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ABSTRACT

The representation of chemical structure forms a core component of polymer science, yet the
chemical structure diagrams used to convey such information lack the machine-processability vital
for automating analysis, managing abundant data, and harnessing the potential of informatics. On
the other hand, the usage of BigSMILES language—a machine-readable representation of polymer
chemical structure—requires specialized knowledge of its grammar and syntax. Here, the
algorithmic translation between chemical structure diagrams and BigSMILES line notation is
demonstrated, providing seamless interconversion to and from the lingua franca of polymer
chemists across a broad array of polymer architectures (e.g., copolymers, graft and segmented
polymers, star polymers, macrocycles, networks, ladder polymers). Serialization from structure
diagram into BigSMILES line notation is accomplished by parsing the contents of a connection
table and iteratively assembling string representations of the molecular graph and its substructures.
Deserialization from BigSMILES line notation into a structure diagram involves parsing the line
notation string into a stochastic graph representation, from which a valid graph traversal defines a
representative sequence of substructural units comprising the connection table (i.e., structure
diagram). These algorithms were validated through round-trip translation on a curated set of 300
polymer structure diagrams, demonstrating semantic preservation of the molecular graph in over
99% of cases and visually equivalent structure diagrams in 38% of cases. The 2-D layout, an
isometry of the atomic coordinates generated by the CoordGen library within RDKit, shows the
applicability of readily available atomic layout generation algorithms while revealing specific
areas in which to improve these layout algorithms for polymers—for example, 60% of test cases
could be rectified by orienting backbone atoms in an extended configuration along a horizontal

axis. Implemented in JavaScript, this software offers facile integration with web-based resources
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and forms an essential interface between informatics and the broader polymer research community.
By enabling humans and machines to process vast amounts of polymer chemical structural data,
this work aims to democratize access to polymer informatics and foster increasingly

interdisciplinary approaches to polymer research.



INTRODUCTION

Despite the increased application of machine learning and artificial intelligence in polymer
science, a lack of machine-readable polymer representations and sufficiently detailed datasets have
hindered further progress in the field.! The urgency for innovation in polymer science and
engineering has become increasingly evident as polymeric materials play an irreplaceable role in
consumer goods, infrastructure, and public health while simultaneously producing a growing
environmental footprint.? In the field of polymer informatics, readily available opportunities for
expediting research and development exist by improving the interfaces between humans and
machines handling polymer data.> One key interface involves the discrepancy between the
graphical representation preferred by polymer chemists and the sequences of bytes used by
machines to store and process information. In this article, a novel methodology and set of
algorithms are demonstrated that automate the translation between chemical structure diagrams
and BigSMILES line notation, capturing the stochastic structure of polymers in a string-based

format for machines and diagrammatic depictions for polymer chemists (Figure 1).
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Figure 1. Interconversion between macromolecular representations forms an essential interface in
polymer informatics, allowing humans and machines to interpret and process chemical structural data for
polymers. Serialization of structure diagrams into BigSMILES strings enables the graphical input of
molecular editor software to be encoded into compact string representations, while deserialization of
BigSMILES line notation into structure diagrams enables the “programming” of polymers inside a text

editor with instantaneous graphical feedback as the structure is decoded from the line notation.

Cheminformatics has stood at the forefront of scientific computing by developing
representations and methods for storing and processing vast amounts of chemical data through
digital information systems. The Chemical Abstracts Service (CAS) has provided indexing and
registration for millions of chemical substances since the 1960s.* Structure-based line notations,
such as Wiswesser line notation (WLN)® and the Simplified Molecular Input Line Entry System
(SMILES),® capture the connectivity of a molecular graph in a compact format for expedited
processing and storage of chemical structural data. Tabular representations such as the connection
table (e.g., molfile) incorporate additional details about molecular graphs such as the relative
coordinates of atoms within two- or three-dimensional structural depictions.” Although verbose,
connection tables have persisted as a data structure for visualization of molecules as structure
diagrams.® When considering the chemical structure of polymers, the locations of constitutional
repeating units and their connection points within the macromolecule must also be specified.” The
substructure group (Sgroup) extension of the molfile format enables the specification of these

repeating units as well as hierarchical relationships between them.!”

Line notations for polymers have traditionally been limited to lists of small molecule monomers
and the use of asterisks to demarcate repeating segments. To overcome the limitations of

deterministic chemical representations and express the stochasticity and variety of macromolecular



architectures attainable during polymer synthesis, BigSMILES line notation was developed.'! 12
BigSMILES extends the SMILES language with the notion of stochastic objects and bonding
descriptors to represent constitutional repeating units and their available connectivity. The
BigSMILES language has been further extended with methods and syntax for canonicalization and
non-covalent bonding.!* '* While the BigSMILES line notations provide a concise human- and
machine-readable representation of polymeric structures for direct entry, the preferred
representation and format of chemical information exchange for many polymer chemists remains

the chemical structure diagram.

This work presents algorithms and their implementation in JavaScript for the machine translation
between BigSMILES line notation and chemical structure diagrams, supporting graphical and text-
based representation of polymers. Here, serialization refers to the encoding of a connection table—
a data format specifying a structure diagram—into BigSMILES line notation, and deserialization
refers to the inverse process of decoding a BigSMILES string into a representative connection
table (i.e., structure diagram). Serialization is achieved by processing a connection table (i.e.,
V2000 or V3000 molfile), a standard output of molecular editor software, through iterative
traversal of the molecular graph and its specified substructures (i.e., Sgroups). Deserialization
involves the parsing of BigSMILES line notation into a stochastic graph representation, followed
by the identification of a representative graph traversal—a set of Eulerian paths spanning the
stochastic graph. Computation of 2-D atomic coordinates is performed using the CoordGen library
available within RDKit, followed by simple coordinate transformations to orient Sgroups and
brackets. Round-trip translation on a set of 300 manually curated chemical structure diagrams of
polymers enabled evaluation of these algorithms, and the limitations of Sgroup-agnostic atomic

coordinate generation are discussed. The implementation of these algorithms in JavaScript



facilitates applications such as the interactive binding between BigSMILES strings and chemical
structure diagrams as well as the text-based specification of polymers with instantaneous graphical
feedback. By automating the translation between line notation and the graphical representation of
polymer chemical structure, this work aims to serve the broader polymer chemistry community

through the improvement of interfaces for polymer informatics systems.

METHODS

Serialization from Chemical Structure Diagram to BigSMILES Line Notation

In this context, serialization is defined as the translation of a molecular graph from a graphical
representation (i.e., chemical structure diagram) into a string of ASCII characters representing the
same molecular graph in BigSMILES line notation. The input data structure is a connection table
(e.g., V2000 or V3000 molfile) of the molecular graph—an output from molecular editor
software—containing: a) a set of atoms and their properties, b) a set of bonds and their properties,
and c) an optional set of Sgroups each containing information about a subgraph within the
molecular graph such as a repeating unit (Figure 2). In addition to a list of atoms in the subgraph,
each Sgroup also contains the type of connectivity (e.g., head-to-tail, either/unknown), the location
of brackets, the Sgroup label (e.g., “n”) typically displayed as a subscript, any hierarchical
relationships with other Sgroups, and a list of the bond indices that connect the subgraph to the
rest of the molecular graph (i.e., crossing bonds). The molfile connection table format, originally
developed by Molecular Design Limited, Inc. and whose specification is currently maintained by
Biovia,'’ is commonly found in V2000 format. However, V3000 format (available since 1995) is
preferred for its improved machine readability and its ability to specify more than two crossing

bonds in a given Sgroup, the latter feature a necessity for representing network polymers. In the



following paragraphs, the algorithm for translating a connection table into BigSMILES notation

(i.e., serialization) is described in further detail.
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Figure 2. Overview of key concepts and representations for the serialization of a connection table—a
text-based representation of a structure diagram generated by a molecular editor—into BigSMILES line
notation. At a high level, the molecular graph represented in the connection table is decomposed into
subgraphs representing the root graph and each substructure group (Sgroup), and substrings for each

subgraph are serialized and then combined to form the final BigSMILES string.

The serialization process uses the information contained within a connection table to generate a
string for the root level (i.e., end-group atoms as well as placeholder tokens for root-level Sgroups)
as well as a string for each Sgroup in the connection table, followed by the iterative substitution
of Sgroup tokens with their line notation string replacements (Figure 3). The same algorithm
produces a SMILES string in the event that no Sgroups are provided (i.e., small molecule). Both

V2000 and V3000 molfile formats are supported by first parsing the contents of either connection



table format into a shared JavaScript Object Notation (JSON) data structure (see Supporting
Information, Section SII). Although connection tables do not explicitly include the notion of
stochasticity, the hierarchical property of Sgroups allows the specification of stochastic
copolymers using an encapsulatory Sgroup around neighboring Sgroups in the structure diagram.
If the atoms within a given Sgroup are all contained inside child Sgroups, then the Sgroup is
classified as a “Stochastic Set” represented by a comma-delimited list of Sgroup tokens, each
containing the integer index of the Sgroup surrounded by a double pair of curly braces. Otherwise,
the Sgroup is classified as a “Repeating Unit” and its line notation string is generated by traversal

of the molecular subgraph corresponding to the given Sgroup (Figure 3, Box A).



Parse connection table (V2000/V3000 molblock) contents
into JSON object: { atoms: [], bonds: [], Sgroups: []}
Generate root line notation string (see Box A) with explicit
end-group atoms and tokens for top-level Sgroups
For each Sgroup in the connection table:
Classify as Repeating Unit or Stochastic Set
If Repeating Unit, generate replacement line
notation string according to Box A
If Stochastic Set, replacement string is
comma-delimited list of child Sgroup tokens
Set initial value of BigSMILES as root string
While BigSMILES contains Sgroup tokens:
Select first Sgroup token for replacement and check its
parent Sgroup type
If parent is a Repeating Unit Sgroup (or the root)
Include stochastic object curly braces and
terminal descriptors around replacement string
If parent is a Stochastic Set Sgroup
Replace Sgroup token with replacement string
Return BigSMILES

Box A - Serializing line notation from molecular subgraph
Create replacement nodes for child Sgroups and assign
replacement tokens using the format ‘{{’ + index + }}’
Create adjacency list for undirected graph comprising only
top-level atoms, child Sgroups, and (if Sgroup) external
atoms associated with crossing bonds

Find a spanning tree using depth-first search
If processing an Sgroup (i.e., not the root string):
If crossing bond count is >2 and even:
Perform ladder classification procedure
Map external atoms to replacement tokens representing
bonding descriptors ( [$], [<], [>], [$[$]1], [<[<]2], etc.)
Identify “backbone” path between start and end nodes
(external atoms for Sgroups) using breadth-first search
Identify ring bonds (edges not captured by spanning tree)
Add start node to stack
While stack is not empty:
Set current node by removing last node from stack
If current node in branches set:
Add ‘(" to string, add current node as anchor to
branch stack, and increment depth counter
Add bond marker or E/Z marker to string if relevant
If current node is external atom or child Sgroup:
Add replacement token to string
Else format atom marker and add to string
Add ring bond marker if at a ring bond
Get next neighbors of current node from spanning tree
If no neighbors and inside a branch:
Add ‘)’ to string, get prior node anchor from branch
stack, and decrement depth counter
Add neighbors to stack
If number of neighbors >1:
Add non-backbone nodes to branches set
Return string with wildcard (*) atoms removed
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Figure 3. Detailed on the left, the serialization of BigSMILES line notation from a connection table

involves the generation of a root string followed by a substring for each substructure group (Sgroup), which

are iteratively assembled into the final BigSMILES string. To generate line notation for each molecular

subgraph (Box A), a spanning tree comprising top-level atoms, child Sgroups, and external atoms is
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traversed. On the right, examples of various polymer topologies show the resulting root string, Sgroup
substrings, and final BigSMILES generated through this method. Sgroups specifying Repeating Units have

blue labels, and those specifying a Stochastic Set (i.e., a collection of Repeating Units) have orange labels.

The sequence of characters in the line notation represents the traversal of a molecular graph,
where branches are encapsulated within pairs of parentheses and rings are encoded through integer
indices. Serialization of line notation for the root BigSMILES string and Repeating Unit Sgroups
involves such a traversal, where a reference mapping to child Sgroups and external atoms
associated with Sgroup crossing bonds are handled with tokens for Sgroups or bonding descriptors,
respectively. To serialize a Repeating Unit such that its bonding descriptors appear at the beginning
and end of the corresponding line notation, the shortest path between these bonding descriptors
(e.g., set of backbone atoms) is identified using breadth-first search, and branches are always
initialized away from this path. Otherwise, the traversal of the molecular subgraph largely follows

the SMILES serialization procedure as implemented in the Python library pysmiles.'¢

Prior to graph traversal, nodes for child Sgroups and bonding descriptors are defined and added
to a reference map to their respective replacement strings. These nodes and their respective bonds
are captured using an adjacency list—a map from each node to a list of its neighboring nodes—to
represent the subgraph. The connection points to child Sgroup subgraphs are defined inside the
crossing bonds (“xbonds”) property of the connection table associated with each child Sgroup.
Crossing bonds correspond to the bonds intersected by brackets in the structure diagram and are
used for determining where a repeating units subgraph connects to the macromolecular graph. An
adjacency list for the subgraph is generated, including external atoms associated with crossing
bonds and auxiliary nodes for any child Sgroups. From this adjacency list, a spanning tree is

identified using depth-first search, and any broken bonds (i.e., ring bonds) are stored in a reference
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map. If the Sgroup has an even number of crossing bonds greater than two, a classification
procedure is used to determine whether the substructure represents a ladder repeating unit or a
branching point of a network polymer (see Supporting Information, Section SIII). If a ladder
repeating unit is determined, each bonding descriptor is assigned an inner bonding descriptor and
group identifier. In all other cases, the type of bonding descriptor is determined from the
connection property of the Sgroup, where “either/unknown” (EU) connectivity is represented by
the [$] bonding descriptor token and “head-to-tail” (HT) connectivity is represented by conjugate

[<] and [>] bonding descriptor tokens.

To ensure proper directionality of traversal for Sgroups, the starting node index (i.e., bonding
descriptor) is selected based on its order of appearance in the root string or other Sgroups. Traversal
begins by adding the index of the starting node (e.g., the node representing the first bonding
descriptor) to a stack data structure, followed by a while loop that terminates once the stack is
empty. Each iteration of the while loop begins with the removal of the last item in the stack, which
can represent an atom, a bonding descriptor, or a child Sgroup. If this node forms the base of a
branch, an opening parenthesis is concatenated to the line notation string. Characters representing
higher-order covalent bonds or E/Z geometric isomer information are also added if applicable (for
more information about the handling of E/Z information, see Supporting Information Section SVI).
If the node index exists within the replacement map, then the corresponding string representing a
bonding descriptor (e.g., “[$]”) or child Sgroup (e.g., “{{2}}”) is concatenated to the line notation
string. Otherwise, the node representing an atom is formatted according to SMILES syntax and
concatenated to the line notation string. If the node is part of a bond excluded from the spanning
tree (i.e., ring bond), then the integer index of the corresponding ring is concatenated to the line

notation.
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Once the current node has been represented in the line notation string, the traversal continues by
identifying the neighboring node(s) in the spanning tree and adding their node indices to the stack.
If no neighboring nodes exist in the spanning tree, a closing parenthesis is concatenated to the line
notation string if the traversal has reached the end of a branch. If more than one neighboring node
exists, then the graph contains a branch point and the node indices representing the beginning of
new branches must be stored. To ensure that branches are initialized away from the backbone, the
atom contained in the backbone is placed at the front of the list concatenated to the stack, ensuring
that the other node(s) are retrieved from the end of the stack first. The indices of the non-backbone
neighboring atoms are added to a reference set used for determining whether an open parenthesis
indicating the start of a branch should be added to the line notation when the node index is retrieved
from the stack. With this approach, the last node visited for a Repeating Unit Sgroup corresponds
to a bonding descriptor. The serialized line notation corresponding to the root string or Repeating
Unit Sgroup is returned after the removal of any wildcard tokens (i.e., “*” atoms), as these

wildcards represent unspecified end groups omitted from BigSMILES line notation.

With the line notation strings for the root string and all Sgroups serialized, the BigSMILES line
notation is initialized with the root string. A while loop is then executed until the BigSMILES
string no longer contains Sgroup tokens. Each iteration of the loop seeks the first available Sgroup
token (e.g., “{{1}}”) and substitutes this token with the line notation string of the corresponding
Sgroup. If the parent of this Sgroup is a Stochastic Set, then a simple string replacement is
performed. Otherwise, a pair of curly braces and terminal bonding descriptors are added around
the replacement string to signify the beginning and end of the stochastic object. When no Sgroup
tokens remain in the line notation string, the conversion to BigSMILES has completed. If no

explicit end groups exist at the beginning or end of the BigSMILES, the respective terminal
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bonding descriptors are replaced with the empty terminal bonding descriptor symbol (“[]”) using

regular expressions. At this point, the resulting BigSMILES line notation string is returned.

Deserialization from BigSMILES Line Notation to Chemical Structure Diagram

As the inverse of the serialization process, deserialization begins with a BigSMILES line
notation string as input and concludes with the assembly of a connection table representing the
macromolecular graph as output. At a high-level, this process entails the parsing of the
BigSMILES string into a graph representing the stochastic macromolecule, upon which a graph
traversal procedure identifies a representative path—or set of paths, in the case of molecules
containing branch points—that defines the sequence of molecular fragments to assemble into a
connection table for display as a structure diagram (Figure 4). Here, the open-source
cheminformatics toolkit RDKit was used for converting the connection table into a web-based
graphic for the structure diagram,'” and the CoordGen library within RDKit was used to generate
the base set of 2-D coordinates for the atoms in that connection table.!® Although a structure
diagram is more visually expressive than line notation, BigSMILES line notation is more
semantically expressive for describing stochastic polymer structure. Therefore, the conversion
between a BigSMILES string and a structure diagram is not always guaranteed to capture the

stochastic polymer structure without loss of contextual information.

Unlike the well-defined molecular graphs specified by SMILES, polymers represented by
BigSMILES contain the ensemble of all macromolecules allowed under a set of molecular
fragments and constraints around their connectivity. Identification of a representative structure
diagram for the polymer involves the selection of a well-defined member of this ensemble,

recognizing that brackets will be used to denote the possibility of repetition. For example, in a
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stochastic copolymer, the ordering of repeating units is arbitrary but must be specified for purposes
of displaying the structure diagram. To capture whether a repeating unit is reversible, superscripts
outside the brackets (e.g., “HT” for head-to-tail, “EU” for either/unknown) can be used, but a
polymer defined solely by a structure diagram is often subject to ambiguity. Despite the
fundamental limitations of structure diagrams, however, the following deserialization procedure is
capable of capturing the variety of polymer architectures (e.g., block and stochastic copolymers,
graft polymers, segmented polymers, network and hyperbranched polymers, star polymers, ring

polymers, ladder polymers, etc.) available through the more expressive BigSMILES line notation.
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1) Tokenize and parse BigSMILES string Input: BigSMILES string
Replace fragments in BigSMILES with their string substitutes

For each character in BigSMILES string: > (I_ ) OI<IP] PI<D
Identify token character(s), classify token, and push to tokens array \ bond markers stochastic separators
If token length >1, skip forward to next unvisited character bonding descriptors  branch start & end

For each token in tokens array: stochastic object start & end ring & E/Z markers (not shown)
Case BRANCH_START: Add anchor to branches stack .
Case BRANCH_END: Get prior anchor from branches stack stqch_astlc
Case BOND: Save bond order for next atom; check E/Z d atomistic graph

Case STO_OBJ_START: Check for macrocycles; intialize stochastic context
Case STO_OBJ_END: Check for macrocycles; close stochastic context
Case STO_UNIT_SEPARATOR: Remove anchors
Case RING_NUMBER: Add ring to map, or close open ring by adding edge
Case ATOM: Parse atom info (element, charge, parity, etc.); create atom node,
add edge between atom and relevant anchor node (stochastic core or atom)
Case STO_BOND: Parse descriptor info; assign integer ID if none provided;
create stochastic core node if none exists; add edge between stochastic core
and relevant anchor node (stochastic core or atom)
Return stochastic atomistic graph { nodes: [ ], edges: []}
2) Generate array of molecular subgraphs
Initialize set of visited atom nodes
For each atom node:
If atom already visited, skip this iteration
Create adjacency list, but do not add atoms to adjacency lists of
stochastic cores to prevent extension beyond subgraph
Breadth-first search to identify all atoms in subgraph
Extract subgraph { nodes: [], edges: [] } and push to array stochastic
Return array of subgraph objects topology graph
3) Join subgraphs into stochastic topology graph
For each molecular subgraph in array:
Create node for molecular fragment with lower-case letter ID
Create new stochastic core node if none exists
Create edge between stochastic cores and molecular fragment
Return stochastic topology graph { nodes: [], edges: [1}
4) Identify set of Eulerian paths that traverse topology graph
Create adjacency list for topology graph including bonding descriptor types
Select start node and add to queue
While queue is not empty:
Extract current node from queue; if molecular fragment, mark as visited
Add bonding descriptor and node ID to path string
Prioritize next valid neighbor node from adjacency list
Create branch if at a molecular fragment with 2+ neighbors
Add to queue any neighbors not currently in queue
Return path string
5) Parse path string and assemble subgraphs into connection table
Add wildcard (*) atoms wherever path terminates at stochastic core

Create “Repeating Unit” Sgroup for each complementary pair of stochastic bonds
Create “Stochastic Set” Sgroup for first and last of a stochastic bond, if 3+ exist \ /
Return connection table { atoms: [ ], bonds: [], Sgroups: []} Complementary bonds form Sgroup

6) Retrieve atom coordinates and compute final layout
Create placeholder molblock, where any atoms with specified E/Z

o}
configuration are assigned dummy x- and y-coordinates H bH
Send placeholder molblock to RDKit get_new_coords() function NN
Perform global rotation to align crossing bonds to horizontal axis H ol

Compute bracket positions and rotations ) .
Return molblock for depiction Output: Chemical structure diagram

Figure 4. To deserialize BigSMILES line notation into a chemical structure diagram, the BigSMILES
string is tokenized and parsed into a stochastic graph representing the ensemble of polymers valid under
the BigSMILES string. A representative member of the ensemble is selected by finding the set of Eulerian

paths that visit each molecular fragment exactly once. Atomic coordinates for the connection table are
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computed using RDKit, followed by a global coordinate transformation and bracket placement procedure.
A high-level overview of the algorithmic steps is shown on the left, with a corresponding illustrative

example of Nylon-6,6 on the right.

The deserialization of a BigSMILES string begins with the decomposition of the string into a
list of individual tokens, each represented by a single character or short string of characters (e.g.,
atom, bond, bonding descriptor, branch start or end marker, stochastic object start or end marker,
ring index, etc.). If the BigSMILES string contains fragment notation syntax, these fragments are
replaced with their string equivalents prior to tokenization. The tokenization and parsing procedure
roughly follows the approach used within the pysmiles library for reading SMILES strings,'®
extending the approach with BigSMILES-specific syntax and a stochastic graph representation as
opposed to the deterministic graph for small molecules. A macromolecule is only considered a
valid member of the ensemble represented by a BigSMILES string if it can be represented by the
traversal of this stochastic graph. The stochastic graph is assembled by iterating across the array
of tokens, where each token is evaluated according to its type using a switch/case pattern. At its
essence, the stochastic graph contains nodes representing atoms or “stochastic cores” (i.e., a set of
compatible bonding descriptors) connected by edges representing covalent (i.e., atom—atom) or
stochastic bonds (i.e., with a stochastic core). The JSON data structure for the stochastic graph is
described further in the Section SIX in the Supporting Information. Each stochastic core is

assigned an integer identifier if none is provided in the BigSMILES bonding descriptor.

The stochastic atomistic graph formed by parsing the BigSMILES string is further decomposed
into a stochastic topology graph by collapsing all deterministic molecular subgraphs into individual
nodes. The identification of each molecular subgraph, or fragment, is performed using breadth-

first search on atom nodes from an adjacency list wherein stochastic cores contain no neighboring
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nodes other than adjacent stochastic cores (e.g., a diblock copolymer). In this implementation, each
molecular fragment node is identified by a lower-case alphabetical identifier to distinguish from

the integer identifiers of nodes representing stochastic cores.

A BigSMILES string represents an ensemble of all possible connectivity patterns for a polymer.
In a structure diagram for a polymer, brackets indicate repetition of a given molecular fragment,
and a superscript indicates the connectivity (“HT” for head-to-tail, or “EU” for either/unknown).
The representative member of the BigSMILES ensemble for depiction is defined as that which: a)
traverses the entire stochastic graph, b) follows all bonding constraints set by bonding descriptors,
and c) visits each molecular fragment exactly once. Such a traversal can be described as a set of
Eulerian paths, where stochastic core nodes may be revisited but each edge must be visited exactly
once. Additional Eulerian paths are initialized at branching molecular fragments (e.g., graft
polymers, network polymers, star polymers). The traversal of the stochastic graph is represented
by a string generated through a procedure similar to the serialization of BigSMILES, where
branching follows the same parenthetical syntax of SMILES and stochastic bonds between
molecular fragments are represented by bonding descriptor symbols and the integer identifier of
their corresponding stochastic core. The starting node for traversal is selected using the following

rules:

1. If the BigSMILES string begins with an atom token, the molecular fragment containing that

atom 1is selected, otherwise:

2. A terminal molecular fragment node connected to stochastic core with index 1, otherwise:

3. The lowest-index stochastic core.

18



During traversal of the graph, neighboring nodes are identified from an adjacency list and filtered
to those with compatible bonding descriptors (if at a stochastic core), removing any visited
molecular fragments. The next node to visit is chosen from this set based on the following selection

criteria, where priority is given to the node whose identifier occurs first when sorted alphabetically:

1. If starting at a stochastic core with an odd number of outgoing edges and conjugate bonding
descriptors (e.g., [<], [>], [<]), select a path with the more frequent descriptor (e.g., [<]),

otherwise:

2. Visit nodes that loop back to the current node before visiting outgoing nodes, otherwise:

3. Visit a terminal node (i.e., node with only one neighbor), otherwise:

4. Visit the first node in the alphabetically sorted list of candidates.

When a molecular fragment contains more than one outgoing path, a branch is initialized and its
corresponding Eulerian path is nested in parentheses. Therefore, the symbols within the graph
traversal string include: a) lower-case alphabetical identifiers representing molecular fragments,
b) integer identifiers representing stochastic cores, ¢) characters representing BigSMILES bonding
descriptor types (i.e. <, >, or $), and d) parentheses indicating branching in the stochastic topology
graph. The versatility of this approach is evidenced by the variety of distinct topologies, each

representing a different polymer architecture, that can be parsed and traversed (Figure 5).
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Figure 5. To cover the broad range of polymer architectures expressible through the BigSMILES
language, the stochastic graph traversal algorithm must produce a valid set of Eulerian paths across a variety
of topologies. Here, illustrative examples of twelve types of polymers are shown, from BigSMILES string

to the resulting structure diagram corresponding to the selected graph traversal. In cases where the generated

20



structure diagram is suboptimal, namely examples 5 and 6, potential improvements to the layout by

including Sgroup information are discussed in the Supporting Information, Section SVIIL.

Following the identification of a valid traversal of the stochastic topology graph, this set of
Eulerian paths is converted into a connection table by joining molecular fragments with bonds at
their specified stochastic attachment points. Self-repeating substructures in this macromolecular
graph are identified where the traversal revisits a given stochastic core through a complementary
pair of bonding descriptors (i.e., [$]-[$], [<]-[>], or [>]-[<]), and each substructure is captured by
adding a corresponding Sgroup to the connection table. The Sgroup may contain more than one
molecular fragment, such as in the Nylon-6,6 example of an alternating (AB) polymer (Figure 4).
In the event that a stochastic core is visited several times for different repeating units (e.g.,
stochastic copolymer), an encapsulatory Sgroup containing all molecular fragments between the

first and last occurrence of the stochastic core is created to represent the Stochastic Set.

Structure diagram generation (SDQG) involves the calculation of a set of Cartesian coordinates
specifying the 2-D layout of atoms in a connection table.'” Significant prior work has gone into
the development of SDG algorithms that produce publication-quality structure diagrams for small
molecules.?** While the International Union of Pure and Applied Chemistry (IUPAC) has
compiled a list of recommendations for the graphical representations of polymers,” 2’ the
procedural generation of such representations has not been reported. Instead of introducing new
SDG algorithm for polymers, this work repurposes the high-quality CoordGen library available
within RDKit for generating the base set of coordinates,'” '8 followed by global coordinate
transformation and a bracket placement procedure. For any atoms containing geometric isomer
information (e.g., cis or trans), a set of placeholder coordinates is produced in order to convey this

information to the SDG algorithm (see Supporting Information, Section SVI). To orient the
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structure such that brackets are aligned along an approximately horizontal axis, a least-squares
linear regression is computed on the midpoints of Sgroup crossing bonds and the coordinates are
rotated according to the inclination angle of the regression line (see Supporting Information,
Section SIV). Brackets, which are ignored by the SDG algorithms in RDKit, are placed at crossing
bond midpoints and oriented such that bracket pairs are parallel while avoiding overlap with the
crossing bonds (see Supporting Information, Section SV). The finalized connection table with
atom and bracket coordinates is then serialized into a V3000 molfile and passed to RDKit for
conversion into a web-based image (e.g., SVG or HTMLS5 Canvas) of the structure diagram,

concluding the BigSMILES deserialization process.

Special Cases of BigSMILES Deserialization

As molecular fragments are assembled into a connection table according to the graph traversal
string, additional considerations must be made regarding the specification of bonds at stochastic
attachment points (Figure 6). Before the graph traversal string is parsed, asterisk characters are
placed, through regular expressions, wherever a path begins or ends at a stochastic core, as these
configurations represent unspecified end groups. Whenever an end group is unspecified (Figure

AT 33

6a), a wildcard atom (represented by a elemental symbol) is added to the connection table to
complete the respective crossing bond for the Sgroup. In RDKit, these wildcard atoms can be
configured to render as attachment points, otherwise the default depiction uses the asterisk symbol.
In network polymers (Figure 6b), the assembly of the connection table leaves at least one bond
open, and this open bond must be converted into a crossing bond by adding a wildcard atom to the
connection table. In ring polymers (e.g., macrocycles) (Figure 6c), macrocycles are captured as a
property of an edge of the stochastic graph when the BigSMILES string is parsed, and this

information is used to close an available bond instead of adding a new wildcard atom to the
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connection table. Ladder polymers (Figure 6d) follow the same graph traversal form as linear

polymers, except the open bonds corresponding to bond groups must be handled concurrently. In

the case of adjacent ladder units, the compatibility of inner descriptors is considered when adding

bonds to the connection table. Finally, due to the greater number of attachment points, additional

wildcard atoms are added to form the extra crossing bonds associated with the Sgroup. Ladder

polymers with explicit end groups are not supported.
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Figure 6. Accommodating the broad range of polymer topologies expressible through BigSMILES

involves proper handling of open bonds as the connection table is assembled: a) Unspecified end groups

are replaced with wildcard atoms displayed here as attachment points; b) network polymers with open bonds

remaining once the path has been parsed are closed with wildcard atoms displayed as attachment points; c)

ring polymers (i.e., macrocycles) are closed by forming a bond with the subgraph containing the

macrocycle; and d) ladder polymers require the concurrent handling of bond groups, ensuring compatibility

of the specified inner bonding descriptors.
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RESULTS AND DISCUSSION

Evaluation of Machine Translation Procedures

The serialization and deserialization procedures were evaluated through round-trip translation
(RTT) on a set of 300 connection tables of polymers (i.e., V2000 and V3000 molblocks) curated
using the Ketcher web-based molecular editor from EPAM Systems.?® RTT demonstrates the
preservation (or loss) of information during interconversion by performing a forward translation
followed by a reverse translation. In this procedure, each curated connection table was serialized
into a BigSMILES string, followed by the deserialization of the generated BigSMILES string into
a connection table. The input structure diagrams, generated BigSMILES strings, and generated
structure diagrams are available in Section SXII of the Supporting Information and as an HTML
table in a supporting computational notebook on Observable.?’ The re-assembly of the molecular
graph itself (without position information) performs reliably in over 99% of cases, failing in one
case to re-create a hyperbranched network polymer from the generated BigSMILES string. In the
failed case, a valid BigSMILES string was generated but the graph traversal algorithm during
deserialization failed to identify a set of Eulerian paths including all explicitly defined end groups.
Overall, the machine translation was demonstrably robust in producing semantically valid

representations during serialization and deserialization.

BigSMILES line notation does not capture the spatial arrangement of atoms and bonds, so the
translation from a connection table (i.e., V2000 or V3000 molfile) into BigSMILES removes all
atomic coordinate information from the original structure diagram. The extent to which the
generated structure diagram resembles the input structure diagram depends on the layout

algorithms employed for SDG. Once the deserialization procedure decodes a BigSMILES string
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into a representative molecular graph, the layout of the molecular graph is computed using the
CoordGen library in RDKit,!”- '8 followed by a global coordinate transformation to orient Sgroups
horizontally and the placement of brackets (see Supporting Information Sections SIV and SV).
While this approach takes advantage of the significant prior work in structure diagram generation

for small molecules,!®-2¢

structure diagrams for polymers have an additional set of drawing
conventions related to the display of repeating units and their respective backbones. Generated
structure diagrams were manually inspected for several classes of layout errors (e.g., non-extended
backbone, suboptimal layout of hierarchical repeating units, hyperextended side chains). If the
generated diagram contained no such errors, it was deemed a “reasonable depiction” even if it did
not exactly match the input diagram—+for example, the same structure inverted or rotated. In the
test set of 300 polymer connection tables, 113 (37.7%) produced a reasonable depiction with the
readily available, Sgroup-agnostic layout algorithm in RDKit (Table I). The most common form
of suboptimal layout (179, or 59.7%) featured backbone atoms not placed in an extended
orientation along a horizontal axis, where the incorporation of Sgroup information becomes
necessary in order to produce a depiction that follows the drawing conventions for polymers. The
limitations of Sgroup-agnostic layout generation and opportunities for Sgroup-aware counterparts

are further discussed, along with example structure diagram outputs, in Section SVII of the

Supporting Information.
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Table I. Summary of the round-trip translation from a structure diagram (manually produced in a
molecular editor) into a generated BigSMILES string (i.e., serialization) and back into a structure diagram
(i.e., deserialization). Note that a given structure diagram output may have more than one classification,

and polymers containing large side chains or hierarchical repeating are infrequent in the test set.

Classification Count of occurrences | Frequency
Molecular graph semantically preserved (ignoring visual layout) 299 99.7%
Visual layout of structure diagram preserved (or reasonable variant) 113 37.7%
Backbone not extended 179 59.7%
Suboptimal placement of hierarchical repeating units 3 1.0%
Hyperextended side chains 10 3.3%
Unable to generate depiction 1 0.3%

In some cases, the translation from BigSMILES line notation to a structure diagram results in
information loss about the original stochastic ensemble. Sgroups capture constitutional repeating
units, precluding the distinct representation of structural units that do not self-repeat (e.g., units A
and B in an alternating AB copolymer). An example of such a polymer is Nylon-6,6, whose
representative BigSMILES and structure diagram were shown in Figure 4. The serialization of the
structure diagram back into BigSMILES will include a single repeating unit inside the stochastic
object. This fundamental limitation, relevant to polymers formed by condensation, is discussed
further in Section SVIII of the Supporting Information. Another example of information loss
between BigSMILES and structure diagrams involves the specification of end groups within the
stochastic object of a BigSMILES string instead of as explicit end groups outside the stochastic
object. This feature of BigSMILES enables the representation of polymer ensembles whose
members may contain different end groups, such as polymers formed through reversible addition—

fragmentation chain transfer (RAFT). Such an ensemble is not representable through a single
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structure diagram, in which end groups must be specified explicitly. In this case, the polymer
ensemble could be represented by multiple structure diagrams, each derived from a unique set of
Eulerian paths on the stochastic graph representation. The serialization of multiple structure
diagrams into a single BigSMILES, outside the scope of this work, would require additional
inference in order to determine the appropriate placement of end groups inside the stochastic

object.
Representing Polymer Ensembles as Stochastic Graphs

The validity of a BigSMILES string does not guarantee that the BigSMILES string is equivalent
to the polymer intended by the chemist. When designing a new polymer or specifying an existing
polymer, graphical feedback offers a mechanism for correcting semantic errors. However, the
chemical structure diagram alone may be insufficient for providing semantic validation. For
example, the biodegradable copolymer poly(butylene adipate-co-terephthalate) (PBAT), a
stochastic copolymer, can easily be mistaken for a diblock copolymer through inspection of the
structure diagram alone, and the ordering of its repeating units has a disproportionate effect on the
structure diagram (Figure 7). The stochastic topology graph derived from BigSMILES line
notation, an intermediate representation and byproduct of this work, better captures the essential
semantic differences or similarities between a given pair of polymer representations. Similar graph
representations for polymer ensembles, akin to state machines, have been presented in earlier
work.'® 3% Compact representations of stochastic polymers, rendered using Graphviz or an

! can complement chemical structure diagrams in order to

equivalent graph layout software,’
facilitate the semantic validation of structural data. Further examples of these stochastic graphs

and their interpretation can be found in Section SXI of the Supporting Information.
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Figure 7. Chemical structure diagrams may fail to distinguish essential differences in polymeric structure
and topology (poor accuracy), and the multiplicity of valid structure diagrams for a given stochastic
copolymer may lead to superficial differences in the chemical structure diagram that do not impart semantic
meaning (poor precision). The stochastic topology graph—derived directly from BigSMILES line
notation—provides a visual feedback mechanism for ensuring that a polymer is represented as intended by
the chemist. In this example featuring the biodegradable stochastic copolymer poly(butylene adipate-co-
terephthalate) (PBAT), structure diagrams 1 and 2 appear nearly identical, but a missing encapsulatory
Sgroup in 2 changes the topological interpretation from PBAT to that of a diblock copolymer instead.
Furthermore, inverting the positions of stochastic repeating units leads to superficial differences in two

structure diagrams that are semantically equivalent.
Graphical User Interfaces (GUIs) Combining BigSMILES and Structure Diagrams

The JavaScript implementation of the serialization and deserialization algorithms enables the
facile integration with web-based applications and introduces opportunities for interactive

components built around the translation between BigSMILES and structure diagrams. In one such
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example,®? a text-based editor for BigSMILES line notation displays the generated structure
diagram above a text editor, providing instantaneous visual feedback when specifying a polymer
through direct entry of its BigSMILES line notation (Figure 8). Such an interface allows one to
“program” a polymer structure symbolically, similar to how one might write mathematical
equations or format documents in LaTeX.* To improve the readability of the line notation inside
the text editor, syntax highlighting is implemented using Prism;** the automated indentation for
stochastic objects aims to further improve readability of the line notation through the addition of
whitespace and newline characters, which are removed from the string before processing the

BigSMILES.

CC3CS

{[>
[<]C(clcccccl)C[>]
[<] }
C(C)(C)C(=0)0Cc2cn(nn2)CC(0)COC3=0]|

Figure 8. Deserialization of BigSMILES line notation enables text-based specification of polymer
chemical structure diagrams through a text editor interface, akin to interfaces for computer programming
or Markdown formatting. Here, formatting of the BigSMILES string (e.g., syntax highlighting, auto-

indentation) was implemented in order to improve the readability of the line notation.
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The BigSMILES string itself can serve as an input element within a graphical user interface. In
another interactive demonstration,* highlighting a segment of the BigSMILES string results in the
instantaneous highlighting of the corresponding atoms and bonds in the generated structure
diagram (Figure 9). The binding between characters in the BigSMILES line notation and atoms
in the structure diagram is accomplished by preserving the indices of tokens in the BigSMILES
string throughout the deserialization process and creating a map of atoms to their token indices
during the assembly of the connection table. When the BigSMILES string is highlighted, the
corresponding atoms within the bounds of the highlighted segment are identified, and their indices
are passed as an input to the structure diagram rendering function in RDKit. If the precise pixel
coordinates of the atoms in the structure diagram are known, the reverse mapping to tokens in the
BigSMILES string is also possible. Such elements can transform a structure diagram from a static
graphic into an interactive canvas for polymer informatics or serve as visual feedback in

educational resources for learning the BigSMILES language.

qy n

0]

{[1[<Joc(=o>m§c>(c>c1ccc(cc1>[>1[1}

Figure 9. Capturing the character index of each token in the BigSMILES string and propagating this
information throughout the deserialization process—preserving the link between atoms in the BigSMILES
and atoms in the structure diagram—enables binding of BigSMILES to chemical structure diagrams,

transforming these depictions from static graphical representations into interactive elements. In this
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example, highlighting a segment of the BigSMILES for polycarbonate results in the highlighting of

corresponding atoms in the generated chemical structure diagram.

As depicted earlier, these translation algorithms can augment the abilities of existing web-based
molecular editors (Figure 1). For example, one-way binding between connection table and
BigSMILES line notation allows a chemist to create or manipulate the structure directly within the
molecular editor while the serialization algorithm updates the BigSMILES string instantaneously.
A more advanced interface could feature two-way binding between connection table and
BigSMILES line notation, allowing the chemist to dynamically switch between molecular editor
and BigSMILES text editor as inputs for updating the structure incrementally, where an update to
one input is automatically reflected in the other. Given the quality of modern molecular editor
interfaces, such approaches can significantly expedite the generation of BigSMILES—even for
chemists already familiar with the BigSMILES language—compared to the keystrokes required

for direct entry of the line notation.

Toward Data-Driven Polymer Design

The properties of a polymer depend on the polymer’s synthesis (e.g. molecular mass distribution)
as well as its processing (e.g., temperature, extrusion rate, ambient conditions). Such attributes are
not captured in chemical structure diagrams or BigSMILES line notation. As a result, BigSMILES
provides a chemically-resolved, structurally-based identifier for larger data models that address
the various other dimensions within the vast design space for polymers. Records of polymer
synthesis and process history have been demonstrated using schema- and ontology-based
approaches,*® 37 and BigSMILES is currently used as the default chemical identifier within the

data model for the Community Resource for Innovation in Polymer Technology (CRIPT).*® The
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application of machine learning techniques to polymers hinges not only on representing polymer
structure, but also on the ability to amass large quantities of useful data on the synthesis,
characterization, processing, and properties of these polymers. Additional considerations such as
the sustainability and criticality of these materials may involve capturing data attributes outside
the conventional realm of polymer and materials science.?* *° The flexibility of a data model such
as that used within CRIPT lends itself to comprehensive capture of broadly relevant information
for the development of the next generation of sustainable polymers, but the additional degrees of
freedom pose a challenge for creating interfaces for data curation. The ability to rapidly translate
between line notations and structure diagrams can reduce or eliminate barriers to data curation that
currently throttle data-driven polymer science and engineering by providing streamlined structural

annotation as well as visual verification.

The translation between hand-drawn or printed structure diagrams and BigSMILES could
further alleviate challenges in historical data curation. In this work, the input representation for
serialization to BigSMILES is a connection table (i.e., V2000 or V3000 molfile), a direct output
of molecular editor software. Translation from unstructured data—hand-drawn or computer-
generated images of molecular structure, where the connection table is no longer available—into
a connection table could bridge the gap between this work and the large amount of structural data
currently available in the literature. One such approach might employ a transformer-based artificial
neural network for optical recognition, such as Image2SMILES.*! Developing this system would
require a large training set of polymer chemical structure diagrams with a variety of bracket styles
and structural annotations. An extension of the work presented here could assist in the procedural

generation of such a training set.
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Forward-looking applications of this work include visual validation for the generative design of
polymers and population of databases for polymer informatics. As new methods emerge to create
valid molecules in silico as candidates for computational modeling or experimentation,***’
decision-making on the part of humans monitoring this process can be aided with the proper
rendering of structure diagrams. Additionally, whereas the rudimentary representation of polymers
as SMILES strings with asterisks at attachment points has served as the basis for generative
models,** #° this representational scheme is limited to linear homopolymers without end groups.
BigSMILES, on the other hand, captures the much broader range of synthetically available
polymer architectures (e.g., copolymers, macrocycles, graft polymers, segmented polymers, star
polymers, ladder polymers, etc.). The design space for polymer informatics thus expands

significantly with the introduction of BigSMILES line notation, now made more accessible

through the machine translation software developed in this work.
CONCLUSIONS

Algorithms for the machine translation between chemical structure diagrams and BigSMILES
are reported, making line notations and their benefits more readily available to the broader polymer
science community. The implementation of these algorithms in JavaScript enables facile
integration with web-based tools and resources for polymer informatics. The translation from a
structure diagram to BigSMILES (i.e., serialization) and from BigSMILES to structure diagram
(i.e., deserialization) support humans and machines in the processing of large quantities of polymer
data. Validation on a set of 300 curated polymer structure diagrams demonstrated the robustness
of the translation procedures, and opportunities for improving the layout of generated structure

diagrams through Sgroup-aware algorithms are discussed. By bridging an important gap between
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computers and polymer chemists, these tools offer a reimagination of human—computer interfaces

for the data-driven design and discovery of polymer materials.
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structural repeating unit; SDG, structure diagram generation; JSON, JavaScript Object Notation;

RTT, round-trip translation; SVG, Scalable Vector Graphics.
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