
Spreading and leveling of finite thin films with elastic
interfaces: An eigenfunction expansion approach

N C Papanicolaou1 and I C Christov2

1 Department of Computer Science, University of Nicosia, 46 Makedonitissas Avenue, CY-2417 Nicosia,
Cyprus
2 School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

E-mail: papanicolaou.n@unic.ac.cy,christov@purdue.edu

Abstract. The flow of a thin viscous liquid layer under an elastic film arises in natural processes, such as
magmatic intrusions between rock strata, and industrial applications, such as coating surfaces with cured
polymeric films. We study the linear dynamics of small perturbations to the equilibrium state of the film in
a closed trough (finite film). Specifically, we are interested in the spreading (early-time) and leveling (late-
time) dynamics as the film adjusts to equilibrium, starting from different initial perturbations. We consider
both smooth and non-smooth spatially symmetric and localized initial conditions (perturbations). We find
the exact series solutions for the film height, using the sixth-order complete orthonormal eigenfunctions
associated with the posed initial-boundary-value problem derived in our previous work [Papanicolaou N C
and Christov I C 2023 J. Phys.: Conf. Ser. 2675 012016]. We show that the evolution of the perturbations
begins with the spreading of the localized perturbations, followed by their mutual interaction as they spread,
and finally, interactions with the confining lateral boundaries of the domain as the perturbations level. In
particular, we highlight how the leading eigenvalues of the problem determine the scalings of certain figures
of merit with time.

1. Introduction
The flow of a thin viscous liquid layer under an elastic film [1, 2] arises in natural processes, such as
magmatic intrusions between rock strata [3, 4, 5], and industrial applications, such as coating of surfaces
with cured polymeric films [6, 7], growth of epitaxial films for optoelectronics [8] and semiconductors
[9], microfluidic actuators [10], impact mitigation [11, 12], and adhesion [13, 14], to name a few. In
our previous work [15], we considered the linear dynamics of a finite thin film with an elastic interface.
Specifically, we derived the set of complete sixth-order orthonormal eigenfunctions associated with the
initial boundary value problem. In this work, we continue our studies of the linear dynamics of small
perturbations to the equilibrium state of the film in a closed trough (finite film).

Specifically, we are interested in the spreading (early time) and leveling (late time) dynamics as the
film adjusts to equilibrium, starting from different initial perturbations. The motivation for the present
study is the recent work of Sæter et al. [16], who performed a combined experimental-numerical study of
the fate of localized blisters [17] on the surface of a laterally unbounded elastic-plated film. They focused
on the nonlinear regime of coalescence and its self-similar dynamics, noting an “anomalous exponential
growth with time, contrasting the power-law solutions usually describing the self-similar behavior of
lubrication flows” (e.g., [18, 19]).

To further understand this behavior, we analyze the linear dynamics of blisters on the elastic surface
of an confined thin film, the governing equations of which are reviewed in section 2. Using the complete



sixth-order orthonormal eigenfunctions from our previous work [15], which are reviewed in section 3, we
find the exact series solution for the film height by separation of variables in section 4. Next, in section 5,
we consider non-smooth (section 5.1) and smooth (section 5.2) forms of the spatially symmetric initial
conditions representing the localized perturbations that create blisters on the surface of the film. We show
that the evolution of the perturbations begins with the spreading of the localized perturbations, followed
by their mutual interaction as they spread, and finally, interactions with the finite lateral boundaries of
the domain as the perturbations level. In particular, we highlight the exponential decay in time of various
relevant quantities, whose time scales are set by the leading eigenvalues of the problem. Conclusions are
stated in section 6.

2. Governing equations
Using lubrication theory (i.e., a long-wave approximation) [20, 21, 22], it can be shown [1, 23, 15] that
a slender, elastic-plated film’s height h(x, t) obeys the sixth-order thin-film equation

∂h
∂t
=

∂

∂x

{
h3

12µ f

[
ρ f g

∂h
∂x
+ B

∂5h
∂x5

]}
, (2.1)

where µ f is the (Newtonian) fluid’s dynamic viscosity, ρ f is its density, and B is the elastic interface’s
bending rigidity. The equilibrium film height is h0, the trough has an axial length 2ℓ ≫ h0, and the
acceleration due to gravity is denoted by g. A schematic is shown in figure 1.
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Figure 1. Schematic of a finite thin film with an elastic interface in terms of the dimensionless variables
of the problem. The perturbation of the flat state is denoted u(x, t). The domain and boundary conditions
on u at x = ±1 (non-pinned, 90◦ contact angle, and no flux through the vertical confining walls) are
indicated.

Making the problem dimensionless through the transformations x 7→ ℓx, h 7→ h0h, t 7→ tct and
choosing tc = 12µ f ℓ

6/Bh3
0 to be the so-called “viscous-elastic” timescale [24], (2.1) becomes

∂h
∂t
=

∂

∂x

[
h3

(
Bo

∂h
∂x
+
∂5h
∂x5

)]
, (2.2)

where the Bond number

Bo =
ρ f gℓ4

B
(2.3)

quantifies the effect of gravity relative to the bending resistance.
As in [15, 19], we are interested in small perturbations to the flat state: h(x, t) = 1 + u(x, t), where

maxx,t |u| ≪ 1. Then, to leading-order in u, (2.2) becomes

∂u
∂t
= Bo

∂2u
∂x2 +

∂6u
∂x6 , (2.4)



which is a linear sixth-order partial differential equation of “parabolic” type [19]. As discussed in
[15, 19], for a free (non-pinned) film in a closed trough, as shown in figure 1, the boundary conditions
for (2.4) are

∂u
∂x
=
∂2u
∂x2 =

∂5u
∂x5 = 0 at x = ±1. (2.5)

Here, we consider the simplest form of (2.4), which occurs when Bo = 0 (i.e., gravity is negligible).

3. The complete orthonormal set of sixth-order eigenfunctions
Based on the above discussion, consider the following sixth-order initial boundary value problem (IBVP)
for u = u(x, t): 

∂u
∂t

−
∂6u
∂x6 = 0, (x, t) ∈ (−1, 1)× ∈ (0,∞),

∂u
∂x

∣∣∣∣∣
x=±1
=
∂2u
∂x2

∣∣∣∣∣∣
x=±1
=
∂5u
∂x5

∣∣∣∣∣∣
x=±1
= 0, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ (−1, 1),

(3.1a)

(3.1b)

(3.1c)

for a given u0 ∈ L2[−1, 1].
To solve IBVP (3.1) by separation of variables, we must solve the associated Sturm–Liouville (SL)

eigenvalue problem (EVP):
−

d6ψ

dx6 = λ
6ψ, x ∈ (−1, 1),

dψ
dx

∣∣∣∣∣
x=±1
=

d2ψ

dx2

∣∣∣∣∣∣
x=±1
=

d5ψ

dx5

∣∣∣∣∣∣
x=±1
= 0.

(3.2a)

(3.2b)

Although SL theory was developed for second-order problems [25], it is customary in the literature to
also refer to higher-order self-adjoint EVPs as “SL EVPs” [26, 27].

As shown in [15], SL EVP (3.2) has a countable set of solutions {ψm(x)}∞m=1,2,..., which can be split
into even (“cosine”)

{
ψc

m(x)
}∞
m=1,2,... and odd (“sine”)

{
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}∞
m=1,2,... subsets:
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, (3.3a)
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, (3.3b)

where the lengthy expressions for the normalization coefficients cc
m and cs

m are given in [15].
The eigenvalues λc

m correspond to the ψc
m and are the solutions of the transcendental equation (3.4a)

whereas the λs
m correspond to the ψs

m and are the solutions of (3.4b):

even : cos(2λc
m) +

√
3 sin λc

m sinh(
√

3 λc
m) − cos λc

m cosh(
√

3 λc
m) = 0 , (3.4a)

odd : sin(2λs
m) +

√
3 cos λs

m sinh(
√

3 λs
m) + sin λs

m cosh(
√

3 λs
m) = 0 . (3.4b)

Remark 3.1. ψc
0(x) = 1 satisfies the EVP (3.2) with λ0 = 0.



The two sets of solutions ψc
m and ψs

m of the SL EVP (3.2) given by (3.3) and supplemented by
ψc

0 = 1 form a complete orthonormal (CON) set of functions on [−1, 1]. Thus, given any function
u(x) ∈ L2[−1, 1], we can write its spectral expansion in this CON basis as

u(x) = uc
0ψ

c
0(x) +

∞∑
m=1

uc
mψ

c
m(x) + us

mψ
s
m(x), (3.5a)

uc
0 =

1
2

∫ 1

−1
u(x) dx, (3.5b)

uc
m =

∫ 1

−1
u(x)ψc

m(x) dx, (3.5c)

us
m =

∫ 1

−1
u(x)ψs

m(x) dx, (3.5d)

where the series (3.5a) converges to u(x) in the mean. For a sketch of the proof, see [15] and the
references therein.

4. Solution method (separation of variables)
In this work, we restrict ourselves to initial conditions that are even in space, namely u0(x) = u0(−x) on
[−1, 1]. It is easy to show from (3.1) that it follows that the solution is also even, u(x, t) = u(−x, t) ∀t > 0.

We solve PDE (3.1a) using an eigenfunction expansion based on sixth-order even eigenfunctions
(3.3). Specifically, we write the sought function as u(x, t) = X(x)T (t). Substituting the latter into
PDE (3.1a) leads to

T ′(t)
T (t)

=
X(6)(x)
X(x)

= −λ6, (4.1)

where λ must be a constant.
We observe that X(6)(x) = −λ6X(x) is precisely (3.2a). Subject to the BCs (3.1b), we have shown

that it is solved by the even eigenfunctions ψc
m corresponding to λc

m, i.e., X(x) = ψc
m(x) and λ = λc

m,
m = 0, 1, 2, . . .. Therefore, the general solution is of the form

X(x) =
∞∑

m=0

umψ
c
m(x), (4.2)

where the coefficients
{
um

}∞
m=0 are to be determined. Meanwhile, the IVP T ′(t) = −λ6T (t), T (0) = T0

has solution
T (t) = T0e−(λc

m)6t. (4.3)

Combining (4.2) and (4.3), using the initial condition u(x, 0) = u0(x) and recalling remark 3.1, we
obtain

u(x, t) = u0
0ψ

c
0(x) +

∞∑
m=1

e−(λc
m)6tu0

mψ
c
m(x), (4.4a)

where
{
u0

m
}∞
m=0 are the spectral expansion coefficients of the (even) initial condition u0(x). From (3.5),

we know these coefficients can be obtained by calculating the integrals

u0
0 =

1
2

∫ 1

−1
u0(x) dx, (4.4b)

u0
m =

∫ 1

−1
u0(x)ψc

m(x) dx, m = 1, 2, . . . , (4.4c)

which can be done exactly for certain functions u0(x). When evaluating solutions to specific problems,
the infinite sum (4.4a) is truncated at some upper limit m = M.



Remark 4.1. The eigenfunctions
{
ψc

m(x)
}
m=0,1,2,... intrinsically satisfy the BCs (3.1b). This guarantees

that the solution, as given by (4.4), will also satisfy the BCs (3.1b).

5. Spreading and leveling of finite thin films with elastic interfaces
5.1. Two point loads
Consider IBVP (3.1) with the initial condition

u(x, 0) = u0(x) =
1
2

[
δ(x − 1

2 ) + δ(x + 1
2 )

]
, x ∈ (−1, 1), (5.1)

where δ(x) is the Dirac delta functional (i.e., the unit impulse) centered at x = 0.
The IC (5.1) represents two point loads at an equal distance of 1/2 from the center of the domain.

This IC has a total “volume” ∫ 1

−1
u0(x) dx = 1. (5.2)

Although u represents the deviation from a flat interface (see figure 1), u does not have to decay to 0 as
t → ∞, since we have free BCs at x = ±1 that allow for steady states u(x, t → ∞) = const. , 0. For
an initial perturbation that maintains u = 0 at x = ±1, but is nonvanishing on (−1, 1), some “volume” is
added according to (5.2).

Employing well-known properties of the Dirac delta functional (see, e.g., [28]), from (4.4b), (4.4c),
and (5.1) we find:

u0
0 =

1
2
, (5.3a)

u0
m =

1
2

[
ψc

m( 1
2 ) + ψc

m(−1
2 )

]
, m = 1, 2, . . . . (5.3b)

The spectral expansion of IC (5.1) is shown in figure 2. The strong Gibbs effects observed are
expected since (5.1) is not only discontinuous at x = ±1/2, but is not even a “proper function”. The
question of whether or not the Gibbs effects in the series expansion affect the accuracy of the spectral
solution is addressed in section 5.2.
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Figure 2. Profile of the spectral representation, which follows from (3.5), of the IC (5.1). The series
is truncated at m = M = 100 (i.e., 101 terms). Strong Gibbs effects are observed, especially near the
discontinuities at x = ±1/2.

Figure 3 depicts selected snapshots of the solution of this IBVP. Figure 3(a) shows the evolution of the
initial disturbance (5.1) from early to intermediate times, whilst figure 3(b) shows how it evolves from
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Figure 3. Solution snapshots for IBVP (3.1) subject to IC (5.1). An eigenfunction expansion (4.4a)
with 101 terms is used (i.e., truncated at m = M = 100). (a) Spreading of the initial disturbance (early
to intermediate times). (b) Leveling of the initial disturbance (intermediate to large times). The color
scheme represents time on a logarithmic scale, according to each color bar.

intermediate to large times. Of course, the definition of “early” and “late” is not quantitative. Rather, the
classification is based on the dynamics observed, which we now analyze.

From figure 3(a), we observe that the point loads create smooth blisters, which spread horizontally.
Their amplitudes decay with time. On the other hand, from figure 3(b), it is evident that for t ≥ 10−4, the
solution has spread to the boundaries, with the two blisters coalescing into a profile that exhibits a single
local minimum at x = 0. The film is now leveling. For t ≥ 10−2, the solution profile is essentially flat.
Importantly, this flat profile has a “volume” equal to one, which is exactly equal to the “volume” (5.2) of
the initial condition. This shows that our solution method preserves the steady state.

An important feature of the solution is the bridge, namely the point where the two blisters make
“contact”, following the terminology of Sæter et al. [16]. Here, this point is x = 0. Therefore, the bridge
height is represented by u(0, t), which is easily formed by evaluating the obtained spectral solution (4.4a)
at x = 0. Studying the time evolution of the bridge height provides information on how the two blisters
“interact”. The bridge height u(0, t) is plotted as a function of time in figure 4. Observing figure 4(a),
we see that for very early times, u(0, t) oscillates rapidly. However, these oscillations are between
relatively small values, namely −0.017 ≤ u(0, t) ≤ 0.007. Concentrating on early to intermediate times in
figure 4(b), the bridge initially rises to a maximum value and then decreases, dropping below u = 0 and
eventually plateauing at a negative lower bound. The maximum and minimum values of u(0, t) over this
time range have absolute values that are substantially larger compared to their counterparts in figure 4(a).

A completely different picture is painted by figures 4(c) and 4(d) for t > 10−5. Here, later times are
presented using a linear abscissa scale in figure 4(c) and a logarithmic abscissa scale in figure 4(d). The
length of the time interval here is orders of magnitude larger compared to figures 4(a) and 4(b). The
bridge height increases, reaching the equilibrium value u = 1/2 at t ≈ 0.015. Furthermore, figure 4(d)
reveals three different regimes according to the rate of increase of u(0, t) with t. These regimes occur
over three different time intervals and correspond to different (positive) slopes of the graph of u(0, t) vs
t. First, we observe a region of rapid increase, then a region of intermediate positive slope, and finally, a
region of almost zero slope corresponding to the equilibration to the final (flat) state.

Now, we quantitatively investigate the asymptotic behavior of the bridge height (as a function of time)
for intermediate to large times. Using the obtained solution for the bridge height, n = 21 data points(
ti, (u(0, ti)

)
, i = 1, 2, . . . , n were selected for times ti ∈ [10−5, 10−1] and fitted to a general exponential

function with the aid of Mathematica’s [29] NonlinearModelFit routine. The results are presented
using a linear abscissa scale in figure 5(a) and on a logarithmic abscissa scale in figure 5(b). The best-fit
curve was found to be u(0, t) ≃ 1

2 − 0.101127 e−(λc
1)6t − 1.019245 e−(λc

2)6t, where λc
1 ≈ 3.66606496814 and
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Figure 4. Evolution of the bridge height u(0, t) for IBVP (3.1) subject to IC (5.1) as a function of time:
(a) Early times. (b) Intermediate times. (c) Late times. (d) Late times on a log-linear scale.
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Figure 5. Asymptotic behavior of the bridge height u(0, t) for IBVP (3.1) subject to IC (5.1) for
intermediate to large times on (a) linear scale and (b) log-linear scale. Symbols: computed bridge height
u(0, t) at the sampling points. Solid: best-fit curve u(0, t) ≃ 1

2 − 0.101127 e−(λc
1)6t − 1.019245 e−(λc

2)6t.

λc
2 ≈ 6.80678029161 are the first two nontrivial even eigenvalues of SL EVP (3.2) [15]. Interestingly,

this exponential asymptotic behavior of the bridge is similar to what was reported in [16], despite the
differences in the two problems. Sæter et al. [16] found the exponential behavior in a nonlinear version
of the problem on an unconfined domain by seeking a self-similar solution. Here, unlike in [16], the



exponential decay is a direct consequence of solving a linear first-order-in-time PDE (3.1a).
Next, we consider the evolution of the peaks of the blisters, namely u(±1/2, t), as functions of time.

The points x = ±1/2 are the coordinates of the centers of the Dirac deltas (point loads), which appear
in IC (5.1). Due to the symmetry of the problem (see also figure 3), u(−1/2, t) = u(1/2, t), ∀t ≥ 0.
Therefore, it suffices to consider only u(1/2, t). Now, using the same sampling points

{
ti
}21
i=1 as those

selected for fitting the bridge height, as well as the same computational routine, we find the best-fit
curve u(1/2, t) ≃ 1

2 + 1.066850 e−(λc
2)6t. Therefore, in contrast to our findings for the bridge height, the

eigenmode corresponding to λc
1 does not participate in the dynamics of the blister height decay. The

results for t ≥ 10−5 are presented using a linear abscissa scale in figure 6(a) and using a logarithmic
abscissa scale in figure 6(b). Indeed, we observe that the decay of u(1/2, t) has only two distinct regimes:
(i) a region of rapid decrease for 10−5 ≤ t ≤ 10−4 and (ii) a region of almost zero slope corresponding to
the equilibration to the final (flat) state (u = 1/2) for t > 10−4.

●

●

●

●
●●●●●●●●●●●● ● ● ● ● ●

10-5 0.02 0.04 0.06 0.08 0.1

0.5

0.6

0.7

0.8

0.9

t

u(
0.
5,
t)

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10-5 10-4 10-3 10-2 10-1

0.5

0.6

0.7

0.8

0.9

t

u(
0.
5,
t)

(a) (b)

Figure 6. Asymptotic behavior of the blister heights u(1/2, t) for IBVP (3.1) subject to IC (5.1) for
intermediate to large times on (a) linear scale and (b) log-linear scale. Symbols: computed bridge height
u(1/2, t) at the sampling points. Solid: best-fit curve u(1/2, t) ≃ 1

2 + 1.066850 e−(λc
2)6t.

5.2. Two smooth bumps
Now, consider IBVP (3.1) subject to the (continuous) piecewise polynomial initial condition

u0(x) =



15
8

[
1 −

(x+ 1
2 )2

( 1
4 )2

]2

if − 3
4 ≤ x ≤ −1

4 ,

15
8

[
1 −

(x− 1
2 )2

( 1
4 )2

]2

if 1
4 ≤ x ≤ 3

4 ,

0 otherwise .

(5.4)

This IC (5.4) is an adaptation of the function used by Sæter et al. [16] to model the two elastic blisters
of their experimental study. In the present context, the shape function has been reduced to a function of
a single spatial variable, x, and normalized to have unit “volume” on x ∈ [−1, 1]. It is important to note
that (5.4) is a smooth and even function of x, exhibiting no discontinuities and satisfying BCs (3.2b).

The eigenfunction expansion of IC (5.4) is truncated at M = 100 and is compared to the function it
approximates in figure 7(a). As we have already noted, this IC is a smooth function satisfying the same
BCs as the ψc

m eigenfunctions. Hence, there is an excellent agreement between (5.4) and its spectral
expansion (the profiles in the figure are essentially indistinguishable), which should be expected. In
figure 7(b), we further present the spatial variation of the absolute difference between the IC and its



-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

15

8

x

u0
(x
)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

A
bs
er
r

[
×
10

-
4
]

(a) (b)

Figure 7. (a) Solid: profile of the IC as given by (5.4). Dashed: its spectral approximation, which follows
from (3.5), truncated at m = M = 100. (b) The absolute error between u0(x) and its spectral expansion.

spectral representation. We observe that the maximum absolute error is < 3 × 10−4 and that there is no
visible Gibbs effects.

As before, the solution u(x, t) of IBVP (3.1) subject to IC (5.4) can be written as (4.4a), however
evaluating the expansion coefficients, via (4.4b) and (4.4c), based on the IC (5.4), is more tedious. Thus,
the lengthy expressions for the coefficients

{
u0

m
}
m=0,1,2,... are given by (A.1) in the Appendix.

In figure 8, we present snapshots of the eigenfunction solution of IBVP (3.1) subject to IC (5.4). From
figure 8(a) (early to intermediate times), we see that the blisters centered at x = ±1/2 decrease in height,
with the solution spreading out. In figure 8(b) (intermediate to later times), the blisters have already
coalesced into a single smooth bump centered at x = 0 by t ≈ 10−4. As time increases, the (absolute)
height of this bump, namely |u(0, t)|, reduces, with the solution essentially reaching the flat equilibrium
state (u = 1/2) at t ≈ 10−2. Once again, the “volume” of the equilibrium state is conserved. The behavior
exhibited here is qualitatively (but not quantitatively) similar to that shown in figure 3, highlighting the
universal aspects of spreading and leveling of finite thin films with elastic interfaces.

The evolution of the bridge height u(0, t) with time for IBVP (3.1) subject to IC (5.4) is illustrated
in figure 9. The time intervals and scales used in figures 9(a)-(d) are the same as their counterparts in
figures 4(a)-(d). Comparing the two figures, we observe that the bridge heights corresponding to blisters
emerging from the two different ICs exhibit similar behavior. The same remarks and observations made
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Figure 8. Solution snapshots for IBVP (3.1) subject to IC (5.4). (a) spreading of the initial disturbance
(early to intermediate times). (b) leveling of the initial disturbance (intermediate to large times). Notice
the similarity of the leveling curves between the two different ICs.
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Figure 9. Evolution of the bridge height u(0, t) of the solution of IBVP (3.1) subject to IC (5.4) as a
function of time: (a) Early times. (b) Intermediate times. (c) Late times. (d) Late times on a log-linear
scale.

when discussing figures 4(a)-(d) in the previous subsection also hold here. Other than the expected
quantitative differences, perhaps the only other difference of note is that for very early times, the bridge
height in figure 9(a) is slightly less oscillatory compared to that in figure 4(a).

We may, therefore, conclude that the small-amplitude oscillations observed at very early times are
not an artifact of the solution method (for instance, a result of the Gibbs effects) but a characteristic
of the problem since they are also present when our IC is smooth and has an accurate well-behaved
eigenfunction expansion. In addition, both figures 9(b),(d) and figures 4(b),(d) show that for the time
interval t ∈ [2 × 10−7, 10−6] the bridge height is negative. This means that following some very small (in
amplitude) oscillations at very early times and after contact between the two blisters is established, the
elastic interface in the vicinity of the point of contact drops below the initial equilibrium film height (the
flat state u = 1/2) before it eventually rises back to it as t → ∞. These negative values were not observed
in [16] since that work concentrated on intermediate to later times, with the computational time being
reset to zero once contact was made.

In figure 10, we examine the asymptotic behavior of the bridge height evolving from the two bumps
IC (5.4) following the same method as that of figure 5 for the two point loads IC. Once again, we
find that the best-fit function (obtained from Mathematica) is exponential and that it involves the first
two nontrivial even eigenvalues, namely u(0, t) ≃ 1

2 − 0.086219 e−(λc
1)6t − 0.840805 e−(λc

2)6t. The results
are presented using a linear abscissa scale in figure 10 (a) and using a logarithmic abscissa scale in
figure 10(b).

Finally, in figure 11, we study the time-evolution of the blister heights u(1/2, t) in the same way as in
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Figure 11. Asymptotic behavior of the bumps’ heights u(±1/2, t) for IBVP (3.1) subject to IC (5.4)
for intermediate to large times on a (a) linear scale and (b) log-linear scale. Symbols: computed bridge
height u(1/2, t). Solid: best-fit curve u(1/2, t) ≃ 1

2 + 0.880922 e−(λc
2)6t.

section 5.1. Once again, the best-fit function is exponential, involving only the zeroth and second, but not
first, eigenvalues of the problem. The best-fit curve is now u(1/2, t) ≃ 1

2 + 0.880922 e−(λc
2)6t. In addition,

we observe the same two regimes of decay of u(1/2, t), as we previously did in figure 6, indicative of (i)
spreading and (ii) leveling of the film.

6. Conclusion
We studied the linearized dynamics of spreading and leveling of thin films with elastic interfaces laterally
confined in finite-length troughs in the absence of gravity. The governing sixth-order IBVP was solved
using separation of variables and the even functions of the complete orthonormal (CON) basis previously
developed in [15].

Two exemplar problems with even ICs were solved to demonstrate how initial perturbations of the
film height lead to the development, spreading, and leveling of blisters on the film. In the first case, the
non-smooth IC was the semi-sum of two translated delta “functions” equidistant from the origin, and in
the second, the smooth IC was the sum of two quartics with finite support and vertices equidistant from



the origin. In both cases, the coefficients of the spectral expansions were found exactly (analytically).
We observed that the leveling of the two different initial disturbances considered was qualitatively the

same, suggesting that any Gibbs’ effects in the expansion of non-smooth ICs do not affect the dynamics.
Our observations also highlight the universal aspects of spreading and leveling under a linear sixth-order
equation of “parabolic” type. We found that in both cases, the time-dependence of the bridge height for
intermediate to large times is exponential and determined by the first two non-trivial modes’ eigenvalues,
λc

1 and λc
2, of the problem. In both cases, the time dependence of the blisters’ heights was also found to

be exponential for intermediate to large times. However, their evolution is set by only λc
2.
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Appendix
The expressions for the coefficients u0

m used in the expansion of the initial condition (5.4) into even
eigenfunctions ψc

m from (3.3a) are given by:

u0
0 = 1, (A.1a)

u0
m =

nc
m√
dc

m
, where (A.1b)

nc
m = 960

{
2 cos λc

m
2

[
12λc

m cos λc
m
4 cosh

√
3λc

m + (−48 + (λc
m)2)(− cos λc

m + cosh
√

3λc
m) sin λc

m
4

]
(A.1c)

− 6λc
m cos λc

m csc λc
m
4 sin λc

m

+2(cos λc
m
2 + cosh

√
3

2 λ
c
m) sin λc

m ×

[
− 2(24 + (λc

m)2) cos 3
8λ

c
m cosh

√
3

8 λ
c
m + 48

√
3 sin 3

8λ
c
m sinh

√
3

8 λ
c
m

+ 12λc
m

(
cosh

√
3

8 λ
c
m sin 3

8λ
c
m −

√
3 sinh

√
3

8 λ
c
m cos 3

8λ
c
m

)
− 12

√
3(λc

m cos λc
m
8 + 4 sin λc

m
8 ) sinh 3

√
3

8 λc
m + 2 cosh 3

√
3

8 λc
m

(
(24 + (λc

m)2) cos λc
m
8

]}
,

dc
m = (λc

m)9
{

(−6λc
m(−2 + cos 2λc

m) + 2λc
m cosh 2

√
3λc

m + 2 cosh2
√

3λc
m sin 2λc

m + sin 4λc
m (A.1d)

+ cosh
√

3λc
m

(
4λc

m(−3 cos λc
m + cos 3λc

m) + sin λc
m − 3 sin 3λc

m

)
+ 4

√
3(cos λc

m − cosh
√

3λc
m) sin2 λc

m sinh
√

3λc
m)

}
, m = 1, 2, . . . .
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