Operations Research Letters

First passage time interdiction in Markov chains

Niloufar Daemi, Juan S. Borrero*, Balabhaskar Balasundaram

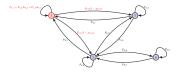

ARTICLE INFO

Chart for spotters

Introduction

Consider a network in which a Madrovian evader moves from one writer to another writer along an ext in this setting the writer and the setting the original pattern of the control of the c

https://doi.org/10.1016/j.orl.2024.107111 0167-6377/© 2024 Elsevier B.V. All rights reserved.

$$\begin{split} P_{12}' &= \frac{1}{3} \cdot \frac{1}{5} = \frac{1}{15}, P_{13}' = \frac{1}{3} \cdot \frac{9}{10} = \frac{3}{10}, \\ P_{11}' &= \frac{1}{3} + \frac{1}{3} \cdot \frac{4}{5} + \frac{1}{3} \cdot \frac{1}{10} = \frac{19}{30}. \end{split}$$

$$t_{13}(x) = 1 + \frac{19}{30}t_{13}(x) + \frac{1}{15}t_{23}(x)$$

 $\begin{aligned} & f_{0}(x) = 1 + \frac{1}{2} f_{0}(x) = \frac{1}{2} f_{2}(y), \\ & \text{ which give that } f_{1}(x) = 2.31, \ f_{2}(y) = 5.48, \ \text{and } f_{2}(y) = 4.24. \\ & \text{Therefore, } f_{1}(y) = 4.71, \ f_{2}(y) = 5.48, \ \text{and } f_{2}(y) = 4.24. \\ & \text{Therefore, } f_{1}(y) = 4.71, \ \text{and } \text{the FIF from between 5 and 1 T in the state of the following of the fo$

Fig. 2. An example to illustrate that FPT may decrease upon interdiction in some

Theorem 1. If the interdiction penalties Δ_{ij} on the outbound arcs depend only on the departing state, that is, for every $i \in V$, we have $\Delta_{ij} = \Delta_i \in [0,1]$ by for all $j \in V^{(i)}$, then the FFEs are monotonically non-decreasing functions of the interdiction policies (partially) ordered by vertex inclusion. That is, for distinct $i \in V$ and $j \in T$, $t_{ij}(S) \geq t_{ij}(S)$ for $X, X \in \{0,1\}^{|V|}$ such that $X \geq X$.

Proof. For an arbitrary fixed vertex $j \in T$, after enforcing $t_{jj}(x) = 0$ and $P_{jj} + \sum_{k \in N^+(j)} P_{jk} = 1$, we can rewrite equations (3) as follows:

$$t_{ij}(x) - \frac{1}{(1-P_{ii})} \sum_{k \in N^+(i) \setminus \{j\}} P_{ik} t_{kj}(x) = \frac{1}{(1-\Delta_i x_i)(1-P_{ii})}$$

$$Q_{ik} := \begin{cases} \frac{P_{ij}}{1 - P_{ij}}, & \text{for } k \in N^+(i) \setminus \{j\}, \\ 0, & \text{otherwise}, \end{cases} \forall i \in V \setminus \{j\},$$

convenience): $Q_B \simeq \begin{cases} \frac{1}{N-T_p}, & \text{for } k \in \mathbb{N}^+(i) \setminus \{J\}, & \text{if } \in \mathbb{V} \setminus \{J\}. \\ 0, & \text{otherwise}, \end{cases}$ and let I denote the $\{|V|-1\} \times \{|V|-1\}\}$ identity matrix. Note that I of I is well-defined because, from our assumptions, $P_B = 1$ if and only if I = J and $T = II\}$, arithermore, let K(i) denote the right-hand side column evotor with its I the denote of defined as

$$R(x)_i := \frac{1}{(1 - \Delta_i x_i)(1 - P_{ii})}$$
 $\forall i \in V \setminus \{j\}.$
Then, the equations of FPTs in the new notations are as follows:

Then, the equations of PFS in the flow notations are as tomove: $(I-Q)\Gamma(G) = RG$. Since V is finite, the trust of Q usin to at most one, and at least one troof V is finite, the trust of V is the control of V is finite, the trust of V is finite, the probability of racking state I will be zero), then the absolute value of all eigenvalues of Q is strictly less than one (for eqs. V). The V is V is V in V is V in V

reduction is chosen so that $p \ge 1/2$. The internations inclaime n = n yes instance. Now, assume that there is no size-b vertex cover in G. Therefore, for any interdiction set C of size x most b, there exists an arc $(1, j) \in A$ where entitles an arc $(1, j) \in A$ where notifies of the vertex $x \in A$ in the control of $x \in A$ in the control

 $t_{iw}(x) = Pr_i[\tau_w = 1] + 2Pr_i[\tau_w = 2] + E_i[\tau_w|\tau_w \ge 3]Pr_i[\tau_w \ge 3].$

Note that $Pr_i[\tau_w = 1] = p$ and $Pr_i[\tau_w = 2] = \sum_{k=N(i) \cap C} P_{ik}P_{kw} + \sum_{k=N(i) \cap C} P_{ik}P_{kw}$

where $d_i^- := |N(i) \setminus C|$ and $d_i^+ := |N(i) \cap C|$. Note that $d_i = d_i^+ + d_i^-$ and $d_i \ge d_i^- \ge 1$ as $j \in N(i) \setminus C$. Moreover,

where
$$g = |m|(1)$$
 (and $g'' = |m|(1)$ ($n \le d'' = |m'|$) ($n \le d \le d'' + g'' = |m'|$) is not linear because of the unitally products is constraint (73). We under $d \le g'' \le 1 \ge s$, $d \le g'' \le 1 \le s$, d

$$E_i[\tau_w | \tau_w \ge 3] \le 3 + \frac{1}{p(1-p)}$$
.

$$t_{\text{tw}}(x) \le p + \frac{1}{p} - \frac{[p(1-p)+1][d_i^- + (1-p)d_i^+]}{d_i} + 3(1-p)$$

$$\le 3 - 2p + \frac{1}{n} - \frac{p(1-p)}{|V|} - \frac{1}{|V|},$$
(6)

there exist a least one $i \in S$ with $k_i(t) < 2$ for any interclaims obtained as the memory and the viertex. Therefore, the interdiction in the contract of which is the freeze of them to the contract of t

The interior $C = \frac{(1-p)}{d_1} \sum_{k \in M \cap N} p_1 \left(\frac{1-p}{d_2} \sum_{k \in M \cap N} p_1 \right) p_1 \left(\frac{1-p}{d_2} \sum_{k \in M \cap N} p_1 \left(\frac{1-p}{d_2} \sum_{k \in M \cap N} p_1 \sum_{k \in M \cap N} p_1 \left(\frac{1-p}{d_2} \sum_{k \in M \cap N} p_1 \sum_{k \in M \cap N} p_2 \sum_{k \in M} p_2 \sum_{k \in M \cap N} p_2 \sum_{k \in M} p_2 \sum_{k$

$$1 - P_{ii})t_{ij} = 1 - z_{ij} + \sum_{k=N^+(i),i\neq 0} P_{ik}t_{kj}$$

$$z_{ij} = y_{ij}x_i$$

 $y_{ij} = \sum_{i} P_{ik}\Delta_{ik}t_{kj} - \sum_{i} P_{ik}\Delta_{ik}t_{ij}$

$$\begin{aligned} & t_0^2 \pi \left[x_0 \ge 3 \right] \le 3 + \frac{\pi}{N^2 - \mu} & \text{max}\theta \end{aligned} \tag{(b.)} \\ & t_{np}(0) \le p + \frac{1}{p} - \frac{[p(1-p)+1]\theta_0^p + (1-p)\theta_0^k]}{M} & \text{(b.)} \\ & \le 3 - 2p + \frac{1}{p} - \frac{[p(1-p)+1]\theta_0^p + (1-p)\theta_0^k]}{|V|} & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{(c.)} & \text{(c.)} & \text{(c.)} \\ & \text{where the last incomplex filtows } & t_0^p = (1-|V|) & \text{(c.)} \\ & \text{(c.)} & \text{(c.)} & \text{(c.)} \\ & \text{(c.)} & \text{(c.)} \\ & \text{(c.)} \\ & \text{(c.)} & \text{(c.)} \\ & \text{(c.)}$$

$$y_{i} \leq z_{ij} \leq M_{ij}x_{i}$$
 (8)
0 $\forall i, j) \in V \times T : i \neq j$
(8)
0 $\forall j \in V$ (8)
0 $\forall (i, j) \in V \times V$ (8)
0.11 $\forall i \in V$ (8)

$$M_{ij} \ge \sum_{k} P_{ik} \Delta_{ik} t_{kj} - \sum_{k} P_{ik} \Delta_{ik} t_{ij},$$

$$t_{ij} = 1 + P_{ii}t_{ij} + \sum_{k \in N^+(i)} P_{ik}t_{kj}, \quad \forall i \in V \setminus \{j\},$$
 (12)

 $|V|<\infty$, as the ensured if there is a most one closed community for f_1 (f_2) and f_3 is a most one closed by a finite f_3 (f_4). The f_3 is a most one content in the following system of linear equations (Theorem 13. [11]) and f_4 is f_4 in f_4 and f_4 is f_4 in f_4

$$= \max_{x \in \mathbb{R}} \left\{ \min_{\substack{j \in S \\ j \in T}} \left\{ t_{ij}(x) : t_{ij}(x) \text{ satisfies equations (3)} \right\} \right\}, \text{ where,}$$
(2)

$$\begin{split} t_{ij}(x) &= 1 + \left(P_{ii} + \sum_{k \in \mathbb{N}^+(i)} P_{ik} \Delta_{ik} x_i\right) t_{ij}(x) \\ &+ \sum_{k \in \mathbb{N}^+(i)} P_{ik} (1 - \Delta_{ik} x_i) t_{kj}(x) \end{split}$$

equations in this case is
$$t_{13} = 1 + \frac{1}{3}t_{13} + \frac{1}{3}t_{23}$$

$$t_{23} = 1 + \frac{1}{3}t_{23} + \frac{1}{3}t_{13} + \frac{1}{3}t_{43}$$

 $t_{12} = 1 + \frac{1}{3}t_{23} + \frac{1}{3}t_{43} + \frac{1}{3}t_{43}$

N. Dormi, J.S. Borrero and R. Bu
$$(I - Q)^{-1} = \sum_{\ell=0}^{\infty} Q^{\ell}.$$

Consequently,
$$\Gamma(x) = \sum_{i=1}^{\infty} O^{i}R(x)$$

2.2. FT immediates problem in NP about 1 in the Section, we then the problem (2) is NP-hard using a polynomial-time reduction from vertex core [4]. Consider the plan of the works in the officery of we will Pract 1 in an observe semiple goals polynomial-time reduction from vertex core [4]. Consider the plan of the works in the officery of we will Pract 1 in an observe semiple goals of the works in the officery of we will Pract 1 in an observe semiple goals of the plan of the works in the officery of we will be plan of the works in the officery of the works in th

Theorem 2. FPT INTERDICTION is NP-complete.

Proof. Cives an interdiction policy x, in polynomial stime we can the system of linear equations (1), and writy whether or an it is the system of linear equations (1), and writy whether or an it is a few of the system of linear equations (1), and writy whether or an it is a few of the system of linear equations (1), and writy whether or an it is a few of the system of linear equations (1), and write or an interded write or

$$A := \bigcup \{(i, w), (i, i)\} \cup \bigcup \{(i, j), (j, i)\}.$$

 $(1-p)^{\frac{1}{2}} \stackrel{d}{=} \frac{1}{d_{1}} \sum_{j \in \mathbb{N}} f_{2j} = 0$ In this case, if we drow $p \geq 1/2$. Here $f_{1j}(0) \geq 2$. In this case, if we drow $p \geq 1/2$. Here $f_{1j}(0) \geq 2$. In this case, if we drow $p \geq 1/2$. Here $f_{1j}(0) \geq 2$. In this case, if we drow $p \geq 1/2$. Here $f_{1j}(0) \geq 2$. In this case, if we drow $p \geq 1/2$. Here $f_{1j}(0) \geq 2$. In this case, if $f_{1j}($

$$P_{ij} = \begin{cases} 0, & \text{if } i = j \neq w, \\ 1, & \text{if } i = j = w, \\ p, & \text{if } j = w \neq i, \end{cases}$$

$$t_{lw}(x) = \frac{1}{(1 - px_l)} + \frac{(1 - p)}{d_l} \sum_{k \in N(l)} t_{kw}(x).$$
 (4)

$$t_{iw}(x) = \frac{1}{(1-p)} + \frac{(1-p)}{d_i} \sum_{v=-} t_{kw}(x)$$

$$t_{iw}(x) = 1 + \frac{(1-p)}{d_i} \sum_{k \in N(i)} t_{kw}(x)$$

$$\begin{split} &= 1 + \frac{(1-p)}{d_i} \sum_{k \in N(i)} \left[\frac{1}{(1-p)} + \frac{(1-p)}{d_k} \sum_{j \in N(k)} t_{jw}(x) \right] \\ &= 2 + \frac{(1-p)}{d_i} \sum_{k \in N(i)} \frac{1}{d_k} \sum_{j \in N(k)} t_{jw}(x). \end{split}$$

Table 1											
femits of solving formulation (II) using Gurobi. Minimum IPT before and after inter- liction, along with the corresponding percentage increase are reported under column sendings IPT before, IPT after, and X increase, respectively. Walf-clock running time s reported under column heading Time (in seconds).											
Craph	[V]	[A]	IVI before	IFT after	% increase	Time (x)					
karate	34	78	55.02	79.55	42.03	0.20					
dolphins	62	159	35.77	52.60	35.66	0.35					
lesenia	77	254	55.91	81.75	41.55	0.54					
polbooks	105	441	54.87	77.67	41.57	1.16					
adjooun	112	425	29.59	57.13	41.96	1.26					
football	115	613	100.94	124.35	21.22	2.16					
inzz	196	2742	70.85	98.22	35.62	12.55					
celeranon	297	2145	23197	331.90	43.06	31.03					
celegatom	453	2025	30.50	47.46	55.66	44.03					
email	1133	5451	101117	1505.52	45.55	1755.68					
	2105	7462	7004 67	6433.75	61.05	795.43					

Table 2
Results of solving formulation (8) using Curobi. Ministrum FFT before and after interdiction, along with the corresponding percentage increase are reported under column headings FFT before, FFT after, and % increase, respectively. Wall-tode: running time is reproduced under columns heading Time (in reconds); Columns W6E codes*; and WCLni.

Graph	V	[4]	FFT before	TVT after	% increase	Time (s)	#EC nodes	#Cub
graph_200_0.1(1)	200	2015	110.15	164.14	25.12	42.85	1	2
graph_200_01(2)	200	1953	140.53	177.29	26.07	58.51	15	2
graph_200_03(3)	200	2014	149.05	157.55	25.03	15.04	1	0
graph_200_0.1(4)	200	1955	150.37	189.64	25.12	41.54	1	1
graph_200_01(5)	200	2011	114.95	145.45	25.50	15.29	1	0
graph_200_0.1(6)	200	1971	137.71	174.25	26.55	13.19	1	0
graph_200_01(7)	200	2029	150.14	199.01	25.89	34.26	1	1
graph_200_01(8)	200	2017	135.47	171.27	25.42	129.45	655	3
graph_200_01(9)	200	2009	163.60	205.11	25.37	41.33	1	0
graph_200_0.1(10)	200	1222	149.05	199.42	27.06	15.57	1	0
rraph 200 0.15(1)	200	2951	143.99	179.77	24.85	25.01	1	0
rraph 200 0.15(2)	200	3025	16713	207.99	24.39	392.63	1131	7
graph_200_0.15(3)	200	2954	149.60	157.75	25.52	23.46	1	0
graph_200_0.15(4)	200	3035	147.04	154.58	25.53	64.55	1	1
eraph 200 0.15(5)	200	2557	114.24	167.24	24.58	65.69	1	6
graph 200 0.15(6)	200	3065	153.05	190.58	24.49	53.31	23	1
graph 200 0.15(7)	200	2951	150.05	187.47	24.91	23.55	1	0
graph_200_0.15(8)	200	3055	118.09	172.95	25.25	72.32	3	1
graph_200_0.15(9)	200	2957	143.51	179.50	24.81	49.40	1	0
graph 200 0.15(10)	200	3077	148.62	18458	24.19	112.94	239	1

valid
$$M_{ij}$$
 as:
 $M_{ij} = \sum_{i} P_{ik} \Delta_i t_{kj}(\vec{1}) - \sum_{i} P_{ik} \Delta_i t_{ij}(\vec{1})$

The angle control of the control of

by the solver. Although there are several Chile instancers that stimulate the control of the con