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Figure 1. Geo-fence concep or etlers.

The probiem e sn undetying socil ntvork vhere
nodes (i.c., customers) are activated (ic., ) by their
e n-eihibors or by cterng e (n\'emge area of 2
physical ad or a Geo-fence. Unlike standard faciliy location
models, hich only considr coverage of points, he ICOP
also takes into account the typical movement of the node,
for example, the sequence of movements between home,
office, and cafe. In this context, a node is influenced by an
ad or a Geo-fence if at least one point of the individual's
trajectory s within the radius of coverage of the ad or G
fence. The goal of the ICOP is to locate a fixed number of
ads or Geo-Fences and invest resources encouraging “word-
of-mouth” spread in order to. minimize the time until all
odes in the network are actve.

Similar 1o the models in Borrero et al. (2018) and
Borrero et al. (2021), we assume that the influence times are
stochastically _ distributed in  the s
Continuous-Time Markov Chain to track the activation sta-
tus of the nodes. However, in contrast with previous models,
the external influence of nodes in the ICOP depends on the
location of the ads or Geo-fences in the area of interest. In
the ICOP, we consider three different modes of coverage
yointwie o statc coverage, segmnt coversg,and psce
wise-linear coverage (detailed in Section 3.1); and use
Mixed-Integer Programming (MIP) approach to it
the resulting stochastic influence and location optimization

Standard MIP solvers are unable to directly and reliably
solve the MIP formulations that result from our problem,
due to an exponential number of linear constraints and due
10 non-linear constraints with “big-M” constants. To address
this issue, we propose formulation enhancements and a
heuristic that quickly finds good feasible solutions. We use
the enhancements and the heuristic to design an Iterative
Decomposition Branch-and-Cut algorithm (IDBC) that deals
with the exponentially many constraints “on the fly”, and
teratively  adds non-linear  constraints as

Furthermore, we study an alternative formulation based on
the concept of criical intersection points (Church, 1984).
‘This formulation avoids the non-linear constraints and the

3. Problem formulation

In this section, we describe the ICOP in an arbitrary
directed network, prove that it is NP-hard, and propose
MIP formulations for three different interpretations of
coverage. For consistency, we present the problem as placing
Geo-fences, which will be referred to as fences throughout.

3.1. Definition of ICOP

“The present influence model is an adaptation of the model
discussed in Borrero ef al. (2021). Consider a directed net-
work G = (N, ) with /Al arcs. The
nodes in the network could represent customers, and the
arcs could be assumed as social connections between them.
A give can be either active (1) or inactive (0)
Inffaence popagates theoughout the network i the fllow.
ing manner: an inactive node k € N can receive influence
from fences that cover it or become active due to its active
in-neighbors ¢ € N(k), where N(k) = {/ € N: (/,k) €
A} denotes the set of in-neighbors of node k. The time
taken for a fence to activate node k is exponentially distrib-
uted with the rate 6y, where 3 > 0 is a constant. The time
it takes for an active in-neighbor / to activate node k is
oxponentlly dbued wibh e du+ s, vhere

ot > 0 are constants and the network rate 1y > 0 is a
continuous decision variable. Intuitively, the value of 1, can
be interpreted as a scaled incentive such as a discount or a
gift card given to node / for influencing node k. The collec-
tion of all 1 variables is denoted by 1= (¢ : (/,K) € A).
Al activation times are assumed to be independent

We let F denote the non-empty and finite set of fences
and assume that each fence / € F is represented by a circle
of radius g > 0 in the (two-dimensional) plane. We assume
that values of g and f € F are fixed and known, and say
that a node is covered by a fence if it is “sufficiently close™
o the center of the fence. Specifically, there are three gen-
eral models of coverage that we consider:

o Static_coverage: Node k € N has a fixed location repre-
sented by pc = (p}",p}”), and is considered covered by
fence f3f it is within a distance of q from the center of
the fence, see Figure 2(a

Segment coverage: There are two points py and p, associ-
ated with cach node k & N these points may represent
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“big-Ms” of the original formulation, with the price of
increasing the number of binary variables
‘We summarize our main contributions as follows:

Our proposed optimization model for network influence
maximization is novel in the literature, as it considers
the location of the nodes and the lacement of ds ot
nces as influence triggers. To the best of our
Lnuwlcdg:. this model is the first of its kind in the lit-
erature of influence maximization, as it makes decisions
on both the locations and rates of receiving influence
from  in-neighbors simultancously, with the goal of
maximiving the spread of nfoenc
2. We prove that the resulting optimization problem is
NP-hard and present an MIP approach formulation
under cach of hre difernt covrge modes. To
improve the formulations, we derive two sets of valid
cus that explot the geomewic properts of the prob-
lem and reformulate the non-linear “big-M” constraints
as linear constraints. Furthermore, we derive a heuristic
based on the k-means algorithm (Likas ef al, 2003) to
quickly find feasible solutions.
3. We provide an exact optimization algorithm to solve
the problem that iteraively solves a large-scale MIP
using a_Decomposition Branch-and-Cut (DBC) algo-
rithm. This approach is able to provide optimal and
numerically stable solutions for instances up to hun-
dreds of nodes in a short amount of time, usually
within seconds to minutes, depending on the parameter
configarations used. As shown in our numerical experi-
ments, the IDBC solution times are orders of magnitude
faster than those of other cutting plane approaches.
Particularly, the IDBC solves most of our test instances

nificantly outperforms the discrete formulation based
on critical intersection points, especially in larger
instances.

“The rest of this article is organized as follows: Section 2
has the literature review, Sections 3 and 4 discuss the ICOP
formulations and enhancements. The IDBC is in Sections 5
and the discrete formulation in Section 6. The computa-
tional experiments are in Section 7. The proofs are provided
in Appendix I

2. Literature review
2.1. General influence maximization models

Kempe et al. (2003) introduced two models for Influence
Maximization (IM) in networks, referred to as the threshold
model and the independent cascade model. The goal of
these models is to select key nodes to influence, known as
the seeds of propagation, in order to achieve the maximum
expected number of active nodes at the end of the cascade.
The authors demonstrated that such problems are NP-hard
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the most frequently visited locations by node k. The seg-
ment L= {v:v=pitt(p,~p0 < 1< 1}, joining
i and py, is the “average path” taken by node k to
move between these two locations. node k is covered by
fence f € F if and only if at least one point of Ly is
within a distance of g from the center of [ see
Figure 2(b).

Piece-wise_coverage: Node k& N regularly visits ji >2
Tocations, where i, are the coordinates of location j, j €
[j. The locations are visited sequentially, thus, w.1o.
Tocation j+1 is visited after j, j=1,....jx~ 1. We
assume that the path between locations j and j-+1 is
approximated by the segment Ly = {v:v=pi+
t(pijir = pig)0 < £ < 1) joining py; and pijir. A fence
S €F covers node K if and only if there is at least one
segment Ly within a distance of  from the center of the
fence, see Figure 3.

or any given covrage mode, the decsion vaeible for
th cener of ence /s denod by o ), where
the x-coordinate and " is the y- coorinte Al et

4= (o:f € F), and assume that all nodes and possible
locations for fences are within a non-empty rectangular
region of the plane given by R = (1] x [b,u). where
low € B, 1= 1,2, are known and fixed.

Figure 2 for
mode.
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1. Introduction

Models of cascading behaviors have gained widespread
attention in recent years, due to the proliferation of physical
networks and online communication in social networks
(Borge-Holthoefer e al, 2013). These models explore how.
ideas, information, rumors, and other phenomena spread
through complex interconnected environments (Hetheote,
2000; Pastor-Satorras and Vespignani, 2001; Kempe et al,
2003, 2015; Kitsk et al. 2010; Nowzari et al, 201
‘Applications such as viral marketing have been particularly
well-studied in this field (Domingos and Richardson, 20015
Domingos, 2005), as companies use cascading behavior to
promote new products by targeting key customers who then
spread the information throughout the network using the
so-called “word-of-mouth” mechanism. This can create a
“anonball et hat eventallyresches the i netvork.
In some cases, it is sufficient to consider only the net-
work topaogy and the saengh of connections when dete-
mining influence strategies. However, in many situations,
determining effective strategies requires additional informa-
tion, such as the location and movement of customers. As
an example, 2 company looking to place physical ads in a
city, for example billboards or flyers, should consider the
geographical location of their potential customers to start a
propagation process. For instance, it may be more beneficial

o place the ads close to places that are frequently visited by
influential trend-setting customers, rather than in areas vis-
ited by many non-influential customers.

Another example is a company utiliing Geo-fences,
which are virtual regions in the shape of circles with a fixed
coverage radius placed over a geographical area. When indi-
viduals enter or leave the fence, they receive messages such
as ads, coupons, and recommendations on_their smart-
phones (Rodriguez Garzon and Deva, 2014; Berman, 2016;
Avief et al, 2020; Ho et al, 2020). Geo-fences can be used
in location-based virtual marketing strategies and are a cost-
effective alternative to physical ad-placement (Kiipper et al.
2011). As seen in Figure 1, a retailer can place a Geo-fence
around its physical store or that of its competition, and
customers receive discount coupons as they enter the G
fence. In this scenario, a company may be interested in find-
ing the optimal location of a fixed number of Geo-fences in
a geographical region to optimize the spread of information
about its product among potential customers. As with phys
ical ads, the placement decisions should be based on the
‘geographic location of customers and the network relation-
ships between then

This article studies the Influence-Coverage Optimization
Problem (ICOP), which combines network influence maxi-
mization with planar facility_location problems (Church,
1984; Murray and Tong, 2007; Bansal and Kianfar, 2017).
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and proposed approximation algorithms based on the sub-
‘modularity of the objective function. Evaluating the sub-
‘modular function can be challenging, leading to extensive
research on these models, as seen in studies such s Chen
et al. (2013) and Kempe ef al. (20

W and Kiigiikyavuz (2018) and Giiney (2019) proposed
two-stage stochastic programs and an integer programming
formulation, respectively, for the IM problem. Giiney et al
(2021) further reformulated the problem by utilizing the sto-
chastic maximal covering location problem and applied a
Benders decomposition algorithm to solve the problem.
Additionally, researchers investigated two-player extensions
of the IM problem and employed techniques such as heuris-
tics, stochastic. optimization, and. bilevel optimization. 1o
solve these problems, see Taninmis e al (2020) and
“Taninmis et al. (2022).

Variations of the IM models that are deterministic
referred to as farget-set selection problems, have also been
studied in the literature, see Chen (2009); Ackerman et al.
(2010). Raghavan and Zhang (2021a) presented a tight and
compact extended formulation for trees and cycle graphs,
and further extended these findings to arbitrary networks,
having previously implemented a branch-and-cut algorithm
in Raghavan and Zhang (2019). Fischetti ef al. (2018) pro-
posed two.exponentially large integer formulations for
model aimed at minimizing the incentives required o influ-
ence a fixed proportion of the nodes in a network, and
employed cut-generation approaches to solve the proposed

odels. Giinneg et al. (2019, 2020) further developed this
generalized problem and used branch-and-cut. methods to
solve it. Two-player versions of these problems have also
been studied, such as in Hemmati et al (2014). Recently,
Raghavan and Zhang (2021, 2022) considered the positive
influence dominating set problem with and without partial
payments and solved these using MIP techniques.

Borrero et al. (2018) and Borrero et al. (2021) proposed a
scalable and general Markovian framework for  influence
maximization that allows for the modification of network
parameters and provides performance upper-bounds on the
optimal solution. They also proposed an efficient cut-gener-
ation algorithm in which a minimum-cut separation routine
i solved 10 add the corresponding cuts. This cutting plane
approach is able to solve many real-life and large instances
of the order of 10" and 10° nodes and arcs.

2.2, Location-aware influence maximization

The Location-aware Influence Maximization Problem
(LIMP) is a problem where the goal is to select k initial
nodes in a network to maximize the number of influenced
nodes that are close to a location of interest. Li ¢t al. (2014)
showed that the LIMP is NP-hard and proposed greedy
approximation algorithms to solve it. Wang ef al. (2016)
extended the LIMP by introducing the Distance-aware
Influence Maximization Problem, where users have location
preferences, and the closer a user is to the query region, the
greater its importance. They developed pruning strategies to
approximate the solution. Su et al (2018)  proposed
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For any node k€ N, let s be equal to 1 if k is active
(ie., influenced) and 0 otherwise. Define s = (5 : € N) as
the activation state of the network; at time =0 the network
s in some state 8” € Sy = {0,1}" (we assume hereafter that
# =0 thus initially all nodes are inactive; the general case
cn be handied afier doing simple modifications). Let
X(t,2,1) denote the state of the network at time ¢ > 0 if the
fences are located at the coordinates specified by  and the
network rts arc given by, The st spce of X(x) ~
{(X(ban).t 20} s S, From standard
Continuous-Time Markov Chains (CTMC) (Kulkarni, mm
it can be verified that X(an) is CTMC over 8, with
absorbing state 1= (1,.., 1): in state 1 all nodes are active

For any 120, if X(tan)=s€ S, then X(xs) can
jump only to states of the form s+ ¢, where ¢ is a unit
vector with a one in the kth position and where k is inactive
in s, that is s, = 0. In this case, the time it takes for node &
o \!ezome active is exponentially distributed with rate

B2+ Vg At o), where )i the -
bt e e assuming the fences are
located in «. By standard CTMC theory (Kulkarni, 2016),
the non-diagonal elements of the generator matrix Z(z.1) of
X(n) are given by

Eovlam)

whereas (@) = = Xyeq e e Zue(@1)s € S0, for the
diagonal elements
AUE=0 the decision-maker seeks to determine where the
fences should be located and what values should the net-
work influence variables take in order to minimize the time
it takes for all nodes to get activated. In other words, the
decision-maker determines the values of % and 1 in order to
minimize the Network Activation Time (NAT). Increasing
the value of 7, by one incurs a cost of . and the deci-
sion-maker has a budget limit of 1, wLog. Given that the
random variable, various criteria can be used to
optimize it. Following Proposition 3 discussed in Section 3.2
of Borrero et al. (2021) (see Appendix VI for a summary),
we frame the minimization of the NAT in terms of maxi-
‘mizing the minimum (non-zero) absolute eigenvalue of th
generator of X(z, ) across all ts possible values. If A(x,)
denotes this eigenvalue, then we define the ICOP as the fol-
Towing optimization problem

7= max(ian): Y cuna<tacRAge R @)
i

Because the generator matrix Z(x,y) of X(z,n) can be
rearranged as an upper-triangular matrix, the minimum
(non-zero) absolute eigenvalue is cqual to the minimum
(non-zero) diagonal clement in this matrix. That is,
Han) = min{[Zulen)] 5 € S0\ (1)} The rationale

- { dune(a) + Xy eq s+ ga)s i 8 =5+ s
o otherwise

approximate and heurisic techniques to solve a general ver-
sion of the LIMP, where a K-size seed set has to be chosen
to maximize the expected influence over targeted users who
have both topic and location preferences.

Previous models take into account the location of nodes
in a network as inputs, but neglect the fact that nodes can
move and form trajectories. Furthermore, these studies do
not examine how knowing the location of nodes can
improve the deployment of ads or Geo-fences. In light of
this, Zhang et al. (2018) and Li ef al. (2019) studied the
problem of placing billboards. Given a set of trajectories, a
set of billboards, and a budget, the goal is to find a subset
of billboards that maximizes the number of covered trajecto-
ries, where each trajectory is described by a sequence of
peints, Zhang et ol 2018 developed an enumeration-bsed
hereas L e . (015) devloped hl- chmbmg heuristics
Sl the probem. However, both Stdics did ot consder
the underlying network relationships between nodes.

2.3. Maximum coverage location problems

Maximum Coverage Location Problems (MCLPs) have been
widely used in real-world applications, such as the place-
ment of emergency facilties, bus and fire stations, and clus-
tering problems in Geographical Informative Systems (G
Examples can be found in Farahani ef al. (2012), Garcia and
Marin (2015), Murray (2016) and other related references
therein. Church (1984) introduced the Planar MCLP
(PMCLP), where fucilties can be placed anywhere on the
plane rather than only at a finite set of pre-specified sites
The author defined critical intersection points and showed
that there is at least one optimal solution 1o the PMICLP in
wehich all faclities are in critical intersection points. Murray
and Tong (2007) extended the concept of critical intersec-
tion points 1o any polygon representation of demands,
Canbolat and von Massow (2009), motivated by wireless
transmitter coverage problems, examined the maximal
coverage of weighted demand points using axis-parallel ellip-
ses and provided a simulated annealing heuristc to solve
the problem. Andretta and Birgin (2013) discussed an exact
method and a heuristic for the case when ellipses can be
rotated. Recently, Tedeschi and Andretta (2021) proposed
exact algorithms for both axis-parallel and frecly rotated
ellipses using_critical points. Bansal and Kianfar (2017)
extended the PMCLP under specific assumptions, including
rectlineardistance measures, rectangular demand zones,
and partial coverage. They developed a heuristic that pro-
vides lower bounds for a customized branch-and-bound
solution approach.

‘The aforementioned models prioritize coverage optimiza-
tion, but none of them take into account the influence of
the network in coverage decisions. Our work can be seen as
an expansion of PMCLP concepts to settings where there
are networked relationships between the elements being cov-
ered, and where a complex objective, such as influence, is
optimized.

behind problem (2) is that by maximizing /(z,1) one mini-
mizes upper-bounds for both the expected NAT and the tail
probabilites of the NAT. Specifically, if T(x,) denotes the
NAT given 2 and 11, i, if T(w1) is the first passage time
of X(z,1) to state 1, and if £ > 0, the
PlT(@n) > ] < M= for > and E[T(z.n)]
<M
Aan)’
where fo, M, M' > 0 are some constants; see more details in
Appendix VIIL
Table 6 in Appendix | summarizes the nofations used
throughout the formulations. Next, we show that the ICOP
is an NP-hard optimization problem for the static coverage
mode, implying its NP-hardness for all coverage modes dis-
cussed in this article. Then, we present a basic MIP formula-
tion of the problem for each coverage mode.

®

3.2. NP-hardness of ICOP

We prove that the ICOP is NP-hard for the static coverage
mode by using the planar geometric covering problem,

VkeN )

eferred to hereafter as the Box Cover Problem (BCP), set
Fowler et al. (1981). The BCP takes as inputs a collection C
of m > 1 identical circles with integer radius 7 > 1, and a
finite set of points P in the plane with integer coordinates.
‘The problem is to determine if all points in P can be
ered using the circles in C. The BCP is an NP-complete
problem (Fowler et al. 1981),

Theorem 1. The ICOP is NP-hard for the static coverage
mode.

3.3. MIP formulations
“This section provides MIP formulations for the ICOP in all
coverage modes.

3.3.1. Static coverage
Let y be a binary it ke th vl 1 nd only
if fence f covers node k, f € Fyk € N. Then, for the static
coverage mode, problem (2) can be framed as the MIP
below:

P = max 7 ()

SLAS (=)0 Y yat D sldanactga))Vs € o
= @

(4h)



Dlogpu) =M1 =yp) < g W EBEVREN (40

> wna<t )
i
h<a) <wvfeRi=12 (4e)

9 € (011 € K € Notg > 09(4K) € A2 > 0. (40
Given that S, is defined as Sy = S\ {1}, constraints
(4b) ensure that 7 is equal to the absolute value of the
smallest eigenvalue of the generator matrix of X(z,n), which
is being maximized in problem (2). Inequality (4c) sets the
condition that fence f can cover node k if the Euclidean dis-
tance between them, represented as D(x,py), is no greater
than the coverage radius of fence f, denoted as . The
coverage region of a fence is modeled as a circle and thus,
Do) = o=l whee [ epreset the Encidean
m of vector x. Note that the constraint includes the “big-
N consant M, that s computed s M, = mas{ [ - vl
i~ Lol v, bomg. the. wwo dmensional vector (]
Inequalities (4d) and (4e) represent the constraints for the
budget allocated to increase the network influence rates and
the allowed region for placing the fences, respectively.

3.3.2. Segment coverage mode
In this mode, we replace constraint (4¢) in Formulation (4)
by the following constraint:

Dlog L) = Mi(1 =) < g Y EEVREN,  (5)
where M, is a sufficiently large value that will be calculated
in Section 4, and D(z, L) denotes the Euclidean distance
between 7/ and the segment L.

Let G be the circle of radius g with center % represent-
ing fence f, and observe that fence  covers [y if and only if
G/ NLe #0. Because L = {v € R : v = —p)0 <
£ 1) we have that G 1Ly # 0 if and nnly et s
f5€ (0,1] such that [lpx-+ t3(py — px) — 1| < q7. The MIP
formulation, which we refer to hereafter as the SST, is
derived from Formulation (4) by adding new variables g
for all f<F and k€ N, removing constraints (1), and
including the constraints

[Ipk+ talpg = pi) =yl = M1 = 3) <y ¥ € Fvk €N
()

0SB SIWER heN. (@)

The formlstion for piece-vie covrage mode (PWT) i
provided in Appendix

4. Formulation enhancements

In this section, we discuss two sets of valid inequalities, 2
reformulation for the non-linear “big-M” constraints, and
heuristic approaches. The improvements are then leveraged
in the proposed IDBC algorithm, which will be presented in
the next section. The discussion in this section is mainly

(n) ()

) (o)
Figure 5. Inersecton of segment Ay with verical sides.

4.4. Heuristic enhancements

“This section discusses a heuristic method for finding an ini-
tial feasible solution for the SST, based on the k-means clus-
tering algorithm (Likas et al, 2003). This method divides
nodes into [F| groups based on the distance between each
node and the center of the fences. The resultis a binary vec-
tor ), s as a starting point for finding a feasible
solution in the MIP formulation.

Heuristc 1 in Appendix 111 adapts the k-means algorithm
10 our setting, It starts by randomly placing each fence on
the plane, and assigns segments to the nearest fence. Then,
in each iteration, the fence locations are updated to be the
average of the assigned segments’ coordinates, and segments
are re-assigned to the closest fence. This is repeated for U
terations, where U is a parameter set by the use

he solution from Heuristc 1 is further improved as fol-
Tows. Let R) = {r'k by = 1) represent the coordinates of
the points covered by fence f in the heuristic solution. For
each fence f € F, the improvement process checks the num-
ber of nodes covered when the fence location is changed to
each of the points in K. The location that covers the most
nodes is then chosen as the new coordinate for fence f. If
multiple radii values are possible, the procedure considers
different radius assignments, as described in Heuristic 1 in
the Appendix IIL

Mot hat ot he heuric and polhing sep canbe per.
formed in polynomial time if all fence radi are the same.
the radii are different, then O(|FI!) operations would need "
be considered when assigning radii to the final coordinate
assignments. However, his is not expected to be a problem as
the number of fences [/ is usually small (e, less than 10).

5. IDBC algorithm

“This section explains a procedure to solve the formulation
SST using an algorithm IDBC. The algorithm begins with a
master relaxation of the formulation and adds two types of
constraints: the state constraints (4b) and the reformulated
“big-M" constraints (11). Section 5.1 provides an overview
of the algorithm whereas Section 5.2 provides more details
into the Decomposition Branch-and-Cat (DBC).

(a) Four eritical points.
Figure . T scenaros ofcapsue versecton

Planar Maximal Covering Problem under the Euclidean dis-
tance (PMCE), there is at least one optimal solution in
which all facilties are located at points that belong to the
Circle Intersection Point set (CIPS). This result generalizes 1o
many other planar settings, including to the ICOP, as dis-
cussed next. However, the formulation uses a quadratic
number of binary variables in terms of the number of nodes,
which hinders its practicalty. Below, we explain the main
ideas in terms of the segment coverage mode. The results
can also be generalized to static and piece-wise modes.
€ F be fixed, and recall that L, k € N, denotes the

segment of the kih node vith endpoints py and py
define €} as the border of the capsule around Ly vith a
Tadius of g5 as shown in Figure 6. For a given £,k € N, let
1, define ﬂu muxcclmn of € and €. If the intersectior
is finite (as shown in Figure 6(a)), I, represents the actual
intersection points. In case where the interscction has infin-
itely many points (as depicted in Figure 6(b)), L, represents
the endpoints of the intersection.

Let 7 be the intersection point set associated with fence
J; which is defined by

7= 0 epdU YT (1)

In other words, 7/ contains all the endpoints of the L
segments, plus the pairwise intersection points between all
the capsules C/ and L}, The Intersection Point Set (IPS) is
defined as 7 = Uyer I/, Observe that if all the fences have
the same radius, then T — 7/, Moreover, I contains of
O(|F||NI?) elements. Proposition 4 states that 7 contains at
least an optimal solution for the ICOP; see Appendix Il for
the proof.

Proposition 4. There is at least one optimal solution fo the
1COP in that all fence locations belong to T.
et F C F be the largest subset of F in which no two fen-
ces hve he same radius. For each k& N and 1 € . et
Ay CT' be the set of intersection points in 7' obtained
from caps\ﬂez i rdis g that can cover L ol
Ay = {pu Also, we define fy as the number
o enc i i 4 required to be located. We introduce
the binary variable 2 which is equal to 1 if a fence is
Tocated at intersection point i € 7/, The
dcrte Grmulaion for 1COP, heraer refeed 0 4
D-ICOP, i

a7a)
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focused on the SST formulation, i.., the segment coverage
mode, but the results can be casily generalized to the other

the Static and Piece-wise modes (sce
Appendix IV)

4.1. Conflict inequalities

These conflct-type inequalities are built upon the idea that
if two segments are distant enough, there can be no fence
that covers both of them. For given nodes k./ € N, let
A= {f € F5 D(L L) > 24y} denote the set of fences that
cannot cover both Ly and Ly, where D(Li,L;) measures the
Euclidean distance between segments Ly and L. Note that
D(Lis L) = ming, (Ipx + 5y~ pi) — pr — t(p, — )|
ttr € 0,1} It s clear that the following constraints,
which we refer to hereafter as the confict inequalites, are
valid for the SST:

S VK ENS € Ay @

We need to compute Di(Li, L) to create set Ay To this
end, we have to solve a minimization problem over f, and
4, which can be solved by finding the stationary poins.
Specificall, instead of the norm, we can minimize the
squared-norm function (1) = [lpk + (P — p1) ~pr ~
t(p, — pr)|I*, which is “easy” to optimize as implied next.
Using Remark 1, one can include all O(n|F|) conflct con-
strants into the SST in O{1|F|) tim

Remark 1. S(tc,1/) is a convex function of (t1,) €
Thus, by taking the partial derivatives of S(ti,f/) with
respect 10t and 1, and making them equal to zero, we
have a single sationary point of S(t. ) satisfying

7 cb+ca
i ;:,7 and =g ®
Where the coefficients a,b,b,c are given by
",,m,m,m e L At ]
@ =)+ 6 =A@ -] P

m_I'r/u]+[Pm_[”((rl[ym_l)\/:w)] b= )

s and ¢ =205 =) ~pl) +

)0~ ). The convexity of S(t,t,) now implies that

the values of (1 f,) atiaining the minimum of S{t[,) are
given by (8). as long as they both belong to [0,1]. Else, we
have to consdr he vilue of (1) et are it
zero or one. Specifically, suppose for any k.7 € N, the pair

(6,17) is given by (). Then, D(L,L, c(:,,;/) where
(bx0t) = (.87) i 0 < 65,67 < 1. Else, (i) can be com-
puted using Table

Table 1. Values of (t ) for Remrk 1

Condiion Vol o (1,1,) Condiion Voo o (i)
G- 0o gacpiy /a0
gogs1 o x,<n<'w:\uv\ o
go1t<o 09 ~tacioi>1  (c-bifat)
HINEST G0 faueS e (erom
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5.1. Overview of the IDBC algorithm
The IDBC begins by constructing a master relaxation of the
SST that includes the conflict and rectangular inequalities,
This relaxation only includes a portion of the stafe con-
straints (ic., those specified by (4b) and does not include
any “big-M" constraints (i, those specified by (6)). The
algorithm then adds state constraints on the fly by solving a

additional state constraints are required, the algorithm
checks if the integer optimal solution of the master satisfes
all “big-M" constraints of the form (6). If it does, an optimal
Solution for the SST has been found. If not, new variables
and constraints of the form given by (11) are added to the
master, and the resulting MIP is resolved “from scratch”
using the DBC algorithm in the next teration.

In order to describe the IDBC in more defail et a subset
of nodes VC N and a subset of states T C Sy be given.
Denote by &(s,y,) the right-hand side function in con-
straint (4b) and consider the MIP

A(T,V) = max a2)

) vseT a2

<¢  VeRvwev 120

v <o+ tap ") = 2" + Ml = 30)

(120)
Ve Fvke Vii=1,2
N ) _ o9
w2l e =) = M)
YfeRvke Vii=1,2
Y cann<l 120
)
Constraints (7) and (9) (129)

ye (o) e RNae R te0.1]"ve R i e R,
(12h)
Observe that A(T, V) > 7* because (12) is a relaxation of
the SST and note that the conflict and rectangular con-
straints are added for all nodes in N and not just those
The detailed IDBC procedure is shown in Algorithm 1.
Clearly 7* and £ are the optimal value and an optimal solu-
tion of the SST, respectively, because {" is feasible in the
SST and is optimal in a relaxation of the ST that has the
same objective function. Algorithm 1 terminates in at most
1 iterations. Additionally, each iteration is guaranteed o ter-
minate (sce Section 5.2), ensuring that the entire algorithm
terminates. In practice, however, the algorithm terminates in
f

far fewer iterations than the theoretical worst-case.
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(b) Two critical points.

B ESSENICS BHIE
=1 =i

. (17b)
+ 3 sldanate) Ve
e
Sk veF 7¢)
=4
> cana =1 (7d)

e {0 ieThf € Fng >
D-ICOP offers a key advantage over the original formula
tion (4) by avoiding the inclusion of non-linear constraints
and the need for "big-M" constants. However, it brings in
certain drawbacks: First, it requires a precomputation of all
the sets Ays second, it could end up having Of[F||N[*) bin-
ary variables (because there is a binary variable in (17) for
each intersection point in 7).
rder to decrease the required number of binary varia-
bles we can apply a preprocessing step. Let us fix f € 7,
and define @, as the set of segments covered by the intersec-
tion point i, i € /. If it is found that @, C @ for a pair
€7, then we can remove i from Z'. Whereas the com-
plexity of such a naive approach is O((Z/[?) for e
the reduction in the number of binary variabl
ifcant enough o improve the computational sfcency for
solving the D-ICOP.

o¥(4K) €AZZ 0. (17¢)

7. Computational experiments

In this section, numerical experiments are conducted to ana-
lyze the sensitivity of the proposed model to different par-
ameter configurations, determine the insights on  the
influence process that the model can provide, and compare
the performance of Algorithm 1 to solve the problem versus
simpler cutting plane algorithms and the D-ICOP formula-
tion. To see the effects of enhancements in the IDBC algo-
rithm, and comparisons with the maximum coverage
problem, refer to Appendix IX. The focus is on the segment
covering problem, ., the SST formulation, with the static
coverage and piece-wise coverage models being discussed in
Appendix VI
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.
j N

Figure 4. Capsule and rectangle round L, 4" and 8" are the Itesection of
theextension of L with the envelping rectangle

4.2. Rectangular inequalities

We know that fence f € F covers segment Ly if and only if
% belongs 1o the region {v€ B : D(v L) < g7}, Such a
region resembles a capsule in the plane, sce Figure 4.
Capsules cannot be described by linear terms, making it dif-
ficlt for sandard MIP sofvers o handie A 2 soltion, 2
rectangular region that envelops the capsule, as shown
Fiure 4, can be used a5 an spproxmaton. The doraton
of thse rgions i provided i the net el s prof s n
App

. Let f € EAEN, and o € B be given. If
Do <. q, hens sy saisfes that

A)

a0 B 0=C)
D

where  points A‘AAL“.A"’}, o= (8.8,

Ce= (", ¢"), and Dy = (D", DY), are given by

A= i

= e ¢ p:
Bo=pt+
=i 04 o) = ).

0 AP 4 A, gAY A0, DY =

2= AD A, and D = AL = 1 4 A
Proposition 1 implies that the following constraints are
vald for the §
oy =49 (B
1B = Al

K=y 20 €FKEN (9a)

(=4 (B4 _
S k() <1V RN
e
(9b)

(-G (D- )
11Dy = Gl

“h-mz0 FEREEN ()

GGG <t vrervken,  0d)

D

where £, 0, and o, are “bigM" constants for
each ke N.

Although the constraints (9) include “big-M”" constants,
they can be computed casily and have a similar magnitude
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& | St ¢ A8 i e D st wih st T o
e b byt DRC bt € b e
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[T

0 rotuen ¢l

5.2. A DBC algorithm to solve A(Sq, V')

In step 5 of Algorithm 1, the MIP A(So, V), > 1, is solved
using 2 DBC algorithm. To this end, A(T', V) is used as a
master problem and cuts are added on the fly. To add cuts,
a “separation problem” is defined in a similar way to how
Algorithm 1 of Borrero et al. (2021) defines cuts in their
cutting-generation framework. In Borrero et al. (2021), cuts
are iteratively added to a linear program whereas here we
ned to implemnt them s “lry cul” deployed i 3 DIEC

algorithm. Next, we discuss how the cutting plane method
of Borrero e al. (2021) adapts to the proposed DBC
algorithm.

Consider a feasible candidate solution { = (2,77 %.t,¥)
of A(T,V) and define the auxiliary network G(C;
(N',A), where
ZNU{po} and A = AU{(po0) : £ ENY).  (13)
In (13), po is defined as an auxiliary “root” node that can
be thought of as representing all the fences. The weights of
the arcs in G(¢) are defined by
_ (5 Sem 1= po and k# gy
il = {m,k Yo Wimandkzp, 09

for any (j.K) € A'. Given any H % € H we refer
to (HN'\H) 3 & rotedout s dene weight
by WD)~ 7 Detuaer

Define EENITE T U then the sght
hand sl i E(s.yn) becomes equal to w(H,,£), for any
given s & So. On the other hand, it is readily seen that {H,
seS) 2 Applying these definitions,
e can rewrte A(5, V) 3 the foowing mav-min-<ut prob.
Tem over G(¢)

ABo, V) = max{

in{w(H,) - H C N'pg € H) : € B),
s)

where B s the feasible set for values of €, ie. it contains all
constraints (12¢) to (12h). Therefore, we have the following
result that relates the feasibilty of £ in A(S, V) with the
value of the (ooted-out) min-cut problem in G({).
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Al instances are solved using CPLEX 129.0 and the
min-cut _problems are solved by implementing _the
Hao-Orlin algorithm in the LEMON graph library (Dezsts
et ab. 201, The sgoritm s coded in Ct and the
experiments are carried out on a 64-bit Windows 10 Pro
laptop with 8GB of AN and cighth-generation 17
18GHz processor.

7.1. Description of the instances

We consider three set of experiments with different param-
eter configurations to analyze different types of underlying
social interactions:

o Extenal factor set: We have du=0:V(/.k)€ A

Il he decsion-maker ot change the et

However, the underlying. social

sl play a role in the objective function of
the ICOP since g > 0:¥(/,k) € A.

Table 2. Desctin of instances n terms of number of nodes, number of
ars, and denty.

nstance name Hodes () o ) ety
043 zn W 02
3043 20 w 01
043 @ 10 010
5043 50 0 00
10043 10 w0 008
1043 1w b 003
1043 0 S60 003
ante n 156 014
dolphins @ 318 008
polbooks 105 52 00
football s 1225 005

0 the remaining non-zeros in the corresponding rectangular
inequalites. Consequently, the *big-M"s are not expected to

2d to loose relaxation bounds or poor performance, as is
common case in formulations with “big-Ms". Indeed, con-
sider constraint (9a) and note that 1%, can be computed as
1y = min{a” (Be= AW/ |1Bx = Al 7 € (), ). (k).
(1))}, which bois down to comparing f A
similar approach applies to compute ', 1y, and i,

4.3. Reformulation of the non-linear big-M constraints
‘The MIP formulation for the SST contains the non]
“big-M constraint (6a). Dealing with this constraint dlxeﬂly
leds o sevre numerical s, purticlry becay
necessary to_ consider its squas 0 be directly ™
it a quadaic aptimizaton soher b e integer opti-
mization functionality such as CPLEX (IBM ILOG, 2021) or
Gurobi. (Gurobi Optimization, LLC, 2021). This squared
for

lpw+ ta(pe
€N,

P =yl =B -ye) <@ ¥ € RV

a0
where M, is an upper bound on the squared distance [ +
t3(py — pr) = ||, Next, we propose an alternative quad-
ratic reformulation of this constraint that allows the *big-M”
o be an upper-bound on the actual distance rather than the
squared distance, and that avoids having th
quadratic constraint. We note that (10) can be reformulated
in other ways. In Appendix VI e provide other reformula-
tions (one of them following Atamirk and Narayanan
(2010)) and show that all the considered reformulations
have similr performance within our algorithm.

Proposition 2. Let SST be obtained from the SST by replac-
ing constraint (6a) with:

(gl + )l <g WeF VkeN (112)

vie <+ 0 = p) — 2+ M1 =)
Y e FvkeN:i=1,2

i)

a2 o+ B ") - 3" - M1 - )

Y € FYKEN;i=12,

where v, f € Fk€ N, and i = 1, 2 are continuous varia-
bles. If the solution (7.,/,¢'54.V) s considered optimal in
the SST, for vy, f € F.k € N, and i = 1, 2, then there exists
an equivalent optimal solution (5,y,1,) i the S
Marcover, the aptimal values of both the SST and the SST"
are equa

Observe that the “big-M” values M, in (11) can be tight-
ened further than 1 — [, In this regard, consider the seg-
ment Ly 3 shown n Fgure 5 then it clsr ht for
N oand i we can set My

feFke
“> =) G (17""n

(11¢)

Proposition 3. Let T C 5y and V C N be given, and assume
that ¢ = (7., 21,v) is a feasible solution of A(T,V).

¢ s feasible in AGoV) if and only
min{w(H,8) - H C N,y € H}.

Using Proposition 3 we solve A(So, V)i 1, with
DBC as follows. Initally, when U' = 0 the lincar relaation
of A(T", V") is solved at the root node of the Branch-and-
Bound (BnB) tree, and branching proceeds on the binary
yarales ot usal. I in 8 node ofthe Bnf tee an integer
feasible solution € = (2,1.7.4,1,) of A(T,V") is found
(e a feasible solution- that ke S e integrality
requiements on ), then the rootd-out min-cat probem
= min{w(H,{): H C Nypy € H) is. solved
then, by Proposition 3, { is a feasible solution of A\sﬁ, Vi)
and the current node of the BB tree is praned by feasibil-
Else, there exists a state 5 €80\ S’ such that />
£(5,3.17). Indeed, let (1,N'\ H) be the cut attaining  and
define 5 = (5 : k€ N) by 5 = 1 if k & H, and zero other-

. Then, it is readily verified that W = £(5,7.17). which

g
z
£
E

ecau

the feasibiliy of ).

he constraint 7 < ¢(3,y,1) to the formulation A(T", V')

t the current node, the node is resolved, and we
set U= U’

We note that the proposed DBC's integer separation pro-
cess can be completed in polynomial time, specifically in
O(rmlog (1/m)). through the use of the Hao-Orlin algo-
rithm (Hao and Orlin, 1992). Furthermore, A(Sy, ) is poly-
nomially solvable. This is because if we fix yz = 1 for all
SEF and KEN, it reduces A(Su.0) 10 a NAT problem,
which is polynomially solvable, as shown in Borrero et al.
(2021). The complexity of solving A(S, T') increases as T'
increases. Thus, the initial iterations of the [DBC are usually
fast, whereas later iterations are more time.consuming.
Lastly, the DBC to solve A(Sq, V) finds the optimal solution
after adding at most S’ \ T| cuts, which ensures the DBC
terminates.

Remark 2. An important consideration in the algorithmic
design to solve the SST is about whether 1o solve a single
MIP problem with a single run of a DBC algorithm (a
“unified” DBC approach), or to. iteratively solve several
MIPs in the way it is done in Algorithm 1. In contrast with
the iterative approach, in the unified DBC we would add the
constraints (11) for all nodes in k € N' on the fly afier step
. then re-solve the node, and then continue the Bnb pro-
cess. Preliminary experiments with the instances of Section
7 indicated that the IDBC approach generally outperforms
the “unified” DBC approach. This is believed 1

the use of the (11)-type constraints in all nodes of the BnB
tree in the IDBC, which results in a tighter master relaxation
compared with the unified DBC.

6. Discrete formulation of the ICOP

Next, we present a discrete formulation for the ICOP based
on intersection points. Church (1984) proved that for the

* General set: We have g > 0:V((,K) € 4, meaning
that the decision-maker is able to modify the network
influence rates by investing the budget.

o Average set: Al duga > 0:V(4.K) € 47 and das are
equal to the average of the corresponding values in the
general set

We consider two classes of network topologies across 10
instances as shown in Table 2. Six of them are directed ver-
sions of networks following the Watts-Strogatz (WS) prefer
ential attachment model (Watts and Strogatz, 1998), and the
remaining four are real instances from the SNAP repository
(Leskovec and Krevl, 2014). The rest of the parameters
defining the instances and the algorithm are described in
Appendix V.

7.2. Results and discussion

For each combination of parameter sets and network topolo-
gies, we randomly generated three instances. We report the
average results of these three replications in Tables 3 to 5.
These tables present the results of experiments with two fen-
ces and coverage radi of one and two. In all tables, the
solution times are reported in seconds. The “OBJ” column
represents the optimal solution, whereas the “HeurOBJ” col-
umn represents the value of the feasible solution found by
Heuristic 1. The “UC” column stands for the number of
lazy cuts, and “TUC” represents the total number of lazy
cuts, including those added by the solver when proving the
feasibility of the heuristic solution. The *Coy” column shows
the number of covered nodes, “#M” stands for the total
number of violated “big-M" constraints, and “#Re_MIPs"

[ DicoP
nsnce Tme 0y ewom  oc T v M wemps #s pepoformy
430 08 2100 53 o o 0 0 T 050 00 008
30430 014 am 1085 0 o 5 i 1 146 085 006
0430 02 917 s67 0 o ” 7 1 32 170 009
043, 024 2 F 0 o 1 i 1 s H 009
w30 o0 26 133 0 0 » 2 1 n® e s
20430 166 5 2 0 0 i H 1 s aea
1wz 09 6 T4 0 o 7 2 1 s s um

a o1 649 2 0 o 3 i 1 158 100 ]
dolprins 032 216 4 o o 2 2 1 P 1561 016
pobosks 131 206 07 0 o i 2 1 223 jers 656
football s nm 236 0 o s i ' W wms s
Table & Resuls of the geneal st fortwo fences with radus 1 and 2.

[ Dicor

nsance Time Hewoss  uC mC v s es Preiopomu
a30 07 7802 0 [T T 050 009 005
30430 026 14700 0 0 »® e 1 146 085 007
0430 o081 7687 0 o 5 1 32 1 o17
0430 3 7559 1 2w 2 1 a2 58
wazo sl 10 1 2 7 5 1 23 sie 205
430 2 2 3 7 wm h 1 s o 71655
M0 mn 1901 i R 7 1 @ sws  ves

ate 085 7035 i PR 7 1 198 1
dolphins 9 a7 2 2 s 2 1 643 1561 o0
pobooks 12251 3367 1 2w H 1 wzs e 1529
footbal 18198 35800 0 ' % 7 ' e s 20004
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Table 5. Resufs of th average set fo two fences with acus 1 and 2
08¢

DicoP
nstnce Time OB Hewow U T o shems e predio___Fomu
430 o maz  mom o T 7 5 T 050 009 005
50430 o s 10 0 1 » s 1 146 085 00
w430 o7 s 5682 0 ER B 1 32 1 025
50430 o en s51% 0 FR b 1 i 53 051
Waz0 s 0 2 1 wooom s 1 n® e i
mwaz0 sz 1885 1618 4 vooow 2 1 FE. 72776
0430 27246 1633 1428 7 n w6 1 G smes  1sa
aate om %5 ey 1 2 » 7 1 198 100
dolphins se @ 3672 i 5 w6 1 643 1561 57
Ioool 22 w5 28 0 s ® i 1 s e
footbal e mm  use ' T s 6 ' e st 0592

represents the number of resolved MIPs after adding the
violated “big-M constraints,ic., the number of iterations in
Algorithm 1. For the D-ICOP, the time required to calculate
the IPS for each table, the preprocessing time to reduce the
size of the IPS, and the time needed 10 solve the formulation
using a DBC algorithm are reported. These times are repre-
sented as “IPS”, “PrePro’, and “Formu”, respectively. Note
that for tables with the same coverage radius, the “IPS” and
“PrePro” values remain constant, as the IPS is not changed
while the parameter configuration of the network influence
s altered.

“The results show that the External Factor Set is signifi-
cantly easier to solve than the other sets. Particularly, no
additional state constraints are added for any of these cases,
which indicate that the initial set of states T, s sufficient to
obtain the minimum absolute eigenvalue of the generator.
Moreover, in most case, it just takes a fraction of a sccond

for
sets, although far fewer than the worst-case scenario of 2"
The Average case is also slightly more :hzl\:nsm‘; o solve,
which suggests that having of parameters
Seossthe metwork lads to faster souion s
Note that across all parameter sets the number of
repeated MIPs after adding violated “big-M” constraints is
mostly one and for a few instances it is zero, which states
that just a small portion of the reported time is due to
resolving the master problem from scratch at each iteration.
¢ number of violated “big-M" constraints is signifi-
cantly smaller than #F|, which evidences the cfietiveness
of rectangular inequalities of Scction 4.2. Furthermore, as
expected the General and the Average sets of experiments
have significantly better objective values in comparison with
the External set
“The results of the Heuristic suggest that its effectiveness
varies depending on the setting in which network influence
can be modified. The value of “OBJ” is found to be 61%
greater than “HeurOBJ” on average for the External set,
whers it s 1% and 30% for the Generl and Averse st
espectively. These results highlight that the Heuristic is
more elecive i stings where network inluence can be
modified. Additionally, the results show that the External set
covers fewer nodes on average compared with the General
and Average sets. This scemingly counterintuitive behavior
can be explained by the models strategy fo target a few
important nodes in the network rather than several less-
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rates. Therefore, covering more “less-important” nodes and
increasing the influence rates of important nodes might be a
more optimal strategy in those settings.

Vhen comparing the performance of the IDBC and D-
ICOP using Tables 3 10 5, it can be seen that considering
only the “Formu” time makes the D-ICOP appear 10 per-
form better in instances with fewer than 100 nodes
However, when the “IPS” and “PrePro” are also taken into
account, the opposite is true and the IDBC outperforms the
D1COB. Addonally even when excuding the “TBS" and
“PrePro” the IDBC still performs better than the D-ICOP in
larger instances.

‘We close this section by noting that in Appendix VI, we
show results for other combinations of radi, three fences,
and the multiple segment PWT formulation, as well as th
static coverage mode for two fences with different radii
under the General set. These results generally show
same trends as previously discussed, with the only notable
difference being that problems become more difficult to

as there are two or a greater number of fences with
equal radit (likely due to symmetry in the MIP formula-
ons), Addiionaly, ¢ s o mentioning that wnder both
the General and Average sets, when are two fences
with equal radii, the D-ICOP nmp:rlmmi the IDBC in
terms of the “Formu’” time.

8. Condlusions

We introduced the ICOP, an optimization problem for
modeling and_ analyzing network M problems when the
external influence depends on the physical location of both
the nodes and ads or Geo-fences. The goal of the decision-
maker is to determine the optimal location of a fixed
number of ads or Geo-fences, while also adjusting network
influence rates within a budget constraint, in order to min-
imize the time required for the entire network to be influ-
enced. We established that the ICOP is NP-hard and
developed MIP formulations for three different coverage
scenarios. We also devised an IDBC algorithm which utilzes
nbancementsin he MIP lormultion sch s s ofvild
cuts, reformulated non-linear inequalities, and a
heurstic 10 geneate 3 highiqualty fessble soluon. The
concept of critical intersection points from facilty location
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problems was used to derive a discrete formulation as an
alternative approach to evaluate the IDBC performance.

The performance of the IDBC was evaluated through
experiments on several instances of social networks with more
than a hundred nodes and thousands of arcs, using real loca-
tion coordinates that were randomly generated in the down-
town area of Dallas, Texas. The resuls of these experiments
showed that the IDBC is able to produce optimal and stable
solutions for instances within seconds or minutes for the
‘majority of cases. Additionally, we demonstrated the effective-
ness of the formulation enhancements by observing that the
‘number of cuts s significantly smaller than 2", the number of
violated “big-M" constraints i also significantly smaller than
nlF| and the number of repeated MIPs is mostly one and

sometmes ser. We bo preened bovw sgnifcanty sch
nbancement n the IDBC mproves the st
ness. Ultimately, lhmu h supplementary experiments, we

ave establihed hat the 1COP outpetomms b models hat
only consider coverage, s it takes into account the influence
of the underlying social network.
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