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MURASUGI SUM AND EXTREMAL KNOT FLOER HOMOLOGY

ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

ABSTRACT. The aim of this paper is to study the behavior of knot Floer homology under Murasugi sum.
We establish a graded version of Ni’s isomorphism between the extremal knot Floer homology of Murasugi
sum of two links and the tensor product of the extremal knot Floer homology groups of the two summands.
We further prove that 7 = g for each summand if and only if 7 = g holds for the Murasugi sum (with 7 and
g defined appropriately for multi-component links). Some applications are presented.

1. INTRODUCTION

The Murasugi sum is an operation that one can perform on isotopy classes of surfaces with non-empty
boundary embedded in 3-manifolds. Applying it to Seifert surfaces yields an operation on isotopy classes of
links. As the name suggests, the operation was introduced by Murasugi [Mur63, Mur58], whose motivation
was a calculation of the genus of an alternating link by means of the degree of its Alexander polynomial. An
important point to be made about the Murasugi sum is that it not a well-defined binary operation on the set
of links. Indeed, many essential choices are made in its definition; not only the isotopy classes of the chosen
Seifert surfaces, but also the polygons embedded therein along which the sum is performed. Despite these
choices, one can easily show that the coefficient of the Alexander polynomial corresponding to the first betti
number of the surfaces in question is multiplicative under Murasugi sum. Gabai later showed that Seifert
genus behaves additively under Murasugi sum, extending the well-known special case of the additivity of
genus under connected sum. Indeed, he showed that the Murasugi sum of two surfaces is minimal genus if
and only the two summands are minimal genus [Gab83, Gab85]. Note, however, that pathology arises if one
considers non-minimal genus surfaces; for instance, Thompson showed that one can sum two unknots along
genus one surfaces to get a trefoil or sum two figure eights to get the unknot [Tho94], and Able and Hirasawa
have recently shown that in fact any knot can be obtained as a Murasugi sum of any other two knots along
(typically) non-minimal genus Seifert surfaces [AH].

In light of the connections between the knot Floer homology groups and both the Alexander polynomial
(through their Euler characteristic [OS04b, Ras03]) and the genus (through their breadth [OS04a]), one might
wonder about the behavior of the extremal knot Floer homology under Murasugi sum. Here, “extremal”
refers to the knot Floer homology group in Alexander grading given by negative the genus of the surfaces
used. (Modulo a well-understood grading shift, this is isomorphic to the knot Floer homology group in
Alexander grading given by the genus, a group often referred to as the “top” group) For instance, the knot
Floer homology groups of a connected sum are a bigraded tensor product of those of the summands [OS04b,
Theorem 7.1]. Simple examples exploiting the non-uniqueness of Murasugi sum show that this cannot hold
for general Murasugi sums and, in fact, there can be no closed formula for the knot Floer homology of the
Murasugi sum of links in terms of the knot Floer homology of the summands. Despite this, it would be
reasonable to conjecture that the extremal knot Floer homology of a Murasugi sum is a tensor product of the
extremal terms of its summands. Ni proved that this is indeed the case for ungraded knot Floer homology

groups with field coefficients [Ni06b, Theorems 1.1,4.5] (cf. [Juh08, Corollary 8.8]). Since an ungraded vector
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space over a field is determined up to isomorphism by its dimension, this result is equivalent to saying that
the rank of the extremal knot Floer homology is multiplicative under Murasugi sum. It is natural to wonder
if Ni’s result extends in a (Maslov) graded fashion, and our first result confirms that this is indeed the case.
To state it, we define the index of a (possibly disconnected) surface R to be the quantity i(R) := M
Theorem 1.1. For i € {1,2}, let L; be an l;-component link and let R; be a Seifert surface for L;. Let
Ry % Ry be a Murasugi sum of Ry and Ra, and let O(Ry * Ry) = L = Ly * Lo be the corresponding l-component
link. Then with Fa-coefficients, we have a graded isomorphism

HFEK (L, —i(Ry * Ry))[l — 1] = HFK (L, —i(R1))[lh — 1] ® HFK Ly, —i(R2))[l2 — 1].

We should note that it is not clear how to extend Ni’s argument, nor the argument using the decompo-
sition theorem for sutured Floer homology presented by Juhasz, to yield the graded statement given above
(despite some effort to do so). On a superficial level, though, our proof follows the same strategy as its
antecedents; namely, we find particular Heegaard diagrams adapted to Seifert surfaces and their Murasugi
sum, and then analyze the resulting Floer complexes in detail. The diagrams we end up using are more
specialized, however, and yield more control over the combinatorics and homotopy theoretic aspects of the
associated chain complexes. This increase in control further allows us to glean some information about
the rest of the knot Floer homology filtration, in the form of the following result about the integer-valued
concordance invariant 7 [OS03] (for the extension of 7 to links, see [Cav18, OSS15, HR20]).

Theorem 1.2. If the link L is the Murasugi sum of links Ly and Lo along minimal index Seifert surfaces,
then T7(L;) = g(L;) for all i € {1,2} if and only if T(L) = g(L). (Here T denotes Tyop from [HR20] when
discussing links with more than one component.)

A large class of links for which 7(L) = g(L) is provided so-called strongly quasipositive links. These
links possess a Seifert surface which is properly isotopic into the 4-ball onto a piece of an algebraic curve
and which therefore minimizes the smooth 4-genus. Rudolph gave a partial extension of Gabai’s results to
4-genera, by showing that the Murasugi sum of links along Seifert surfaces is strongly quasipositive if and
only if the two summands are. Our result strengthens the resulting implications for the 4-genus.

Our results lead to topological restrictions on which link types can be expressed as Murasugi sums of
others along minimal index Seifert surfaces. Some of the complexity of this problem, and the restrictions
offered by our theorems, can be algebraically distilled by defining a Grothendieck group of links. Recall that
the Grothendieck group K (M), of a commutative monoid M is the quotient of the free abelian group on the
set M by the relations [z +y] = [z]+[y], where on the left “+” is taken with respect to the monoidal operation
and on the right within the free abelian group. While the Murasugi sum * is not a monoidal operation on
links (relying as it does on the choice of Seifert surface and embedded 2n-gon), we can nonetheless define a
group
Z{{Isotopy classes of links})

[L1 % Lo] = [La] + [Lo]
which we call the Grothendieck group of links under Murasugi sum along minimal indez surfaces. It is simply
the quotient of the free abelian group on the set of isotopy classes of links by the relations [L1*Lo] = [L1]+[Lo],
where * denotes any Murasugi sum along any 2n-gon in any minimal index Seifert surface for the links in
question. Thus K (links, ) consists of equivalence classes of links, where two links are equivalent if they
become isotopic after iteratively Murasugi summing both of them with some collection (Ry,...,R;) of
minimal index Seifert surfaces (along any 2n-gons embedded therein, and in any order). Fibered links,
endowed with their (unique) minimal index Seifert surface, form an important class of links which is closed
under Murasugi sums by Gabai’s work [Gab83] (see also [Sta78] for the closure under plumbing). If one
considers their associated Grothendieck subgroup K (fibered links, %) < K (links, ), a deep theorem arising

K (links, *) =
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from the Giroux correspondence asserts that K(fibered links, *) = Z @ Z, generated by the positive and
negative Hopf links [GG06]. One might hope that all links could similarly be generated by a small family,
given the complexity allowed by choices of Seifert surfaces and embedded 2n-gons.

Multiplicativity of the rank of the extremal knot Floer homology under Murasugi sum shows that
K (links, *) is infinitely generated. Indeed, if we consider the rank of the top group as map from the set of
links to the natural numbers N*, viewed as a multiplicative monoid, then its multiplicativity under Murasugi
sums implies that this map descend to a group homomorphism K (links, x) — K(N*) = QZ,. Non-trivial
twist knots have top group of rank equal to the number of twists, showing that the map to N* is surjective,
hence the map to QX is surjective as well. K (links, ) is therefore infinitely generated as an abelian group.
One could still hope, however, that some simple infinite family of knots such as twist knots generates all
knots under Murasugi sum and de-summing. Our result dashes this hope, and indicates that K (links, *) is
quite complicated.

Corollary 1.3. The Poincaré polynomial of the top group of knot Floer homology induces a homomorphism
P : K(links, *) — QZ, (%),
where the codomain is the multiplicative group of rational functions in t with positive rational coefficients.

It would be interesting to identify the image of P, a problem in the realm of geography questions for knot
Floer homology. In particular, we have the following natural question:

Question 1.4. Is every Laurent polynomial with N coefficients realized as the Poincaré polynomial of the
top group of knot Floer homology for some link in the 3-sphere?

Obstructions for a bigraded collection of abelian groups to arise as knot Floer homology groups were obtained
in [HW18, BVV18], but these place no restriction on the top group.

Despite a lack of understanding of the geography question for the top group of knot Floer homology, our
results indicate that any collection of knots whose Poincaré polynomials are coprime are linearly independent
in the Grothendieck group, even if their total rank is the same. In particular, the kernel of the homomorphism
QZy(t) = Q% induced by setting ¢ equal 1 intersects the image of P non-trivially. Perhaps more concretely,
we have

Corollary 1.5. Suppose the Poincaré polynomial of the top group of knot Floer homology of a link L C S®
is irreducible, viewed as a Laurent polynomial over Z. If L is a Murasugi sum of links L = L1 x Lo, then one
of L; is fibered.

As another quick corollary, we can show that alternating links or, more generally, links with thin Floer
homology, are far from generating all links under Murasugi sum.

Corollary 1.6. Suppose the top group of the knot Floer homology of L C S® is non-trivial in more than one
Maslov grading. Then L is not a Murasugi sum of alternating links nor is any link which contains L as a
Murasugi summand.

For instance, the top group of the Kenoshita-Terasaka knot and its mutant, the Conway knot, have Poincaré
polynomials given by 1+ ¢, up to multiplication by #* (with k = 2 for the KT knot and k = 3 for the Conway
knot) [0S04d, Theorems 1.1 and 1.2]. Therefore neither can be realized as a Murasugi sum of alternating
links, nor is there any way to iteratively Murasugi sum them with other links to eventually arrive at a
Murasugi sum of alternating (or thin) links.

As a final corollary, our results can be used in conjunction with the literature to calculate the top group
of an arbitrary cable knot:

Corollary 1.7. Let K, , be the (p,q) cable of a knot K with Seifert genus g. Then for any p > 0, we have
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(1) If ¢ >0, then HFK (K, 4,pg + ==y ~ FFK (K, g)
(2) If ¢ <0, then HFK (K, 4, pg+ @=09=Dy =~ FFE, (1004 1)(K,9)

The key observation, due to Neumann and Rudolph, is that K, ; = K, ggn(q) * Tp,q, Where sign(q) is £1
depending on whether ¢ is positive or negative [NR87, Figure 4.2]. Since T}, ; is fibered, our main result
indicates that the top group of a cable knot is isomorphic to that of K, ggn(q) shifted by the grading of the

top group of the corresponding torus knot. As the latter is well known to be 0 if ¢ > 0 and w if
g < 0, the corollary can then be deduced if the top group is known for two particular examples of K, 4; one
with ¢ positive, and one with ¢ negative. But the results of [Hed05a, Hed09] (cf. [Hed05b]) indicate that the
top group of K, pn41 is isomorphic to that of K and the bottom group of K, _,, 11 is isomorphic to that of
K, provided in both cases that n > 0. Together with the symmetry between the top and bottom groups of
knot Floer homology, and the observations above, the corollary follows. This is essentially the argument for
the special case of fibered cable knots from [Hed08].

We conclude this introduction by highlighting a few problems and questions raised by our work. Perhaps
the most interesting and challenging is

Problem 1.8. Determine the isomorphism type of K (links, ).

Solving this would, ideally, yield an explicit presentation for K (links, %) by generators and relations. Note
that Gabai’s work implies that the link invariant " obtained by minimizing the first Betti number over
all Seifert surfaces for a given link, is additive under Murasugi sums. Hence, it descends to a homomorphism
B K (links, *) — K(NT) 2 Z. An affirmative answer to the following question would solve the problem:

Question 1.9. Is the homomorphism P @& B : K (links, ) — QZy(t) ® Z an isomorphism?

Note that an affirmative answer would require an affirmative answer to the geography problem raised by
Question 1.4. Moreover, combined with any of the known algorithms to compute knot Floer homology (e.g.
[MOS09, Bell0, OS19]), one would also arrive at a solution to the isomorphism problem in K (links, *) and,
presumably, a presentation. While we are inclined to believe the answer is no, the restriction of P @ B
to the subgroup generated by fibered links is an isomorphism onto its image. Indeed, the image of P on
the fibered subgroup is the multiplicative subgroup {t"},cz and the power n associated to a given fibered
link is the Hopf invariant of the 2-plane field associated to its corresponding open book decomposition (up
to normalization, the Hopf invariant is equal to Rudolph’s enhancement of the Milnor number [Rud87]). To
conclude with a more tractable question, we leave the reader with:

Question 1.10. Does the Poincaré polynomial homomorphism P : K (links, x) — QZ(t) contain an infinite
rank subgroup in the kernel of the rank homomorphism obtained by setting t = 1 in the Poincaré polynomial?

Outline: The paper is organized as follow: In Section 2, we review the knot Floer homology for links, recall
the definition for Murasugi sum, construct Heegaard diagrams associated to Seifert surfaces, and describe
the Murasugi sum operation in terms of Heegaard diagrams. In Section 3, we study some local isotopies on
Heegaard diagrams which will largely reduce the number of generators; moreover, we prove that there is a
subcomplex that remains unchanged when applying these isotopies if some technical conditions are satisfied.
In Section 4, we use the simplifications from the previous section to prove the main results.
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2. HEEGAARD DIAGRAMS ADAPTED TO SEIFERT SURFACES

2.1. Heegaard diagrams. We begin with a quick review of Heegaard diagrams. Most of what follows
extends in a straightforward manner to arbitrary closed connected oriented three-manifolds, but since we
are primarily concerned with the operation of Murasugi sum in S® we will specialize our definitions and
constructions to this situation. We begin by recalling the definition of a Heegaard diagram:

Definition 2.1. A Heegaard diagram for S® is a 4-tuple
H= (3, 9 tkE=1) glgtk=1) 4, (k)
where

e X C S3 is an oriented surface of genus g whose complement has two components, the closures of which
are genus g handlebodies U, and Ug with ¥ = 0U, = —0Upg;

o a1 = (ay,... agp k1) (respectively, BYTEF=Y = (By,..., Byir_1)) is a collection of disjoint sim-
ple closed curves on X, each bounding a disk in the handlebody U, (respectively, Ug), such that ¥\ «
(respectively, ¥\ 8) has exactly k components;

e the « circles are transverse to the B circles;

o w = (wy,...,wg) s a collections of markings on X, such that each component of ¥\ « contains a w
marking, and each component of ¥\ 8 contains a w marking.

Unless otherwise mentioned, we will assume our Heegaard diagrams to satisfy a certain technical condition
called (weak) admissibility [OS08, Definition 3.5] (cf. [OS04c, Definition 4.10]). A generator is a (g+k—1)-
tuple & = (21,...,2g4k—1) of points in 3, called the coordinates of x, such that each « and 8 circle contain
exactly one of the coordinates; we will denote the set of generator by Gy.

Let L C S? be an I-component link and R a Seifert surface for L, which we assume to be oriented but not
necessarily connected. We have the following notion of a diagram adapted to R [0Sz04, Ni06b, Juh08, HJS13],

Definition 2.2. A Heegaard diagram adapted to R is a 6-tuple
H= (S, algtk=1) " glath=1) (k) 4, (k) G
satisfying
(3, a, B,w) and (%, «, 3, 2) are both Heegaard diagrams for S3;
S C X is an oriented surface-with-boundary which is isotopic to R in S3;
each generator has at most (k — x(R)) coordinates inside R;
the 2k markings z = (21, ..., %) and w = (w1, ..., wx) all lie on OS;
each component of OS contains at least one marking, and on each component of 05, the z markings and
the w markings alternate;

e the oriented arcs in OS joining each z marking to the next w marking are disjoint from the a circles, and
the arcs in 0S joining each w marking to the next z marking are disjoint from the B circles.

Given a Seifert surface R for an I-component link L C S2, we can employ the following slightly enhanced
version of the algorithm from [HJS13], or a further modification thereof, to construct a Heegaard diagram
adapted to R.

Algorithm 2.3. Adapting a Heegaard diagram to a Seifert surface R C S3.
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(H-1) Embed a graph G with n vertices and (n — x(R)) edges in the interior of the surface R, such that R
deform retracts to G. Therefore, R is isotopic to nbdr(G), the closure of a regular neighborhood of
G in R. This is essentially a band presentation of R.

(H-2) Consider nbdgs(G), the closure of a regular neighborhood of G in S®. Although nbdgs(G) is a union
of handlebodies, its complement in S® is usually not. Rectify this by tunneling out some one-handles
from the complement and adding them to nbdgs(G), so as to get a Heegaard decomposition of S3.

(H-3) Let Uy, be the handlebody obtained from nbdgs(G) by adding these new handles, and let Ug be com-
plementary handlebody. Let 3 be the dividing Heegaard surface, oriented as the boundary of Uy,.

(H-4) Push off nbdg(G) towards ¥ to get a surface S C X in a way so as to ensure that the orientation on
S induced by R agrees with the one induced by 3.

(H-5) Place 2k distinct markings z = (21,...,2,) and w = (w1, ..., wg) on S such that each component of
0S contains at least one z and w marking, and on each component of 05, the z markings and the w
markings alternate.

(H-6) If the surface ¥ has genus g, then draw (g4 k — 1) « circles and (g+k — 1) B circles on ¥\ (z Uw)
such that the following holds:

(a) The « circles are disjoint from one another.

(b) The B circles are disjoint from one another.

(¢) The « circles intersect the B circles transversally.

(d) Each component of ¥\ a contains one z marking and one w marking
(e) Each component of ¥\ B contains one z marking and one w marking.
(f) Ezactly (k — x(R)) « circles intersect S.

(H-7) From each w marking, as one travels along —0S to the next z marking, isotope all the o circles that
one encounters, by finger moves, across the z marking. Similarly, from each w marking, as one travel
along 0S to the next z marking, isotope all the B circles that one encounters, by finger moves, across
the z marking.

(H-8) Finally, perform isotopies of the a circles and the B circles in ¥\ (z U w) to make the diagram
admissible.

Note that such a Heegaard diagram is indeed adapted to R. In particular, (H-6f) ensures that each generator
has at most (k — x(R)) coordinates inside R.

We now spell out an explicit way of making all the choices alluded to in the previous list. The process
is best understood in conjunction with an explicit example, as illustrated in Figure 2.1. At various points
it will be useful to make minor alterations to these choices, but for the sake of brevity (and sanity), we will
not explicitly describe all the choices made each time a Heegaard diagram is constructed.

Algorithm 2.4. Explicit diagram adapted to a planar projection of an embedded Seifert surface R C S3.

(E-1) Given a Seifert surface R for an l-component link L C S®, view it as a surface lying in R®. Consider
a projection 7 : R — R2, and assume that 7| is generic and the image 7(R) is connected.
(E-2) If R has n components, let G be a graph with n vertices and (n— x(R)) edges, embedded in the interior
of R, such that the following holds:
(a) R deform retracts to G.
(b) The vertez v is a regular point of 7|g.
(¢) |c is an immersion with no triple points, and all the preimages of the double points lie in the
interior of the edges.
(E-3) Let U, = nbdgs(m(G)) be a genus g handlebody and let Ug = S® \ nbdgs (7(G)) be the complementary
handlebody. Let > = OU, be the Heegaard surface.
(E-4) Designate g of the (g + 1) circles in X NR? as B circles.
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FIGURE 2.1. An algorithm for constructing a Heegaard diagram adapted to a
Seifert surface. As usual, the red circles are o and the blue ones are 8. The surface S
is orange. The magenta dots are w-markings and the green dots are z-markings. In the
last diagram, the « circles are represented by train tracks, with the thin red lines denoting
curves.
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(E-5) For each of the (n — x(R)) edges of G, choose a point in the image of the interior of the edge that
is not a double point, and draw an « circle on X which is the boundary of a normal disk to G inside
Uy = nbdgs (7(G)). Draw an additional o circle near each of the (g+ x(R) — 1) double points of 7|c,
such that the « circle bounds a disk in U, near the double point, and if the disk were surgered out,
then U, locally would have two components, corresponding to the two preimages of the double point,
with the same crossing information.

(E-6) For each vertex v; of G, let p; € ¥ be the unique point such that w(p;) = w(v;) and |dr|y(p:)| has the
same sign as |dm|, (v;)|. Let D; C ¥ be a small disk containing p;; let D = U;D;.

(E-7) For each of the (n—x(R)) edges of G, attach a band to D lying in X\ (« circles near the double points).
Choose each band so that it deformation retracts onto an arc that projects to the corresponding edge
under m, and so that the surface framing of the band in ¥ is same as the surface framing of the
corresponding edge in R. Let S C X be the surface obtained from D by adding the bands.

(E-8) Put 2l markings z = (z1,...,21) and w = (wy,...,w;) on IS NID, such that each component of 05
contains exactly one z marking and exactly one w marking, and the l arcs by,--- ,by C 0S, which join
the w markings to the z markings, are supported inside 95 N OD.

(E-9) For each disk D;, add an « circle around all but one of the b;’s supported in D;. This adds a total of
(I —g) « circles.

(E-10) For 2 <i <1, add a 3 circles around b;.

(E-11) Perform finger moves on the « circles, as described in (H-7), to obtain the final Heegaard diagram.
One can check that the diagram thus obtained is admissible. Furthermore, since the surface S was
disjoint from the (g+x(R)—1) « circles near the double points, see (E-7), it remains disjoint from them
even after the finger moves, and consequently, it only intersects (g+1—1)—(g+x(R)—1) = (I—x(R))
a circles.

2.2. Knot Floer homology. We briefly recall the definition of the “tilde” version of Heegaard Floer ho-
mology, essentially following [OS08, Section 6.1] cf. [MOS09, Proposition 2.5]. Given a Heegaard diagram
for S3, H = (E(g)s a(g"’k_l),ﬁ(g"‘k_l),w(k)), the chain complex fC’?y is the Fa-module freely generated by
the elements of Gy .

Given generators x,y € Gy, a domain joining them is a 2-chain D generated by the elementary regions
of H such that (0D N«a) =y — x; here, an elementary region is the closure of a component of ¥\ (a U f),
and we are thinking of the generators as formal linear sums of their coordinates. The set of all the domains
joining z to y is denoted by D(z,y). A domain D is said to be positive if all its coefficients are non-negative,
and at least one of the coefficients is positive. Given a point p € X\ (U f), let n,(D) denote the coefficient
of D at the elementary region containing the point p; let n,,(D) = Zle N, (D). Domains with n,,(D) = 0
are called empty domains, and the set of all empty domains joining x to y is denoted by Dy(x,y). Elements
of Gy carry a well-defined grading called the absolute Maslov grading M, which serves as the homological

grading of CF. The difference in Maslov gradings can be computed as
M(z) = M(y) = n(D) — 2n.(D),

where D € D(z,y) is any domain, and (D) denotes its Maslov index.

After choosing a generic path of almost complex structures on SymgH’“*l(E), sufficiently close to the
constant path of one induced from a complex structure on X, one can define the contribution function c, from
the set of all empty Maslov index one domains, to Fy, given by ¢(D) = |[M(D)/R|, the number of points in
a certain unparametrized moduli space. The function ¢ has the property that it evaluates to 1 only if

(a) the domain is positive [OS04¢, Lemma 3.2], and
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(b) the closure of the union of the elementary regions where the domain is supported is connected [Ras03,
Corollary 9.1].

Then the boundary map on the chain complex EF/H is given by

Jdr = Z Z c(D)y.

y€Gu DEDy(x,y)
w(D)=1
(The chain complex /CTﬁq.[ usually depends on the choice of the path of almost complex structures on
Symg+k_1(2); nevertheless, we will suppress this from the notation.)

Theorem 2.5. [0S08, MOS09] The homology /[_{\F’H of the chain complex rC\FH coming from a Heegaard
diagram H = (Z(g)7a<g+k—1)7ﬁ(9+k_1),w(k)) for S® is isomorphic, as graded Fy-modules, to @~ 1(Fy @
Fy[—1)), where [i] denotes a grading shift by i.

The tilde version of knot Floer homology or link Floer homology [0S04b, Ras03, OSO08] is a refine-
ment of Heegaard Floer homology. Let H = (Z(g)7a(9+k_1),ﬁ(g+k_1),z(k),w(k),S) be a Heegaard dia-
gram adapted to a Seifert surface R of an l-component link L C S3. Consider the Heegaard diagram
Ho = (E(g), al9tk=D glatk=1 4y(})) obtained by forgetting S and the z markings. The set of generators
Gy is same as Gy, and they carry the same absolute Maslov grading. Given a 2-chain D generated by the
elementary regions of H, let n, (D) = Z?:o n., (D). The elements of Gy carry another well-defined grading

called the absolute Alexander grading A, such that for any domain D € D(z,y), A(z)—A(y) = n.(D)—n., (D).

Proposition 2.6. If x € Gy is a generator in H = (E(g),a(9+k_1), Bloth=1) (k) k) S), then its absolute
Alezander grading is given by A(z) = (number of z-coordinates inside S) — 1(2k — 1 — x(R)). In particular,
the Alezander grading satisfies: —%(2k — 1 — x(R)) < A(z) < 1(1 — x(R)).

Proof. The Alexander grading of a generator o € Gy is given by 3(c1(s(x)), [R, OR]). If the generator has no
coordinate inside S (called outer in [Juh08]), we can evaluate it as 2¢(S) where ¢(9) is the quantity defined
in [Juh08, Section 3]. Then using [Juh08, Lemma 3.9], we see that

c(S) = x(S) + I(S) —r(S) = x(S) —k — (k—1) = x(R) + | — 2k,

where I(S) equals minus half the number of sutures (which are basepoints in our setting) and r(S) is 0 if
there is exactly one pair of sutures on each boundary and decreases by one for each additional pair of sutures.

For generators which are not disjoint from S, we only need to notice that ¢;(s(z)) — ¢1(s(y)) = 2PD(«),
where a = 9D for any domain D € D(z,y). It is not hard to see that the algebraic intersection number
of a with 95 equals the number of xz-coordinates inside S minus the number of y-coordinates inside S, and
therefore,

1
A(z) = 5(x(R) + 1 — 2k) + (number of a-coordinates inside S).

This proves the lefthand side of the inequality. For the righthand side, we only need to use the following fact

(number of z-coordinates inside S) < (number of « circles intersecting S) = k — x(R). O

In view of the above proposition, we make the following definitions.

Definition 2.7. Given a compact surface R (possibly disconnected), define its index to be i(R) = 1(|0R| —
X(R)). Call a Seifert surface R for a link L minimal if it minimizes the indez, and define the genus of the
link, g(L), to be this minimal index.



10 ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

It is easy to see that the chain complex 6}?% = 6}?%0 is filtered by the Alexander grading. Let the
filtration level Fz(m) C fC\FH denote the subcomplex generated by the generators with Alexander grading
m or less. We call such an (M, A)-bigraded complex, where the differential decreases M by one and does
not increase A, to be an M-graded-A-filtered complex.

Theorem 2.8. [0S04b, Ras03, OS08] To an [-component link L C S®, one can associate (the filtered chain
homotopy type of) an M -graded-A-filtered complex CFK (L) such that the chain complex E’\F/H, coming from
any Heegaard diagram H = (Z(Q),a(9+k_1),6(9+k_1),z(k),w(k),S) adapted to any Seifert surface R for L,
is filtered chain homotopy equivalent to CFK (L) @' (Fy @ Fo[—1,—1]), where [i,j] denotes the (M, A)
bi-grading shift by (i, 7).

It is clear from Proposition 2.6 and Theorem 2.8 that the subcomplex of CFK (L) in Alexander grading
less than —i(R) is filtered chain homotopy equivalent to zero. Let CFK (L, —i(R)) denote the subcom-
plex of CFK(L) in Alexander grading less than or equal to —i(R). If R is minimal, then its homology,
HFK (L, —g(L)), is non-zero [OS04a, Ni06a] carrying a single grading coming from the Maslov grading, and
is called the extremal knot Floer homology.

Instead of studying the full filtration on CFK (L), we will restrict our attention to the two-step filtration
C/'ﬁ((L, —i(R)) C CFK(L). Recall that a two-step filtered complex is simply a pair (S,C) where C' is a
chain complex and S C C is a subcomplex. A filtered chain map f from (S,C) to (S’,C") is a chain map
f: C — C" so that f(S) C S’. A filtered chain map f from (S, C) to (S’,C") is a quasi-isomorphism if both
f:C—C" and f|s: S — S’ induce isomorphisms on homology. We will make use of the following corollary
of Theorem 2.8

Corollary 2.9. Let H = (X, algth=1) glgth=1) (k) (k) S) be a Heegaard diagram adapted to a minimal
Seifert surface R for L. Then there is a quasi-isomorphism of pairs

(Fu(~i(R) — k +1), CFy) = (CFK (L, —g(L)) @~ (F3[~1, —1]), CFK (L) ®"~" (Fy & F3[~1, —1])).

In particular, the extremal knot Floer homology is isomorphic to the homology of Fy(—i(R) — k + 1)[k —].

Moreover, the maps on homologies, @((L, —g(L)) - H.(CFK(L)) and H.(Fyu(—i(R) — k+1)) — HFy4
have the same rank.

We conclude this section by describing how the extremal knot Floer homology is related to the 7-
invariant. Ozavath-Szabé originally defined the 7-invariant for knots in S3; there are a number of gener-
alizations of this invariant to links, and we will concentrate on Tt and Ty, which, by [HR20, Proposi-
tion 5.16] correspond to the smallest and largest of all the possible 7 invariants for links (For a knot K,
T(K) = Thot (K) = Tyop(K).) For now, we only need the following properties of these invariants.

Proposition 2.10. If m(L) denotes the mirror of L, then Toor(m(L)) = —Tiop(L). The invariant Tpor sat-
isfies —g(L) < Toot(L) < g(L) with oot (L) = —g(L) if and only if the map HFK(L,—g(L)) - H.(CFK (L))

18 NON-2€ro.

Proof. The relationship between 7yt and 7¢op under mirroring follows from their definition, a duality property
satisfied by generalized 7 invariants [HR20, Proposition 2.5]. That Tt is bounded by the genus of L follows
from the fact that it is correspondingly bounded by the “slice genus” [HR20, Proposition 5.14]. The final
statement is a consequence of the definition of 74, and the monotonicity of the 7 invariants for links
established in [HR20, Proposition 5.16]. See [HR20, Theorem 2 and Section 5.3] for more details. O
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Proposition 2.11. H = (E(g),a(9+k’1),6(9+k’1),z(k),w(k),S) be a Heegaard diagram adapted to a min-
imal Seifert surface R for a knot L C S3. Then myot(L) = —g(L) if and only if the map on homology
H,(Fu(—g(L) — k+1)) = HF 3 induced from the inclusion Fy(—g(L) — k +1) — CFy is non-trivial.

Proof. This follows immediately from Proposition 2.10 and Corollary 2.9. ]

2.3. Triangle maps. We briefly introduce the definition of triangle maps in our restricted setting, once
again following the original definitions from [0S04c]. Let H = (3, alotk=1) glgtk=1) ~(g+k=1) (k) be a
triple Heegaard diagram, that is: Heps = (X, o, 8,w) and Hp = (Z,, 8, w) are Heegaard diagrams for S3;
oy is disjoint from ~; for ¢ # j; «; is transverse to 7; and they intersect each other in exactly two points,
none of which lies on the 3 curves; furthermore, if a; bounds a disk D; in the a-handlebody U, then v; is
isotopic to a; in nbdy, (U;; Dj) U (X \ w), that is, v; can be isotoped to «; after sliding it over some other
« circles in the complement of the w markings. We will once again assume that the triple Heegaard diagram
is admissible.

Orient «; arbitrarily, and then orient «; in the same direction, induced from the isotopy joining ~; to
;. Let 0; be the positive intersection point in v; N oy, and let 8 = (61, ...,60445-1). It is usually called the
top generator. Note that (2,7, a,w) is a Heegaard diagram for #9(S1 x S?) on which (k — 1) index 0/3
stabilizations have been performed, and 6 is its unique generator of highest Maslov grading.

Elementary regions of H are closures of the components of ¥\ (aU 8 U~); a triangular domain joining
a generator x € Gy, to a generator y € Gy, is a 2-chain D generated by the elementary regions such that
(0D Na) =0 —x and J(OD N B) = x — y; a triangular domain is said to be positive if all its coefficients are
non-negative. Given a triangular domain D, let n, (D) = Y, ny, (D), where n,,, (D) is the coefficient of the
elementary region containing w;, in the 2-chain D. Let T (x,y) be the set of all triangular domains joining
r € Gy, toy € Gy ,, and let To(x,y) be the subset consisting of the empty triangular domains, that is,
triangular domains with n,, = 0. The Maslov grading pu(D) of any triangular domain D € T (z,y) satisfies
(D) = 2ny(D) = M(y) — M(z).

Choosing an appropriate family (parametrized by the 2-simplex) of almost complex structures on
Sym‘“k*l(E), we can define a contribution function c from the set of all Maslov index zero triangular
domains, to Fo. Picking the family of almost complex structures to be integrable near a collection of hyper-
surfaces specified by basepoints in the elementary regions ensures that the contribution function has non-zero
support only on the positive triangular domains. Then the following map is a graded quasi-isomorphism

from CFy,, to CFy .
f@y="> > «D.

yegH'vB DeTo(x,y)
n(D)=0

We will reprove a special case of this fact in Theorem 3.3.

2.4. Murasugi sum. We are now prepared to discuss the Murasugi sum operation. Let S? C S3 be the
standard 2-sphere. We will mentally ‘one-point-decompactify’ the picture, and draw it as R?> C R3. There
are two components in S\ S2, the ‘inside’ B; and the ‘outside’ By, such that S? is oriented as B;. Let
A1 Ay ... As, be a 2n-gon lying on S2. For i € {1,2}, let R; be a Seifert surface for an /;-component link
L; C B, such that: R; N S? is the A1 Ay ... Ay, with the same orientation; L; N S? is the union of the
oriented segments A;Ag, AsAy, ..., Aon_1Asy,; and Ly N S? is the union of the oriented segments AsAs,
AyAs, ..., Agy Ay Then the Murasugi sum L = Ly x Lo is the link (L; U L) \ S2, and it bounds the Seifert
surface Ry x Ro = R; U Ry. The special cases when n = 1 is just the connected sum and n = 2 is a plumbing.
The case n = 2 is illustrated in Figure 2.2.
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FIGURE 2.2. The Murasugi sum operation. The link L is obtained by plumbing the
link Ly below the plane with the link Lo above the plane along the rectangle Ay As A3Ay.

We need the following quantities, d1,d2,d, which will simplify certain expressions later on. Define §;
(respectively, d2,9) to be n minus the number of components of L; (respectively, Lo, L) that intersect the
2n-gon. Note, (I +6 —n) = (1 + 1 — n) + (la + d2 — n).

We will now describe how to draw Heegaard diagrams adapted to Ry and R, and how they can be
combined to form a Heegaard diagram for R; * R,. The procedures closely follow the outline from Section 2.1
with a few differences. The most important feature of the following construction is that the roles of o and
[ are reversed while constructing the Heegaard diagrams adapted to Ry and Rs.

(M-1) We first embed a graph G; in R; so that R; deform retracts to G;, and G; intersects the 2n-gon in a
single vertex with exactly n edges going out to n of its edges. This is easy to ensure, see Figure 2.3.
(M-2) Then consider the handlebody Bs_; Unbdp, (G; N B;). Its complement need not be a handlebody, so
we add a few tunnels, none intersecting 52, to complete this to a Heegaard decomposition of S3. Let
>; be the resulting Heegaard surface, oriented so that its orientation agrees with the orientation of
52 =9B; on S2NY;. Let U,,; and Ug,; be the components of S3\ 3, so that X; is oriented as the
boundary of U, ;.
(M-3) Construct a surface S; C %;, such that S; is isotopic to R; and S;NS? is the 2n-gon A; As ... A, NY;.
(M-4) Put z markings at Ay, As, ..., As,_1, and put w markings at As, Ay, ..., As,. On every other com-
ponent of 95;, put a z marking and a w marking right next to one another, such that a small arc in
(—1)!0S; joins the w marking to the z marking. Therefore, the total number of z (or w) markings is
(M-5) Then draw « circles and 3 circles on ¥; \ (2 U w), such that:
(a) The « circles and S circles are transverse to each other and to 9.5;.
(b) The « circles are pairwise disjoint and they span a half-dimensional subspace of H;(3%;); each
component of ¥; \ a contains a z marking and a w marking.
(¢) The S circles are pairwise disjoint and they span a half-dimensional subspace of H1(%;); each
component of ¥; \ § contains a z marking and a w marking.
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(M-6)

FI1GURE 2.3. Embedding a graph G in the Seifert surface. In each case, the Seifert
surface deform retracts to a neighborhood of G that contains Ay Ay Az Ay.

(d) Each component of ¥ \ a (respectively, 35 \ 3) has an oriented arc in (—1)?dS; joining the w
marking to the z marking.

(e) Exactly (I; + d; — x(R;)) B (respectively, «) circles intersect Sy (respectively, Ss).

(f) There are exactly (n — 1) « circles lying entirely inside the 2-sphere S2, and they encircle the
edges AsAy, A4As, ..., Aop_1As,. There are exactly (n — 1) 8 circles lying entirely inside the
2-sphere S?, and they encircle the intervals A4 A5, AgA7, ..., Az, A;. Moreover, the consecutive
« and S circles intesect each other at exactly two points.

(g) Other than the above circles, there are no 8 (respectively, «) circle of X1 (respectively, ¥3) that
intersects S?. There could be some « (respectively, 3) arcs of ¥; (respectively, X5) that intersect
S?; in that case, their intersection with S? lies entirely inside S; N S?; and we can also ensure
that there are at most (n — 1) of such « (respectively, 5) arcs.

We then do finger moves on the § (respectively, a) circles on X (respectively, ¥o) to convert this to
a Heegaard diagram H; (respectively, Hs) adapted to the Seifert surface Ry (respectively, Ry). These
final diagrams, in the case when n = 2, are shown in Figure 2.4. In the case when n = 3, the diagrams
are also shown in the first two figures of the top row of Figure 4.1 (where X denotes a handle going
down into By and O denotes a handle coming up into Bs).

The first two figures in the third row of Figure 4.1 represent slightly modified Heegaard diagrams
H} that are obtained from H; by deleting the z-markings, modifying the surface S;, and performing
small isotopies to reduce the number of intersections between a and S circles. We will assume that
we have already performed some isotopies on the o and 3 circles on H; away from 52 so as to ensure
that these modified diagrams #/, and hence H,; itself, is already admissible.

We can now ‘combine’ the Heegaard diagram H; adapted to R; and Hs adapted to R to form a Heegaard
diagram H; * Ho adapted to R; x Ry. Recall that in H;, the a-handlebody U, is obtained by tunneling
out a few one-handles from Bj, and the -handlebody Up; is obtained by attaching those corresponding
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FIGURE 2.4. The Heegaard diagrams #; and H;. We continue to represent w and z
markings by magenta and green dots, respectively. Once again, the thin lines are curves,
and the thick lines are train tracks, representing some (possibly zero) curves running in
parallel.

FiGureg 2.5. The Heegaard diagram 7 * H,. This diagram is obtained by combining
the Heegaard diagrams H; and Hs from Figure 2.4

one-handles to By. Similarly, in Ha, the a-handlebody U, 2 is obtained by attaching a few one-handles to By,
and the S-handlebody Ug > is obtained by tunneling out those corresponding one-handles from Bs. In the
‘combined’ Heegaard diagram H; * H2, the a-handlebody U, * U, 2 is obtained from B by tunneling out
all the one-handles that were tunneled out in U,,; and by attaching all the one-handles that were attached
in Uy 2, and the B-handlebody Ug 1 * Ug 2 is the closure of its complement. The Heegaard surface ¥; * ¥
is the oriented boundary of U, 1 * Uy 2. There is a surface S; * Sy C X * g, isotopic to R; * Ry, which
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ai ai

w w
o o

FiGUre 3.1. The disk D in the Heegaard diagrams H.s and H.,g. The o, §, and v
arcs are represented by red, blue, and pink train tracks, respectively, with thin lines denoting
curves. The number of arcs in each train track is also shown.

is obtained from S; C ¥; and Sy C ¥5. The w and z basepoints, and the o and 3 circles on ¥y * X9 are
induced from the corresponding objects in ¥; and ¥5. The Heegaard diagram H; * Ho, in the case when
n = 2, looks like Figure 2.5, and in the case n = 3, looks like the third figure in the top row of Figure 4.1.
Since the modified diagrams HY and HY are admissible, it follows that the corresponding modified diagram
(H1 * Hz)" (third figure in the third row of Figure 4.1), and hence H; * Hs itself, is also admissible.

3. CERTAIN LOCAL ISOTOPIES

Let Hop = (E(g),a(g““l),B(“k*l),w(k)) be a Heegaard diagram for S, which possibly is non-
admissible, and S C X be an open subsurface. Let Ay, s C Gz, , be the set of all the generators,
none of whose coordinates lie inside S, and let By, .5 = G, \ A#.,,5 denote the rest of the generators.
Let us assume that S contains a disk D that looks like the first part of Figure 3.1 (with the train track
convention): there are b 8 arcs, all parallel to each other, with b > 1; there are a; + 1+ as « arcs, all parallel
to each other, with a;,as > 0, such that as of them are disjoint from the S arcs, and each of the a; + 1
others, intersect each of the b [ arcs in exactly two points; there is a w marking, such that the oriented
boundary of the component of D\ (aU ) containing the w marking, is an « arc followed by a 3 arc followed
by an arc in dD. Note that these b 8 arcs need not belong to b different 5 circles, and these a; + 1 + a2 «
arcs need not belong to a; + 1 + ay different « circles.

Let Hyp = (2,7, B, w) be the Heegaard diagram (also possibly non-admissible) obtained from # after
the local isotopy as shown in Figure 3.1. The surface ¥, the § circles, the w markings, and the subsurface S
are unchanged. The « circles are replaced by the « circles, which for the most part, are small perturbations
of the corresponding « circles, except for one of the arcs in the disk D. There are a; + 1 4+ as ~y arcs in
D c S C ¥inH,g, of which 1+ay of them are disjoint from the § arcs, and each of the remaining a; of them
intersect each of the b 3 arcs in exactly two points. This is shown in the second part of Figure 3.1, with the ~
train tracks and arcs being denoted by thick and thin pink lines respectively. Once again, let Ay, , s C Gy,
be the set of all the generators, none of whose coordinates lie inside S, and let By, 5 = Gu. , \ An, 5.5

denote the rest of the generators. There is an obvious bijection Ay, s = A 5.5, and we will always
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FIGURE 3.2. The local coefficients of D; and D, in H.g and H,g. We prove that if
Dy is a positive domain, then so is Dy, which follows once we show that s+m; —mg > s+u;.

implicitly identify them by this bijection; there is an obvious injection By, s < By, , s, and we will always
implicitly treat By, , s as a subset of By, s by this injection.

Proposition 3.1. If there are no empty positive domains from Ay, s to By, , s, then there are no empty
positive domains from Ay, s to By ;5.

Proof. We will prove the contrapositive of the statement. The basic idea is that any positive domain
from Ay, , s to By, s induces a corresponding positive domain in the original diagram, simply by tracing
multiplicities through the reversal of the isotopy. To make this precise, let us assume that Dy € Dy(z,y)
is a positive domain, from some generator x € Ay_, s to some generator y € By, 5. Let T € Ay, s and

y € By, 4,5 be the images of x and y under the bijection Ay, s = Ax.,5.5 and the injection By , 5 <
B, 5,5, respectively. The empty domain D; gives rise to another empty domain Do € Do(Z,y). The local
coeflicients of D1 and Dy are shown in Figure 3.2. We will simply show that Dy is also a positive domain.

Towards this end, we will prove that none of the coefficients m1, ..., m; are smaller than the coefficient
mg. We will prove this by showing that u; < m; —mg, for all 0 < ¢ < b. Since each u; > 0, this will complete
the proof.

We will prove u; < m; — mg by an induction on 7. Since, ug = 0 = mg — mg, the base case is trivial.
Assume by induction that the statement is true for i. Before we prove the statement for ¢ + 1, let us make
one small observation about the domain D;.

Since (0D N ) = x —y, and since none of the coordinates of x lie in the disk D, we therefore have that
9(0Dy N B), viewed as a 0-chain, does not contain any point with positive sign in the local neighborhood
D. Let 7 be an oriented arc, which is a subspace of a 3 circle, and is supported entirely inside D. Let the
coefficient of dD; N near the beginning of 7 be ¢ > 0. The observation that (0D, N B) does not contain
any positively signed point in D, implies that the coefficient of 9D, N 8 near the end of 7 is greater than or
equal to c. We summarize this observation by the statement that “0D; N does not stop inside D”.

Now, we are all set to prove the induction statement for ¢ + 1. In the Heegaard diagram H.g, let 5
be the f circle that separates the elementary region with coefficient m;; from the elementary region with
coeflicient m;, and let 7 be an oriented subarc of 1, running from the elementary region with coefficient m;
to the elementary region with coefficient u;. Therefore, the signed coefficients of dD; N B near the beginning
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Ui

FIGURE 3.3. The induction step. Assuming u; < m; — mg, we prove u;+1 < m;y+1 — Mo
by showing ;1 — u; < m;y1 —m;. The coefficients of D; and the coefficients of 0D, N
are shown.

FIGURE 3.4. The Heegaard diagram #,gs, in the neighborhood D. As before, o, 3,
~ are red, blue, and pink, respectively. A thin brown curve denotes a train track which is
pair of parallel o and  curves, and a thick brown curve is a train track of such train tracks.

and the end of 7 are m; —m;;1 and u; —u;41 respectively, as shown in Figure 3.3. In light of the observation
above that 0D N 8 does not stop inside D, it follows that coefficient of 9Dy N B near the end of 7 is greater
than or equal to that at the end:
m; —Mip1 < U — Ujyq-
Subtracting mg from both sides of the inequality, and rearranging, we have:
Uil + My —mo — u; < Mip1 — Mo
But the inductive hypothesis is that 0 < m; — my — u;, hence u; 11 < m;41 — myg, as desired. O

Now, we prove a similar statement for triangular domains. Let Hagy = (¥, a, 5,7, w) be the triple
Heegaard diagram, obtained by combining the above two diagrams; it is also possibly non-admissible. We



18 ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

01

FIGURE 3.5. Neighborhoods N; of a; U~;. For i # 1 (left), the small bigon region is
disjoint from D, while for ¢ = 1 (right), the small bigon region is contained inside D. The
coordinates of the top generator # are shown by white dots.

assume that ~y; is a small translate of «y, intersecting it transversely in exactly two points, so that ~; is
disjoint from o for i # j. Let a; be the « circle that is changed to the v circle ; in Figure 3.4. Therefore,
a neighborhood N; of a; U~y; for ¢ # 1 looks like the first part of Figure 3.5, with none of the two intersection
points in a; N ~y; lying in the neighborhood D. A neighborhood Nj of o U 7; looks like the second part of
Figure 3.5, with both the intersection points in a;; N~y lying in the neighborhood D. The coordinates of the
top generator 6 are shown.

Proposition 3.2. If there are no empty positive domains from Ay, s to By, s, then there are no empty
positive triangular domains from Ay, , s to By, s-

Proof. Let Dy € To(w,y) be a positive triangular domain, for some » € Ay, , s and y € By , 5. Let
Y € By, ;.5 be the image of y under the injection By , s < By, 5. It is easy to see that there is a unique
empty triangular domain Ds € To(7,y), whose non-zero coefficients are supported inside the neighborhoods
N;, such that 9Dy Ny = @Dy N~. Then, the 2-chain D3 = D1 — Dy is a domain in Dy(z,7). We will show
that Dj is also a positive domain, establishing the contrapositive of the given statement.

The coefficients of Dy are zero outside U; N;, and the neighborhoods N; for i # 1 can be considered as
special cases of the neighborhood N;. Therefore, we only need to concentrate on the coefficients of D3 in
N;. Figure 3.6 shows the coefficients of D1, D1 N~; and D3 in this neighborhood. The coordinates of 8 and
y on ;1 are shown. The coefficient of 9D N~y is either r or 7 + 1 (which need not be positive), as shown.

Since D; is a positive domain, and since the region with coefficient g, in D; has 7 on its boundary
with coefficient » 4+ 1, we must have gp > r + 1 for all 1 < ¢ < d. Similarly, we must have p, > r for all
1 < ¢ < cand myg > —r. Therefore, in order to show that D3 is also a positive domain, we only need to
show that each of the coefficients mq, ..., m; are greater than or equal to —r. However, exactly as in the
proof of Proposition 3.1, using the fact that x has no coordinates inside the disk D, we can show that none
of the coefficients my, ..., m; are smaller than mg, and this completes the proof. O

Let us henceforth assume that the Heegaard diagram ., is admissible. Then H,s3 and H,g, are also

admissible, and in that case, /CTﬁHa 5 and /CTﬁq.[7 , are the chain complexes, freely generated over Fo, by Gy,
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dd qq—17 —1

FIGURE 3.6. Coefficients of D; (left) and D; (right) in the neighborhood N; of
a1 U7y1. The coordinates of # and y are shown by white dots. The coefficients of dD1 Ny
are also shown on the left.

and Gy, respectively. Let SF Hop,s and SF #.5,5 be the Fa-submodules, freely generated by Az, , s and
A3 5.5, respectively.

Theorem 3.3. Assume that there are no empty posit’ive domains from Ay, ,.s to By,,.s. Then SFHaB s
is a subcomplex of CFH 5 SFH 5,8 18 a subcomplex of CFH L5 and the cham map from CFH ws U6 to C’FH s
induces a chain map from SFH w9 L0 SFH 5,8 Furthermore, the chain maps CFHM — CFHW and
SFH wpsS = SFH 5,8 are quasi-isomorphisms.

Proof. Proposition 3.1 implies that there are no empty positive domains from Ay_, s to By, s, and Propo-
sition 3.2 implies that there are no empty positive triangular domains from Ay, s to By, s. Since the
non-zero terms in the boundary maps on /C\F/Ha s and 6’\F/H .5 come only from empty positive domains, and
the non-zero terms in the chain map from 6];;.[ to CF H,p_COmE only from empty positive triangular
domains, SF;{ wp S CF'H wp 1S @ subcompleX S’FH Hyp,S CFH .5 is a subcomplex, and the chain map
CFH ws CFH . induces a chain map SFHQB s — SF"HW s, resulting in the following commuting square.

S,TFH&L%S — /C\F/Hag

! 1
SF’H’Y/%S — CF’H'Y[?

We will now show that the vertical arrows induce isomorphisms on homology. A 2-cochain on a Heegaard
diagram or a triple Heegaard diagram is a map which assigns real numbers to the elementary regions; a non-
negative 2-cochain is a 2-cochain which only assigns non-negative numbers; and a positive 2-cochain is a
2-cochain which only assigns positive numbers. Since #H.,s is admissible, by [OS04c, Lemma 4.12], there
exists a positive 2-cochain Cy on H,3, which evaluates to zero on all empty periodic domains in H.g.
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A cochain in Hagy induces cochains in H,p and H.,g, by forgetting the v circles and the «a circles,
respectively, as well as the coefficients of the cochain on the thin elementaty regions that lie entirely inside
the neighbordhoods IN;. We will now construct a non-negative cochain C' on Hag~, such that: C assigns
zero precisely to the elementary regions that lie entirely in the neighborhoods N;; and C induces the positive
cochain Cy in ‘H,g. Since the empty periodic domains in H,g~ are generated by the empty periodic domains
in H,3 and the periodic domains that are supported in U;/V;, this would imply that C' evaluates to zero
on any empty periodic domain in H,g,. The way to construct C' is fairly straightforward. Let R be an
elementary region in H,g, and let r be the assignment of Cy on R. The region R might get cut up into
several elementary regions Ri,..., R, in H.gy, and some of them might lie entirely in the neighborhoods
N;, but at least one of them does not. Choose non-negative real numbers r,...,7,, such that, Y .7 =r
and r; = 0 if and only if R; lies entirely in U;V;. Then assign the number r; to the elementary region R; in
the 2-cochain C. . .

This non-negative 2-cochain C' gives rise to filtrations on the mapping cones SFy , s — SF3_, s and

rC\FHa 5 = fC’\FHW s, as follows: given any two generators x,y € Gy, UGy, the relative filtration grading
between them is (C, D), for any D in Do(z,y) or To(z,y) as the case may be. On the associated graded
level, we only count domains or triangular domains that lie entirely inside these neighborhoods N;, and then
it is a fairly straightforward to check that the associated graded maps on the associated graded objects are
isomorphisms, and therefore, the original chain maps must have been quasi-isomorphisms as well. O

4. MAIN THEOREMS

Proof of Theorem 1.1. Following the notations from Section 2.4, let H1, Ho and Hq *Hs, as shown in Figures
2.4 and 2.5, be the Heegaard diagrams adapted to Seifert surfaces Ry, R2 and Ry * Ro for the links L1, Lo
and L = Ly % Lo, respectively. The corresponding Heegaard surfaces contain embedded subsurfaces Si, S
and Sy * So, which represent Ry, Ro and Ry * Ry, respectively. Furthermore, #; has (I; + 1) w-markings,
Ho has (Io + J2) w-markings, Hq * Ha has (I + §) w-markings.

Thanks to Corollary 2.9, we only need to produce an isomorphism of graded chain complexes

Frrera( %(z 125 — x(Ry* Ro))) [l +6 - 1]

1 1
= ./—"H1 ( — 5([1 + 261 — X(Rl)))[ll + 61 — 1] ® ‘7:’;.[2( — 5([2 + 209 — X(Rg)))[lg + 6y — 1],
or in terms of the notation from Section 3, since (I 4+ 6 —n) = (I1 +d1 —n) + (I2 + 62 — n),
(4.1) SF 3, 345,5, 550 — 1] = SFay, 5, [n — 1] ® SFaq, 5,0 — 1].

Let (H,S) denote any of (H1,S1), (Ha,S2) or (H1 *Ha, S1 %S2), as shown in the first row of Figure 4.1.
The sphere S? of the Murasugi sum is represented by the squares on the page, with L, lying below the page
and Lo lying above. Let ¥ be the Heegaard surface and let X! (respectively, ¥2) be the portion of ¥ that
lies inside (respectively, outside) the sphere S2.

Let H' be the Heegaard diagrams for S® obtained from # by forgetting the z markings, and let S’ be
the open subsurface of the Heegaard surface of H, obtained by slightly modifying S in a neighborhood of
the 2n-gon Aj A5 ... As, so as to include all the intersections between a and § circles near the erstwhile
z-markings. These modified diagrams (H', S”) are shown in the second row of Figure 4.1.

Since we have not changed the underlying Heegaard diagrams, clearly, 6137.[/ = 5?7.[. Next we claim
that any generator x € Gy that does not have any coordinate in S can not have any coordinate in S’ either.
This is a simple counting argument. Indeed, let us say H; has a total of n; a-circles and n; S-circles; of
them, exactly (n — 1) a-circles and (n — 1) B-circles lie entirely inside the S?. Then H; * Hs has a total of



FiGURE 4.1. The Heegaard diagrams appearing in the proof o eorems 1
and 1.2. The left, middle, right columns represent diagrams obtained fro

respectively; the consecutive rows represent the diagrams H, a ;
denote handles going down (into the page) and up (towards t eader), respective
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(n1 +ne —n+1) a-circles and (ny +ny —n + 1) B-circles, again with exactly (n — 1) a-circles and (n — 1)
B-circles lying entirely inside the S2. For H # Ha, we see that (ny —n + 1) « circles of H lie entirely within
»1US, and so z must have at least (n; —n+1) coordinates in $! (as it avoids the surface S, by assumption).
Similarly, for H # Hi, we see that (ng —n + 1) 3 circles of H lie entirely within ¥? U S, and so x must
have at least (ng —n + 1) coordinates in %2, Therefore, in all cases, x has at most (n — 1) coordinates in
the sphere S2. It follows that, in fact, x must have exactly (n — 1) coordinates in the sphere, occupied by
the (n — 1) a and 8 circles that lie entirely therein. Specifically, they must be the white dots as shown in
the first row of Figure 4.1. Therefore, we get that SA’F'»H/ 5 = S'E'H s- Moreover, since there are no positive
domains from generators of SF #,s to the other generators of CF # due to Alexander grading, there are no

positive domains from the generators of SF 21,5/ to the generators of CF 4 as well, and we have the following
identification of subcomplexes.

3‘?7{15 — /dﬁy
(4.2) I I
SFy51 — CFay

As in Section 3, we perform local isotopies to separate the o and 8 curves in the neighborhood of the
erstwhile z-markings so that we obtain the Heegaard diagrams in the third row of Figure 4.1, which we
denote by (H”,S’). The aforementioned isotopies are supported inside S’, and there are no domains from
the generators of S'E'Hgs/ to the other generators of Eﬁq.y. Recalling that the Heegaard diagrams were
constructed to ensure that H" is admissible (see (M-7)), we see that the hypotheses of Propositions 3.1
and 3.2 are satisfied. Applying the propositions, we obtain a quasi-isomorphism between the following
two-step filtered complexes.

gﬁ'ygs/ — 6’757.[/

(4.3) q.ii lq.i.

A

Next we claim that for any generator x of /C\F/Hu, all its coordinates in 52 must be the white or black
dots from the third row of Figure 4.1. It is once again a counting argument, but with the roles of a and
reversed. For H" # HY, we see that (ny —n + 1) B circles of H” have no intersections with « circles in S?,
so z must have at least (n; —n + 1) coordinates in ¥!. Similarly, for H" # HY{, we see that (na —n+1) «
circles of H” have no intersections with /3 circles in S?, so z must have at least (na — n + 1) coordinates in
%2, In all cases, = has at most (n— 1) coordinates in the sphere S?, and therefore, they must be occupied by
the (n — 1) a and 3 circles that lie entirely in S?; moreover, they must be the white or black dots as shown
in the third row of Figure 4.1.

After numbering the « circles that lie entirely in S? arbitrarily (but consistently across Heegaard dia-
grams) from 1 to n — 1, each generator = can be represented as a pair (@, z°), where @ = (a1,...,a,-1) €
{0,1}"~! with a; = 0 if and only if o; contains the white dot, and x° denotes the coordinates of = that
lie outside S2. Consider the usual partial order on {0, 1}”*1 with @ < b if a; < b; for all 4, and the usual
L'-norm on {0,1}"~! given by |@| = >, a;. Since empty positive domains are not allowed to pass through

- - —W
the w markings, we see that if D € Dy((a, z°), (b,y°)) is an empty positive domain, then b < a. Let CF,,,
denote the subcomplex of CF4» spanned by generators with @ = 0, that is, generators with only white dots.
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Then we have nested subcomplexes
Sy o0 =5 CFY < G
For any generator = of Eﬁml*%2)u, let 2! be all its coordinates that lie in X¢. Then the map
(0,21, 2%) — (0,2') ® (0, 2%)
produces the following identification between the following chain groups:
ﬁ(yl*ﬂz)",(sl*sz)/ R /C\E(VL*HQ)H
(4.4) = l l =
gj’%;’,s; ® gj’ﬂg,sg — E’\FZ&/ ® 5?2/,2,

Let us now prove that the vertical arrows are relative Maslov grading preserving chain maps—that is,
the above identifications are identifications of chain complexes, up to a single absolute Maslov grading shift.
Let (6,.1‘17.’172) and (6,y1,y2) be two generators of EI;?Z{I*HZ),, and let D € D((ﬁ,xl,xQ), (6,y1,y2)) be an
empty positive domain in (#; * H2)” connecting them. Such a domain has to be disjoint from S2. Indeed,
the fact the domain has no corner points in S? forces it to restrict to a periodic domain therein, which the
admissibility condition then ensures is the trivial domain with zero multiplicities. It follows that D splits as a
disjoint union D'UD? of empty positive domains, with D? € D((0, z%), (0,y)) in H/. Recall from Section 2.2
that D can only contribute to the differential if one of D' and D? is the trivial domain. Furthermore, since
such domains avoid S?, we may choose complex structures (and their perturbations) for the three Heegaard
diagrams so that they agree on ¥! and ¥2 (and their corresponding symmetric products); therefore, if D!
(respectively, D?) is the trivial domain, then the contribution of D will agree with the contribution of D?
(respectively, D). This is an instance of the localization principle [Ras03, Section 9.4], and it establishes
that the vertical arrows are chain maps, and indeed chain isomorphisms. To see that the vertical arrows
also respect the relative Maslov gradings, consider generators (0, %), (0,y) of /Ctﬁf:;;/, and choose empty
domains D? in H/ (not necessarily positive) connecting them. In HY (respectively, H}) consider the (n —1)
a (respectively, 3) circles that lie entirely inside S?; each of them bounds a disk also entirely inside S?, and
each such disk is comprised of two bigon-shaped elementary regions—one containing a basepoint, and one
without. By adding some number of copies of these disks to the domain D?, we can get a domain E? (not
necessarily empty) connecting (0, z°) to (0,%") in H/, which has coefficient zero in the bigon region that does
not contain the basepoint. Simply by adding the underlying 2-chains, these two domains E' and E? induce
a domain E in (H1 *Ha)” connecting (0,2, y*) to (0,22, y?). It follows from Lipshitz’ Maslov index formula
[Lip06] that u(E) = u(EY) 4+ u(E?), and it is immediate that n,,(E) = n,(E') 4+ n, (E?). Consequently, the
relative Maslov grading is preserved. Therefore, in order to finish the proof, we only need to calculate the
absolute Maslov grading shift under the given isomorphism of relatively Z-graded chain complexes. We will
calculate this shift using the triangle maps associated to handleslides of the circles in S? over curves in the
remainder of the diagram.

Towards this end, modify the Heegaard diagrams H" once more to get the Heegaard diagrams H" of the
fourth row of Figure 4.1. Namely, we slide the « circles inside S? off the attaching handles of ¥? (the ones
marked O in Figure 4.1) and we slide the 3 circles inside S? off the attaching handles of ¥! (the ones marked
X in Figure 4.1). There is an obvious identification between « circles, S circles, and generators (@, x°) of
H" and the corresponding objects of H'"; let &, §, and (@, z°) denote the corresponding objects in H"’.
Then each « circle only intersects the corresponding & circle, and does so at two points. So the Heegaard
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diagram (X, o, 8, @) is of the type as described in Section 2.3. The top generator § has coordinates just next
the white dots of H” and H'’, and indeed, there is a small Maslov index zero triangular domain connecting
(0,2°) and (0,z°). Therefore, the Maslov grading of (0,2°) is same as the Maslov grading of (0,z°). A
similar argument, but with the roles of « and 3 reversed, proves that the Maslov grading is preserved under
the handlgglides of the S-circles as well.

Now CF3n decomposes into 2771 direct summands, one for each @ € {0,1}"~!. Moreover, the map

—W
(0,2°) + (d@,x°) is an isomorphism between CFy,.[|d|] and the summand corresponding to @. Let #H[’
denote the Heegaard diagram destabilized n — 1 times, obtained from H"” by removing the (n — 1) o and 3
circles that lie inside S2, and the (n — 1) w-markings enclosed by them. Then by Theorem 2.5,

W —
(45) CF'H/// [n — 1] = CF’H&“

via the map (0,z°) — z°.
Now the map (z',2?%) — 2! ® 22 produces an identification of chain groups following a similar but
simpler argument of Equation 4.4:

(4.6) CF (yertayy = CF gy © CF gy

Moreover, this map is a relative Maslov grading preserving chain map, using a similar (but easier) localization
principle argument to that above. However, (H1)), (H2)!}, and (Hi = Hs)!/ are Heegaard diagrams for S°
with (I;+d1—n+1), (la+02—n+1), and (I+6—n+1) basepoints, respectively; therefore, by Theorem 2.5 (and
since (I +81 —n) + (la+82 —n) = (I4+8 —n)), either side of the equation has homology @0~ (Fy &Fy[—1]),
so the chain isomorphism (4.6) preserves absolute Maslov grading as well.

Combining this with Equation (4.5) and the previous fact that corresponding generators in H” and
H"" have equal Maslov gradings, we conclude that the isomorphism from Equation (4.4) shifts gradings
by m — 1. Then with the aid of Equations (4.2) and (4.3), we arrive at the desired graded isomorphism

Equation (4.1). O

We turn now to Theorem 1.2, which states that 7., of a Murasugi sum is maximal if and only if 7o, of
each summand is maximal.

Proof of Theorem 1.2. By Proposition 2.10, we may take mirrors and prove the following statement for 701:
If L is a Murasugi sum of links L; and Lo along minimal index Seifert surfaces, then my0t(L;) = —g(L;) for
all i € {1,2} if and only if 7,0t (L) = —g(L).

We will continue from the previous proof, and re-use the same notation. Thanks to Corollary 2.9 and
Proposition 2.10, we only need to prove that, for both ¢ = 1,2, the inclusion

‘Sf;pﬂiasi - TC\FHi
induces a non-zero map on homology if and only if the inclusion
SF 3,515,555, = CFag e,

induces a non-zero map on homology.
Thanks to Equations (4.2) and (4.3), it is enough to prove the above for (H”,S5’), that is,

(4.7) Vi(H*(STﬁ'H(igS;) — H*(E’\F/H(i/) is non—zero) & H*(ﬁHg/*H;/,sg*sg) — H*(E’\F/H/II*H/Q/) is non-zero.
Recall that we have nested subcomplexes

—~ —W —
SF’;L[//’S/ — CFH” — CF’]—[”.
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—_—W —
We claim the map CF,;, < CFy» is injective on homology for H"” = HY, HY, or H{ = HY. For each of

the three diagrams, the homology of /C\F/Z,, is isomorphic, up to a grading shift, to the homology of the
(n — 1)-times destabilized diagrams H/;’ (recall Equation (4.5)); let w denote its rank. By counting the
number of basepoints, in each of the three cases, the homology of 6'\]_5‘/7.[” has rank 2" 'w. As before, the
generators of CFyn can be represented as pairs (@,z°) where @ € {0,1}""1, and the differential is filtered
with respect to @. The associated graded complex of this filtration has 2" ! summands, each isomorphic to
Eﬁr;/. By a spectral sequence argument, the homology of the quotient complex 51%’/7{” / Eﬁz/,, has rank at
most (2"~ — 1)w. Therefore, in the exact triangle

H,(CFyy)
H*(CFH//) H*(CF’H”/CFHH)

—W
the three terms have ranks w, 2" !w, and at most (2"~ — 1)w, which implies that the map H.(CFy,,) —
H*(CFHH) is injective.
Thanks to this, instead of Equation (4.7), it is enough to prove

N —wW — 1
Vi(H.(SF,s1) = H.(CFyy) is non-zero) < H.(SFyua0y,5145,) = H.(CF4y1.3) is non-zero,
which follows from Equation (4.4). O

Remark 4.1. We remark that one direction of the theorem (mazimality of Tiop of a Murasugi sum implies
mazimality for its summands) could be deduced from the fact that mazimality of Tiop is preserved under
taking subsurfaces of a minimal index Seifert surfaces. The latter fact is a consequence of a bound satisfied
by Tyop for cobordisms between links, analagous to [HR20, Theorem 1].
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