪{w}
{(i, w), (i, i)} ∪

⋃
{i, j}∈E

{(i, j), ( j, i)} .

We set S = V , T = {w}, the interdiction budget is b (same as the 
upper-bound of the vertex cover instance), and � = 2. We also use 
a parameter p ∈ [0, 1) in defining the transition probabilities and 
interdiction penalties below, and eventually demonstrate the claim 
for a sufficiently large p. The one-step transition probability matrix 
of the DTMC is defined as follows, for each (i, j) ∈ A,

Pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if i = j 
= w,

1, if i = j = w,

p, if j = w 
= i,

(1− p)/di, otherwise,

1

2

3

w

0 0

0

1−p
2

1−p
2

1−p
2

1−p
2

1−p
2

1−p
2 pp

p

Fig. 3. The digraph obtained by applying our transformation to a complete graph 
on three vertices. The self-loop of w with Pww = 1 is not shown to simplify the 
picture.

where, di := |N(i)| is the degree of vertex i and N(i) denotes the 
neighborhood of vertex i in the vertex cover instance G . Note that 
the minimum degree of a vertex in G is at least one. Finally, as-
sume that the interdiction penalties are �i j = p for every i ∈ V

and j ∈ N+(i). This completely specifies the FPT Interdiction in-

stance which can be constructed in polynomial time. Note that 
the constructed interdiction instance also satisfies the conditions 
of Theorem 1.

The FPTs for the interdiction instance is given by the following 
equations for any interdiction policy x ∈ B and i ∈ V using equa-
tion (3) and substituting �i as p or zero as applicable:

tiw(x) = 1

(1− pxi)
+ (1− p)

di

∑
k∈N(i)

tkw(x). (4)

Next we show that the FPT Interdiction instance is a ‘yes’ in-
stance if and only if G contains a vertex cover of size at most b. 
Suppose C ⊂ V is a vertex cover of G containing at most b vertices. 
Consider the interdiction policy x in which we interdict vertices in 
C . We claim that the FPT from an arbitrary vertex i ∈ S to w is at 
least 2. We consider two cases: vertex i ∈ C and vertex i /∈ C .

Case (i) Vertex i ∈ C : In this case, xi = 1 and the value of the 
first passage time is:

tiw(x) = 1

(1− p)
+ (1− p)

di

∑
k∈N(i)

tkw(x)

In this case, if we choose p ≥ 1/2, then tiw(x) ≥ 2.

Case (ii) Vertex i /∈ C : In this case, xi = 0 and xk = 1 for all 
k ∈ N(i) as N(i) ⊂ C to cover all the edges incident at vertex i. The 
FPT in this case is:

tiw(x) = 1 + (1− p)

di

∑
k∈N(i)

tkw(x)

= 1 + (1− p)

di

∑
k∈N(i)

⎡
⎣ 1

(1− p)
+ (1− p)

dk

∑
j∈N(k)

t jw(x)

⎤
⎦

= 2 + (1− p)2

di

∑
k∈N(i)

1

dk

∑
j∈N(k)

t jw(x).
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Thus, tiw(x) ≥ 2 for every i ∈ S , as long as the constant p in the 
reduction is chosen so that p ≥ 1/2. The interdiction instance is a 
‘yes’ instance.

Now, assume that there is no size-b vertex cover in G . There-
fore, for any interdiction set C of size at most b, there exists 
an arc (i, j) ∈ A where neither of the vertices i, j ∈ V are in-
terdicted. Given these particular vertices i and j, by denoting by 
Pri[·] := Pr[·|X0 = i] (and analogously for expectations), the ex-
pected value tiw(x) can be equivalently calculated as follows:

tiw(x) = Pri[τw = 1]+2Pri[τw = 2]+Ei[τw |τw ≥ 3]Pri[τw ≥ 3].
(5)

Note that Pri[τw = 1] = p and

Pri[τw = 2] =
∑

k∈N(i)\C
Pik Pkw +

∑
k∈N(i)∩C

Pik Pkw

= (1 − p)

di

∑
k∈N(i)\C

p + (1− p)

di

∑
k∈N(i)∩C

p(1− p)

= p(1− p)

di

(
d−
i + (1− p)d+

i

)
,

where d−
i

:= |N(i) \ C | and d+
i

:= |N(i) ∩ C |. Note that di = d+
i + d−

i

and di ≥ d−
i ≥ 1 as j ∈ N(i) \ C . Moreover,

Pri[τw ≥ 3] = 1− Pri[τw = 1] − Pri[τw = 2]

= (1 − p)

(
1− p(d−

i + (1− p)d+
i )

di

)
, and

it can be verified using (4) that tiw(x) ≤ tiw(
1) = 1/(p(1 − p)). By 
exploiting the Markovian property, this observation implies that:

Ei[τw |τw ≥ 3] ≤ 3+ 1

p(1− p)
.

Therefore, from (5) we can conclude that:

tiw(x) ≤ p + 1

p
− [p(1 − p) + 1][d−

i + (1 − p)d+
i ]

di
+ 3(1− p)

(6a)

≤ 3− 2p + 1

p
− p(1− p)

|V | − 1

|V | , (6b)

where the last inequality follows as d−
i /di ≥ 1/|V | and d+

i /di ≥ 0. 
It can be checked that if p = 1 −1/|V |2 then the right hand of (6b)
is strictly less than 2 as long as |V | ≥ 3. We have established that if 
G has no vertex cover of size at most b, i.e., a ‘no’ instance, then, 
there exist at least one i ∈ S with tiw(x) < 2 for any interdiction 
solution x that removes at most b vertices. Therefore, the interdic-
tion instance is also a ‘no’ instance and the result follows. �
4. An MILP formulation

In this section we present a mixed-integer linear programming 
(MILP) formulation of problem (2). As before, we let a vector of 
binary decision variables x ∈ {0, 1}|V | denote the interdiction set 
{i ∈ V : xi = 1}. For convenience, we denote by ti j the expected 
first passage time from i to j after interdiction, i.e., ti j ≡ ti j(x), and 
by θ the smallest FPT from S to T . The optimization problem (2)

can be formulated as:

t∗S,T =max θ (7a)∑
i∈V

xi ≤ b (7b)

θ ≤ ti j ∀(i, j) ∈ S × T

(7c)(
1− Pii −

∑
k∈N+(i)

Pik�ikxi

)
ti j =

1 +
∑

k∈N+(i)

Pik(1 − �ikxi)tkj ∀(i, j) ∈ V × T : i 
= j

(7d)

t j j = 0 ∀ j ∈ V

(7e)

ti j ≥ 0 ∀(i, j) ∈ V × V

(7f)

xi ∈ {0,1} ∀i ∈ V

(7g)

Constraint (7c) requires θ to be smaller than any first passage time 
in the digraph D from S to T . Constraints (7d) and (7e) are essen-
tially equations (3), except those governing ti j for j ∈ V \ T are 
excluded as they do not impact FPTs from S to T . This formulation 
is not linear because of the variable products in constraint (7d). We 
introduce variables zi j and yij to effectively replace constraint (7d)
with the following equations:

(1− Pii)ti j = 1− zi j +
∑

k∈N+(i)\{ j}
Piktkj

zi j = yijxi

yi j =
∑

k∈N+(i)

Pik�iktkj −
∑

k∈N+(i)

Pik�ikti j

The nonlinear equation zi j = yijxi is enforced using ‘big-M’ coeffi-

cients on xi and 1 − xi in the MILP formulation that follows.

t∗S,T = max θ (8a)∑
i∈V

xi ≤ b (8b)

θ ≤ ti j ∀(i, j) ∈ S × T (8c)

(1− Pii)ti j = 1− zi j + o
∑

k∈N+(i)

Piktkj ∀(i, j) ∈ V × T : i 
= j

(8d)

yij =
∑

k∈N+(i)

Pik�iktkj −
∑

k∈N+(i)

Pik�ikti j ∀(i, j) ∈ V × T : i 
= j

(8e)

− Mij(1 − xi) ≤ zi j − yij ≤ Mij(1− xi) ∀(i, j) ∈ V × T : i 
= j

(8f)

− Mijxi ≤ zi j ≤ Mijxi ∀(i, j) ∈ V × T : i 
= j

(8g)

t j j = 0 ∀ j ∈ V (8h)

ti j ≥ 0 ∀(i, j) ∈ V × V (8i)

xi ∈ {0,1} ∀i ∈ V . (8j)

To model the correct behavior of constraints (8f) and (8g), for a 
given i, j ∈ V , we need Mij to satisfy the following inequality:

Mij ≥
∑

k∈N+(i)

Pik�iktkj −
∑

k∈N+(i)

Pik�ikti j,
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Table 1
Results of solving formulation (8) using Gurobi. Minimum FPT before and after inter-
diction, along with the corresponding percentage increase are reported under column 
headings FPT before, FPT after, and % increase, respectively. Wall-clock running time 
is reported under column heading Time (in seconds).
Graph |V | |A| FPT before FPT after % increase Time (s)

karate 34 78 56.02 79.56 42.03 0.20

dolphins 62 159 38.77 52.60 35.66 0.38

lesmis 77 254 56.91 81.75 43.66 0.54

polbooks 105 441 54.87 77.67 41.57 1.16

adjnoun 112 425 39.69 57.13 43.96 1.26

football 115 613 100.94 124.38 23.22 2.16

jazz 198 2742 70.85 98.22 38.62 12.88

celegansn 297 2148 231.97 331.90 43.08 31.03

celegansm 453 2025 30.50 47.48 55.66 44.03

email 1133 5451 1011.17 1506.52 48.98 1755.68

add20 2395 7462 3994.62 6433.78 61.06 696.43

Table 2
Results of solving formulation (8) using Gurobi. Minimum FPT before and after interdiction, along with the corre-
sponding percentage increase are reported under column headings FPT before, FPT after, and % increase, respectively. 
Wall-clock running time is reported under column heading Time (in seconds). Columns ‘#BC nodes’ and ‘#Cuts’ 
respectively report the number of branch-and-cut nodes enumerated and the number of Gomory cuts added. For in-
stances graph_200_0.15-5 and graph_200_0.15-6, in addition to the Gomory cuts, one RLT cut is also added.
Graph |V | |A| FPT before FPT after % increase Time (s) #BC nodes #Cuts

graph_200_0.1(1) 200 2015 130.15 164.14 26.12 42.85 1 2

graph_200_0.1(2) 200 1983 140.63 177.29 26.07 58.51 15 2

graph_200_0.1(3) 200 2014 149.08 187.88 26.03 15.04 1 0

graph_200_0.1(4) 200 1956 150.37 189.64 26.12 43.84 1 1

graph_200_0.1(5) 200 2033 114.98 145.45 26.50 15.29 1 0

graph_200_0.1(6) 200 1971 137.71 174.28 26.55 13.19 1 0

graph_200_0.1(7) 200 2029 150.14 189.01 25.89 34.26 1 1

graph_200_0.1(8) 200 2037 135.47 171.27 26.42 139.45 655 3

graph_200_0.1(9) 200 2009 163.60 205.11 25.37 41.33 1 0

graph_200_0.1(10) 200 1999 149.06 189.42 27.08 15.57 1 0

graph_200_0.15(1) 200 2981 143.99 179.77 24.85 25.01 1 0

graph_200_0.15(2) 200 3028 167.13 207.89 24.39 392.63 1131 7

graph_200_0.15(3) 200 2964 149.60 187.78 25.52 23.46 1 0

graph_200_0.15(4) 200 3035 147.04 184.58 25.53 64.55 1 1

graph_200_0.15(5) 200 2887 134.24 167.24 24.58 65.69 1 6

graph_200_0.15(6) 200 3065 153.08 190.58 24.49 83.31 23 1

graph_200_0.15(7) 200 2961 150.08 187.47 24.91 23.88 1 0

graph_200_0.15(8) 200 3055 138.09 172.95 25.25 72.32 3 1

graph_200_0.15(9) 200 2987 143.81 179.50 24.81 49.40 1 0

graph_200_0.15(10) 200 3077 148.62 184.58 24.19 112.94 239 1

for any feasible solution to formulation (8). For instance, under the 
assumptions of Theorem 1, using Corollary 1 we can compute a 
valid Mij as:

Mij =
∑

k∈N+(i)

Pik�itkj(
1) −
∑

k∈N+(i)

Pik�iti j(
0).

5. Numerical illustration

In this section, we present the results of implementing formu-

lation (8) in C++, compiled using Microsoft� Visual Studio� 2017, 
and solved using GurobiTM Optimizer v9.5.2 [5]. The purpose of 
these experiments is primarily illustrative, to demonstrate the ex-
tent by which FPTs are increased by interdiction and to show that 
small- to medium-sized instances can be solved by the MILP for-
mulation with commercial solvers. Selected graphs from the Tenth 
DIMACS Implementation Challenge, which includes some popular 
social and biological network benchmarks, were considered in our 
test bed. We also included 20 instances used in [14], those we 
refer to as Club instances, which are challenging benchmarks for 
the maximum k-club problem. All the graphs in this test bed are 
undirected, and we convert them to directed graphs by adding self-
loops and replacing edges by anti-parallel arcs. Experiments are 
conducted on a 64-bit Windows� 10 Pro machine with 16 GB of 
RAM and a 1.8 GHz processor with 7 cores.

In our experiments, sets S and T are chosen uniformly at ran-
dom and their cardinality is equal to 20% of the number of ver-
tices. The interdiction budget b is also equal to 20% of the number 
of vertices. For every vertex i ∈ V , transition probabilities of its 
outbound arcs and the self-loop are equal to 1/|N+[i]|. The inter-
diction penalties are set as �i j = 0.5 for every arc (i, j) ∈ A such 
that i 
= j.

We report the results for the DIMACS-10 instances in Table 1. 
All the instances in this test bed are solved to optimality at the 
root node of the branch-and-bound tree. The percentage increase 
in the smallest first passage time as a result of interdiction ranges 
from 23% (for football) and to 55% (for celegansm). On this 
test bed we observe that an optimal interdiction policy delays the 
first passage times by significant amounts.

However, by increasing the number of vertices in the graphs, 
the number of variables and constraints of formulation (8) in-

crease quadratically. So for larger networks (e.g., tens of thousands 
of arcs), the solver encounters memory crashes even while build-
ing the model. Therefore, solving the FPT interdiction problem for 
large scale instances will require more specialized decomposition 
methods.

The results for the Club instances are reported in Table 2. The 
main difference with respect to the DIMACS-10 instances is that 
there are six instances that are not solved at the root node and 
there are 11 instances where either Gomory or RLT cuts are added 
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by the solver. Although there are several Club instances that uti-
lized general purpose cutting planes to arrive at an integral opti-
mum (either at the root node or after enumeration), it is notable 
that for 9 Club instances and all DIMACS-10 instances the optimal 
solution of formulation (8) is obtained at the root node without 
the addition of any cutting planes. Our preliminary analysis did 
not uncover any simple explanation for this behavior. It would be 
interesting to see if graph properties like edge sparsity, low graph 
degeneracy, or small treewidth of the underlying graph make the 
problem easier to solve.

6. Conclusions

We introduced an interdiction model to maximize the mini-

mum first passage time between two given sets of states in a 
DTMC. We demonstrate that the interdiction strategy could be 
counter-productive in some situations and provide a sufficient 
condition that guarantees that interdiction will not decrease the 
first passage times. We then established the NP-hardness of the 
problem. We present a MILP formulation that can be used to 
solve small to medium sized instances of the problem using a 
commercial solver within minutes. We observed from our pre-
liminary experiments that the interdiction framework we pro-
pose is capable of producing significant increases in the minimum 
FPT, demonstrating its potential applicability. It would be inter-
esting in light of some of our computational results to identify 
graph classes for which this problem may be polynomially solv-
able. More generalized interdiction budget constraints of the form 
B :=

{
x ∈ {0,1}|V | : ∑(i, j)∈A ci j�i j xi ≤ b

}
could also be explored in 

specific applications. In order to ensure that the methodology can 
scale well in practice, future work needs to focus on decomposi-

tion techniques to solve our formulation and also explore alternate 
formulation ideas.
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