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1. Introduction

Consider a network in which a ‘Markovian evader’ moves from
ne vertex to another vertex along an arc In this setting the ver-
s of the nevor o the stae space o this Marko chin
and transitions happen fro s (out) g with
Known on-sep ension probabiles. s soebastc odel u
deres mary approsches analyaing misinformaton an [l ence
juster analysis of hyperlink networks
!mmﬂ n the Word Ve Wep2) and onaling mectons 5
n desibesthe diease e (131
T paricla, this study s motvated by the e of Markor chins

in the stochsic vranis o atack graphs sed in cybersecuriy
analyss [1.7,10,17]. Specifically, a. pmhamllmc Stack graph can b
Todeed 25 2 Markowan evader moving in the gaph. Exch state
o the graph repreents a walnerbliy of the e (with one
sioing s rpresening the vioied securty gal; and the

rbibies e uncon ofthe explonsbity s f
e winersiities 1]
A eevan queston from te palnt ofvew of 8 netwerk mar-

work
nterdiction. For exampl, Gutiand ot . 1 ) consider muliple
Mrkoan xades who chose s 1 g s on 2 -
dom walk defned by 2 Mrkovian tandtion mattx. Each v

i th network and the golof (e miericor s to
terdict edges using a limited budget Lo increase the probabilty
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capturing evaders before reaching their targets. Johnson et a. in-

uce two interdiction problems with Markovian evaders in [,
wherein one problem maximizes the number of captured evaders.
inder a limited budget for vertex interdiction and th prob-
lem f capturing all the evaders at a minimu cost. Sefar

that the Markov chain jumps to other vertices. As a
omsaence. nerticton sows dow the cluon of e ch
In pariua, we consider the epected it s the
pertormance of he cvader. and the. mericor aims to
it e i oo s pssage ime betvee
given sets of vertices. For instance, in the raph
entto, o modl o st 1 4eny th vnerpnes
where a network manager should invest hisjher limited resources
to educe exploiabity scores, i order o maimize th tme it
taes t atackes o rech tht et
s papers e considered an aprash o Mirkos chan
Intendction omlogous o he one we prapese. Fo mtance, Magh.
o an Toyrik 12 and Kaceno <t o (] concide mertcion
to maximize the expected first passage time between two fixed

be cr
works that consider interdiction in general Markov chains to opti-
mize first passage times, such as [16],focus on developing solution

Operatons serch e 54 2024) 107111

paol 1oy e o 1. e o e 0 he oo s e

3515 E pend unLV on the departing state, that is, for every i € V, we have

. ‘ 4 1.1_19 Ay = A €0,1) for all j & N*(i), then the FPTs are monammm!ry
Pu= non- the interdiction

Replacing these probabiltes i the equations results n
19 1

a0 =14 2000+ 5t

=1 ‘r ) ‘l 0 ‘K )

1500 =14 32300 + 311300+ a0

1 1
() =1+ 300 + 350,

i ges B3 1509 = 372, 130) =548, 0
fors, 150 <t 30 the 7 o betveen 5 e
e e afer ntertiction g
he example in fig. 2, memmmn of vere 1
ks vl T e DIV e v 1 (s
ing the probabity from 113 9 1970) whie at r)\e same fime
decreasing the probability of transitioning © 3 only
st o 113 133105 s e 5 becse A
much smallr compared to Az This, o ci cpest nerdcton
o be sl i foran 1<Vl the e s s
sl the cutbound e bseration s made
T Subsequenty n Theorem 2, we show tha T ntr-
ion 5 NP-had even e et t such ininces

Fig2 An cxampl 1o Hustate ot T may decrese upon interdcion b some

L —

“Ths, 1 () 2 for every i €5, as long as the constant p in the
teduction is chosen so that p > 1/2. The interdiction instance is
“yes' instance.

Now, assume that there is no size-b vertex cover in G. There-
fore, for any interdiction set C of size at most b, there exists
an arc (i,j) A where neither of the vertices i.j € V. are
ferdicted, Given these paricula vertice § and J, by denoting by
Pri[] = Prl-Xg = i] (and analogously for expectations), the ex-
pected value ty (x) can be equivalently calculated as follows:

H (9 = PrlTy =114 2Prlry = 2]+ By |y = 31 Prlry = 3]

(5)
Priy T b z PP
ap +( 2 pa-p)
-
D g,

where d; = ING)\ C] and d} = [N() NC|. Note that d
and d; = d; = 12 j € N(Q) \ C. Moreover,

Prilty =31

—Priltw =11 = Prilty.
d +(1 - p)d])
“"”("w)‘"ﬂ

it can be verified using (4) that ta (00 = (i (D) = 1/(p(1 — p)). By
exploiting the Markovian property, this observation implies that:

'
Eltulty 231234 -1
(it 231234 50
Therefore,from (5) we can conclude that:
1 Ip0 = p) 1A + (-
Pty - LFETIE)
(6)
T (&)

<3ozpelo
ST W

where th lst inequaiy llows as /d; = 1/V] an 7 /ds 0.
I o e checked that I 111/ he he righ hand f (6)
ity s .3 23 We v i e
< af s gt most b 8 10"

e st o one 1£3 i <2 fr . mrdcton
Sl e 3 s s hria, e i
o instance is s a1 nstance and th resu folows.

4. An MILP formulation

In this section we present a mixed-integer lincar programming
(42 formation o proiem (2}, beor.we It 3 vectr of
decon varables < 0,111 denoe the inerdicion st
ey e o cometenc. we aeno by e et
s pasage e fom 10 e tricton, e 1y =0, 3nd
e smalles T from S to . The optimization problen (2
e ol o

by e lston, T, fordish €V and J 7,60 60
forx. e 10.1)"!such that'x >

Proof. For an arbitrary fixed vertex j nforcing ¢(x) = 0

and P+ gye ) Pik = 1, we can rewrite equations (3) as follows:
1

A

(0 — Patii(9) =

P
KENT ) Pay

a=r
vie v\l

For given x and j, e exprss the foregoing system of V-1 equi-

tions n as many unknown FPTs in matrix noation o faclate our

arguments. Let the unknown FPTS be denoted by the (V] — -

dimensionsl column vector:

T = [0, 200, -+ 61 00, g g0ty 001
and let @ denote the (IV] ~ 1) x 1V] 1) matsx whose entres

are defined below (with rows and colums indexed by V | 1) for

convenience):

forkeN* M\ (i,

otherwise,

Q= vievy (.
and let 1 denote the (|V|—1) x (|V| 1) identity matrix. Note that
Q is well-defined because, from our assumptions, if and
and T = i Furthermore, let Rx) denote the right-
hand side column vector with its i-th clement defined as:
1

RO

Viev\L)).

A= 2T —P)
‘Then, the equations of FPTs in the new notations are as follows;

(1= Q)T = R,

Since V is finite, the rows of @ sum to at most one, and atleast
one row of @ sums to stricty less than one (otherwise, the prob-
abity of eschin stte il be o) then the ol vilue
of al cigenvalues of Q i strictly less than one (see .. Theorem
S5 111 e (1 ) exsts and 5 gien by he ollowing
geometric seres expansion:
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)

Susb (76)

b

o<ty VipesxT
0

(t-ra= 3 reawn)o

14 Y Pa(-Awxdty  MEDEVxT:ii#j
L

=0 vjev

620 Vi) eV XV
n
xe.1) viev
(78)
Constraint (7¢) requires & to be smaller than any first passage time.
in the digraph D from § to 7. Constraints (7) and (7¢) are essen-
tially equations (3), except those governing ;; f Tare
excluded as they do not impact FPTS from S (o T. This formulation
i o ncar because o the e producs in constrant (7). e
and y; to ol (70

it th Tollowing cquaions

ae Y

kNt

a

Pty

2=y
= 3 rasat 3 rasuty

‘The nonlinear equation enforced using ‘big- M’ coeff-
e an s, and 1. i he AP formlstion tat s

a)
(8b)

VigesxT (80

40 X Puty MODEVXTii#]

(5)
S Puduty - Y Puuty VG eV xTii ]
(50)
M- = 25—y =Ml —x%) VG EV X Tei%
@
Mg = 2 = Miyx; VG EV xT:i#]
<)
4=0 viev (sh)
20 VQpevxy @)
X €01} VieV. (8i)

“To model the correct behavior of constraints (51) and oo fora
given i & V. we need M to satsfy the following inequali

Myz 3 Puduty— ¥ Pududy.
A0 o

T —

algorithms but provide no general properties about the model nor
s computatioral omplesy n tis sens,our ok complements
exstng ltesture by proviting 3 generl model . el
nyses o s pasage cme nirdicton in Markor i
Spectcaly, the main contriutons of this paper )

demenstrate that, under some drcamstance, interditon could
improve the cuaders performance contrary to expecaion We then
provide sufficient. codions o desgning n iterdicion polcy
that prevents counter-productive interdiction; namely, that the.
inirdicion penalies ony depend on the deparing Siate (S

tion 3.1; (i) we show that the optimal interdiction problem is
NPard by 2 reducin fom veres: cover (Seton 32 and (i)
e introduce 3 misec-integer programming (M) formution and

et demontrate he ssfuincssof ti Interdicion rame
e e of endhmare e nd Dlogcal neworts s
tons 4 an

remainder of the paper is orgnized 35 follows. Secton 2
introduces the problem formally and Section 3 contains our theo-
retical results. Section 4 has the MIP formulations which are tested
in the numerical experiments in Section 5. Section 6 presents our
concluding remarks.

2. Problem statement

Consider a digraph D = (V. 4) with vertex set V. and arc set
e Ssume i vy vt < o s
Jodp (1.0 A bu b contain no paralle arcs. The apen ou-
neghcrood e defni 3 440 = (< VA1)
i) s the closed out-neighborhood. We as-
sume that the smdumr proces 1o 2.... is a discrete-
time Markov chain (DTMC) with State space V. he tansidon
Dbty a1 denoted by P, where .
For 1€ et % be the it ime by wiich the o sie
vertex . which is defined as 1; = min{n = 0: X, = j). For i V.
= El1)1Xo = il thus 1 is the expected frst passage
(FPT) o j given that the chain initially is at state i. For con-

information originates, whereas thos
e wneraie o misnformaton. n atack gaph
Conidered 35 2 e of il vlnralty sotes, wheress 7 5 3
set of states representing the completion of the attack. We assume.
that Pl < colX
V] < o0, can be ensured if there i at most one closed communi-
g s n €.V s that T 115, Under i saumpion
g n 5 cin e computed by sching
e Tolowing system o o cauions Thevem 5511

TPt DD Paly VieVAL)L (1)
N

o (1b)

he gl of the iterdicion proles i 0 cupt vertices in

Y to nceae the fis pasage times from veriss in S o ver-

s T W dssume.tht erdicing veren 1< V dectsses

e wanstion provaoy Py 10 Py(1 — Ay) for every j € NG,
where Ay o neicton penaly prmete sz
ciated with W arc at vertex i. (Note

Conide the SlFloop ah utbound re. and SeFloops are ot -

ltioop o
713y Py  emure tht he ot one-sep ransion
Dmbibvhry at i equals one, This is illustrated in Fig. 1. Furthermore,

K. Doemt 15 Bomers and 8 Baasndarom

(-0 =)0
Consequenty.
S otk
=

For | such that &> 5, we s that RO > RO Wit the com-
ponents being equal otherwise. As each element in Q" is no
hegative fo 31 0 2nd K = Reo, we conclde that T =
T(3), establishing our claim. 0

Corallary 1. fthe asumptions of Theorem 1 hold, then for any inerdic-
ion decision x. we can compute fower and upper bounds on FPTS based

n the inequality: t,(0) = t(6) < t (1), where 0 and 1 are the V|-
mensiomat g o alane vectos,FSpecely

32, FPTinterdiction problem i NP-hard.

I this section, we show that problem (2) is NP-hard using a
polynomial-time reduction from vertex cover [4]. Consider the fol-
Towing decision problems as given below. We assume that all data
e ational

Vs Cove: Given 3 simple, undircted rph G = (V. )
2 posiive iteg b, dos G cota a verten cover of sioe ot ok
O7In othr worts, i there 3 subset C with at mot b vertcestht
contains at least one end point of every edge

o
0) wi ey dansion bty matic
P mericon peies BueDD) for feV. /NG, digin

onempy veres subses $T.3 it ege b and 5 postie
raonal mumber . doe ter exist 3 fssile o oty

e B auch that (5 £ for sl 1§ and 12
‘Theorem 2. FPT INTeRoicTION is NP-complee.

Proot. Given an interdiction policy  in polynomial time we can
Vet e fssiilty compune e i P o 5 1o 7 g
the system of linear equations (3), and verify whether or not it is
at least (. Thereore, FPT INTERDICTION belongs to class NP
We demorstte 3 polynomil time rduction fom Vesrex
Cove 1o estalsh Neardness Let G = (V. .1) denote the
 Cove. instance. Without loss of generaliy, we assume that
G comans o oted veics. e e e e by sdding

which every vertex n G has outbound arcs (see Fig. 3). Denote this
raph by D. 1. 4). where,

A= U v U 165,00
[ e
w), the interdiction budget is b (same as the
Upperbound of e v coe i e £ 2 We s e
3 parameter p € [0.1) i definng the transion pobabiles snd
Inericion penaes below, and venualy emonsirte the clam
forasulfieny lrge . Th one sep ansion proabity mat
of he DTMC i delned s follows, o cch 1.0 A,

(= p)/dy. otherwise,

K. Doemt 15 Bomers and  Baasndarom

k;u\xs o sving ermalation (8] wsing
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2 <1, the DING has e same s decomposon pr- and
postinerdictior
o motaion bfind the propsed model of nexicion s
10 slow down' the cvolution of the chain in the following sense.
Wheneve the DTMICvists a inteicted veres ¢ vl e an
e erdited vere o mor e periods (n cxpmanom
<0t Sy Py o s inisie e
o Furermore, fhe S T of e ptods
the DIV remains st an interdicied verter can e made
il large by making all he 3, arbitrriy close to 1. However,
e liorate InSekion 33, Irdietion might nt necesarly
ctease the fistpassage times and condiions are needed to ensure
i bappes
i nerdicion model.we nmdce he apiic
on e (3) wi the ot of st % mon 3
i 10 masimie th maen 7T o S
[ 0.1)1: 0 <b] denote the set of feasibe interdiction
poice. Then, v aim to solve

5y ma!x!mx‘n(n,m lulx)xmsi\cstquauoni(!)]} where,

@
1) +(r',,+ > P.kAka\)mm
i

5 pact=dwnnn

v(..”evw,#, ()
L= viev. @n
Observe that system of equation (3) is analogous to the system of
eqatons in (1) withthe diflerecetht ) capres the fectof
interdicton according (o policy x <

3. Properties of the interdiction problem

his section, we focus on the following: (i) establishing suf-
e condions snder whic imrdicing 5 seien does et

crease the FPTs; and (i) proving that the optimization problem (2)
is NP-hard.

31, Preventing counter-productive interdiction

In general, interdiction of a vertex might not ensure that the

m; s, Consder he g i e 2. 1 =1, = 3
very 3 for each € N1 We can solve
e (110 i ot 1 45, nded, e it e e of
cquations i this case is
+ ‘l + ‘t
ot gm

P .
s+ ghat gt

+‘l +‘t
St

5= and < ds

uppose that Ay 1710 and that vertex 115
interdicted, that i 0.0.0/ e provaiies for the arc
leaving vertex 1 including the sel-loop change to

and consequently. 1
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.3, The o e by spingcu srntion o 3 campls g
ertas. Th slfloop f w Wi Poy Shoun t0 smply he

s the degree of vertex i and NG denotes the.
g of e i e verte coer mtane - N
the minimum degre of 3 vetex n G s o east one. il 3

sume tha the neriction pele f
and ] €N, This compietly Slzmﬁe> b P rcon in-
ance i can be consreiod n poynomial ime. Note

"
e
The F s [ar the interdiction instance is given by the following
1 a-p
SRR Y R .
= gy + G 3 o @

et e show thatthe T uspcrion inance s 3 e -
stance if and only if G contains a vertex cover of size at most b
Suppose CV i a vertox cover of G conaining t most 4 vertices.
Considerth nterdicton pocy i which e et vrtices in

We claim that the FFT from an arbitrary vertex i € to w is at
Teast 2 We Considr o case: verte 1€ € and verix 1.

Case (i) Vertex i  C: In this case, x = 1 and the value of the
first passage time is:

1

o=+ 2 X e
s e e e = 12 ten 022

s () Vere £ C: . s o, 5,0 and 3= 1 for i
KN 0 Bt e e s mtden e T
P It s

[ERL=2 S

=

e

a4

a-p
B )
= }
1o
L=

1
4 T Y o

(==
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for any feasible solution to formulation (8). Fo instance, under the.
assumptions of Theorem 1, using Corollary 1 we can compute a
valid M as:

M= Y Paatu— Y Pran®)
o e

5. Numerical llustration

in this section, we present the results of implementing formu-
Laion (5) i o comped wing Mcrosl vl St 2017,
o oived i Garh™ Opimises 8532 5], The purcse of
hese cxperiments s prmariy ilustacive, t demonsaate the ex-
fent b wich TS are increae ' intedicion an 10 show tht
mal. o medium-iaed inances inbe o by the ML for-
malation with commercil sovers. Seleced gFaphs fom the Tenth
- inplenenkation Chalege, which inciles soe popar

e o 35 Cl instances whichare challnging bechmaris for
the maximum k-club problem. All the graphs in this test bed a
Undireced, and we convert hem fo diected sraphs by ading Self
1o0ps and replacing edges by ant-paralel arcs. Experiments are
conducted on a 64-bit Windows® 10 Pro machine with 16 GB of
RAM and a 1.8 GHz processor with 7 cores,

In ur experiments, s  and T are chsen uniformly 3¢ -
dom and their cardinality is equal to 20%
ke, The terdiction budst i ko cqul 1 208 o he r\umber
of vertices. For every vertex i € V., transition prol of its

outbound s and e sl oo av e 1o} T e,
Gicion penlis are et 35 & ~ 05 for every re (1.7 4 Such
that i #

port the results for the DIMACS-10 instances in Table 1

A he inances i tis et bed ae sohed (0 opimaliy at he

root node of the branch-and-bound tree. The percentage increase.

in the smallest s pseage e s 3 st of mmmmon  sanges
% (o ootbalt) and

s hat a1 opimal inerticion oy delos the

fte pnssaxe times by significant amous

However, by increasng the mumber of vrtces in the graphs,
the mmber of varisbes and condrsnts o formultion (5 in-
ase quadraticaly. 5o for larger networks (e.g. tens of thousands

b
ing the model. Therefore, solving the FPT interdiction prablem for
large scale instances will require more specialized decomposition
‘methods.

e ssuls for the club instaneesare eported in Tale 2 he
main diflernce wih respect 10 the DIMACS10 nstances s that
here are s ntances hat are. ot sobved a the roo node

here e 11 Intances where ither Gomery or RT cus are added



[ —

by the solver. Although there are several Club instances that uti-
lized general purpose cuting pla at an incegeal opti-
 node or after enumeration). i is notable
1ACS-10 instances the optimal
ok of frmlaton (8 s oo & the roc
the addition of any < nes.
not uncover a!\y Sopie xganaton o i ek, o b
interesting to see if graph properties ke edge sparsity, low.
e o sl et o e wntang o e ot
problem easier t0 solve.

6. Conclusions

We introduced an interdiction model o maximize the mini-

mum st pisag time beween (wo 5 states in 2

/e demonstrate that the interdiction strategy could be

er- situations and provide 2 suficient

condition that guarantees that interdiction will not decrease the

age i sablhed the NP-ardness of the
problem. We present a MILP formulation that can

Lol e e irance of the roblem g

ymercial solver within minutes. We ol

I would be inter-
ol rsuls to ety
e chsss o Whch s roph ey b pobmaraly s
S0E More genealed iirdicion budge consraints of th form
€ 10115210045y =) could also b explored in
spelc spatons. I rter 0 e it e ety o
scale el n prcce, e otk
ctmigues o o oo omation x4 o el skt
ormulaon e,
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