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ABSTRACT 
We introduce the Influence Coverage Optimization Problem (ICOP), which is an influence maxi-
mization problem where the activation of nodes also depends on their location on the plane. 
Specifically, the ICOP assumes that there is a network where nodes become active (i.e., influenced) 
either by the influence they receive from interactions with active in-neighbors or by entering the 
coverage area of a physical ad or a Geo-fence. The objective is to locate a fixed number of ads or 
Geo-fences and modify the network influence rates to minimize the network activation time. 
Assuming a Markovian influence model, we prove that the ICOP is NP-hard, and then we present 
mixed-integer programming formulations for three different types of coverage modes. A reformu-
lation of the non-linear “big-M” constraints, two types of valid cuts, and a fast heuristic based on 
the k-means algorithm are used as enhancements that facilitate solving the ICOP via an Iterative 
Decomposition Branch-and-Cut (IDBC) algorithm. In addition, we present an alternative discrete 
formulation of the ICOP using critical intersection points. Several experiments under various par-
ameter configurations across instances with more than a hundred nodes and thousand arcs are 
conducted, showing the IDBC’s capability to provide optimal solutions within seconds or minutes 
for most instances. Moreover, the experiments reveal that the ICOP can significantly outperform a 
Geo-fence coverage model that does not consider network interactions to make location 
decisions.
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1. Introduction

Models of cascading behaviors have gained widespread 
attention in recent years, due to the proliferation of physical 
networks and online communication in social networks 
(Borge-Holthoefer et al., 2013). These models explore how 
ideas, information, rumors, and other phenomena spread 
through complex interconnected environments (Hethcote, 
2000; Pastor-Satorras and Vespignani, 2001; Kempe et al., 
2003, 2015; Kitsk et al., 2010; Nowzari et al., 2016). 
Applications such as viral marketing have been particularly 
well-studied in this field (Domingos and Richardson, 2001; 
Domingos, 2005), as companies use cascading behavior to 
promote new products by targeting key customers who then 
spread the information throughout the network using the 
so-called “word-of-mouth” mechanism. This can create a 
“snowball” effect that eventually reaches the entire network.

In some cases, it is sufficient to consider only the net-
work topology and the strength of connections when deter-
mining influence strategies. However, in many situations, 
determining effective strategies requires additional informa-
tion, such as the location and movement of customers. As 
an example, a company looking to place physical ads in a 
city, for example billboards or flyers, should consider the 
geographical location of their potential customers to start a 
propagation process. For instance, it may be more beneficial 

to place the ads close to places that are frequently visited by 
influential trend-setting customers, rather than in areas vis-
ited by many non-influential customers.

Another example is a company utilizing Geo-fences, 
which are virtual regions in the shape of circles with a fixed 
coverage radius placed over a geographical area. When indi-
viduals enter or leave the fence, they receive messages such 
as ads, coupons, and recommendations on their smart-
phones (Rodriguez Garzon and Deva, 2014; Berman, 2016; 
Arief et al., 2020; Ho et al., 2020). Geo-fences can be used 
in location-based virtual marketing strategies and are a cost- 
effective alternative to physical ad-placement (K€upper et al., 
2011). As seen in Figure 1, a retailer can place a Geo-fence 
around its physical store or that of its competition, and 
customers receive discount coupons as they enter the Geo- 
fence. In this scenario, a company may be interested in find-
ing the optimal location of a fixed number of Geo-fences in 
a geographical region to optimize the spread of information 
about its product among potential customers. As with phys-
ical ads, the placement decisions should be based on the 
geographic location of customers and the network relation-
ships between them.

This article studies the Influence-Coverage Optimization 
Problem (ICOP), which combines network influence maxi-
mization with planar facility location problems (Church, 
1984; Murray and Tong, 2007; Bansal and Kianfar, 2017). 
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The problem involves an underlying social network where 
nodes (i.e., customers) are activated (i.e., influenced) by their 
active in-neighbors or by entering the coverage area of a 
physical ad or a Geo-fence. Unlike standard facility location 
models, which only consider coverage of points, the ICOP 
also takes into account the typical movement of the node, 
for example, the sequence of movements between home, 
office, and cafe. In this context, a node is influenced by an 
ad or a Geo-fence if at least one point of the individual’s 
trajectory is within the radius of coverage of the ad or Geo- 
fence. The goal of the ICOP is to locate a fixed number of 
ads or Geo-Fences and invest resources encouraging “word- 
of-mouth” spread in order to minimize the time until all 
nodes in the network are active.

Similar to the models in Borrero et al. (2018) and 
Borrero et al. (2021), we assume that the influence times are 
stochastically distributed in the ICOP and use a 
Continuous-Time Markov Chain to track the activation sta-
tus of the nodes. However, in contrast with previous models, 
the external influence of nodes in the ICOP depends on the 
location of the ads or Geo-fences in the area of interest. In 
the ICOP, we consider three different modes of coverage: 
point-wise or static coverage, segment coverage, and piece-
wise-linear coverage (detailed in Section 3.1); and use 
Mixed-Integer Programming (MIP) approach to formulate 
the resulting stochastic influence and location optimization 
problem.

Standard MIP solvers are unable to directly and reliably 
solve the MIP formulations that result from our problem, 
due to an exponential number of linear constraints and due 
to non-linear constraints with “big-M” constants. To address 
this issue, we propose formulation enhancements and a 
heuristic that quickly finds good feasible solutions. We use 
the enhancements and the heuristic to design an Iterative 
Decomposition Branch-and-Cut algorithm (IDBC) that deals 
with the exponentially many constraints “on the fly”, and 
iteratively adds non-linear constraints as needed. 
Furthermore, we study an alternative formulation based on 
the concept of critical intersection points (Church, 1984). 
This formulation avoids the non-linear constraints and the 

“big-Ms” of the original formulation, with the price of 
increasing the number of binary variables.

We summarize our main contributions as follows:

1. Our proposed optimization model for network influence 
maximization is novel in the literature, as it considers 
the location of the nodes and the placement of ads or 
Geo-fences as influence triggers. To the best of our 
knowledge, this model is the first of its kind in the lit-
erature of influence maximization, as it makes decisions 
on both the locations and rates of receiving influence 
from in-neighbors simultaneously, with the goal of 
maximizing the spread of influence.

2. We prove that the resulting optimization problem is 
NP-hard and present an MIP approach formulation 
under each of three different coverage modes. To 
improve the formulations, we derive two sets of valid 
cuts that exploit the geometric properties of the prob-
lem and reformulate the non-linear “big-M” constraints 
as linear constraints. Furthermore, we derive a heuristic 
based on the k-means algorithm (Likas et al., 2003) to 
quickly find feasible solutions.

3. We provide an exact optimization algorithm to solve 
the problem that iteratively solves a large-scale MIP 
using a Decomposition Branch-and-Cut (DBC) algo-
rithm. This approach is able to provide optimal and 
numerically stable solutions for instances up to hun-
dreds of nodes in a short amount of time, usually 
within seconds to minutes, depending on the parameter 
configurations used. As shown in our numerical experi-
ments, the IDBC solution times are orders of magnitude 
faster than those of other cutting plane approaches. 
Particularly, the IDBC solves most of our test instances 
to optimality, whereas a basic cutting plane algorithm 
with no enhancements is unable to find feasible solu-
tions within the time limit. In addition, the IDBC sig-
nificantly outperforms the discrete formulation based 
on critical intersection points, especially in larger 
instances.

The rest of this article is organized as follows: Section 2
has the literature review, Sections 3 and 4 discuss the ICOP 
formulations and enhancements. The IDBC is in Sections 5
and the discrete formulation in Section 6. The computa-
tional experiments are in Section 7. The proofs are provided 
in Appendix II.

2. Literature review

2.1. General influence maximization models

Kempe et al. (2003) introduced two models for Influence 
Maximization (IM) in networks, referred to as the threshold 
model and the independent cascade model. The goal of 
these models is to select key nodes to influence, known as 
the seeds of propagation, in order to achieve the maximum 
expected number of active nodes at the end of the cascade. 
The authors demonstrated that such problems are NP-hard 

Figure 1. Geo-fence concept for retailers.
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and proposed approximation algorithms based on the sub-
modularity of the objective function. Evaluating the sub-
modular function can be challenging, leading to extensive 
research on these models, as seen in studies such as Chen 
et al. (2013) and Kempe et al. (2015).

Wu and K€uç€ukyavuz (2018) and G€uney (2019) proposed 
two-stage stochastic programs and an integer programming 
formulation, respectively, for the IM problem. G€uney et al. 
(2021) further reformulated the problem by utilizing the sto-
chastic maximal covering location problem and applied a 
Benders decomposition algorithm to solve the problem. 
Additionally, researchers investigated two-player extensions 
of the IM problem and employed techniques such as heuris-
tics, stochastic optimization, and bilevel optimization to 
solve these problems, see Taninmiş et al. (2020) and 
Taninmiş et al. (2022).

Variations of the IM models that are deterministic, 
referred to as target-set selection problems, have also been 
studied in the literature, see Chen (2009); Ackerman et al. 
(2010). Raghavan and Zhang (2021a) presented a tight and 
compact extended formulation for trees and cycle graphs, 
and further extended these findings to arbitrary networks, 
having previously implemented a branch-and-cut algorithm 
in Raghavan and Zhang (2019). Fischetti et al. (2018) pro-
posed two exponentially large integer formulations for a 
model aimed at minimizing the incentives required to influ-
ence a fixed proportion of the nodes in a network, and 
employed cut-generation approaches to solve the proposed 
models. G€unneç et al. (2019, 2020) further developed this 
generalized problem and used branch-and-cut methods to 
solve it. Two-player versions of these problems have also 
been studied, such as in Hemmati et al. (2014). Recently, 
Raghavan and Zhang (2021b, 2022) considered the positive 
influence dominating set problem with and without partial 
payments and solved these using MIP techniques.

Borrero et al. (2018) and Borrero et al. (2021) proposed a 
scalable and general Markovian framework for influence 
maximization that allows for the modification of network 
parameters and provides performance upper-bounds on the 
optimal solution. They also proposed an efficient cut-gener-
ation algorithm in which a minimum-cut separation routine 
is solved to add the corresponding cuts. This cutting plane 
approach is able to solve many real-life and large instances 
of the order of 104 and 105 nodes and arcs.

2.2. Location-aware influence maximization

The Location-aware Influence Maximization Problem 
(LIMP) is a problem where the goal is to select k initial 
nodes in a network to maximize the number of influenced 
nodes that are close to a location of interest. Li et al. (2014) 
showed that the LIMP is NP-hard and proposed greedy 
approximation algorithms to solve it. Wang et al. (2016) 
extended the LIMP by introducing the Distance-aware 
Influence Maximization Problem, where users have location 
preferences, and the closer a user is to the query region, the 
greater its importance. They developed pruning strategies to 
approximate the solution. Su et al. (2018) proposed 

approximate and heuristic techniques to solve a general ver-
sion of the LIMP, where a k-size seed set has to be chosen 
to maximize the expected influence over targeted users who 
have both topic and location preferences.

Previous models take into account the location of nodes 
in a network as inputs, but neglect the fact that nodes can 
move and form trajectories. Furthermore, these studies do 
not examine how knowing the location of nodes can 
improve the deployment of ads or Geo-fences. In light of 
this, Zhang et al. (2018) and Li et al. (2019) studied the 
problem of placing billboards. Given a set of trajectories, a 
set of billboards, and a budget, the goal is to find a subset 
of billboards that maximizes the number of covered trajecto-
ries, where each trajectory is described by a sequence of 
points. Zhang et al. (2018) developed an enumeration-based 
approximation and a partition-based approximation, 
whereas Li et al. (2019) developed hill-climbing heuristics to 
solve the problem. However, both studies did not consider 
the underlying network relationships between nodes.

2.3. Maximum coverage location problems

Maximum Coverage Location Problems (MCLPs) have been 
widely used in real-world applications, such as the place-
ment of emergency facilities, bus and fire stations, and clus-
tering problems in Geographical Informative Systems (GIS). 
Examples can be found in Farahani et al. (2012), Garc�ıa and 
Mar�ın (2015), Murray (2016) and other related references 
therein. Church (1984) introduced the Planar MCLP 
(PMCLP), where facilities can be placed anywhere on the 
plane rather than only at a finite set of pre-specified sites. 
The author defined critical intersection points and showed 
that there is at least one optimal solution to the PMCLP in 
which all facilities are in critical intersection points. Murray 
and Tong (2007) extended the concept of critical intersec-
tion points to any polygon representation of demands. 
Canbolat and von Massow (2009), motivated by wireless 
transmitter coverage problems, examined the maximal 
coverage of weighted demand points using axis-parallel ellip-
ses and provided a simulated annealing heuristic to solve 
the problem. Andretta and Birgin (2013) discussed an exact 
method and a heuristic for the case when ellipses can be 
rotated. Recently, Tedeschi and Andretta (2021) proposed 
exact algorithms for both axis-parallel and freely rotated 
ellipses using critical points. Bansal and Kianfar (2017) 
extended the PMCLP under specific assumptions, including 
rectilinear distance measures, rectangular demand zones, 
and partial coverage. They developed a heuristic that pro-
vides lower bounds for a customized branch-and-bound 
solution approach.

The aforementioned models prioritize coverage optimiza-
tion, but none of them take into account the influence of 
the network in coverage decisions. Our work can be seen as 
an expansion of PMCLP concepts to settings where there 
are networked relationships between the elements being cov-
ered, and where a complex objective, such as influence, is 
optimized.
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3. Problem formulation

In this section, we describe the ICOP in an arbitrary 
directed network, prove that it is NP-hard, and propose 
MIP formulations for three different interpretations of 
coverage. For consistency, we present the problem as placing 
Geo-fences, which will be referred to as fences throughout.

3.1. Definition of ICOP

The present influence model is an adaptation of the model 
discussed in Borrero et al. (2021). Consider a directed net-
work G ¼ ðN, AÞ with n ¼ jNj nodes and m ¼ jAj arcs. The 
nodes in the network could represent customers, and the 
arcs could be assumed as social connections between them. 
A given node can be either active (1) or inactive (0). 
Influence propagates throughout the network in the follow-
ing manner: an inactive node k 2 N can receive influence 
from fences that cover it, or become active due to its active 
in-neighbors l 2 N−ðkÞ, where N−ðkÞ ¼ fl 2 N : ðl, kÞ 2
Ag denotes the set of in-neighbors of node k. The time 
taken for a fence to activate node k is exponentially distrib-
uted with the rate dk, where dk � 0 is a constant. The time 
it takes for an active in-neighbor l to activate node k is 
exponentially distributed with rate dlkglk þ glk, where 
dlk, glk � 0 are constants and the network rate glk � 0 is a 
continuous decision variable. Intuitively, the value of glk can 
be interpreted as a scaled incentive such as a discount or a 
gift card given to node l for influencing node k. The collec-
tion of all g variables is denoted by g ¼ ðglk : ðl, kÞ 2 AÞ:
All activation times are assumed to be independent.

We let F denote the non-empty and finite set of fences 
and assume that each fence f 2 F is represented by a circle 
of radius qf > 0 in the (two-dimensional) plane. We assume 
that values of qf and f 2 F are fixed and known, and say 
that a node is covered by a fence if it is “sufficiently close” 
to the center of the fence. Specifically, there are three gen-
eral models of coverage that we consider:

� Static coverage: Node k 2 N has a fixed location repre-
sented by pk ¼ ðpð1Þk , pð2Þk Þ, and is considered covered by 
fence f if it is within a distance of qf from the center of 
the fence, see Figure 2(a).

� Segment coverage: There are two points pk and �pk associ-
ated with each node k 2 N; these points may represent 

the most frequently visited locations by node k. The seg-
ment Lk ¼ fv : v ¼ pk þ tð�pk − pkÞ, 0 � t � 1g, joining 
pk and �pk, is the “average path” taken by node k to 
move between these two locations. node k is covered by 
fence f 2 F if and only if at least one point of Lk is 
within a distance of qf from the center of f, see 
Figure 2(b).

� Piece-wise coverage: Node k 2 N regularly visits jk � 2 
locations, where pkj are the coordinates of location j, j 2
½jk�: The locations are visited sequentially, thus, w.l.o.g, 
location jþ 1 is visited after j, j ¼ 1, . . . , jk − 1: We 
assume that the path between locations j and jþ 1 is 
approximated by the segment Lkj ¼ fv : v ¼ pkj þ
tðpk, jþ1 − pkjÞ, 0 � t � 1g joining pkj and pk, jþ1: A fence 
f 2 F covers node k if and only if there is at least one 
segment Lkj within a distance of qf from the center of the 
fence, see Figure 3.

For any given coverage mode, the decision variable for 
the center of fence f is denoted by af ¼ ðað1Þf , að2Þf Þ, where 
að1Þf is the x-coordinate and að2Þf is the y-coordinate. Also, let 
a ¼ ðaf : f 2 FÞ, and assume that all nodes and possible 
locations for fences are within a non-empty rectangular 
region of the plane given by R ¼ ½l1, u1� � ½l2, u2�, where 
li, ui 2 , i¼ 1, 2, are known and fixed.

Figure 2. (a) A feasible solution for the static coverage mode. The pins represent nodes and the circles are fences; (b) a feasible solution for the segment coverage 
mode.

Figure 3. A feasible solution for the piece-wise coverage mode with three 
nodes.
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For any node k 2 N, let sk be equal to 1 if k is active 
(i.e., influenced) and 0 otherwise. Define s ¼ ðsk : k 2 NÞ as 
the activation state of the network; at time t¼ 0 the network 
is in some state s0 2 S0 ¼ f0, 1gn (we assume hereafter that 
s0 ¼ 0 thus initially all nodes are inactive; the general case 
can be handled after doing simple modifications). Let 
Xðt, a, gÞ denote the state of the network at time t � 0 if the 
fences are located at the coordinates specified by a and the 
network rates are given by g: The state space of Xða, gÞ ¼
fXðt, a, gÞ, t � 0g is S0. From standard theory on 
Continuous-Time Markov Chains (CTMC) (Kulkarni, 2016), 
it can be verified that Xða, gÞ is CTMC over S0 with an 
absorbing state 1 ¼ ð1, :::, 1Þ; in state 1 all nodes are active.

For any t � 0, if Xðt, a, gÞ ¼ s 2 S0, then Xða, sÞ can 
jump only to states of the form sþ ek, where ek is a unit 
vector with a one in the kth position and where k is inactive 
in s, that is sk ¼ 0. In this case, the time it takes for node k 
to become active is exponentially distributed with rate 
dknkðaÞ þ

P
ðl, kÞ2A slðdlkglk þ glkÞ, where nkðaÞ is the num-

ber of fences that cover node k assuming the fences are 
located in a: By standard CTMC theory (Kulkarni, 2016), 
the non-diagonal elements of the generator matrix Nða, gÞ of 
Xða, gÞ are given by

whereas Ns, sða, gÞ ¼ −

P
s02S, s0 6¼s Ns, s0 ða, gÞ, s 2 S0, for the 

diagonal elements.
At t¼ 0 the decision-maker seeks to determine where the 

fences should be located and what values should the net-
work influence variables take in order to minimize the time 
it takes for all nodes to get activated. In other words, the 
decision-maker determines the values of a and g in order to 
minimize the Network Activation Time (NAT). Increasing 
the value of glk by one incurs a cost of clk, and the deci-
sion-maker has a budget limit of 1, w.l.o.g. Given that the 
NAT is a random variable, various criteria can be used to 
optimize it. Following Proposition 3 discussed in Section 3.2
of Borrero et al. (2021) (see Appendix VIII for a summary), 
we frame the minimization of the NAT in terms of maxi-
mizing the minimum (non-zero) absolute eigenvalue of the 
generator of Xða, gÞ across all its possible values. If kða, gÞ
denotes this eigenvalue, then we define the ICOP as the fol-
lowing optimization problem

k� ¼ maxfkða, gÞ :
X

ðl, kÞ2A
clkglk � 1, a 2 RjFj, g 2 m

þg: (2) 

Because the generator matrix Nða, gÞ of Xða, gÞ can be 
rearranged as an upper-triangular matrix, the minimum 
(non-zero) absolute eigenvalue is equal to the minimum 
(non-zero) diagonal element in this matrix. That is, 
kða, gÞ ¼ minfjNssða, gÞj : s 2 S0 n f1gg: The rationale 

behind problem (2) is that by maximizing kða, gÞ one mini-
mizes upper-bounds for both the expected NAT and the tail 
probabilities of the NAT. Specifically, if Tða, gÞ denotes the 
NAT given a and g, i.e., if Tða, gÞ is the first passage time 
of Xða, gÞ to state 1, and if t � 0, then

P Tða, gÞ > t½ � � Me−kða, gÞt for t � t0 and E Tða, gÞ½ �

� M0

kða, gÞ , (3) 

where t0, M, M0 > 0 are some constants; see more details in 
Appendix VIII.

Table 6 in Appendix I summarizes the notations used 
throughout the formulations. Next, we show that the ICOP 
is an NP-hard optimization problem for the static coverage 
mode, implying its NP-hardness for all coverage modes dis-
cussed in this article. Then, we present a basic MIP formula-
tion of the problem for each coverage mode.

3.2. NP-hardness of ICOP

We prove that the ICOP is NP-hard for the static coverage 
mode by using the planar geometric covering problem, 

referred to hereafter as the Box Cover Problem (BCP), see 
Fowler et al. (1981). The BCP takes as inputs a collection C
of m � 1 identical circles with integer radius r � 1, and a 
finite set of points P in the plane with integer coordinates. 
The problem is to determine if all points in P can be cov-
ered using the circles in C: The BCP is an NP-complete 
problem (Fowler et al., 1981).

Theorem 1. The ICOP is NP-hard for the static coverage 
mode. 

3.3. MIP formulations 

This section provides MIP formulations for the ICOP in all 
coverage modes. 

3.3.1. Static coverage mode 
Let yfk be a binary variable that takes the value 1 if and only 
if fence f covers node k, f 2 F, k 2 N: Then, for the static 
coverage mode, problem (2) can be framed as the MIP 
below:

k� ¼ max k (4a) 

s:t: k �
X
k2N

ð1 � skÞðdk
X
f2F

yfkþ
X

ðl, kÞ2A
slðdlkglkþglkÞÞ8s 2 ~S0

(4b) 

Ns, s0 ða, gÞ ¼ dknkðaÞ þ
P

ðl, kÞ2A slðdlkglk þ glkÞ, if s0 ¼ sþ ek, sk ¼ 0, k 2 N
0, otherwise;

�
(1) 
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Dðaf , pkÞ − Mkð1 − yfkÞ � qf 8f 2 F; 8k 2 N (4c) 

X
ðl, kÞ2A

clkglk � 1 (4d) 

li � aðiÞf � ui 8f 2 F; i ¼ 1, 2 (4e) 

yfk 2 f0, 1g8f 2 F; 8k 2 N, glk � 08ðl, kÞ 2 A, k � 0: (4f)  

Given that ~S0 is defined as ~S0 ¼ S0 n f1g, constraints 
(4b) ensure that k is equal to the absolute value of the 
smallest eigenvalue of the generator matrix of Xða, gÞ, which 
is being maximized in problem (2). Inequality (4c) sets the 
condition that fence f can cover node k if the Euclidean dis-
tance between them, represented as Dðaf , pkÞ, is no greater 
than the coverage radius of fence f, denoted as qf. The 
coverage region of a fence is modeled as a circle and thus, 
Dðaf , pkÞ ¼ jjaf − pkjj, where jjxjj represents the Euclidean 
norm of vector x. Note that the constraint includes the “big- 
M” constant Mk that is computed as Mk ¼ maxfjjpk − vijjj :
i, j ¼ 1, 2g, vij being the two-dimensional vector ½liuj�:
Inequalities (4d) and (4e) represent the constraints for the 
budget allocated to increase the network influence rates and 
the allowed region for placing the fences, respectively. 

3.3.2. Segment coverage mode 
In this mode, we replace constraint (4c) in Formulation (4) 
by the following constraint:

Dðaf , LkÞ − Mkð1 − yfkÞ � qf 8f 2 F; 8k 2 N, (5) 

where Mk is a sufficiently large value that will be calculated 
in Section 4, and Dðaf , LkÞ denotes the Euclidean distance 
between af and the segment Lk.

Let Cf be the circle of radius qf with center af represent-
ing fence f, and observe that fence f covers Lk if and only if 
Cf \ Lk 6¼ ;: Because Lk ¼ fv 2 2 : v ¼ pk þ tð�pk − pkÞ, 0 �
t � 1g we have that Cf \ Lk 6¼ ; if and only if there exists 
tfk 2 ½0, 1� such that jjpk þ tfkð�pk − pkÞ − af jj � qf : The MIP 
formulation, which we refer to hereafter as the SST, is 
derived from Formulation (4) by adding new variables tfk 
for all f 2 F and k 2 N, removing constraints (4c), and 
including the constraints
jjpk þ tfkð�pk − pkÞ − af jj − Mkð1 − yfkÞ � qf 8f 2 F; 8k 2 N

(6a) 

0 � tfk � 1 8f 2 F; 8k 2 N: (6b) 

The formulation for piece-wise coverage mode (PWT) is 
provided in Appendix IV.

4. Formulation enhancements

In this section, we discuss two sets of valid inequalities, a 
reformulation for the non-linear “big-M” constraints, and 
heuristic approaches. The improvements are then leveraged 
in the proposed IDBC algorithm, which will be presented in 
the next section. The discussion in this section is mainly 

focused on the SST formulation, i.e., the segment coverage 
mode, but the results can be easily generalized to the other 
two modes, the Static and Piece-wise modes (see 
Appendix IV).

4.1. Conflict inequalities

These conflict-type inequalities are built upon the idea that 
if two segments are distant enough, there can be no fence 
that covers both of them. For given nodes k, l 2 N, let 
Kkl ¼ ff 2 F : DðLk, LlÞ > 2qf g denote the set of fences that 
cannot cover both Lk and Ll, where DðLk, LlÞ measures the 
Euclidean distance between segments Lk and Ll: Note that 
DðLk, LlÞ ¼ mintk , tl

fjjpk þ tkð�pk − pkÞ − pl − tlð�pl − plÞjj :
tk, tl 2 ½0, 1�g: It is clear that the following constraints, 
which we refer to hereafter as the conflict inequalities, are 
valid for the SST:

yfk þ yf l � 1 8k, l 2 N; 8f 2 Kkl: (7) 

We need to compute DðLk, LlÞ to create set Kkl: To this 
end, we have to solve a minimization problem over tk and 
tl, which can be solved by finding the stationary points. 
Specifically, instead of the norm, we can minimize the 
squared-norm function Sðtk, tlÞ ¼ jjpk þ tkð�pk − pkÞ − pl − 

tlð�pl − plÞjj2, which is “easy” to optimize as implied next. 
Using Remark 1, one can include all Oðn2jFjÞ conflict con-
straints into the SST in Oðn2jFjÞ time.

Remark 1. Sðtk, tlÞ is a convex function of ðtk, tlÞ 2 2:

Thus, by taking the partial derivatives of Sðtk, tlÞ with 
respect to tk and tl, and making them equal to zero, we 
have a single stationary point of Sðtk, tlÞ satisfying

t�k ¼ b0

b
tl −

c0

b
and t�l ¼ cb þ c0a

b2 þ b0a
: (8)  

Where the coefficients a, b, b0, c are given by 
a ¼ −2½ð�pð1Þ

k − pð1Þk Þ2 þ ð�pð2Þ
k − pð2Þk Þ2�; b ¼ 2½ð�pð1Þ

k − pð1Þk Þ
ð�pð1Þ

l − pð1Þl Þ þ ð�pð2Þ
k − pð2Þk Þð�pð2Þ

l − pð2Þl Þ�; c ¼ 2½ð�pð1Þ
k − pð1Þk Þ

ðpð1Þk − pð1Þl Þ þ ð�pð2Þ
k − pð2Þk Þðpð2Þk − pð2Þl Þ�; b0 ¼ −2½ð�pð1Þ

l − pð1Þl Þ2 

þð�pð2Þ
l − pð2Þl Þ2�; and c0 ¼ 2½ð�pð1Þ

l − pð1Þl Þðpð1Þk − pð1Þl Þ þ ð�pð2Þ
l − 

pð2Þl Þðpð2Þk − pð2Þl Þ�: The convexity of Sðtk, tlÞ now implies that 
the values of ðtk, tlÞ attaining the minimum of Sðtk, tlÞ are 
given by (8), as long as they both belong to [0,1]. Else, we 
have to consider the value of Sðtk, tlÞ when tk, tl are either 
zero or one. Specifically, suppose for any k, l 2 N, the pair 
ðt�k , t�lÞ is given by (8). Then, D2ðLk, LlÞ ¼ Sðbtk , btlÞ where 
ð̂tk, t̂lÞ ¼ ðt�k , t�lÞ if 0 � t�k , t�l � 1: Else, ð̂tk, t̂lÞ can be com-
puted using Table 1. 

Table 1. Values of ð̂t k , t̂lÞ for Remark 1.

Condition Value of ð̂t k , t̂lÞ Condition Value of ð̂t k , t̂lÞ
t�k , t�l < 0 (0,0) c=a 2 ½0, 1�, t�l < 0 ðc=a, 0Þ
t�k < 0, t�l > 1 (0,1) t�k < 0, c0=b0 2 ½0, 1� ð0, c0=b0Þ
t�k > 1, t�l < 0 (1,0) ðc − bÞ=a 2 ½0, 1�, t�l > 1 ððc − bÞ=a, 1Þ
t�k > 1, t�l > 1 (1,1) t�k > 1, ðc0 þ bÞ=b0 2 ½0, 1� ð1, ðc0 þ bÞ=b0Þ
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4.2. Rectangular inequalities 

We know that fence f 2 F covers segment Lk if and only if 
af belongs to the region fv 2 2 : Dðv, LkÞ � qf g: Such a 
region resembles a capsule in the plane, see Figure 4. 
Capsules cannot be described by linear terms, making it dif-
ficult for standard MIP solvers to handle. As a solution, a 
rectangular region that envelops the capsule, as shown in 
Figure 4, can be used as an approximation. The derivation 
of these regions is provided in the next result; its proof is in 
Appendix II. 

Proposition 1. Let f 2 F, k 2 N, and af 2 2 be given. If 
Dðaf , LkÞ � qf then af satisfies that

0 � ðaf − AkÞ>ðBk − AkÞ
jjBk − Akjj2

� 1 and 0 � ðaf − CkÞ>ðDk − CkÞ
jjDk − Ckjj2

� 1, 

where points Ak ¼ ðAð1Þ
k , Að2Þ

k Þ, Bk ¼ ðBð1Þ
k , Bð2Þ

k Þ, 
Ck ¼ ðCð1Þ

k , Cð2Þ
k Þ, and Dk ¼ ðDð1Þ

k , Dð2Þ
k Þ, are given by 

Ak ¼ pk −

qf

Dðpk, �pkÞ
ð�pk

− pkÞ,

Bk ¼ pk þ ð1 þ qf

Dðpk, �pkÞ
Þð�pk − pkÞ, 

Cð1Þ
k ¼ Að2Þ

k − pð2Þk þ Að1Þ
k , Cð2Þ

k ¼ pð1Þk − Að1Þ
k þ Að2Þ

k , Dð1Þ
k ¼

pð2Þk − Að2Þ
k þAð1Þ

k , and Dð2Þ
k ¼ Að1Þ

k − pð1Þk þ Að2Þ
k :

Proposition 1 implies that the following constraints are 
valid for the SST:

ðaf − AkÞ>ðBk − AkÞ
jjBk − Akjj2

− lk
abð1 − yfkÞ � 0 8f 2 F; 8k 2 N (9a) 

ðaf − AkÞ>ðBk − AkÞ
jjBk − Akjj2

− uk
abð1 − yfkÞ � 1 8f 2 F; 8k 2 N

(9b) 

ðaf − CkÞ>ðDk − CkÞ
jjDk − Ckjj2

− lk
cdð1 − yfkÞ � 0 8f 2 F;8k 2 N (9c) 

ðaf − CkÞ>ðDk − CkÞ
jjDk − Ckjj2

− uk
cdð1 − yfkÞ � 1 8f 2 F;8k 2 N, (9d) 

where lkab, lkcd, uk
ab, and uk

cd are “big-M” constants for 
each k 2 N:

Although the constraints (9) include “big-M” constants, 
they can be computed easily and have a similar magnitude 

to the remaining non-zeros in the corresponding rectangular 
inequalities. Consequently, the “big-M”s are not expected to 
lead to loose relaxation bounds or poor performance, as is a 
common case in formulations with “big-Ms”. Indeed, con-
sider constraint (9a) and note that lk

ab can be computed as 
lk
ab ¼ minfa>ðBk − AkÞ=jjBk − Akjj2 : a 2 fðl1l2Þ, ðl1u2Þ, ðu1l2Þ, 
ðu1u2Þgg, which boils down to comparing four numbers. A 
similar approach applies to compute uk

ab, lk
cd, and uk

cd:

4.3. Reformulation of the non-linear big-M constraints

The MIP formulation for the SST contains the non-linear 
“big-M” constraint (6a). Dealing with this constraint directly 
leads to severe numerical issues, particularly because it is 
necessary to consider its squared form to be directly fed 
into a quadratic optimization solver with mixed-integer opti-
mization functionality such as CPLEX (IBM ILOG, 2021) or 
Gurobi (Gurobi Optimization, LLC, 2021). This squared 
form is

jjpk þ tfkð�pk − pkÞ − af jj2 − M̂kð1 − yfkÞ � q2
f 8f 2 F; 8k

2 N,
(10) 

where M̂k is an upper bound on the squared distance jjpk þ
tfkð�pk − pkÞ − af jj2: Next, we propose an alternative quad-
ratic reformulation of this constraint that allows the “big-M” 
to be an upper-bound on the actual distance rather than the 
squared distance, and that avoids having the “big-M” in the 
quadratic constraint. We note that (10) can be reformulated 
in other ways. In Appendix VII we provide other reformula-
tions (one of them following Atamt€urk and Narayanan 
(2010)) and show that all the considered reformulations 
have similar performance within our algorithm.

Proposition 2. Let SST’ be obtained from the SST by replac-
ing constraint (6a) with:

ðvfk1Þ2 þ ðvfk2Þ2 � q2
f 8f 2 F; 8k 2 N (11a) 

vfki � pðiÞk þ tfkð�pðiÞ
k − pðiÞk Þ − aðiÞf þ Mkið1 − yfkÞ

8f 2 F; 8k 2 N; i ¼ 1, 2
(11b) 

vfki � pðiÞk þ tfkð�pðiÞ
k − pðiÞk Þ − aðiÞf − Mkið1 − yfkÞ

8f 2 F; 8k 2 N; i ¼ 1, 2,
(11c) 

where vfki, f 2 F, k 2 N, and i ¼ 1, 2 are continuous varia-
bles. If the solution ðk0, y0, t0, a0, v0Þ is considered optimal in 
the SST’, for v0fki, f 2 F, k 2 N, and i ¼ 1, 2, then there exists 
an equivalent optimal solution ðk, y, t, aÞ in the SST. 
Moreover, the optimal values of both the SST and the SST’ 
are equal.

Observe that the “big-M” values Mki in (11) can be tight-
ened further than ui − li: In this regard, consider the seg-
ment Lk as shown in Figure 5, then it is clear that for 
f 2 F; k 2 N and i¼ 1, 2, we can set Mki ¼ maxfðui − 

pðiÞk Þ, ðli − pðiÞk Þ, ðui − �pðiÞ
k Þ, ðli − �pðiÞ

k Þg:

Figure 4. Capsule and rectangle around Lk. Ak and Bk are the intersection of 
the extension of Lk with the enveloping rectangle.
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4.4. Heuristic enhancements

This section discusses a heuristic method for finding an ini-
tial feasible solution for the SST, based on the k-means clus-
tering algorithm (Likas et al., 2003). This method divides 
nodes into jFj groups based on the distance between each 
node and the center of the fences. The result is a binary vec-
tor y0, which is as a starting point for finding a feasible 
solution in the MIP formulation.

Heuristic 1 in Appendix III adapts the k-means algorithm 
to our setting. It starts by randomly placing each fence on 
the plane, and assigns segments to the nearest fence. Then, 
in each iteration, the fence locations are updated to be the 
average of the assigned segments’ coordinates, and segments 
are re-assigned to the closest fence. This is repeated for U 
iterations, where U is a parameter set by the user.

The solution from Heuristic 1 is further improved as fol-
lows. Let R0

f ¼ fr�k : bfk ¼ 1g represent the coordinates of 
the points covered by fence f in the heuristic solution. For 
each fence f 2 F, the improvement process checks the num-
ber of nodes covered when the fence location is changed to 
each of the points in R0

f : The location that covers the most 
nodes is then chosen as the new coordinate for fence f. If 
multiple radii values are possible, the procedure considers 
different radius assignments, as described in Heuristic 1 in 
the Appendix III.

Note that both the heuristic and polishing steps can be per-
formed in polynomial time if all fence radii are the same. If 
the radii are different, then OðjFj!Þ operations would need to 
be considered when assigning radii to the final coordinate 
assignments. However, this is not expected to be a problem as 
the number of fences jFj is usually small (e.g., less than 10).

5. IDBC algorithm

This section explains a procedure to solve the formulation 
SST using an algorithm IDBC. The algorithm begins with a 
master relaxation of the formulation and adds two types of 
constraints: the state constraints (4b) and the reformulated 
“big-M” constraints (11). Section 5.1 provides an overview 
of the algorithm whereas Section 5.2 provides more details 
into the Decomposition Branch-and-Cut (DBC).

5.1. Overview of the IDBC algorithm

The IDBC begins by constructing a master relaxation of the 
SST that includes the conflict and rectangular inequalities. 
This relaxation only includes a portion of the state con-
straints (i.e., those specified by (4b)) and does not include 
any “big-M” constraints (i.e., those specified by (6)). The 
algorithm then adds state constraints on the fly by solving a 
min-cut optimization problem, which separates optimal 
master solutions that are infeasible in the SST. When no 
additional state constraints are required, the algorithm 
checks if the integer optimal solution of the master satisfies 
all “big-M” constraints of the form (6). If it does, an optimal 
solution for the SST has been found. If not, new variables 
and constraints of the form given by (11) are added to the 
master, and the resulting MIP is resolved “from scratch” 
using the DBC algorithm in the next iteration.

In order to describe the IDBC in more detail, let a subset 
of nodes V 	 N and a subset of states T 	 ~S0 be given. 
Denote by nðs, y, gÞ the right-hand side function in con-
straint (4b) and consider the MIP

KðT, VÞ ¼ max k (12a) 

s:t: k � nðs, y, gÞ 8s 2 T (12b) 

ðvfk1Þ2 þ ðvfk2Þ2 � q2
f 8f 2 F; 8k 2 V (12c) 

vfki � pðiÞk þ tfkð�pðiÞ
k − pðiÞk Þ − aðiÞf þ Mkið1 − yfkÞ

8f 2 F; 8k 2 V; i ¼ 1, 2
(12d) 

vfki � pðiÞk þ tfkð�pðiÞ
k − pðiÞk Þ − aðiÞf − Mkið1 − yfkÞ

8f 2 F; 8k 2 V; i ¼ 1, 2
(12e) 

X
ðl, kÞ2A

clkglk � 1 (12f) 

Constraints ð7Þ and ð9Þ (12g) 

y 2 f0, 1gnjFj, g 2 m
þ, a 2 RjFj, t 2 0, 1½ �njFj, v 2 2njFj

þ , k 2 :

(12h) 

Observe that KðT, VÞ � k� because (12) is a relaxation of 
the SST and note that the conflict and rectangular con-
straints are added for all nodes in N and not just those 
in V.

The detailed IDBC procedure is shown in Algorithm 1. 
Clearly k� and f� are the optimal value and an optimal solu-
tion of the SST, respectively, because f� is feasible in the 
SST and is optimal in a relaxation of the SST that has the 
same objective function. Algorithm 1 terminates in at most 
n iterations. Additionally, each iteration is guaranteed to ter-
minate (see Section 5.2), ensuring that the entire algorithm 
terminates. In practice, however, the algorithm terminates in 
far fewer iterations than the theoretical worst-case.   

Figure 5. Intersection of segment Ak Bk with vertical sides.
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5.2. A DBC algorithm to solve Kð~S0, ViÞ
In step 5 of Algorithm 1, the MIP Kð~S0, ViÞ, i � 1, is solved 
using a DBC algorithm. To this end, KðTi, ViÞ is used as a 
master problem and cuts are added on the fly. To add cuts, 
a “separation problem” is defined in a similar way to how 
Algorithm 1 of Borrero et al. (2021) defines cuts in their 
cutting-generation framework. In Borrero et al. (2021), cuts 
are iteratively added to a linear program whereas here we 
need to implement them as “lazy cuts” deployed in a DBC 
algorithm. Next, we discuss how the cutting plane method 
of Borrero et al. (2021) adapts to the proposed DBC 
algorithm.

Consider a feasible candidate solution f ¼ ðk, g, y, a, t, vÞ
of KðTi, ViÞ and define the auxiliary network GðfÞ ¼
ðN0, A0Þ, where

N 0 ¼ N [ fq0g and A0 ¼ A [ fðq0, lÞ : l 2 NgÞ: (13) 

In (13), q0 is defined as an auxiliary “root” node that can 
be thought of as representing all the fences. The weights of 
the arcs in GðfÞ are defined by

wjkðfÞ ¼ dk
P

f2F yfk, if j ¼ q0 and k 6¼ q0
djkgjk þ gjk, if j 6¼ q0 and k 6¼ q0,

�
(14) 

for any ðj, kÞ 2 A0: Given any H 	 N0 with q0 2 H, we refer 
to ðH, N 0 n HÞ as a rooted-out cut, and define its weight 
by wðH, fÞ ¼ P

j2H, k2N0nH wjkðfÞ:
Define Hs ¼ fk 2 N : sk ¼ 1g [ fq0g, then the right- 

hand side value nðs, y, gÞ becomes equal to wðHs, fÞ, for any 
given s 2 ~S0: On the other hand, it is readily seen that fHs :
s 2 ~S0g ¼ fH 	 N 0 : q0 2 Hg: Applying these definitions, 
we can rewrite Kð~S0, VÞ as the following max-min-cut prob-
lem over GðfÞ :
Kð~S0, VÞ ¼ maxfminfwðH, fÞ : H 	 N0, q0 2 Hg : f 2 Bg,

(15) 

where B is the feasible set for values of f, i.e., it contains all 
constraints (12c) to (12h). Therefore, we have the following 
result that relates the feasibility of f in Kð~S0, ViÞ with the 
value of the (rooted-out) min-cut problem in GðfÞ:

Proposition 3. Let T 	 ~S0 and V 	 N be given, and assume 
that f ¼ ðk, g, y, a, t, vÞ is a feasible solution of KðT, VÞ. 
Then, f is feasible in Kð~S0, VÞ if and only 
if k � minfwðH, fÞ : H 	 N 0, q0 2 Hg:

Using Proposition 3 we solve Kð~S0, ViÞ, i � 1, with a 
DBC as follows. Initially, when Ui ¼ ; the linear relaxation 
of KðTi, ViÞ is solved at the root node of the Branch-and- 
Bound (BnB) tree, and branching proceeds on the binary 
variables y as usual. If in a node of the BnB tree an integer 
feasible solution f̂ ¼ ðk̂, ĝ, ŷ, â, t̂ , v̂Þ of KðTi, ViÞ is found 
(i.e., a feasible solution that satisfies all the integrality 
requirements on ŷ), then the rooted-out min-cut problem 
x̂ ¼ minfwðH, f̂Þ : H 	 N0, q0 2 Hg is solved. If k̂ � x̂, 
then, by Proposition 3, f̂ is a feasible solution of Kð~S0, ViÞ
and the current node of the BnB tree is pruned by feasibil-
ity. Else, there exists a state ŝ 2 ~S0 n Si such that k̂ >
nðŝ, ŷ, ĝÞ: Indeed, let ðĤ , N0 n ĤÞ be the cut attaining ŵ and 
define ŝ ¼ ð̂sk : k 2 NÞ by ŝk ¼ 1 if k 2 Ĥ , and zero other-
wise. Then, it is readily verified that ŵ ¼ nðŝ, ŷ, ĝÞ, which 
gives the desired claim (note that it must be the case that ŝ 62
Si, because if not there would be a contradiction with 
the feasibility of f̂). Once the state ŝ is identified, we 
add the constraint k � nð̂s, y, gÞ to the formulation KðTi, ViÞ
at the current node, the node is resolved, and we 
set Ui ¼ Ui [ ŝf g:

We note that the proposed DBC’s integer separation pro-
cess can be completed in polynomial time, specifically in 
Oðn2m log ðn2=mÞÞ, through the use of the Hao–Orlin algo-
rithm (Hao and Orlin, 1992). Furthermore, Kð~S0, ;Þ is poly-
nomially solvable. This is because if we fix yfk ¼ 1 for all 
f 2 F and k 2 N, it reduces Kð~S0, ;Þ to a NAT problem, 
which is polynomially solvable, as shown in Borrero et al. 
(2021). The complexity of solving Kð~S0, TiÞ increases as Ti 

increases. Thus, the initial iterations of the IDBC are usually 
fast, whereas later iterations are more time-consuming. 
Lastly, the DBC to solve Kð~S0, VÞ finds the optimal solution 
after adding at most j~S0 n Tj cuts, which ensures the DBC 
terminates. 

Remark 2. An important consideration in the algorithmic 
design to solve the SST is about whether to solve a single 
MIP problem with a single run of a DBC algorithm (a 
“unified” DBC approach), or to iteratively solve several 
MIPs in the way it is done in Algorithm 1. In contrast with 
the iterative approach, in the unified DBC we would add the 
constraints (11) for all nodes in k 2 Ni on the fly after step 
7, then re-solve the node, and then continue the BnB pro-
cess. Preliminary experiments with the instances of Section 
7 indicated that the IDBC approach generally outperforms 
the “unified” DBC approach. This is believed to be due to 
the use of the (11)-type constraints in all nodes of the BnB 
tree in the IDBC, which results in a tighter master relaxation 
compared with the unified DBC. 

6. Discrete formulation of the ICOP 

Next, we present a discrete formulation for the ICOP based 
on intersection points. Church (1984) proved that for the 
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Planar Maximal Covering Problem under the Euclidean dis-
tance (PMCE), there is at least one optimal solution in 
which all facilities are located at points that belong to the 
Circle Intersection Point set (CIPS). This result generalizes to 
many other planar settings, including to the ICOP, as dis-
cussed next. However, the formulation uses a quadratic 
number of binary variables in terms of the number of nodes, 
which hinders its practicality. Below, we explain the main 
ideas in terms of the segment coverage mode. The results 
can also be generalized to static and piece-wise modes. 

Let f 2 F be fixed, and recall that Lk, k 2 N, denotes the 
segment of the kth node with endpoints pk and �pk: We 
define Cf

k as the border of the capsule around Lk with a 
radius of qf, as shown in Figure 6. For a given l, k 2 N, let 
If
lk define the intersection of Cf

l and Cf
k: If the intersection 

is finite (as shown in Figure 6(a)), If
lk represents the actual 

intersection points. In case where the intersection has infin-
itely many points (as depicted in Figure 6(b)), If

lk represents 
the endpoints of the intersection. 

Let I f be the intersection point set associated with fence 
f, which is defined by

I f ¼ [
k2N

ðfpk, �pkg [ [
l2N

If
lkÞ: (16)  

In other words, I f contains all the endpoints of the Lk 
segments, plus the pairwise intersection points between all 
the capsules Cf

l and Cf
k: The Intersection Point Set (IPS) is 

defined as I ¼ [f2F I f : Observe that if all the fences have 
the same radius, then I ¼ I f : Moreover, I contains of 
OðjFjjNj2Þ elements. Proposition 4 states that I contains at 
least an optimal solution for the ICOP; see Appendix II for 
the proof. 

Proposition 4. There is at least one optimal solution to the 
ICOP in that all fence locations belong to I :

Let F 	 F be the largest subset of F in which no two fen-
ces have the same radius. For each k 2 N and f 2 F , let 
Dkf 	 I f be the set of intersection points in I f obtained 
from capsules with radius qf that can cover Lk; specifically, 
Dkf ¼ fpk, �pkg [ [l2N If

lk: Also, we define hf as the number 
of fences with radius qf required to be located. We introduce 
the binary variable zif, which is equal to 1 if a fence is 
located at intersection point i 2 I f , and 0 otherwise. The 
discrete formulation for ICOP, hereafter referred to as 
D-ICOP, is:

k� ¼ maxk (17a) 

s:t: k �
X
k2N

ð1�skÞðdk
X
f2F

X
i2Dkf

zif

þ
X

ðl, kÞ2A
slðdlkglkþglkÞÞ 8s 2 ~S0

(17b) 

X
i2I f

zif � hf 8f 2 F (17c) 

X
ðl, kÞ2A

clkglk � 1 (17d) 

zif 2 f0, 1g8i 2 I f ; f 2 F ; glk � 08ðl, kÞ 2 A, k � 0: (17e)  

D-ICOP offers a key advantage over the original formula-
tion (4) by avoiding the inclusion of non-linear constraints 
and the need for “big-M” constants. However, it brings in 
certain drawbacks: First, it requires a precomputation of all 
the sets Dkf; second, it could end up having OðjFjjNj2Þ bin-
ary variables (because there is a binary variable in (17) for 
each intersection point in I ). 

In order to decrease the required number of binary varia-
bles we can apply a preprocessing step. Let us fix f 2 F , 
and define Ui as the set of segments covered by the intersec-
tion point i, i 2 I f : If it is found that Ui 	 Uj for a pair 
i, j 2 I f , then we can remove i from I f : Whereas the com-
plexity of such a naive approach is OðjI f j2Þ for each f 2 F , 
the reduction in the number of binary variables can be sig-
nificant enough to improve the computational efficiency for 
solving the D-ICOP. 

7. Computational experiments 

In this section, numerical experiments are conducted to ana-
lyze the sensitivity of the proposed model to different par-
ameter configurations, determine the insights on the 
influence process that the model can provide, and compare 
the performance of Algorithm 1 to solve the problem versus 
simpler cutting plane algorithms and the D-ICOP formula-
tion. To see the effects of enhancements in the IDBC algo-
rithm, and comparisons with the maximum coverage 
problem, refer to Appendix IX. The focus is on the segment 
covering problem, i.e., the SST formulation, with the static 
coverage and piece-wise coverage models being discussed in 
Appendix VI. 

Figure 6. Two scenarios of capsule intersection.
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All instances are solved using CPLEX 12.9.0 and the 
min-cut problems are solved by implementing the 
Hao–Orlin algorithm in the LEMON graph library (Dezs}o 
et al., 2011). The algorithm is coded in Cþþ and the 
experiments are carried out on a 64-bit Windows 10 Pro 
laptop with 8GB of RAM and an eighth-generation i7 
1.8GHz processor. 

7.1. Description of the instances 

We consider three set of experiments with different param-
eter configurations to analyze different types of underlying 
social interactions:

� External factor set: We have dlk ¼ 0; 8ðl, kÞ 2 A:
Intuitively, the decision-maker cannot change the net-
work influence rates. However, the underlying social 
interactions still play a role in the objective function of 
the ICOP since glk > 0; 8ðl, kÞ 2 A:

� General set: We have dlk, glk > 0; 8ðl, kÞ 2 A, meaning 
that the decision-maker is able to modify the network 
influence rates by investing the budget.

� Average set: All dlk, glk > 0; 8ðl, kÞ 2 A; and dlks are 
equal to the average of the corresponding values in the 
general set.

We consider two classes of network topologies across 10 
instances as shown in Table 2. Six of them are directed ver-
sions of networks following the Watts–Strogatz (WS) prefer-
ential attachment model (Watts and Strogatz, 1998), and the 
remaining four are real instances from the SNAP repository 
(Leskovec and Krevl, 2014). The rest of the parameters 
defining the instances and the algorithm are described in 
Appendix V.

7.2. Results and discussion

For each combination of parameter sets and network topolo-
gies, we randomly generated three instances. We report the 
average results of these three replications in Tables 3 to 5. 
These tables present the results of experiments with two fen-
ces and coverage radii of one and two. In all tables, the 
solution times are reported in seconds. The “OBJ” column 
represents the optimal solution, whereas the “HeurOBJ” col-
umn represents the value of the feasible solution found by 
Heuristic 1. The “UC” column stands for the number of 
lazy cuts, and “TUC” represents the total number of lazy 
cuts, including those added by the solver when proving the 
feasibility of the heuristic solution. The “Cov” column shows 
the number of covered nodes, “#M” stands for the total 
number of violated “big-M” constraints, and “#Re_MIPs” 

Table 3. Results of the external factor set for two fences with radius 1 and 2.

IDBC D-ICOP
Instance Time OBJ HeurOBJ UC TUC Cov #M #Re_MIPs IPS PrePro Formu

20.4.3.0 0.08 21.00 15.33 0 0 9 4 1 0.50 0.09 0.04
30.4.3.0 0.14 14.44 10.89 0 0 9 4 1 1.46 0.65 0.06
40.4.3.0 0.22 9.17 5.67 0 0 17 7 1 3.22 1.70 0.09
50.4.3.0 0.24 6.00 4.66 0 0 16 6 1 4.22 5.86 0.09
100.4.3.0 0.98 2.67 1.33 0 0 29 2 1 22.38 134.62 11.50
120.4.3.0 1.66 1.89 1.28 0 0 37 4 1 35.35 238.81 47.33
140.4.3.0 0.97 1.62 1.14 0 0 17 2 1 46.38 519.95 24.22
karate 0.18 6.49 2.11 0 0 16 6 1 1.98 1.00 0.07
dolphins 0.32 2.46 0.44 0 0 24 2 1 6.43 15.61 0.16
polbooks 1.31 2.06 0.78 0 0 13 2 1 24.23 172.67 6.66
football 1.49 32.81 24.86 0 0 15 4 1 30.14 237.51 40.90

Table 4. Results of the general set for two fences with radius 1 and 2.

IDBC D-ICOP
Instance Time OBJ HeurOBJ UC TUC Cov #M #Re_MIPs IPS PrePro Formu

20.4.3.0 0.17 259.41 178.02 0 0 17 6 1 0.50 0.09 0.06
30.4.3.0 0.26 247.17 147.00 0 0 29 8 1 1.46 0.65 0.07
40.4.3.0 0.81 113.78 76.87 0 0 32 6 1 3.22 1.70 0.17
50.4.3.0 0.88 95.24 75.59 1 2 40 2 1 4.22 5.86 0.44
100.4.3.0 125.91 35.43 29.14 1 2 73 3 1 22.38 134.62 201.53
120.4.3.0 286.92 25.70 21.80 3 7 84 4 1 35.35 238.81 716.55
140.4.3.0 382.71 21.65 19.01 8 12 98 7 1 46.38 519.95 1762.93
karate 0.85 129.06 70.35 4 4 27 7 1 1.98 1.00 0.10
dolphins 2.49 58.79 47.32 2 2 46 2 1 6.43 15.61 0.83
polbooks 122.51 40.57 33.67 1 2 80 2 1 24.23 172.67 145.29
football 181.98 374.04 358.00 0 1 86 7 1 30.14 237.51 400.04

Table 2. Description of instances in terms of number of nodes, number of 
arcs, and density.

Instance name Nodes (n) Arcs (m) Density

20.4.3 20 80 0.21
30.4.3 30 120 0.14
40.4.3 40 160 0.10
50.4.3 50 200 0.08
100.4.3 100 400 0.04
120.4.3 120 480 0.03
140.4.3 140 560 0.03
karate 34 156 0.14
dolphins 62 318 0.08
polbooks 105 882 0.08
football 115 1226 0.09
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represents the number of resolved MIPs after adding the 
violated “big-M” constraints, i.e., the number of iterations in 
Algorithm 1. For the D-ICOP, the time required to calculate 
the IPS for each table, the preprocessing time to reduce the 
size of the IPS, and the time needed to solve the formulation 
using a DBC algorithm are reported. These times are repre-
sented as “IPS”, “PrePro”, and “Formu”, respectively. Note 
that for tables with the same coverage radius, the “IPS” and 
“PrePro” values remain constant, as the IPS is not changed 
while the parameter configuration of the network influence 
is altered.

The results show that the External Factor Set is signifi-
cantly easier to solve than the other sets. Particularly, no 
additional state constraints are added for any of these cases, 
which indicate that the initial set of states T1 is sufficient to 
obtain the minimum absolute eigenvalue of the generator. 
Moreover, in most cases, it just takes a fraction of a second 
to find the optimal solution. The algorithm generally adds 
state constraints for the General and Average parameter 
sets, although far fewer than the worst-case scenario of 2n:
The Average case is also slightly more challenging to solve, 
which suggests that having a diverse range of parameters 
across the network leads to faster solution times.

Note that across all parameter sets the number of 
repeated MIPs after adding violated “big-M” constraints is 
mostly one and for a few instances it is zero, which states 
that just a small portion of the reported time is due to 
resolving the master problem from scratch at each iteration. 
Also, the number of violated “big-M” constraints is signifi-
cantly smaller than njFj, which evidences the effectiveness 
of rectangular inequalities of Section 4.2. Furthermore, as 
expected the General and the Average sets of experiments 
have significantly better objective values in comparison with 
the External set.

The results of the Heuristic suggest that its effectiveness 
varies depending on the setting in which network influence 
can be modified. The value of “OBJ” is found to be 61% 
greater than “HeurOBJ” on average for the External set, 
whereas it is 41% and 30% for the General and Average sets, 
respectively. These results highlight that the Heuristic is 
more effective in settings where network influence can be 
modified. Additionally, the results show that the External set 
covers fewer nodes on average compared with the General 
and Average sets. This seemingly counterintuitive behavior 
can be explained by the model’s strategy to target a few 
important nodes in the network rather than several less- 

connected nodes in the External set. In the other sets, it is 
not necessary to directly cover important nodes as their 
influence can be exploited by increasing their influence 
rates. Therefore, covering more “less-important” nodes and 
increasing the influence rates of important nodes might be a 
more optimal strategy in those settings.

When comparing the performance of the IDBC and D- 
ICOP using Tables 3 to 5, it can be seen that considering 
only the “Formu” time makes the D-ICOP appear to per-
form better in instances with fewer than 100 nodes. 
However, when the “IPS” and “PrePro” are also taken into 
account, the opposite is true and the IDBC outperforms the 
D-ICOP. Additionally, even when excluding the “IPS” and 
“PrePro” the IDBC still performs better than the D-ICOP in 
larger instances.

We close this section by noting that in Appendix VI, we 
show results for other combinations of radii, three fences, 
and the multiple segment PWT formulation, as well as the 
static coverage mode for two fences with different radii 
under the General set. These results generally show the 
same trends as previously discussed, with the only notable 
difference being that problems become more difficult to 
solve as there are two or a greater number of fences with 
equal radii (likely due to symmetry in the MIP formula-
tions). Additionally, it is worth mentioning that under both 
the General and Average sets, when there are two fences 
with equal radii, the D-ICOP outperforms the IDBC in 
terms of the “Formu” time.

8. Conclusions

We introduced the ICOP, an optimization problem for 
modeling and analyzing network IM problems when the 
external influence depends on the physical location of both 
the nodes and ads or Geo-fences. The goal of the decision- 
maker is to determine the optimal location of a fixed 
number of ads or Geo-fences, while also adjusting network 
influence rates within a budget constraint, in order to min-
imize the time required for the entire network to be influ-
enced. We established that the ICOP is NP-hard and 
developed MIP formulations for three different coverage 
scenarios. We also devised an IDBC algorithm which utilizes 
enhancements in the MIP formulations such as sets of valid 
cuts, reformulated non-linear “big-M” inequalities, and a 
heuristic to generate a high-quality feasible solution. The 
concept of critical intersection points from facility location 

Table 5. Results of the average set for two fences with radius 1 and 2.

IDBC D-ICOP
Instance Time OBJ HeurOBJ UC TUC Cov #M #Re_MIPs IPS PrePro Formu

20.4.3.0 0.17 181.32 130.33 0 1 17 5 1 0.50 0.09 0.05
30.4.3.0 0.21 193.63 107.44 0 1 29 6 1 1.46 0.65 0.07
40.4.3.0 0.77 80.35 56.82 0 3 33 4 1 3.22 1.70 0.25
50.4.3.0 1.17 64.71 51.99 0 2 41 4 1 4.22 5.86 0.51
100.4.3.0 45.35 25.93 21.74 1 12 74 4 1 22.38 134.62 186.01
120.4.3.0 251.12 18.85 16.18 4 17 84 2 1 35.35 238.81 727.70
140.4.3.0 272.46 16.33 14.28 7 20 99 6 1 46.38 519.95 1514.76
karate 0.83 95.34 68.60 1 2 29 7 1 1.98 1.00 0.16
dolphins 5.84 42.33 36.72 4 8 48 6 1 6.43 15.61 8.87
polbooks 92.27 26.52 22.89 0 6 80 1 1 24.23 172.67 168.08
football 111.87 233.29 225.89 1 7 86 6 1 30.14 237.51 405.92
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problems was used to derive a discrete formulation as an 
alternative approach to evaluate the IDBC performance.

The performance of the IDBC was evaluated through 
experiments on several instances of social networks with more 
than a hundred nodes and thousands of arcs, using real loca-
tion coordinates that were randomly generated in the down-
town area of Dallas, Texas. The results of these experiments 
showed that the IDBC is able to produce optimal and stable 
solutions for instances within seconds or minutes for the 
majority of cases. Additionally, we demonstrated the effective-
ness of the formulation enhancements by observing that the 
number of cuts is significantly smaller than 2n, the number of 
violated “big-M” constraints is also significantly smaller than 
njFj and the number of repeated MIPs is mostly one and 
sometimes zero. We also presented how significantly each 
enhancement in the IDBC improves the algorithm’s effective-
ness. Ultimately, through supplementary experiments, we 
have established that the ICOP outperforms other models that 
only consider coverage, as it takes into account the influence 
of the underlying social network.
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