Revised Manuscript (Clean Version)

Article title
Cost-effective, open-source light shutters with Arduino
control

Authors
Mathias S. Fischer

Martin C. Fischer *

Affiliations
Mathias Fischer: North Carolina State University, Raleigh, North Carolina, USA
Martin Fischer: Department of Chemistry, Duke University, North Carolina, USA

Corresponding author’s email address
Martin.Fischer@duke.edu

Abstract

In optical experiments, shutters are devices that open or close a path of light. They are often used to limit
the duration of light exposure onto a target or onto a detector to reduce possible light-induced damage.
Many commercial shutters are available for different applications — some provide very fast opening and
closing times, some can handle large optical powers, and others allow for fail-safe operation. Many of
these devices are costly and offer limited control options. Here we provide an open-source design for a
low-cost, general purpose shutter system based on ubiquitous actuators (servo motors or solenoids) that
are connected to an Arduino-based controller. Several shutters can be controlled by one controller,
further reducing system cost. The state of the shutters can be controlled via a display built into the
controller, by serial commands via USB, or by electrical control lines. The use of a microcontroller makes
the shutter controller adaptable — only control options that are used need to be included, and the design
accommodates a selection of display and actuator options. We provide designs for all required
components, including 3D print files for the actuator holders and cases, the Arduino code, libraries for
serial communication (C and python), and example graphical user interfaces for testing.

Keywords
Optical shutter, Laser safety, Microscopy, Arduino, Open hardware

Specifications table

Hardware name Cost-effective, open-source light shutters with Arduino control

Subject area General

Hardware type Other [Laser physics and optical imaging]

Closest commercial analog A variety of special-purpose shutters and controllers.

Open source license CERN-OHL-W-2.0 (CERN weakly reciprocal v2)

Cost of hardware 4 shutters with controller: ~$140

Source file repositor Zenodo data link: https://zenodo.org/doi/10.5281/zenodo. 10828203
posttory GitHub repo link: https://github.com/MCFLab/Shutter

1. Hardware in context

In many studies that involve a light source, light exposure is intermittent with “on” and “off” periods.
Switching could be required for safety reasons (turning the light off while observing the sample by eye), to
limit the amount of deposited energy, to switch between different light paths, or to observe a time-
dependent response. Repeatedly turning the light source on or off is often too slow (as with halogen
lamps) or detrimental to the source (as with some mercury lamps). Mechanical shutters provide a
convenient route to control the exposure window by inserting a mechanical block into the light path.

Many designs are in use for the type of mechanical blade, the way the blade is moved into and
out of the light path, and the means of controlling the open/closed state [1, 2]. Common blade designs are
irises (diaphragms) that open/close radially, or rigid blades that sweep across the path. The blades can
block the light by absorbing it (e.g., absorption on dark blades) or by redirecting it (e.g., scattering or
reflection on bare metallic blades). The most common options for moving the blades are to attach them to
solenoids [3, 4] or to rotary motors [5]. Because of the inertia in mechanical motion, there is a tradeoff
between the size of the obstructed light path and the time required to open/close it (and the frequency of
opening/closing cycles). In some applications, the size of the light path can be reduced by focusing and
placing the shutter at the focal position, thus shortening the opening and closing times. The use of a
continuously rotating shutter wheel (chopper, e.g. [6, 7]) can offer vastly increased cycle frequencies but
is restricted to cases where opening and closing occurs at regular intervals. Our design is not aimed at
high-speed applications, for which commercial devices are superior. Instead, we provide a low-cost, open
hardware, general purpose design, which can shutter light at moderate speeds (well within 50
milliseconds). In our lab, we use this system to switch several laser paths in a spectroscopy experiment
and to block the laser for background measurements, but we are convinced that our design will prove
useful for many other applications. For example, this system is suited for use in a microscope to turn the
illumination off when the acquisition is stopped or to switch the light paths for different experimental
conditions.

Here we provide a brief overview of the available commercial shutters, which cover different
applications areas. Devices with very fast opening/closing times and low latencies are available from
Vincent Associates [8] or Thorlabs [9], but a single shutter with the associated driver electronics generally
costs in excess of a thousand US dollars. Lower-cost devices are available that sacrifice some
performance, mostly opening/closing speeds, or control options. Solenoid-based shutters are available
from Brandstrom Instruments [10], EOPC [11], DACO Instruments [12], and KENDRION [13] with a wide
range of blade options; Picard Instruments [14] offers a stepper-motor based shutter. Some of these
devices are available with controllers and/or a programming interface. Radiant Dyes [15] offers a device
based on a servo motor and a controller that opens/closes the shutter via manual switches, digital inputs,
or a serial communications port. However, all these lower-cost devices still cost several hundred dollars to
operate a single shutter and configuration and control options are very limited.

Touch Screen

Arduino §ac/s

USB/Serial &
g [————1 _
Lo\

. < R
.. Digln

Shutter

Servo Shield

§2c

Many do-it-yourself (DIY) shutter designs have been published in the scientific literature. They vary
greatly in performance, cost, and ease of assembly; few provide easy-to-replicate build instructions. Early
designs relied on magnetic coils, relays, or solenoids [1, 3, 4, 16], DC motors [5, 17], or loudspeakers
[18]. Faster blade motion with lower timing jitter can be achieved with voice coils extracted from hard disk
drives [19, 20]; however, this design requires the sacrifice and disassembly of a hard disk drive and
custom mounting of the actuator, posing challenges with sourcing and sustainability. Fast switching can
also be achieved with a piezo cantilever design [21-23], but this generally requires a high-voltage drive
signal. A simple servo-based shutter has been demonstrated [24] as part of a (only partially completed)
spectrometer design, and in a quantum optics lab [25], but for neither demonstration were we able to
locate details on the implementation or design files for replication. Of these DIY designs, the 3D printed,
DC motor-based design [5] contains part files and electronic design files that aid in replication; for the
voice coil design instructional material and videos [26, 27] are available.

Here we describe a simple, easy-to-build, low-cost, and open-source shutter with two choices of
actuators. The first actuator choice is an RC servo with a rotating blade that can block fairly large beam
paths, see Fig. 1 (blade sizes are adaptable up the several centimeters). This actuator’s operation is quiet
but exhibits tens of ms timing jitter. The second actuator choice is a solenoid with a blade that moves
linearly in and out of the beam path. This design is faster, has a lower timing uncertainty (opening/closing
times of sub-10 ms and on/off cycle rates of 10 Hz range are achievable), and provides fail-safe operation
since the spring-loaded actuator closes the shutter during power loss. However, the beam size is limited
to the linear throw of the solenoid and operation is considerably louder. Both designs use the same
Arduino-based controller that offers a wide range of configuration options. Several shutters can be
controlled with one controller — we tested the design with four shutters, but extensions to more shutters
are straightforward. The shutter controller can be configured to receive input from a display (LCD with
push buttons or a touch screen display), from hardware digital control inputs, or through USB serial
communication. We provide the control software (Arduino code, a C or python-based library for serial
communication, and a python GUI) and the mechanical designs for the shutters and controller
enclosures.

2. Hardware description
2.1. Overall Implementation and Design

The shutter system consists of the mechanical part and the control electronics. The mechanical shutter is
based on a commercial actuator (either an RC servo or a solenoid) mounted in a 3D-printed holder. A
black anodized aluminum blade is mounted on the actuator (the rotating horn on the servo or the moving
plunger in the solenoid) to block the light path for a given actuator position. The associated control
electronics is based on an Arduino Uno with a servo/motor shield for controlling several actuators and a
display shield for displaying and switching the state of the shutters. Control of the position of the shutters
can occur through user control on the display, serial communication, or TTL-compatible digital control
inputs. The provided enclosures and the default hard/software configuration is designed for up to 4
channels, but the design can accommodate tens of shutters with trivial modifications.

2.2. Shutter mechanics

The blocking action of the shutter is achieved by rotating or moving an opaque blade into the light path.
Here, the blade is made from black anodized aluminum, which absorbs most of the light, exhibits some
scattering, but transmits no light. The metallic blade dissipates moderate amounts of absorbed light as
heat to the surrounding air. For high-intensity beams, care must be taken not to overheat the actuator and
gradual bleaching of the dye used in the anodization process can be expected. For such cases, a mirror
may be mounted on the blade to redirect, rather than absorb the light.

A

" d open closed _(

AL|

Fig. 2. Schematic of the shutter blades for the servo motor design (a) and the solenoid design (b). The
red circle indicates the light beam.

L

For the servo motor design (Fig. 2a), the speed at which the shutter opens/closes the light path depends
on the rotational speed of the servo, r (measured in degrees/s), and the required angle of the blade to
traverse the light, 8. The angle 6, in turn, depends on the diameter of the light path, d, and its distance, L,
from the servo axis. If d « L, the opening and closing time 7 can be approximated as
360° d

T=— Egn. 1
where we assumed a uniform beam and neglected acceleration effects of the servo. Hence, a faster
servo, a longer distance between light path and servo axis, and a small light path diameter (maybe even
by focusing through a lens) decreases the opening/closing times. For a light beam of a few mm in
diameter, a convenient L of a few cm, and typical servo speeds (60° / 100 ms), opening and closing times
are on the order of several ms. The time delay between an open/close request and the actual light
increase/decrease is determined by the width and position of the blade, t, the limited acceleration of the
servo, and the delay of the control electronics. Even for a minimal blade width (t = d) the frequency of the
servo control signal limits the response to delays and timing jitter of several tens of ms (example
performance data are given in the Validation and characterization section below).

For the solenoid design (Fig. 2b), the speed at which the shutter opens/closes the light path also
depends on the blade speed. In contrast to servo motors, which have a well-specified rotational speed,
the plunger velocity in most solenoids is not specified, highly nonlinear, strongly dependent on what is

attached to it (the blade in our case), and often different for opening and closing. Hence, the transit times
need to be experimentally determined for each design (see the Validation and characterization section
below). The maximum light beam diameter d that can be accommodated with a linear solenoid is limited
by the maximum throw AL of the plunger.

2.3. Controller

The controller for our shutter system is based on an Arduino Uno. The Arduino board can be powered
through USB or via an external power supply. To drive the actuators, we utilize dedicated, external
Arduino shields (a pulse-width modulation (PWM) board for servos or a motor shield for solenoids) for
several reasons:

1. The current that the Arduino 5V pin can supply is quite limited (800 mA if using the power input,
even less if connected to an unpowered USB hub), whereas a single, medium-sized servo or
solenoid can already temporarily draw several hundred mA. Hence, we opted for shields with a
separate power supply.

2. For servo motor actuators, even though the PWM signals that control the servo motors can be
created directly by the Arduino’s digital outputs, controlling several servos requires careful
sharing of the Arduino’s resources (especially timers). Hence, using a dedicated, external PWM
board significantly simplifies the programming.

3. For solenoid actuators, the drive electronics needs to be able to deliver enough current into the
inductive load of the solenoid and be tolerant to the inductive voltage spike when turning the
current off. Rather than assembling the drive circuitry from discrete components we opted to
utilize a ready-made motor shield for simplicity.

An optional display board serves to display the status of the shutters and to provide a way for user input.
The user can also control the shutters via serial commands over USB or via external TTL control inputs
monitored by the Arduino. The configuration of the shutters (such as open/close positions, labels, and
control port mapping) is stored in the Arduino’s electrically erasable programmable read-only memory
(EEPROM). The Arduino, shields, and input BNC connectors are housed within a 3D printed enclosure.
Below we describe each of these components in more detail.

2.3.1. Servo shield (used for servo motor actuators)

The servo shield is a 16-channel PWM shield with an Inter-Integrated Circuit (12C) interface (Adafruit
Product ID: 1411). For servo position updates, commands are sent from the Arduino to the shield over the
I12C bus. In between updates, the shield holds the servo positions and does not require Arduino
involvement. Several shields can be stacked if more than 16 channels are required (though some
changes in case design and software would be required). If a display shield is used on top of the servo
shield, the required headers limit the space for servo connectors (see build instructions). The Arduino is
not able to supply enough power for the use of several servos simultaneously, so the servo shield utilizes
a separate 5V power supply. To provide enough peak current for the simultaneous movement of several
servos, place for a storage capacitor is provided on the shield circuit board — its capacity should be
matched to the expected number of servos utilized.

2.3.2. Motor shield (used for solenoid actuators)

The motor shield is a 4-channel motor driver shield with an 12C interface (Adafruit Product ID: 1438).
Each motor channel can drive one solenoid coil. For actuator position updates, commands are sent from
the Arduino to the shield over the 12C bus. In contrast to the servos, our solenoids have only two states:
extended (drive current holds the shutter open) and retracted (no current, shutter closed via the built-in
spring). In between updates, the shield holds the solenoid state and does not require Arduino
involvement. Several shields can be stacked if more than 4 channels are required (though some changes
in case design and software would be required). The Arduino is not able to supply enough power for the
use of solenoids, so the motor shield also utilizes a separate 5V power supply.

2.3.3. Display shield

If the use of a display shield is desired, we provide two options: an LCD screen with buttons or a touch
screen.

The liquid-crystal display (LCD) shield (Adafruit Product ID: 772) contains a 16x2 character LCD
and push buttons. On the display, the first line displays the shutter name, the second line the shutter
status (open, closed, or inactive). The up/down buttons cycle through the selected shutter, the left/right
buttons change the state (left for close, right for open, an optional timeout sets the shutter to an inactive
state).

The touchscreen shield (Adafruit Product ID: 1947) contains a 2.8", 240x320 pixel thin-film-
transistor (TFT) LCD with capacitive touch sensing. The display portion uses the Arduino’s Serial
Peripheral Interface (SPI) bus, the touch sensing the 12C bus. Each line displays the shutter label in the
center, and touch areas (“buttons”) for opening and closing the shutter on either side.

2.3.4. Digital input

To control the shutters with an electrical signal, we implemented an interrupt-based monitoring routine of
some of the Arduino digital input ports. The ports are configurable as 0 — 5V (TTL) inputs with (optional)
input pull-up resistors that also allow the use of simple mechanical single-pole switches. The current case
and software allow for four control lines, but this can be easily extended. Each shutter can be mapped to
any (or no) control line and each control line can control several shutters. Note that if the inputs are used
as an interlock signal for laser safety applications, the spring-loaded solenoids close the shutter in case of
a power failure while the servo motors keep their last position and hence do not provide a fail-safe
mechanism.

2.3.5. Serial Communication

Serial communication via the Arduino’s USB port allows for programming of the shutter parameters,
controlling the shutters, and checking the shutter status. Communication is done by sending three-
character ASCII commands (with following command parameters, if applicable). A list of commands is
provided in Table 1. The command format and example responses for the serial commands are listed in
Table 2.

Table 1. List of serial commands.

Command Description

*IDN? Gets ID_STRING

GTI Gets elapsed time in ms

GND Gets the number of defined shutters

GSTx Gets the state of shutter number x

GDLx Gets the label of shutter number x

GTDx Gets the stored transit delay of shutter number x in ms
GPRx Gets all the stored parameters for shutter number x
SSTx Sets the state of shutter number x

SSPx Sets the current actuator position of shutter number x
SPRx Sets all the parameters stored for shutter number x
CLR Clear the shutter parameters

SAV Save the current shutter parameters to EEPROM

Table 2. Format and example responses for the serial commands.

Command Example responses from the Arduino
*IDN? “Arduino Uno Shutter 4.0”

GTI “TI=434335"

GND “ND=3"

GSTO “ST=1"
Note: 0 -> closed, 1 -> open, 2 -> manual position set, -1 -> inactive
GDLA1 “DL=ShutterLabel2”
GTDO “TD=500"
GPR1 “PR1,11,2,110,130,800, ShutterLabel2”.
Format:
PRx,shieldChannel,diginputChannel,posOpen,posClosed,transitDelay_ms
,Label
SSTO0,1 Opens shutter number 0
Returns “OK” if successful, an error otherwise.
Note: 0 -> close, 1 -> open
SSP0,200 Sets the actuator number 0 to position 200
Returns “OK” if successful, an error otherwise.
SPR1,11,2,110,130,800, | Sets the parameters for actuator number 1.
ShutterLabel2 Returns “OK” if successful, an error otherwise.
Format: see GPRx
Note: if x=-1 then a new shutter is added after the existing shutters
CLR Returns “OK”
SAV Saves only if at least one shutter is defined.
Returns “OK” if successful, an error otherwise.

Additional notes:

For the communication to the Arduino, line termination is a line feed (\n’, LF, 0x0A) by default,
but can be changed to a carriage return (CR, ‘\r’, 0x0D). The response from the Arduino is the
standard CR/LF (“\r\n”).

For commands that address a specific shutter (e.g. GSTx) the shutter number x has a zero-based
index (0->first shutter, 1->second shutter). The same applies to the input control lines.

Another SPR example: “SPR-1,3,-1,255,315,400,Name1” adds a new shutter labelled “Name1”
after the existing shutters. The new shutter uses the shield channel 3, is not controlled by input
lines, and has an open/close position of 255/315, and a transit delay of 400 ms.

For the motor shield, the “actuator position” determines the average voltage applied to the
solenoid coil: 0 means no voltage (closed shutter), 255 is the maximum voltage (opened shutter).

2.3.6. Parameter storage

Each shutter is associated with several parameters:

“shieldChannel” is the assigned hardware channel number of the servo or motor shield. Range: 0
to 15 for the servo shield, 0 to 3 for the motor shield.

“diglnputChannel” is the input control line that controls the shutter state. Range: 0 to 3 and -1 (not
controlled).

“posOpen” and “posClosed” are the actuator positions corresponding to the open/closed position.
“transitDelay_ms” is the delay in ms that the shutter requires to fully open/close. This value is not
used by the Arduino controller, but simply stored and can be returned upon request to implement
wait times in a control sequence. This should be measured experimentally for each shutter.
“Label” is the label displayed on the display. By default, this is limited to 7 characters (to fit on the
touch screen display) but this can be extended in the configuration file.

These shutter parameters are stored in the EEPROM of the Arduino to retain their values after an Arduino

reset.

2.3.7. Arduino control modules and sequence

The shutter control in the Arduino is split into modules, which can be utilized independently: the actuator

module,
module.

serial communication module, the display module, the control input module, and the idle check
In the Arduino main loop, these modules are repeatedly queried for change requests.

The optional serial communication module handles serial communication between the Arduino

and a computer through a USB connection.

For the optional display module, the LCD or TFT module can be utilized. Either will display the
status of the shutter and let the user change it. A debounce mechanism is included for either device to
avoid accidental multiple button presses. After a period of inactivity, either screen can dim and can be
brightened again by any touch (for the TFT) or button press (for the LCD).

In the control input module, the control input lines are mapped to the Arduino’s pin change
interrupt mechanism. Even though interrupts can suspend all other Arduino activity when called, we
decided to simply queue the state changes to be handled in the main loop. Given the relatively slow
mechanical response time of an RC servo, the much more involved handling within the interrupt routine
would not provide a noticeably improved response time. As in the display module, a debounce
mechanism is included to avoid rapid erroneous state change requests (for example with a mechanical

switch).

The idle check module (only useful in the servo motor configuration) checks when the controller
last received a state change request and disengages the servo motors if an idle time has been exceeded.
This can allow the user to move the shutter positions manually, which is only possible when the servos
are disengaged. We found this capability to be convenient especially during optics alignment, where the
shutter controller always seemed to be just out of easy reach. This option is not applicable to the solenoid
configuration since the spring closes the shutter without drive current.

2.3.8. Library

We provide a library for serial communication with the Arduino in both C and Python. The provided
functions in the libraries handle the low-level serial communication and provide easy-to-use access
functions. Both libraries utilize the Virtual Instrument Software Architecture (VISA) standard and provide
wrapper functions (e.g. to set the shutter parameters or to open/close the shutters).

In addition to these libraries, we provide an example graphical user interface (GUI) in python,
based on the tkinter library. Even though NI LabWindows/CVI is a commercial program (not freely
available), it is a C IDE that is used in many labs (including ours) and as a convenience we also provide
the source to build a GUI using this platform.

3. Design files summary

Design file directory name File type Open source license Location of the file
Actuator Mounts CAD CERN-OHL-W-2.0 Zenodo
Enclosures CAD CERN-OHL-W-2.0 Zenodo
Arduino Code Source CERN-OHL-W-2.0 Zenodo
C Library Source CERN-OHL-W-2.0 Zenodo
C GUI Source CERN-OHL-W-2.0 Zenodo
Python Library Source CERN-OHL-W-2.0 Zenodo
Python GUI Source CERN-OHL-W-2.0 Zenodo

The Actuator Mounts directory contains CAD files (both STEP and STL files) to 3D print mounts
for attaching the RC servos and solenoids to an optical post. Included files: ServoPostMount,
ServoPostMount_Small, SolenoidPostMount

The Enclosures directory contains CAD files (both STEP and STL files) to 3D print an enclosure
for the shutter controller. Included files: Enclosure_Bottom, Enclosure_Top_TFT, Enclosure_Top_LCD,

Enclosure_Buttons LCD

The Arduino Code directory contains the C source code for the Arduino shutter controller.
Included files: ShutterDriverUniversal.ino, Common.h, RCServo.cpp, Solenoid.cpp, SerialComm.cpp,
LCD.cpp, TFT.cpp, Parameters.cpp, Diglnput.cpp, and associated header files.

The C Library directory contains source files for the C library that handles communication with the

shutter controller. Included files: ArdShutter.c, ArdShutter.h

The C GUI directory contains source and resource files to build a test GUI to configure and test
the shutter controller. Depends on the C library above and needs NI LabWindows/CVI to be installed.
Included files: ArdShutterTest.c, ArdShutterTest.h, ArdShutterTest.uir

The Python Library directory contains source files for the python library that handles
communication with the shutter controller. The logging level can be adjusted to include informational
messages for debugging. Included files: ard_shutter.py

The Python GUI directory contains source files to build a test GUI to configure and test the
shutter controller. Depends on the python library above. Included files: ard_shutter_test.py,
ard_shutter_panel.py

4. Bill of materials summary

Designator Component Number Cost per | Source of Material type
unit - materials
currency
Controller Arduino Uno 1 $27.60 Arduino.cc Semiconductor
Controller Servo shield OQor1* $17.50 Adafruit Semiconductor
Controller Motor Shield OQor1* $19.95 Adafruit Semiconductor
Controller LCD shield Oor1 $19.95 Adafruit Semiconductor
Controller TFT shield Oor1 $44.95 Adafruit Semiconductor
Controller Arduino Oor1 $8.95 Adafruit Semiconductor
power supply
Controller Shield power | 1 $14.95 Adafruit Semiconductor
supply
Controller Various ~$10 Adafruit Semiconductor
electronics
Shutter Actuator >1 ~$5-$35 Varies Semiconductor
(servo or
solenoid)
Shutter Various ~$10 Varies Metal
screws, metal
pieces

Note: At least one of * is required.

Cost Analysis:

To assemble a single-shutter system, we need an Arduino (~$30), an Arduino power supply (~$10, if not
running off USB power), one of the shields (~$20), a shield power supply (~$15), an actuator (~$10, servo
or solenoid), and ~$20 in other costs (screws, cable, connectors, etc.), totaling about $100, or about $120
if we add an LCD shield. Adding 3 more actuators to make it a four-shutter system only adds about $20
for the actuators, totaling about $140 (with display).

As a reference, we summarize approximate prices for some shutter systems that include a
shutter and a driver that allows for control via a computer and a digital control signal:

e Our DIY single-shutter system: $120. Four-shutter system: $140.

¢ Single-shutter system, Vincent Associates (FS+VLM1 Value Pack, 25 mm mounted shutter with
a single-channel driver): $865. Scale to four-shutter system: $3,460.

e Single-shutter system, Thorlabs (SHBO05, 1/2” diaphragm shutter with single-channel driver):
$1,030. Scale to four-shutter system: $4,120.

e Single-shutter system, EOPC (SH-10, 13 mm rotary solenoid shutter with DSH-10 single-channel
driver): $610. Scale to four-shutter system: $2,440.

e Single-shutter system, Radiant dyes (Mini Servo Motor ($215) with 4-channel controller ($485)):
$700. Four-shutter system (4 servos, same controller): $1,345.

e For completeness, the commercial shutter we used as a reference for testing (Vincent
Associates VS14S2ZM1) costs $1,130 and the 4-channel high-performance driver (Vincent
Associates VMM-D4) costs $3,000 (not including the additional shutters).

Sustainability and Scalability:

The parts used in the construction of this shutter system are widely available, often as generic
replacements at even lower prices from other sources (for example, clones of the Arduino Uno). Servo
and motor drivers are commonly used in robotics, as are servos and solenoids. In addition, the design of
the shutter system is not specific to a particular model of actuator; hence, repair or upgrading to a
different model does not require a re-design.

The current design can accommodate up to 16 servo shutters (with an LCD display) and 4
solenoid shutters (with either display) on the same controller. Scaling the system up to a higher number of
shutters is straightforward, though a few constraints need to be kept in mind:

e One servo shield can control up to 16 servo motors. Additional shields (in principle up to 62) can
be stacked and used with only minor code changes.

e One motor shield can control up to 4 solenoids. Additional shields (in principle up to 32) can be
stacked and used with only minor code changes.

e Should several servo/motor shields be stacked, the case will have to be enlarged to
accommodate the higher stack.

e The power supply for the actuators needs to be scaled up with the number of devices.

e The LCD display can already accommodate any number of shutters, for ease of touching the
correct buttons the TFT is currently programmed for a maximum of 4 shutters. More shutters on
the TFT display would require smaller fonts/buttons or a provision for scrolling.

5. Build instructions

General safety notice:

The assembly of the shutters and shutter controller involves 3D printing, mechanical assembly, electrical
wiring, and soldering. To prevent damage to the electrical components, test power supply voltages before
wiring cables to the Arduino and/or shield. All usual safety precautions should be taken when working
with electronics or while soldering.

5.1 Shutter

The actuator mounts (for the servo motors and solenoids) were designed in a commercial CAD program
(but we include the files in the universal STEP format), converted to a 3d printing format using Ultimaker
Cura, and printed on a 3d printer (Creality Ender 5 Pro) with black PLA filament on raft base using the
“Standard Quality” slicer parameters (layer height: 0.2 mm, infill density: 20%, wall thickness: 0.8 mm).

5.1.1. Servo motor mount

Two sizes of mounts (small and large) are provided for two common servo sizes (Fig. 3a). Small tabs are
provided to fix the servo cables, if desired. For the blade, we drill a central hole large enough to clear the
ledge on the mounting horn, and two small holes to attach it to the horn with self-tapping screws (Fig. 3b).
Assembly steps are indicated in the exploded view in Fig. 3c: The servo slides in the U-shaped opening in
the mount and is secured by four self-tapping screws (usually provided with the servo). Depending on the
servo, rubber grommets are provided to minimize vibrations transmitted from the servo to the mount. The
servo can be mounted with its axle near the post mounting screw holes (Fig. 3d) or opposite (Fig. 3e),
depending on the required clearance for the light beam. The assembled servo shutter can be fixed with a
socket head screw (8-32 or M4 for the small mount, 74-20 or M6 for the large mount) to a post, vertically
(Fig. 3d,e) or horizontally (Fig. 3f), depending on the light path requirements.

Fig. 3. Mounting of the servo shutter: Small and large servo mounts (a), back and front view of the
mounted blade (b), exploded view of the shutter assembly with the large servo mount (c), assembled
shutters mounted vertically (axis down (d) or up (e€)) or horizontally (f). CAD design for the servo: [28].

5.1.2. Solenoid mount

The solenoid mount (Fig. 4a) was designed for a specific but widely available solenoid (JF-0826B).
Assembly steps are indicated in the exploded view in Fig. 4b: The solenoid is held in place by two M3
screws. The shutter blade is attached to the solenoid plunger by a plastic screw. The two guiding tabs on
the mount prevent the blade from rotating (guiding is required since the non-keyed plunger can rotate).
The assembled solenoid shutter can be fixed with a socket head screw (2-20 or M6) to a post, vertically
(Fig. 4c) or horizontally (Fig. 4d), depending on the light path requirements.

& =

Fig. 4. Mounting of the solenoid shutter: Solenoid mount (a), exploded view of the shutter assembly (b),
and assembled shutter mounted vertically (c) or horizontally (d). CAD design for the solenoid: [29].

5.2. Controller hardware
5.2.1. Arduino

To mount the servo shield, a set of female headers needs to be soldered into the two rows of pins
(Fig. 5a).

5.2.2. Servo shield

Technical details for this shield are provided by Adafruit [30]; an assembled shield is shown in Fig. 5d. To
accommodate the display shield, two rows of female through headers and the upside-down SPI female
through header need to be soldered into the servo shield (Fig. 5d, A1). A 2-pin screw terminal is soldered
onto the shield for the power supply cable (A2), while the other end of the cable is attached to a power
supply connector. The use of a cable connector reduces the risk of accidentally plugging the servo power
supply into the Arduino power connector and vice versa (both power supplies have the same connector
but a different voltage). Leaving all solder pads for the 12C address open yields a default address of 0x40.
Because the display shield sits on top of the servo shield, use of angled servo connectors is necessary
(A3), unless the cables are soldered directly into the board. We face the first connector outward for ease
of access. The remainder of the connectors (if installed) need to face inwards because of the installed
headers. Note that installing the header in the opposite direction reverses the order of the servo
connector pins (GND on the top vs GND on the bottom). A capacitor to provide surge current for the
servos can be installed on the board (A4); the value depends on the expected number of servos operated
(see instructions on the Adafruit site). For the control input, we soldered another angled connector onto
the board and connected one side to the microcontroller pins (PCINT18, PCINT19, PCINT22, and
PCINT23 (Arduino pins D2, D3, D6, and D7; note that D4 and D5 are used by the TFT shield) and the
other side to a common ground (see area A5). Finally, as shown in Fig. 5f, we connected a capacitor in
series with a jumper to the reset pin of the Arduino (A6). This is a peculiarity when using the Arduino with
the VISA library, where session initialization toggles the DTR line, which resets the Arduino. Connecting a
capacitor between reset and ground suppresses this line toggle and allows for opening the serial port
without reset [31]. During firmware programming of the Arduino, the capacitor needs to be disconnected
by removing the jumper.

(M
22 3vi !’ Sv

g a— b Ak i ot)

Fig. 5. Electronic modules: Arduino (a), LCD shield (b), TFT shield (c), servo shield (d), and motor
shield (e). Areas on the shields marked with color are: headers (A1), shield power connector (A2),
actuator connectors (A3), servo power supply capacitor (A4), right-angle control input connector (A5), and
reset bypass capacitor and jumper (A6). Simplified electrical schematic (f), indicating electrical hookup in
areas A5 and A6.

5.2.3. Motor shield

Technical details for the shield are provided by Adafruit [32]; an assembled shield is shown in Fig. 5e.
The instructions for the through-headers (A1), the power supply connector (A2), the connector for the
digital control lines (A5), and the reset bypass (A6) are identical to the servo shield above. Leaving all
solder pads for the 12C address open yields a default address of 0x60. The connection to the solenoids is
made by screw terminals (A3); the polarity is not important for the solenoids we use.

5.2.4. LCD shield

The LCD shield (Fig. 5b), if used, is the topmost shield; hence, only short male headers are required (not
stackable headers). Assembly instructions are provided by Adafruit [33]. No hardware 12C address
selection is required.

5.2.5. TFT shield

The TFT shield (Fig. 5¢), if used, is the topmost shield; hence, only short male headers are required (not
stackable headers). Assembly instructions are provided by Adafruit [34]. No hardware 12C address

selection is required. On the bottom side of the shield there is a solder pad for the backlight of the screen
(labelled back lite #5) — if screen dimming is to be enabled, this solder pad needs to be shorted with a dab
of solder (see Fig. 5g).

5.2.6. Cables

The cables supplied with the actuators are likely to be too short for typical use and extension cables are
required. For servo motor cables, RC servo connector kits are available from online retailers that contain
extension cables, connectors, and (if required) a crimp tool for the connectors. To reduce noise pickup
from the digital PWM or other transient signals by other electronics, a shielded cable (multi-conductor +
braided shield) can be used instead of ribbon cables. In this case, connect the braided shielding to GND
on the Arduino side of the cable. For the control inputs we use a short, stranded wire to the BNC
connectors in the enclosure.

5.2.7. Power supplies

The Arduino can be powered through the USB port. If no USB connection is used (e.g. as a stand-alone
shutter controller) a standard 9 V, 1 A wall-mount power supply is sufficient. For the servo shield, a 5 V
power supply is recommended. The voltage for the motor shield depends on the solenoid used (max

12 V) — we also use the 5V supply for our solenoids. The current rating depends on the number and type
of actuators that are being used (we use a 3 A supply for 4 actuators).

5.2.8. Controller enclosure

The Arduino controller (incl. shields) is enclosed in a 3D-printed box, see Fig. 6. We provide designs for
controllers with one actuator (servo or solenoid) shield and an LCD or a TFT shield. The enclosure is
printed in two sections that are latched together. The bottom section has standoffs and guiding pins to
position the Arduino and shields, D-shaped cutouts for the BNC connectors (used for the control lines),
cutouts for power supply and USB cables, a rectangular cutout for up to 4 servo connectors, and cutouts
for additional actuator cables. The bottom section can be used for LCD and TFT displays, whereas the
top section is specific to the display type. Both top designs have cutouts for the display; the LCD model
requires the insertion of small pins for the push buttons (the flared ends are inside the box to prevent
them from falling out - assembly is easiest with the enclosure turned upside down). Tabs on the outside of
the enclosure are provided for mounting on an optical table.

&

Fig. 6. Pictures of the enclosure for a controller in parts (left) and assembled (right).

5.3. Controller software

5.3.1. Arduino code (firmware)

Before the shutter can be used, the Arduino code needs to be customized, compiled and uploaded.
Opening the main “ShutterDriverUniversal.ino” in the Arduino IDE will open all associated source files in

the same directory as well. The code is split into several modules (a C++ file with a corresponding header
file each). Each module has a compiler define “SERIAL_DEBUG” that can be set to 1 to receive status
and warning messages via the serial monitor for debugging purposes. For normal operation these should
be set to 0. The main module (“ShutterDriverUniversal.ino”) contains the main Arduino setup and loop
functions. Both functions instantiate and/or access objects/functions from the other modules. The actuator
modules (“RCServo.cpp” and “Solenoid.cpp”) handle the actuator initialization and movement, the
communications module (“SerialComm.cpp”) the communication over the serial (USB) port, the display
modules (“LCD.cpp” and “TFT.cpp”) the display and user input, the parameters module
(“Parameters.cpp”) the parameter storage in the EEPROM, and the digital control module (“Diglnput.cpp”)
the shutter control via the control lines.

For convenience, the customization via user-adjustable parameters is done in the file
“Common.h”. In Table 3 we provide a step-by-step list of configuration options. The most important step is
to (un)comment the compiler defines that indicate the modules to be included or excluded during
compilation. The table lists the important parameters in “Common.h”, but less common ones (such as the
width of the borders on the TFT, the servo control frequency, etc.) can be found in the file, with
associated comments explaining their function.

Table 3. Configuration steps for the file “Common.h”.

Is serial No:
communication e Comment SERIALCOMM define
required?

Yes

e Uncomment SERIALCOMM define
e Pick the desired baud rate (SERIAL_BAUDRATE) and termination
character (SERIAL_TERMCHAR - carriage return or line feed)

Which display is LCD:
used? e Uncomment DISPLAY_LCD and comment DISPLAY_TFT define
Note: only one (if e Set the desired switch debounce time (LCD_BLOCKING_TIME_MS) in ms
any) of the two e Set the time after which the display is dimmed (LCD_DIM_PERIOD_S) in
can be used sec (0 for no dimming)
TFT:
e Uncomment DISPLAY_TFT and comment DISPLAY_LCD define
e Set the desired touch debounce time (TFT_BLOCKING_TIME_MS) in ms
e Set the time after which the display is dimmed (TFT_DIM_PERIOD_S) in
sec (0 for no dimming)
What kind of Servos:
actuator is used? e Uncomment SHUTTER_RCSERVO and comment SHUTTER_SOLENOID
Note: exactly one define
of the two must e Set the shield I12C address (RCSERVO_BOARDID - default is set)
be used e If you want the servos to release after a given time, adjust
IDLEINTERVAL_S (in sec), otherwise set to 0
Solenoids:
e Uncomment SHUTTER_SOLENOID and comment SHUTTER_RCSERVO
define
e Set the shield I12C address (SOLENOID_BOARDID - default is set)
e SetIDLEINTERVAL _Sto 0
No:

Comment DIGINPUT define

Are the digital Yes:

control lines Uncomment DIGINPUT define

used? e Choose whether to use the internal pullup resistors with
DIGINPUT_USEPULLUPS (1-> use pull-ups, use for switches; 0-> no pull-
ups, use for TTL signals)

e If switch debouncing is required, adjust the
DIGINPUT_CHECK_INTERVAL_MS and DIGINPUT_MAX_CHECKS
parameters (see comments in file for details), otherwise set
DIGINPUT_CHECK_INTERVAL_MS to 0

To compile the source code in the Arduino IDE, several libraries need to be included if the respective
shield is in use (the help menu in the IDE provides a link to library install instructions): the Adafruit PWM
Servo Driver library, the Adafruit Motor Shield V2 library, the Adafruit RGB LCD Shield library, and the
Adafruit FT6206 library (for the TFT shield). Make sure to allow installation of dependent libraries by the
Arduino IDE. After successful compilation, the Arduino code needs to be uploaded via the IDE (if the
reset capacitor was installed, make sure to remove the jumper for uploading).

5.3.2. C library

The C library provides helper functions to assist communication of a computer with the Arduino shutter
controller (e.g. to set the shutter parameters or to open/close the shutters). The library handles low-level
serial communication and provides easy-to-use wrapper functions. It utilizes the Virtual Instrument
Software Architecture (VISA) standard, which needs to be installed on the computer. Free VISA
implementations (with installation instructions) are available from several companies, such as Tektronix
[35], Keysight [36], or Rohde & Schwarz [37]. The supplied code was tested with NI-VISA [38] (which is,
as of the time of writing, no longer free). The shutter C library (ArdShutter.c) only depends on the VISA
library. The serial baud rate and termination character are defined in the same file. The header file
(ArdShutter.h) only contains function prototypes for inclusion in other modules. The library currently only
supports a single Arduino shutter controller and VISA handles are stored internally in the module. An
instrument session needs to be established with ARD_Shutterlnit before shutter commands can be
issued. The session needs to be closed with ARD_Close when finished.

5.3.3. Python library

The python library provides the same functionality as the C library above. This library, too, utilizes the
Virtual Instrument Software Architecture (VISA) standard. For this library to work, the pyVISA library [39]
needs to be installed. While pyVISA can use an installed VISA library from the beforementioned sources,
it can also utilize pyVISA-py [40], an open-source, python-based VISA implementation. The supplied code
was tested with pyVISA and pyVISA-py. The shutter controller is implemented as a class; its constructors
and destructors handle instrument initialization and closing.

5.3.4. C GUI

The C GUI tests the shutter functionality and uses the above C shutter library. To be compatible with the
rest of our lab software, we used NI LabWindows/CVI (not free or open source - see the python GUI
below for an open-source implementation) for incorporation of the shutter into our experiment. Though the
source will not compile without the NI suite, the source can serve as example code on how to use the C
shutter library functions.

5.3.5. Python GUI

The python GUI tests the shutter functionality and uses the above python shutter library. The GUI is
based on Tkinter, which comes built-in with most python installers.

6. Operation instructions

General safety notice:

The shutters are designed to block light impinging on the shutter blade. Some heating of the blade and
light scattering off the blade is expected and needs to be managed and monitored. When setting up and
calibrating the shutters, adhere to all light (or laser) safety precautions.

6.1 Initial setup

Before the shutters attached to the controller can be used, the parameter settings need to be determined
and uploaded to the controller. Upon boot, the Arduino reads saved parameter values from EEPROM, but
does not move any actuators unless directed by commands or user input. This gives the user the chance
to safely program the parameters before first use (the EEPROM could initially contain random values).
The following is the sequence for initial use (can be performed using the library functions, with one of the
GUIs, or directly with serial commands via the Arduino serial monitor):

1.
2.

Unplug the Arduino.

Connect the shutters to the servo or motor shield and make a note of the shield port number
used.

Plug the Arduino into a serial port.

Adjust the header file “Common.h” (see Table 3), compile, and download the Arduino code with
the Arduino IDE.

Clear the parameter setting with the CLR command (see “Notes” in case of a stand-alone shutter
controller).

For each shutter, send parameter values with the SPR command using “-1” as the shutter
number — this value adds a new shutter to the parameter list. Make sure the port numbers match
the ones from step 2. For servos, use default values (e.g. 100,200,300) for the parameters
openPos, closePos, and transitDelay (these values are calibrated in the next step). For solenoids,
use 0 for closePos and 255 for openPos.

Place the shutters in the respective beam path.

In case of servo motors: For each shutter, adjust the RC servo positions directly with the SSP
command to find appropriate open and closed positions (note that if a position is unreachable, the
servo horn can be attached at a different angle). Update the openPos and closePos parameters
for each servo with the SPR command, this time using the respective shutter number (instead of
the -1 used previously, remember that the index is zero-based). An easy way to do this is to get
the parameters with the GPR command, change the positional values, and send the updated
parameters back with the SPR command.

If the transit delay parameters are used (these do not affect the shutter operation and are just
stored for queries) they need to be calibrated, for example with a photodiode in the light path.
Once determined, update this value (like the update in step 8).

. Check the parameter values (and order) individually.
. Save the parameters to EEPROM with the SAV command.

If no serial connection is used in the shutter controller, the parameters can be set when
downloading the program to the Arduino (see Note b below).

In the unlikely event that random initial values in the EEPROM make the Arduino behave
erroneously when first programmed and powered up (or when no serial connection is used for the
shutter operation), we provide a routine “createDummyParameters” in the file
“ShutterDriverUniversal.ino” that could be temporarily substituted for

“ params.readFromEEPROM?” in the setup portion of the Arduino to pre-set the parameters in the
EEPROM (see instructions in the source code).

6.2 Standard operation

The shutter parameters are stored in the Arduino and are loaded at boot time. No calibration is needed
during normal operation. The following features are enabled by default (but can be disabled in the source
code, see Table 3):

e The screen dims after a period of inactivity (default 60 s, set LCD_DIM_PERIOD_S or
TFT_DIM_PERIOD_S to zero to disable). Wake-up is through any button press or touch.

e For the LCD display, the up/down buttons cycle through the shutters, the left/right closes/opens
them. For the TFT display, actions are button touches.

e The RC servos can be made to disengage (after which they are movable by hand) after a period
of inactivity (default 5 s, set IDLEINTERVAL_S to zero to disable this mode). This only applies to
servos, not to solenoids.

7. Validation and characterization

7.1 Test setup

The performance of the shutter (opening/closing times and delays) varies widely with use parameters, like
the actuator type, size of the blade, size of the light path, and relative positioning. For testing in the setup
shown in Fig. 7, we used a laser beam from a laser diode (Thorlabs PL252) and expanded the beam with
a lens (we tested the shutter at beam diameters of 1 mm, 5 mm, and 10 mm). After the shutter position,
the laser was focused onto a photodiode and its output was monitored with an oscilloscope. A TTL pulse
from a function generator toggled the shutter (open/close) through the control input of the shutter
controller and provided a reference for the oscilloscope. With this setup, we measured the
opening/closing and delay times. We define the opening time as the rise in photodiode signal from 20% to
80% full scale and the closing time as the fall time from 80% to 20%. The opening/closing delay is the
time from the change in the control signal to the midpoint of the opening/closing signal.

10 mm ("

Laser

0000000

Ctrl In

< FG

Controller

Fig. 7. Test setup to measure opening, closing, and delay times. PD: photodiode, FG: function generator.

Several shutter configurations were measured:

e “Large Servo” - a servo motor shutter with a large-frame servo (HITEC HS-322HD). In this
configuration, the shutter blade pivot point was about 5.5 cm from the beam.

o “Small Servo” - a servo motor shutter with a small-frame servo (Savox SH-0262MG). In this
configuration, the shutter blade pivot point was about 3 cm from the beam.

o “Solenoid (horizontal)” - a solenoid shutter with a solenoid (JF-0826B), mounted horizontally.
This solenoid has a theoretical throw of 10 mm, but a rubber gasket for damping reduces the
throw to about 8 mm, hence the 10 mm diameter beam could not be measured.

o “Solenoid (vertical)” — same solenoid as above but orientated vertically.

¢ “Commercial” A commercial shutter system (Vincent Associates shutter VS14S2ZM1 and a
VMM-D4 driver).

In all cases, the shutter was positioned such that the beam was at least 2 mm from the edge of
the blade (in the open and closed positions). For each configuration, 100 opening/closing cycles were

measured.
7.2 Results

Table 4 shows the experimental opening and closing transit times t and delays T (averages and sample
standard deviations). The transit times t are also plotted in Fig. 8. Finally, Fig. 9 shows photodiode traces
for these configurations (only the first 20 iterations are shown for clarity).

Table 4. Measured opening and closing times (7) and delays (T).

Shutter Direc- 7 [ms] T [ms] 7 [ms] T [ms] 7 [ms] T [ms]
type tion (21 mm) (91 mm) (25 mm) (95 mm) (210 mm) (210 mm)
Large open 104 +£1.2 55+5.5 19+0.37 55+55 29+14 70+5.9
Servo close 8.4 +0.71 4257 18 £0.75 55+55 24 +0.3 67+5.5
Small open 26+0.19 32+5.6 8.8 +0.44 39+55 15+ 0.63 48 +5.8
Servo close 25+0.12 30+5.7 8.7 £0.33 40+5.5 15+ 0.36 45+5.4
Solenoid open 3.5+ 0.080 74 +3.2 20 +0.92 70+2.5 - -
(horizontal) | close | 0.95 + 0.003 16 £ 0.18 4.3 +0.015 15+ 0.17 - -
Solenoid open | 1.00 +0.019 30+0.38 8.2 +0.084 44 +0.8 - -
(vertical) close | 0.69 + 0.004 16 +0.19 3.2 £0.057 18+0.19 - -
Commer- open | 0.20+0.001 | 3.1+0.004 | 0.63+0.003 | 2.9+0.005 | 0.94 +£0.003 | 3.2+0.006
cial close | 0.30+£0.001 | 5.5+0.006 1.2 £ 0.003 5.9 £ 0.002 1.7 £0.015 5.5+0.013
30+ Small Servo open §
Small Servo close
Q Large Servo open
O Large Servo close
251 Solenoid horizontal open |
Solenoid horizontal close
O Solenoid vertical open
7 20 - O Solenoid vertical close
£ o] Commercial open Lﬁ
— [0 Commercial close
QO
'g 151
=
2
©
= 101 %
o
5 -
H
0L 88 & &

1

5 10
Beam size [mm]

Fig. 8. Measured opening and closing times 7 (values from Table 4).

c

[0)]

Q.

o
o O
e
[7]

-1 N [0)]

w

o

[&]

c

[0)]

[8

32
E g

non

w

=)

[&]

) c

o8 &

[o N = o
c 0
aN
oh
» 2

close

open

Solenoid
(vertical)

close

open

Commercial

close

0 50 100 0 50 100 0 50 100
time [ms]

Fig. 9. Measured beam transmission during opening and closing of various shutters. The timet=0
corresponds to the rising/falling edge of the digital control signal. 20 repetitions are shown each.

7.3 Servo shutter performance

For our servo configurations, the faster rotational rate of the smaller servo (rated speed of 60 deg /

80 ms) over the larger servo (60 deg / 190 ms) is partially offset by the shorter lever arm (3 cm vs.

5.5 cm). Based on Eqgn. 1 we would expect the small servo to be 25% faster than the large servo. We see
a larger difference, which likely results from the approximations used for Eqn. 1 — it assumes a uniform
(top-hat) beam (our beam is not), calculates 0 to 100% transit times (we quantify 20% to 80% because a
non-top-hat beam doesn’t provide sharp cut-on and cut-off points), and neglects acceleration effects.

We expected the delay times to depend strongly on the positioning of the shutter with respect to
the beam and we observed delays up to about 50 ms (the debounce of the digital control inputs was
disabled). However, we also observed large shot-to-shot variations in the delay times in a range of 20 ms.
This timing jitter is consistent with the 50 Hz operating frequency of the PWM controller on the servo
shield. Any update request to the PWM controller that occurs between the pulse repetition period (20 ms)
is deferred until the next period. Hence, relative to the digital control signal the servo movement starts
anywhere within a 20 ms window. Direct control of the PWM waveforms (via the internal Arduino timers)
might improve the performance but given the programmatic complexity we did not attempt this.

7.4 Solenoid shutter performance

While servo motors have a fairly well-defined rotational velocity profile, the movement of our solenoids
depends much more strongly on external parameters, such as the applied voltage, the mass of the
plunger, friction, etc. In our experiments, we noticed that the transit time and the delay depend strongly on
the orientation of the shutter. In the horizontal configuration, the solenoid movement is slower with a
somewhat larger variation, especially during opening. When mounted horizontally, the blade experiences
stronger friction on the mount, while in the vertical orientation the blade is just loosely guided and
experiences very little friction. In addition, when mounted vertically, gravity helps pull the plunger down
during opening, which could help shorten the opening time. In the vertical configuration, the solenoid
shutter is as fast as (or faster than) the servo-based shutter with much less timing jitter. The drawback,
however, is that the solenoid causes more vibrations and a louder noise than the servo-based design.
Mounting with damping material (such as sorbothane) could provide some improvement in this regard.

7.5 Commercial shutter performance

We compare the commercial shutter performance for our largest measured beam (10 mm diameter) to
the shutter’s specification for a beam filling its aperture (14 mm). This shutter exhibits short transit times
and very stable timing. The opening time for the 10 mm beam was about 1 ms and the closing time

1.7 ms, which are within the shutter’s specifications of 1.5 ms and 3 ms, respectively. The opening delay
time of 3.2 ms is also within the specified signal-to-80%-open time of 3.5 ms (the closing delay is not
specified). The repeatability of the shutter is also not specified, but from our measurement we obtain an
excellent performance with a timing jitter of no more than 20 ps.

7.6 Performance summary and possible improvements

The performance tests show that our DIY shutter system cannot (and was not meant to) compete with
commercial shutters in terms of speed and precision. However, despite the lower speed we believe that
our design will find uses in many areas such as laser science, spectroscopy, and microscopy, especially
when multiple shutters are required. Our design is open source, easy to assemble, and costs much less
than commercial devices, greatly aiding its potential for widespread use.

In future work will explore the use of rotary solenoids. Though more expensive than linear
solenoids, they likely offer advantages in speed and repeatability (lower mass of the moving parts, less
friction effects). Some commercial shutters, such as [10-13], already use rotational solenoids and we
expect that our controller design will work with these devices with only minimal (if any) adjustments.

CRediT author statement

Mathias Fischer: Software, Validation, Investigation, Writing - Reviewing and Editing,
Martin Fischer: Conceptualization, Methodology, Software, Writing - Original draft preparation, Funding
Acquisition, Supervision.

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. CHE-
2108623, and by the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community
Foundation under grant no. 2021-242921. We also acknowledge Dr. David Grass for helpful suggestions
for manuscript preparation.

References:

10.

11.
12.

13.

14.

Martinez, S., L. Hernandez, D. Reyes, E. Gomez, M. Ivory, C. Davison, and S. Aubin, Note: Fast,
small, and low vibration mechanical laser shutters. Review of Scientific Instruments, 2011. 82(4),
https://doi.org/10.1063/1.3574224.

Aboud, D.G.K., M.J. Wood, G. Zeppetelli, N. Joy, and A.-M. Kietzig, A Practical Comparison of
Beam Shuttering Technologies for Pulsed Laser Micromachining Applications. Materials, 2022.
15(3): p. 897, https://doi.org/10.3390/ma15030897.

Comtois, S. and S. Gagné, High-speed electromechanical shutter for vision research. Medical and
Biological Engineering and Computing, 1998. 36(5): p. 627-629,
https://doi.org/10.1007/BF02524435.

Pohler, D., Fast and durable electromechanical shutter for imaging spectrometers. Review of
Scientific Instruments, 2009. 80(3), https://doi.org/10.1063/1.3103628.

Zhang, G.H., B. Braverman, A. Kawasaki, and V. Vuleti¢, Note: Fast compact laser shutter using a
direct current motor and three-dimensional printing. Review of Scientific Instruments, 2015.
86(12), https://doi.org/10.1063/1.4937614.

Duma, V.-F., M. Nicolov, M. Kiss, T. llca, D. Demian, and L. Szantho. Modeling of modulation
functions of different configurations of optical chopper wheels. in SPIE Optical Metrology. 2011:
SPIE. Vol. 8083, https://doi.org/10.1117/12.889509.

George, N.A., N.B. Thomas, H.H. Moidu, and K. Piyush, Optimization of an optical chopper-laser
beam arrangement in low-frequency applications. Optik, 2015. 126(23): p. 3628-3630,
https://doi.org/10.1016/].ijle0.2015.08.241.

Vincent Associates. https://www.uniblitz.com/ (accessed 1/14/2024).

Thorlabs. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=927 (accessed
1/14/2024).

Brandstrom Instruments. https://www.brandstrominstruments.com/index.php (accessed
1/14/2024).

EOPC. https://eopc.com/shutters.html (accessed 1/14/2024).

DACO Instruments. https://dacoinstruments.com/products/advanced-laser-shutters/ (accessed
1/14/2024).

KENDRION. https://www.kendrion.com/en/products/solenoids-actuators/optical-beam-
shutters/ (accessed 1/14/2024).

Picard Instruments. https://picardindustries.com/products/optical-devices/usb-optical-shutter/
(accessed 1/14/2024).

https://doi.org/10.1063/1.3574224
https://doi.org/10.3390/ma15030897
https://doi.org/10.1007/BF02524435
https://doi.org/10.1063/1.3103628
https://doi.org/10.1063/1.4937614
https://doi.org/10.1117/12.889509
https://doi.org/10.1016/j.ijleo.2015.08.241
https://www.uniblitz.com/
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=927
https://www.brandstrominstruments.com/index.php
https://eopc.com/shutters.html
https://dacoinstruments.com/products/advanced-laser-shutters/
https://www.kendrion.com/en/products/solenoids-actuators/optical-beam-shutters/
https://www.kendrion.com/en/products/solenoids-actuators/optical-beam-shutters/
https://picardindustries.com/products/optical-devices/usb-optical-shutter/

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Radiant Dyes. https://www.radiant-dyes.com/index.php/products/optomechanics/shutter
(accessed 1/14/2024).

Meyrath, T. and M. Raizen, Inexpensive Mechanical Shutter and Driver for Optics Experiments,
2003.

Huang, P.-W., B. Tang, Z.-Y. Xiong, J.-Q. Zhong, J. Wang, and M.-S. Zhan, Note: A compact low-
vibration high-performance optical shutter for precision measurement experiments. Review of
Scientific Instruments, 2018. 89(9), https://doi.org/10.1063/1.5046445.

Singer, K., S. Jochim, M. Mudrich, A. Mosk, and M. Weidemdliller, Low-cost mechanical shutter
for light beams. Review of Scientific Instruments, 2002. 73(12): p. 4402-4404,
https://doi.org/10.1063/1.1520728.

Maguire, L.P., S. Szilagyi, and R.E. Scholten, High performance laser shutter using a hard disk
drive voice-coil actuator. Review of Scientific Instruments, 2004. 75(9): p. 3077-3079,
https://doi.org/10.1063/1.1786331.

Scholten, R.E., Enhanced laser shutter using a hard disk drive rotary voice-coil actuator. Review
of Scientific Instruments, 2007. 78(2), https://doi.org/10.1063/1.2437199.

Adams, C.S., A mechanical shutter for light using piezoelectric actuators. Review of Scientific
Instruments, 2000. 71(1): p. 59-60, https://doi.org/10.1063/1.1150160.

Bauer, M., P.P. Franzreb, N. Spethmann, and A. Widera, Note: Reliable low-vibration piezo-
mechanical shutter. Review of Scientific Instruments, 2014. 85(9),
https://doi.org/10.1063/1.4894205.

Bowden, W., I.R. Hill, P.E.G. Baird, and P. Gill, Note: A high-performance, low-cost laser shutter
using a piezoelectric cantilever actuator. Review of Scientific Instruments, 2017. 88(1),
https://doi.org/10.1063/1.4973774.

Build Instructions: Laser Shutter Assembly | Hackaday.io. https://hackaday.io/project/1279-
ramanpi-raman-spectrometer/log/9975-build-instructions-laser-shutter-assembly (accessed
1/14/2024).

30 ms optical shutter using RC servo | Quantum Optics Lab Olomouc.
https://quantum.opticsolomouc.org/archives/1177 (accessed 1/24/2024).

DIY Laser Shutter : 4 Steps | Instructables. https://www.instructables.com/DIY-Laser-Shutter/
(accessed 1/24/2024).

More DIY Optical Shutters | Lab On The Cheap. http://www.labonthecheap.com/more-diy-
optical-shutters/ (accessed 1/24/2024).

Servo MG996R | 3D CAD Model Library | GrabCAD. https://grabcad.com/library/servo-mg996r-1
(accessed 5/29/2024).

Solenoid JF-0826B | 3D CAD Model Library | GrabCAD. https://grabcad.com/library/solenoid-ijf-
0826b-1 (accessed 5/29/2024).

Overview | Adafruit 16-channel PWM/Servo Shield | Adafruit Learning System.
https://learn.adafruit.com/adafruit-16-channel-pwm-slash-servo-shield/ (accessed 1/24/2024).
arduino ide - Why does starting the serial monitor restart the sketch? - Arduino Stack Exchange.
https://arduino.stackexchange.com/questions/439/why-does-starting-the-serial-monitor-
restart-the-sketch (accessed 1/24/2024).

Overview | Adafruit Motor Shield V2 | Adafruit Learning System.
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino (accessed 1/24/2024).
Overview | RGB LCD Shield | Adafruit Learning System. https://learn.adafruit.com/rgb-lcd-shield
(accessed 1/25/2024).

Overview | Adafruit 2.8" TFT Touch Shield v2 - Capacitive or Resistive | Adafruit Learning System.
https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2/ (accessed 1/24/2024).

https://www.radiant-dyes.com/index.php/products/optomechanics/shutter
https://doi.org/10.1063/1.5046445
https://doi.org/10.1063/1.1520728
https://doi.org/10.1063/1.1786331
https://doi.org/10.1063/1.2437199
https://doi.org/10.1063/1.1150160
https://doi.org/10.1063/1.4894205
https://doi.org/10.1063/1.4973774
https://hackaday.io/project/1279-ramanpi-raman-spectrometer/log/9975-build-instructions-laser-shutter-assembly
https://hackaday.io/project/1279-ramanpi-raman-spectrometer/log/9975-build-instructions-laser-shutter-assembly
https://quantum.opticsolomouc.org/archives/1177
https://www.instructables.com/DIY-Laser-Shutter/
http://www.labonthecheap.com/more-diy-optical-shutters/
http://www.labonthecheap.com/more-diy-optical-shutters/
https://grabcad.com/library/servo-mg996r-1
https://grabcad.com/library/solenoid-jf-0826b-1
https://grabcad.com/library/solenoid-jf-0826b-1
https://learn.adafruit.com/adafruit-16-channel-pwm-slash-servo-shield/
https://arduino.stackexchange.com/questions/439/why-does-starting-the-serial-monitor-restart-the-sketch
https://arduino.stackexchange.com/questions/439/why-does-starting-the-serial-monitor-restart-the-sketch
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino
https://learn.adafruit.com/rgb-lcd-shield
https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2/

35. TEKVISA Connectivity Software | Tektronix.
https://www.tek.com/en/support/software/driver/tekvisa-connectivity-software-v411

(accessed 2/1/2024).

36. 10 Libraries Suite | Keysight. https://www.keysight.com/us/en/lib/software-detail/computer-

software/io-libraries-suite-downloads-2175637.html (accessed 2/1/2024).

37. R&S®VISA | Rohde & Schwarz. https://www.rohde-schwarz.com/us/applications/r-s-visa-
application-note 56280-148812.html (accessed 2/1/2024).

38. NI-VISA | NI. https://www.ni.com/en-us/shop/product/ni-visa.html (accessed 2/1/2024).
39. PyVISA | PyPI. https://pypi.org/project/PyVISA/.
40. PyVISA-py | PyPI. https://pypi.org/project/PyVISA-py/ (accessed 2/1/2024).

Appendix A: BOM details

Controller

Component

Arduino Uno
R3

Servo Shield

Motor Shield

Stacking

headers

Pack of right-
angle headers

LCD shield

TFT shield

9V power
supply for
Arduino

5V power
supply for
servo shield

Power adapter
jack to screw
terminal

BNC
connectors

Num-
ber

0-4

Cost
lunit

$27.60

$17.50

$19.95

$1.95

$2.95

$19.95

$44.95

$8.95

$14.95

$2

$3.76

Source

Arduino.

cc

Adafruit

Adafruit

Adafruit

Adafruit

Adafruit

Adafruit

Adafruit

Adafruit

Adafruit

Digikey
and
others

Part
number

Arduino
A000066

Adafruit
1411

Adafruit
1438

Adafruit
85

Adafruit
816

Adafruit
772

Adafruit
1947

Adafruit
63

Adafruit
1466

Adafruit
368

Amphenol
31-10-
RFX

Link

https://store-
usa.arduino.cc/products/arduino-uno-

rev3d

https://www.adafruit.com/product/1411

https://www.adafruit.com/product/1438

https://www.adafruit.com/product/85

https://www.adafruit.com/product/816

https://www.adafruit.com/product/772

https://www.adafruit.com/product/1947

https://www.adafruit.com/product/63

https://www.adafruit.com/product/1466

https://www.adafruit.com/product/368

https://www.digikey.com/en/products/d

etail/amphenol-rf/31-10-RFX/100642

Comments

Arduino clones can be
obtained (cheaper) from a
variety of online sources

Only required if a display
shield is used

Only required if a display
shield is used

Optional

Optional

Only required if not
connected to USB

Amperage depends on the
number of servos

Used to connect the servo
shield power supply to the
servo shield board

Only required if control
lines are used

The following items might be required, but these are common items in any electronics bench:

https://www.tek.com/en/support/software/driver/tekvisa-connectivity-software-v411
https://www.keysight.com/us/en/lib/software-detail/computer-software/io-libraries-suite-downloads-2175637.html
https://www.keysight.com/us/en/lib/software-detail/computer-software/io-libraries-suite-downloads-2175637.html
https://www.rohde-schwarz.com/us/applications/r-s-visa-application-note_56280-148812.html
https://www.rohde-schwarz.com/us/applications/r-s-visa-application-note_56280-148812.html
https://www.ni.com/en-us/shop/product/ni-visa.html
https://pypi.org/project/PyVISA/
https://pypi.org/project/PyVISA-py/
https://store-usa.arduino.cc/products/arduino-uno-rev3
https://store-usa.arduino.cc/products/arduino-uno-rev3
https://store-usa.arduino.cc/products/arduino-uno-rev3
https://www.adafruit.com/product/1411
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/85
https://www.adafruit.com/product/816
https://www.adafruit.com/product/772
https://www.adafruit.com/product/1947
https://www.adafruit.com/product/63
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/368

Shutter

Electrolytic capacitor (value depends on number of servos) - only required if several servos are
used (see manuscript).

Electrolytic capacitor (~22 yF) and a jumper - only required if serial communication resets
Arduino upon port open (see manuscript).

Some wire and solder accessories.

A variety of actuators are available, the ones we tested were:

Small servo: Savox SH-0262MG. As of the time of manuscript submission, this item is
discontinued. A replacement item is SH-0264MG at a price of $35.99 each.
https://www.savoxusa.com/products/savsh0264mg-super-torgue-metal-gear-micro

Large servo: MG 996R at a price of about $5 each. 4-pack: https://www.amazon.com/4-Pack-
MG996R-Torque-Digital-Helicopter/dp/BO7MFK266B/

Large servo: HITEC HS-322HD at a price of about $15 each. https://www.amazon.com/Hitec-
33322S8-HS-322HD-Standard-Karbonite/dp/BO0060O3XEA/

Solenoid: Medium Push-Pull Solenoid, JF-0826B, 5V, available for $7.50 each.
https://www.adafruit.com/product/3992

Other parts:

If the cables of the servos are too short (very likely), extension cables can be made with a servo
cable kit. A crimp tool makes assembly easier - this tool is included in many kits, for example:
https://www.amazon.com/Female-Connector-Crimping-Compatible-Spektrum/dp/BOBGX7157Y/.
Price: about $24 each

For the blade, a scrap piece of anodized aluminum will work. We used a small section off a 1/8"
thick, 1 ft strip: https://www.mcmaster.com/7083T11/ Price: $12.50/ft

To attach the blade to the servo horn, most short #0 self-tapping screw will do, e.g.
https://www.mcmaster.com/92470A018/ (Price: $7/pack of 50 screws)

https://www.savoxusa.com/products/savsh0264mg-super-torque-metal-gear-micro
https://www.amazon.com/4-Pack-MG996R-Torque-Digital-Helicopter/dp/B07MFK266B/
https://www.amazon.com/4-Pack-MG996R-Torque-Digital-Helicopter/dp/B07MFK266B/
https://www.amazon.com/Hitec-33322S-HS-322HD-Standard-Karbonite/dp/B0006O3XEA/
https://www.amazon.com/Hitec-33322S-HS-322HD-Standard-Karbonite/dp/B0006O3XEA/
https://www.adafruit.com/product/3992
https://www.amazon.com/Female-Connector-Crimping-Compatible-Spektrum/dp/B0BGX7157Y/
https://www.mcmaster.com/7083T11/
https://www.mcmaster.com/92470A018/

