
MURASUGI SUM AND EXTREMAL KNOT FLOER HOMOLOGY

ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

Abstract. The aim of this paper is to study the behavior of knot Floer homology under Murasugi sum.
We establish a graded version of Ni’s isomorphism between the extremal knot Floer homology of Murasugi

sum of two links and the tensor product of the extremal knot Floer homology groups of the two summands.
We further prove that τ = g for each summand if and only if τ = g holds for the Murasugi sum (with τ and

g defined appropriately for multi-component links). Some applications are presented.

1. Introduction

The Murasugi sum is an operation that one can perform on isotopy classes of surfaces with non-empty
boundary embedded in 3-manifolds. Applying it to Seifert surfaces yields an operation on isotopy classes of
links. As the name suggests, the operation was introduced by Murasugi [Mur63, Mur58], whose motivation
was a calculation of the genus of an alternating link by means of the degree of its Alexander polynomial. An
important point to be made about the Murasugi sum is that it not a well-defined binary operation on the set
of links. Indeed, many essential choices are made in its definition; not only the isotopy classes of the chosen
Seifert surfaces, but also the polygons embedded therein along which the sum is performed. Despite these
choices, one can easily show that the coefficient of the Alexander polynomial corresponding to the first betti
number of the surfaces in question is multiplicative under Murasugi sum. Gabai later showed that Seifert
genus behaves additively under Murasugi sum, extending the well-known special case of the additivity of
genus under connected sum. Indeed, he showed that the Murasugi sum of two surfaces is minimal genus if
and only the two summands are minimal genus [Gab83, Gab85]. Note, however, that pathology arises if one
considers non-minimal genus surfaces; for instance, Thompson showed that one can sum two unknots along
genus one surfaces to get a trefoil or sum two figure eights to get the unknot [Tho94], and Able and Hirasawa
have recently shown that in fact any knot can be obtained as a Murasugi sum of any other two knots along
(typically) non-minimal genus Seifert surfaces [AH].

In light of the connections between the knot Floer homology groups and both the Alexander polynomial
(through their Euler characteristic [OS04b, Ras03]) and the genus (through their breadth [OS04a]), one might
wonder about the behavior of the extremal knot Floer homology under Murasugi sum. Here, “extremal”
refers to the knot Floer homology group in Alexander grading given by negative the genus of the surfaces
used. (Modulo a well-understood grading shift, this is isomorphic to the knot Floer homology group in
Alexander grading given by the genus, a group often referred to as the “top” group) For instance, the knot
Floer homology groups of a connected sum are a bigraded tensor product of those of the summands [OS04b,
Theorem 7.1]. Simple examples exploiting the non-uniqueness of Murasugi sum show that this cannot hold
for general Murasugi sums and, in fact, there can be no closed formula for the knot Floer homology of the
Murasugi sum of links in terms of the knot Floer homology of the summands. Despite this, it would be
reasonable to conjecture that the extremal knot Floer homology of a Murasugi sum is a tensor product of the
extremal terms of its summands. Ni proved that this is indeed the case for ungraded knot Floer homology
groups with field coefficients [Ni06b, Theorems 1.1,4.5] (cf. [Juh08, Corollary 8.8]). Since an ungraded vector
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space over a field is determined up to isomorphism by its dimension, this result is equivalent to saying that
the rank of the extremal knot Floer homology is multiplicative under Murasugi sum. It is natural to wonder
if Ni’s result extends in a (Maslov) graded fashion, and our first result confirms that this is indeed the case.

To state it, we define the index of a (possibly disconnected) surface R to be the quantity i(R) := |∂R|−χ(R)
2

Theorem 1.1. For i ∈ {1, 2}, let Li be an li-component link and let Ri be a Seifert surface for Li. Let
R1 ∗R2 be a Murasugi sum of R1 and R2, and let ∂(R1 ∗R2) = L = L1 ∗L2 be the corresponding l-component
link. Then with F2-coefficients, we have a graded isomorphism

ĤFK (L,−i(R1 ∗R2))[l − 1] ∼= ĤFK (L1,−i(R1))[l1 − 1]⊗ ĤFK (L2,−i(R2))[l2 − 1].

We should note that it is not clear how to extend Ni’s argument, nor the argument using the decompo-
sition theorem for sutured Floer homology presented by Juhasz, to yield the graded statement given above
(despite some effort to do so). On a superficial level, though, our proof follows the same strategy as its
antecedents; namely, we find particular Heegaard diagrams adapted to Seifert surfaces and their Murasugi
sum, and then analyze the resulting Floer complexes in detail. The diagrams we end up using are more
specialized, however, and yield more control over the combinatorics and homotopy theoretic aspects of the
associated chain complexes. This increase in control further allows us to glean some information about
the rest of the knot Floer homology filtration, in the form of the following result about the integer-valued
concordance invariant τ [OS03] (for the extension of τ to links, see [Cav18, OSS15, HR20]).

Theorem 1.2. If the link L is the Murasugi sum of links L1 and L2 along minimal index Seifert surfaces,
then τ(Li) = g(Li) for all i ∈ {1, 2} if and only if τ(L) = g(L). (Here τ denotes τtop from [HR20] when
discussing links with more than one component.)

A large class of links for which τ(L) = g(L) is provided so-called strongly quasipositive links. These
links possess a Seifert surface which is properly isotopic into the 4-ball onto a piece of an algebraic curve
and which therefore minimizes the smooth 4-genus. Rudolph gave a partial extension of Gabai’s results to
4-genera, by showing that the Murasugi sum of links along Seifert surfaces is strongly quasipositive if and
only if the two summands are. Our result strengthens the resulting implications for the 4-genus.

Our results lead to topological restrictions on which link types can be expressed as Murasugi sums of
others along minimal index Seifert surfaces. Some of the complexity of this problem, and the restrictions
offered by our theorems, can be algebraically distilled by defining a Grothendieck group of links. Recall that
the Grothendieck group K(M), of a commutative monoid M is the quotient of the free abelian group on the
set M by the relations [x+y] = [x]+[y], where on the left “+” is taken with respect to the monoidal operation
and on the right within the free abelian group. While the Murasugi sum ∗ is not a monoidal operation on
links (relying as it does on the choice of Seifert surface and embedded 2n-gon), we can nonetheless define a
group

K(links, ∗) =
Z〈{Isotopy classes of links}〉

[L1 ∗ L2] = [L1] + [L2]

which we call the Grothendieck group of links under Murasugi sum along minimal index surfaces. It is simply
the quotient of the free abelian group on the set of isotopy classes of links by the relations [L1∗L2] = [L1]+[L2],
where ∗ denotes any Murasugi sum along any 2n-gon in any minimal index Seifert surface for the links in
question. Thus K(links, ∗) consists of equivalence classes of links, where two links are equivalent if they
become isotopic after iteratively Murasugi summing both of them with some collection (R1, . . . , Ri) of
minimal index Seifert surfaces (along any 2n-gons embedded therein, and in any order). Fibered links,
endowed with their (unique) minimal index Seifert surface, form an important class of links which is closed
under Murasugi sums by Gabai’s work [Gab83] (see also [Sta78] for the closure under plumbing). If one
considers their associated Grothendieck subgroup K(fibered links, ∗) < K(links, ∗), a deep theorem arising
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from the Giroux correspondence asserts that K(fibered links, ∗) ∼= Z ⊕ Z, generated by the positive and
negative Hopf links [GG06]. One might hope that all links could similarly be generated by a small family,
given the complexity allowed by choices of Seifert surfaces and embedded 2n-gons.

Multiplicativity of the rank of the extremal knot Floer homology under Murasugi sum shows that
K(links, ∗) is infinitely generated. Indeed, if we consider the rank of the top group as map from the set of
links to the natural numbers N×, viewed as a multiplicative monoid, then its multiplicativity under Murasugi
sums implies that this map descend to a group homomorphism K(links, ∗) → K(N×) ∼= Q×

>0. Non-trivial
twist knots have top group of rank equal to the number of twists, showing that the map to N× is surjective,
hence the map to Q×

>0 is surjective as well. K(links, ∗) is therefore infinitely generated as an abelian group.
One could still hope, however, that some simple infinite family of knots such as twist knots generates all
knots under Murasugi sum and de-summing. Our result dashes this hope, and indicates that K(links, ∗) is
quite complicated.

Corollary 1.3. The Poincaré polynomial of the top group of knot Floer homology induces a homomorphism

P : K(links, ∗) → Q×
>0(t),

where the codomain is the multiplicative group of rational functions in t with positive rational coefficients.

It would be interesting to identify the image of P , a problem in the realm of geography questions for knot
Floer homology. In particular, we have the following natural question:

Question 1.4. Is every Laurent polynomial with N coefficients realized as the Poincaré polynomial of the
top group of knot Floer homology for some link in the 3-sphere?

Obstructions for a bigraded collection of abelian groups to arise as knot Floer homology groups were obtained
in [HW18, BVV18], but these place no restriction on the top group.

Despite a lack of understanding of the geography question for the top group of knot Floer homology, our
results indicate that any collection of knots whose Poincaré polynomials are coprime are linearly independent
in the Grothendieck group, even if their total rank is the same. In particular, the kernel of the homomorphism
Q×

>0(t) → Q×
>0 induced by setting t equal 1 intersects the image of P non-trivially. Perhaps more concretely,

we have

Corollary 1.5. Suppose the Poincaré polynomial of the top group of knot Floer homology of a link L ⊂ S3

is irreducible, viewed as a Laurent polynomial over Z. If L is a Murasugi sum of links L = L1 ∗L2, then one
of Li is fibered.

As another quick corollary, we can show that alternating links or, more generally, links with thin Floer
homology, are far from generating all links under Murasugi sum.

Corollary 1.6. Suppose the top group of the knot Floer homology of L ⊂ S3 is non-trivial in more than one
Maslov grading. Then L is not a Murasugi sum of alternating links nor is any link which contains L as a
Murasugi summand.

For instance, the top group of the Kenoshita-Terasaka knot and its mutant, the Conway knot, have Poincaré
polynomials given by 1+ t, up to multiplication by tk (with k = 2 for the KT knot and k = 3 for the Conway
knot) [OS04d, Theorems 1.1 and 1.2]. Therefore neither can be realized as a Murasugi sum of alternating
links, nor is there any way to iteratively Murasugi sum them with other links to eventually arrive at a
Murasugi sum of alternating (or thin) links.

As a final corollary, our results can be used in conjunction with the literature to calculate the top group
of an arbitrary cable knot:

Corollary 1.7. Let Kp,q be the (p, q) cable of a knot K with Seifert genus g. Then for any p > 0, we have



4 ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

(1) If q > 0, then ĤFK ∗(Kp,q, pg +
(p−1)(q−1)

2 ) ∼= ĤFK ∗(K, g)

(2) If q < 0, then ĤFK ∗(Kp,q, pg +
(p−1)(q−1)

2 ) ∼= ĤFK ∗−(p−1)(2g−q−1)(K, g)

The key observation, due to Neumann and Rudolph, is that Kp,q
∼= Kp,sign(q) ∗ Tp,q, where sign(q) is ±1

depending on whether q is positive or negative [NR87, Figure 4.2]. Since Tp,q is fibered, our main result
indicates that the top group of a cable knot is isomorphic to that of Kp,sign(q) shifted by the grading of the

top group of the corresponding torus knot. As the latter is well known to be 0 if q > 0 and (p−1)(−q−1)
2 if

q < 0, the corollary can then be deduced if the top group is known for two particular examples of Kp,q; one
with q positive, and one with q negative. But the results of [Hed05a, Hed09] (cf. [Hed05b]) indicate that the
top group of Kp,pn+1 is isomorphic to that of K and the bottom group of Kp,−pn+1 is isomorphic to that of
K, provided in both cases that n ≫ 0. Together with the symmetry between the top and bottom groups of
knot Floer homology, and the observations above, the corollary follows. This is essentially the argument for
the special case of fibered cable knots from [Hed08].

We conclude this introduction by highlighting a few problems and questions raised by our work. Perhaps
the most interesting and challenging is

Problem 1.8. Determine the isomorphism type of K(links, ∗).

Solving this would, ideally, yield an explicit presentation for K(links, ∗) by generators and relations. Note
that Gabai’s work implies that the link invariant bmin

1 obtained by minimizing the first Betti number over
all Seifert surfaces for a given link, is additive under Murasugi sums. Hence, it descends to a homomorphism
Bmin

1 : K(links, ∗) → K(N+) ∼= Z. An affirmative answer to the following question would solve the problem:

Question 1.9. Is the homomorphism P ⊕Bmin
1 : K(links, ∗) → Q×

>0(t)⊕ Z an isomorphism?

Note that an affirmative answer would require an affirmative answer to the geography problem raised by
Question 1.4. Moreover, combined with any of the known algorithms to compute knot Floer homology (e.g.
[MOS09, Bel10, OS19]), one would also arrive at a solution to the isomorphism problem in K(links, ∗) and,
presumably, a presentation. While we are inclined to believe the answer is no, the restriction of P ⊕ Bmin

1

to the subgroup generated by fibered links is an isomorphism onto its image. Indeed, the image of P on
the fibered subgroup is the multiplicative subgroup {tn}n∈Z and the power n associated to a given fibered
link is the Hopf invariant of the 2-plane field associated to its corresponding open book decomposition (up
to normalization, the Hopf invariant is equal to Rudolph’s enhancement of the Milnor number [Rud87]). To
conclude with a more tractable question, we leave the reader with:

Question 1.10. Does the Poincaré polynomial homomorphism P : K(links, ∗) → Q×
>0(t) contain an infinite

rank subgroup in the kernel of the rank homomorphism obtained by setting t = 1 in the Poincaré polynomial?

Outline: The paper is organized as follow: In Section 2, we review the knot Floer homology for links, recall
the definition for Murasugi sum, construct Heegaard diagrams associated to Seifert surfaces, and describe
the Murasugi sum operation in terms of Heegaard diagrams. In Section 3, we study some local isotopies on
Heegaard diagrams which will largely reduce the number of generators; moreover, we prove that there is a
subcomplex that remains unchanged when applying these isotopies if some technical conditions are satisfied.
In Section 4, we use the simplifications from the previous section to prove the main results.
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2. Heegaard diagrams adapted to Seifert surfaces

2.1. Heegaard diagrams. We begin with a quick review of Heegaard diagrams. Most of what follows
extends in a straightforward manner to arbitrary closed connected oriented three-manifolds, but since we
are primarily concerned with the operation of Murasugi sum in S3 we will specialize our definitions and
constructions to this situation. We begin by recalling the definition of a Heegaard diagram:

Definition 2.1. A Heegaard diagram for S3 is a 4-tuple

H = (Σ(g), α
(g+k−1), β(g+k−1), w(k))

where

• Σ ⊂ S3 is an oriented surface of genus g whose complement has two components, the closures of which
are genus g handlebodies Uα and Uβ with Σ = ∂Uα = −∂Uβ;

• α(g+k−1) = (α1, . . . , αg+k−1) (respectively, β(g+k−1) = (β1, . . . , βg+k−1)) is a collection of disjoint sim-
ple closed curves on Σ, each bounding a disk in the handlebody Uα (respectively, Uβ), such that Σ \ α
(respectively, Σ \ β) has exactly k components;

• the α circles are transverse to the β circles;
• w = (w1, . . . , wk) is a collections of markings on Σ, such that each component of Σ \ α contains a w
marking, and each component of Σ \ β contains a w marking.

Unless otherwise mentioned, we will assume our Heegaard diagrams to satisfy a certain technical condition
called (weak) admissibility [OS08, Definition 3.5] (cf. [OS04c, Definition 4.10]). A generator is a (g+k−1)-
tuple x = (x1, . . . , xg+k−1) of points in Σ, called the coordinates of x, such that each α and β circle contain
exactly one of the coordinates; we will denote the set of generator by GH.

Let L ⊂ S3 be an l-component link and R a Seifert surface for L, which we assume to be oriented but not
necessarily connected. We have the following notion of a diagram adapted toR [OSz04, Ni06b, Juh08, HJS13],

Definition 2.2. A Heegaard diagram adapted to R is a 6-tuple

H = (Σ(g), α
(g+k−1), β(g+k−1), z(k), w(k), S)

satisfying

• (Σ, α, β, w) and (Σ, α, β, z) are both Heegaard diagrams for S3;
• S ⊂ Σ is an oriented surface-with-boundary which is isotopic to R in S3;
• each generator has at most (k − χ(R)) coordinates inside R;
• the 2k markings z = (z1, . . . , zk) and w = (w1, . . . , wk) all lie on ∂S;
• each component of ∂S contains at least one marking, and on each component of ∂S, the z markings and
the w markings alternate;

• the oriented arcs in ∂S joining each z marking to the next w marking are disjoint from the α circles, and
the arcs in ∂S joining each w marking to the next z marking are disjoint from the β circles.

Given a Seifert surface R for an l-component link L ⊂ S3, we can employ the following slightly enhanced
version of the algorithm from [HJS13], or a further modification thereof, to construct a Heegaard diagram
adapted to R.

Algorithm 2.3. Adapting a Heegaard diagram to a Seifert surface R ⊂ S3.
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(H-1) Embed a graph G with n vertices and (n − χ(R)) edges in the interior of the surface R, such that R

deform retracts to G. Therefore, R is isotopic to nbdR(G), the closure of a regular neighborhood of
G in R. This is essentially a band presentation of R.

(H-2) Consider nbdS3(G), the closure of a regular neighborhood of G in S3. Although nbdS3(G) is a union
of handlebodies, its complement in S3 is usually not. Rectify this by tunneling out some one-handles
from the complement and adding them to nbdS3(G), so as to get a Heegaard decomposition of S3.

(H-3) Let Uα be the handlebody obtained from nbdS3(G) by adding these new handles, and let Uβ be com-
plementary handlebody. Let Σ be the dividing Heegaard surface, oriented as the boundary of Uα.

(H-4) Push off nbdR(G) towards Σ to get a surface S ⊂ Σ in a way so as to ensure that the orientation on
S induced by R agrees with the one induced by Σ.

(H-5) Place 2k distinct markings z = (z1, . . . , zk) and w = (w1, . . . , wk) on ∂S such that each component of
∂S contains at least one z and w marking, and on each component of ∂S, the z markings and the w
markings alternate.

(H-6) If the surface Σ has genus g, then draw (g + k − 1) α circles and (g + k − 1) β circles on Σ \ (z ∪ w)
such that the following holds:
(a) The α circles are disjoint from one another.
(b) The β circles are disjoint from one another.
(c) The α circles intersect the β circles transversally.
(d) Each component of Σ \ α contains one z marking and one w marking
(e) Each component of Σ \ β contains one z marking and one w marking.
(f) Exactly (k − χ(R)) α circles intersect S.

(H-7) From each w marking, as one travels along −∂S to the next z marking, isotope all the α circles that
one encounters, by finger moves, across the z marking. Similarly, from each w marking, as one travel
along ∂S to the next z marking, isotope all the β circles that one encounters, by finger moves, across
the z marking.

(H-8) Finally, perform isotopies of the α circles and the β circles in Σ \ (z ∪ w) to make the diagram
admissible.

Note that such a Heegaard diagram is indeed adapted to R. In particular, (H-6f) ensures that each generator
has at most (k − χ(R)) coordinates inside R.

We now spell out an explicit way of making all the choices alluded to in the previous list. The process
is best understood in conjunction with an explicit example, as illustrated in Figure 2.1. At various points
it will be useful to make minor alterations to these choices, but for the sake of brevity (and sanity), we will
not explicitly describe all the choices made each time a Heegaard diagram is constructed.

Algorithm 2.4. Explicit diagram adapted to a planar projection of an embedded Seifert surface R ⊂ S3.

(E-1) Given a Seifert surface R for an l-component link L ⊂ S3, view it as a surface lying in R3. Consider
a projection π : R3 → R2, and assume that π|R is generic and the image π(R) is connected.

(E-2) If R has n components, let G be a graph with n vertices and (n−χ(R)) edges, embedded in the interior
of R, such that the following holds:
(a) R deform retracts to G.
(b) The vertex v is a regular point of π|R.
(c) π|G is an immersion with no triple points, and all the preimages of the double points lie in the

interior of the edges.
(E-3) Let Uα = nbdS3(π(G)) be a genus g handlebody and let Uβ = S3 \ nbdS3(π(G)) be the complementary

handlebody. Let Σ = ∂Uα be the Heegaard surface.
(E-4) Designate g of the (g + 1) circles in Σ ∩ R2 as β circles.
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Figure 2.1. An algorithm for constructing a Heegaard diagram adapted to a
Seifert surface. As usual, the red circles are α and the blue ones are β. The surface S
is orange. The magenta dots are w-markings and the green dots are z-markings. In the
last diagram, the α circles are represented by train tracks, with the thin red lines denoting
curves.
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(E-5) For each of the (n − χ(R)) edges of G, choose a point in the image of the interior of the edge that
is not a double point, and draw an α circle on Σ which is the boundary of a normal disk to G inside
Uα = nbdS3(π(G)). Draw an additional α circle near each of the (g+χ(R)− 1) double points of π|G,
such that the α circle bounds a disk in Uα near the double point, and if the disk were surgered out,
then Uα locally would have two components, corresponding to the two preimages of the double point,
with the same crossing information.

(E-6) For each vertex vi of G, let pi ∈ Σ be the unique point such that π(pi) = π(vi) and |dπ|
Σ
(pi)| has the

same sign as |dπ|
R
(vi)|. Let Di ⊂ Σ be a small disk containing pi; let D = ∪iDi.

(E-7) For each of the (n−χ(R)) edges of G, attach a band to D lying in Σ\(α circles near the double points).
Choose each band so that it deformation retracts onto an arc that projects to the corresponding edge
under π, and so that the surface framing of the band in Σ is same as the surface framing of the
corresponding edge in R. Let S ⊂ Σ be the surface obtained from D by adding the bands.

(E-8) Put 2l markings z = (z1, . . . , zl) and w = (w1, . . . , wl) on ∂S ∩ ∂D, such that each component of ∂S
contains exactly one z marking and exactly one w marking, and the l arcs b1, · · · , bl ⊂ ∂S, which join
the w markings to the z markings, are supported inside ∂S ∩ ∂D.

(E-9) For each disk Di, add an α circle around all but one of the bj’s supported in Di. This adds a total of
(l − g) α circles.

(E-10) For 2 ≤ i ≤ l, add a β circles around bi.
(E-11) Perform finger moves on the α circles, as described in (H-7), to obtain the final Heegaard diagram.

One can check that the diagram thus obtained is admissible. Furthermore, since the surface S was
disjoint from the (g+χ(R)−1) α circles near the double points, see (E-7), it remains disjoint from them
even after the finger moves, and consequently, it only intersects (g+ l−1)−(g+χ(R)−1) = (l−χ(R))
α circles.

2.2. Knot Floer homology. We briefly recall the definition of the “tilde” version of Heegaard Floer ho-
mology, essentially following [OS08, Section 6.1] cf. [MOS09, Proposition 2.5]. Given a Heegaard diagram

for S3, H = (Σ(g), α
(g+k−1), β(g+k−1), w(k)), the chain complex C̃FH is the F2-module freely generated by

the elements of GH.
Given generators x, y ∈ GH, a domain joining them is a 2-chain D generated by the elementary regions

of H such that ∂(∂D ∩ α) = y − x; here, an elementary region is the closure of a component of Σ \ (α ∪ β),
and we are thinking of the generators as formal linear sums of their coordinates. The set of all the domains
joining x to y is denoted by D(x, y). A domain D is said to be positive if all its coefficients are non-negative,
and at least one of the coefficients is positive. Given a point p ∈ Σ \ (α∪ β), let np(D) denote the coefficient

of D at the elementary region containing the point p; let nw(D) =
∑k

i=1 nwi
(D). Domains with nw(D) = 0

are called empty domains, and the set of all empty domains joining x to y is denoted by D0(x, y). Elements
of GH carry a well-defined grading called the absolute Maslov grading M , which serves as the homological

grading of C̃FH. The difference in Maslov gradings can be computed as

M(x)−M(y) = µ(D)− 2nw(D),

where D ∈ D(x, y) is any domain, and µ(D) denotes its Maslov index.

After choosing a generic path of almost complex structures on Symg+k−1(Σ), sufficiently close to the
constant path of one induced from a complex structure on Σ, one can define the contribution function c, from
the set of all empty Maslov index one domains, to F2, given by c(D) = |M(D)/R|, the number of points in
a certain unparametrized moduli space. The function c has the property that it evaluates to 1 only if

(a) the domain is positive [OS04c, Lemma 3.2], and
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(b) the closure of the union of the elementary regions where the domain is supported is connected [Ras03,
Corollary 9.1].

Then the boundary map on the chain complex C̃FH is given by

∂x =
∑

y∈GH

∑

D∈D0(x,y)
µ(D)=1

c(D)y.

(The chain complex C̃FH usually depends on the choice of the path of almost complex structures on

Symg+k−1(Σ); nevertheless, we will suppress this from the notation.)

Theorem 2.5. [OS08, MOS09] The homology H̃FH of the chain complex C̃FH coming from a Heegaard
diagram H = (Σ(g), α

(g+k−1), β(g+k−1), w(k)) for S3 is isomorphic, as graded F2-modules, to ⊗k−1(F2 ⊕
F2[−1]), where [i] denotes a grading shift by i.

The tilde version of knot Floer homology or link Floer homology [OS04b, Ras03, OS08] is a refine-
ment of Heegaard Floer homology. Let H = (Σ(g), α

(g+k−1), β(g+k−1), z(k), w(k), S) be a Heegaard dia-

gram adapted to a Seifert surface R of an l-component link L ⊂ S3. Consider the Heegaard diagram
H0 = (Σ(g), α

(g+k−1), β(g+k−1), w(k)) obtained by forgetting S and the z markings. The set of generators
GH is same as GH0

, and they carry the same absolute Maslov grading. Given a 2-chain D generated by the

elementary regions of H, let nz(D) =
∑k

i=0 nzi(D). The elements of GH carry another well-defined grading
called the absolute Alexander grading A, such that for any domainD ∈ D(x, y), A(x)−A(y) = nz(D)−nw(D).

Proposition 2.6. If x ∈ GH is a generator in H = (Σ(g), α
(g+k−1), β(g+k−1), z(k), w(k), S), then its absolute

Alexander grading is given by A(x) = (number of x-coordinates inside S)− 1
2 (2k − l− χ(R)). In particular,

the Alexander grading satisfies: − 1
2 (2k − l − χ(R)) ≤ A(x) ≤ 1

2 (l − χ(R)).

Proof. The Alexander grading of a generator x ∈ GH is given by 1
2 〈c1(s(x)), [R, ∂R]〉. If the generator has no

coordinate inside S (called outer in [Juh08]), we can evaluate it as 1
2c(S) where c(S) is the quantity defined

in [Juh08, Section 3]. Then using [Juh08, Lemma 3.9], we see that

c(S) = χ(S) + I(S)− r(S) = χ(S)− k − (k − l) = χ(R) + l − 2k,

where I(S) equals minus half the number of sutures (which are basepoints in our setting) and r(S) is 0 if
there is exactly one pair of sutures on each boundary and decreases by one for each additional pair of sutures.

For generators which are not disjoint from S, we only need to notice that c1(s(x))− c1(s(y)) = 2PD(α),
where α = ∂D for any domain D ∈ D(x, y). It is not hard to see that the algebraic intersection number
of α with ∂S equals the number of x-coordinates inside S minus the number of y-coordinates inside S, and
therefore,

A(x) =
1

2
(χ(R) + l − 2k) + (number of x-coordinates inside S).

This proves the lefthand side of the inequality. For the righthand side, we only need to use the following fact

(number of x-coordinates inside S) ≤ (number of α circles intersecting S) = k − χ(R). �

In view of the above proposition, we make the following definitions.

Definition 2.7. Given a compact surface R (possibly disconnected), define its index to be i(R) = 1
2 (|∂R| −

χ(R)). Call a Seifert surface R for a link L minimal if it minimizes the index, and define the genus of the
link, g(L), to be this minimal index.
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It is easy to see that the chain complex C̃FH = C̃FH0
is filtered by the Alexander grading. Let the

filtration level FH(m) ⊆ C̃FH denote the subcomplex generated by the generators with Alexander grading
m or less. We call such an (M,A)-bigraded complex, where the differential decreases M by one and does
not increase A, to be an M -graded-A-filtered complex.

Theorem 2.8. [OS04b, Ras03, OS08] To an l-component link L ⊂ S3, one can associate (the filtered chain

homotopy type of) an M -graded-A-filtered complex CFK (L) such that the chain complex C̃FH, coming from
any Heegaard diagram H = (Σ(g), α

(g+k−1), β(g+k−1), z(k), w(k), S) adapted to any Seifert surface R for L,

is filtered chain homotopy equivalent to CFK (L) ⊗k−l (F2 ⊕ F2[−1,−1]), where [i, j] denotes the (M,A)
bi-grading shift by (i, j).

It is clear from Proposition 2.6 and Theorem 2.8 that the subcomplex of CFK (L) in Alexander grading

less than −i(R) is filtered chain homotopy equivalent to zero. Let ĈFK (L,−i(R)) denote the subcom-
plex of CFK (L) in Alexander grading less than or equal to −i(R). If R is minimal, then its homology,

ĤFK (L,−g(L)), is non-zero [OS04a, Ni06a] carrying a single grading coming from the Maslov grading, and
is called the extremal knot Floer homology.

Instead of studying the full filtration on CFK (L), we will restrict our attention to the two-step filtration

ĈFK (L,−i(R)) ⊂ CFK (L). Recall that a two-step filtered complex is simply a pair (S,C) where C is a
chain complex and S ⊂ C is a subcomplex. A filtered chain map f from (S,C) to (S′, C ′) is a chain map
f : C → C ′ so that f(S) ⊆ S′. A filtered chain map f from (S,C) to (S′, C ′) is a quasi-isomorphism if both
f : C → C ′ and f |S : S → S′ induce isomorphisms on homology. We will make use of the following corollary
of Theorem 2.8

Corollary 2.9. Let H = (Σ(g), α
(g+k−1), β(g+k−1), z(k), w(k), S) be a Heegaard diagram adapted to a minimal

Seifert surface R for L. Then there is a quasi-isomorphism of pairs

(FH(−i(R)− k + l), C̃FH) ∼= (ĈFK (L,−g(L))⊗k−l (F2[−1,−1]),CFK (L)⊗k−l (F2 ⊕ F2[−1,−1])).

In particular, the extremal knot Floer homology is isomorphic to the homology of FH(−i(R)− k + l)[k − l].

Moreover, the maps on homologies, ĤFK (L,−g(L)) → H∗(CFK (L)) and H∗(FH(−i(R) − k + l)) → H̃FH

have the same rank.

We conclude this section by describing how the extremal knot Floer homology is related to the τ -
invariant. Ozaváth-Szabó originally defined the τ -invariant for knots in S3; there are a number of gener-
alizations of this invariant to links, and we will concentrate on τbot and τtop which, by [HR20, Proposi-
tion 5.16] correspond to the smallest and largest of all the possible τ invariants for links (For a knot K,
τ(K) = τbot(K) = τtop(K).) For now, we only need the following properties of these invariants.

Proposition 2.10. If m(L) denotes the mirror of L, then τbot(m(L)) = −τtop(L). The invariant τbot sat-

isfies −g(L) ≤ τbot(L) ≤ g(L) with τbot(L) = −g(L) if and only if the map ĤFK (L,−g(L)) → H∗(CFK (L))
is non-zero.

Proof. The relationship between τbot and τtop under mirroring follows from their definition, a duality property
satisfied by generalized τ invariants [HR20, Proposition 2.5]. That τbot is bounded by the genus of L follows
from the fact that it is correspondingly bounded by the “slice genus” [HR20, Proposition 5.14]. The final
statement is a consequence of the definition of τbot, and the monotonicity of the τ invariants for links
established in [HR20, Proposition 5.16]. See [HR20, Theorem 2 and Section 5.3] for more details. �
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Proposition 2.11. H = (Σ(g), α
(g+k−1), β(g+k−1), z(k), w(k), S) be a Heegaard diagram adapted to a min-

imal Seifert surface R for a knot L ⊂ S3. Then τbot(L) = −g(L) if and only if the map on homology

H∗(FH(−g(L)− k + l)) → H̃FH induced from the inclusion FH(−g(L)− k + l) →֒ C̃FH is non-trivial.

Proof. This follows immediately from Proposition 2.10 and Corollary 2.9. �

2.3. Triangle maps. We briefly introduce the definition of triangle maps in our restricted setting, once
again following the original definitions from [OS04c]. Let H = (Σ(g), α

(g+k−1), β(g+k−1), γ(g+k−1), w(k)) be a

triple Heegaard diagram, that is: Hαβ = (Σ, α, β, w) and Hγβ = (Σ, γ, β, w) are Heegaard diagrams for S3;
αi is disjoint from γj for i 6= j; αi is transverse to γi and they intersect each other in exactly two points,
none of which lies on the β curves; furthermore, if αj bounds a disk Dj in the α-handlebody Uα, then γi is
isotopic to αi in nbdUα

(
⋃

j 6=i Dj) ∪ (Σ \w), that is, γi can be isotoped to αi after sliding it over some other
α circles in the complement of the w markings. We will once again assume that the triple Heegaard diagram
is admissible.

Orient αi arbitrarily, and then orient γi in the same direction, induced from the isotopy joining γi to
αi. Let θi be the positive intersection point in γi ∩ αi, and let θ = (θ1, . . . , θg+k−1). It is usually called the
top generator. Note that (Σ, γ, α, w) is a Heegaard diagram for #g(S1 × S2) on which (k − 1) index 0/3
stabilizations have been performed, and θ is its unique generator of highest Maslov grading.

Elementary regions of H are closures of the components of Σ \ (α ∪ β ∪ γ); a triangular domain joining
a generator x ∈ GHαβ

to a generator y ∈ GHγβ
is a 2-chain D generated by the elementary regions such that

∂(∂D ∩α) = θ− x and ∂(∂D ∩ β) = x− y; a triangular domain is said to be positive if all its coefficients are
non-negative. Given a triangular domain D, let nw(D) =

∑
i nwi

(D), where nwi
(D) is the coefficient of the

elementary region containing wi, in the 2-chain D. Let T (x, y) be the set of all triangular domains joining
x ∈ GHαβ

to y ∈ GHγβ
, and let T0(x, y) be the subset consisting of the empty triangular domains, that is,

triangular domains with nw = 0. The Maslov grading µ(D) of any triangular domain D ∈ T (x, y) satisfies
µ(D)− 2nw(D) = M(y)−M(x).

Choosing an appropriate family (parametrized by the 2-simplex) of almost complex structures on

Symg+k−1(Σ), we can define a contribution function c from the set of all Maslov index zero triangular
domains, to F2. Picking the family of almost complex structures to be integrable near a collection of hyper-
surfaces specified by basepoints in the elementary regions ensures that the contribution function has non-zero
support only on the positive triangular domains. Then the following map is a graded quasi-isomorphism

from C̃FHαβ
to C̃FHγβ

.

f(x) =
∑

y∈GHγβ

∑

D∈T0(x,y)
µ(D)=0

c(D)y.

We will reprove a special case of this fact in Theorem 3.3.

2.4. Murasugi sum. We are now prepared to discuss the Murasugi sum operation. Let S2 ⊂ S3 be the
standard 2-sphere. We will mentally ‘one-point-decompactify’ the picture, and draw it as R2 ⊂ R3. There
are two components in S3 \ S2, the ‘inside’ B1 and the ‘outside’ B2, such that S2 is oriented as ∂B1. Let
A1A2 . . . A2n be a 2n-gon lying on S2. For i ∈ {1, 2}, let Ri be a Seifert surface for an li-component link
Li ⊂ Bi, such that: Ri ∩ S2 is the A1A2 . . . A2n with the same orientation; L1 ∩ S2 is the union of the
oriented segments A1A2, A3A4, . . . , A2n−1A2n; and L2 ∩ S2 is the union of the oriented segments A2A3,

A4A5, . . . , A2nA1. Then the Murasugi sum L = L1 ∗L2 is the link (L1 ∪ L2) \ S2, and it bounds the Seifert
surface R1 ∗R2 = R1∪R2. The special cases when n = 1 is just the connected sum and n = 2 is a plumbing.
The case n = 2 is illustrated in Figure 2.2.



12 ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

A1

A2

A3

A4

Figure 2.2. The Murasugi sum operation. The link L is obtained by plumbing the
link L1 below the plane with the link L2 above the plane along the rectangle A1A2A3A4.

We need the following quantities, δ1, δ2, δ, which will simplify certain expressions later on. Define δ1
(respectively, δ2, δ) to be n minus the number of components of L1 (respectively, L2, L) that intersect the
2n-gon. Note, (l + δ − n) = (l1 + δ1 − n) + (l2 + δ2 − n).

We will now describe how to draw Heegaard diagrams adapted to R1 and R2, and how they can be
combined to form a Heegaard diagram for R1∗R2. The procedures closely follow the outline from Section 2.1
with a few differences. The most important feature of the following construction is that the roles of α and
β are reversed while constructing the Heegaard diagrams adapted to R1 and R2.

(M-1) We first embed a graph Gi in Ri so that Ri deform retracts to Gi, and Gi intersects the 2n-gon in a
single vertex with exactly n edges going out to n of its edges. This is easy to ensure, see Figure 2.3.

(M-2) Then consider the handlebody B3−i ∪ nbdBi
(Gi ∩Bi). Its complement need not be a handlebody, so

we add a few tunnels, none intersecting S2, to complete this to a Heegaard decomposition of S3. Let
Σi be the resulting Heegaard surface, oriented so that its orientation agrees with the orientation of
S2 = ∂B1 on S2 ∩ Σi. Let Uα,i and Uβ,i be the components of S3 \ Σi, so that Σi is oriented as the
boundary of Uα,i.

(M-3) Construct a surface Si ⊂ Σi, such that Si is isotopic to Ri and Si∩S2 is the 2n-gon A1A2 . . . A2n∩Σi.
(M-4) Put z markings at A1, A3, . . . , A2n−1, and put w markings at A2, A4, . . . , A2n. On every other com-

ponent of ∂Si, put a z marking and a w marking right next to one another, such that a small arc in
(−1)i∂Si joins the w marking to the z marking. Therefore, the total number of z (or w) markings is
li + δi.

(M-5) Then draw α circles and β circles on Σi \ (z ∪ w), such that:
(a) The α circles and β circles are transverse to each other and to ∂Si.
(b) The α circles are pairwise disjoint and they span a half-dimensional subspace of H1(Σi); each

component of Σi \ α contains a z marking and a w marking.
(c) The β circles are pairwise disjoint and they span a half-dimensional subspace of H1(Σi); each

component of Σi \ β contains a z marking and a w marking.
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A1

A1

A1

A2

A2

A2

A3

A3A3

A4

A4A4

Figure 2.3. Embedding a graph G in the Seifert surface. In each case, the Seifert
surface deform retracts to a neighborhood of G that contains A1A2A3A4.

(d) Each component of Σ1 \ α (respectively, Σ2 \ β) has an oriented arc in (−1)i∂Si joining the w
marking to the z marking.

(e) Exactly (li + δi − χ(Ri)) β (respectively, α) circles intersect S1 (respectively, S2).
(f) There are exactly (n − 1) α circles lying entirely inside the 2-sphere S2, and they encircle the

edges A3A4, A4A5, . . . , A2n−1A2n. There are exactly (n − 1) β circles lying entirely inside the
2-sphere S2, and they encircle the intervals A4A5, A6A7, . . . , A2nA1. Moreover, the consecutive
α and β circles intesect each other at exactly two points.

(g) Other than the above circles, there are no β (respectively, α) circle of Σ1 (respectively, Σ2) that
intersects S2. There could be some α (respectively, β) arcs of Σ1 (respectively, Σ2) that intersect
S2; in that case, their intersection with S2 lies entirely inside Si ∩ S2; and we can also ensure
that there are at most (n− 1) of such α (respectively, β) arcs.

(M-6) We then do finger moves on the β (respectively, α) circles on Σ1 (respectively, Σ2) to convert this to
a Heegaard diagram H1 (respectively, H2) adapted to the Seifert surface R1 (respectively, R2). These
final diagrams, in the case when n = 2, are shown in Figure 2.4. In the case when n = 3, the diagrams
are also shown in the first two figures of the top row of Figure 4.1 (where X denotes a handle going
down into B1 and O denotes a handle coming up into B2).

(M-7) The first two figures in the third row of Figure 4.1 represent slightly modified Heegaard diagrams
H′′

i that are obtained from Hi by deleting the z-markings, modifying the surface Si, and performing
small isotopies to reduce the number of intersections between α and β circles. We will assume that
we have already performed some isotopies on the α and β circles on Hi away from S2 so as to ensure
that these modified diagrams H′′

i , and hence Hi itself, is already admissible.

We can now ‘combine’ the Heegaard diagramH1 adapted to R1 andH2 adapted to R2 to form a Heegaard
diagram H1 ∗ H2 adapted to R1 ∗ R2. Recall that in H1, the α-handlebody Uα,1 is obtained by tunneling

out a few one-handles from B1, and the β-handlebody Uβ,1 is obtained by attaching those corresponding



14 ZHECHI CHENG, MATTHEW HEDDEN, AND SUCHARIT SARKAR

Figure 2.4. The Heegaard diagrams H1 and H2. We continue to represent w and z
markings by magenta and green dots, respectively. Once again, the thin lines are curves,
and the thick lines are train tracks, representing some (possibly zero) curves running in
parallel.

Figure 2.5. The Heegaard diagram H1 ∗ H2. This diagram is obtained by combining
the Heegaard diagrams H1 and H2 from Figure 2.4

one-handles to B2. Similarly, in H2, the α-handlebody Uα,2 is obtained by attaching a few one-handles to B1,

and the β-handlebody Uβ,2 is obtained by tunneling out those corresponding one-handles from B2. In the

‘combined’ Heegaard diagram H1 ∗ H2, the α-handlebody Uα,1 ∗ Uα,2 is obtained from B1 by tunneling out
all the one-handles that were tunneled out in Uα,1 and by attaching all the one-handles that were attached
in Uα,2, and the β-handlebody Uβ,1 ∗ Uβ,2 is the closure of its complement. The Heegaard surface Σ1 ∗ Σ2

is the oriented boundary of Uα,1 ∗ Uα,2. There is a surface S1 ∗ S2 ⊂ Σ1 ∗ Σ2, isotopic to R1 ∗ R2, which
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a1

1

a2b

w

a1

1

a2b

w

Figure 3.1. The disk D in the Heegaard diagrams Hαβ and Hγβ. The α, β, and γ
arcs are represented by red, blue, and pink train tracks, respectively, with thin lines denoting
curves. The number of arcs in each train track is also shown.

is obtained from S1 ⊂ Σ1 and S2 ⊂ Σ2. The w and z basepoints, and the α and β circles on Σ1 ∗ Σ2 are
induced from the corresponding objects in Σ1 and Σ2. The Heegaard diagram H1 ∗ H2, in the case when
n = 2, looks like Figure 2.5, and in the case n = 3, looks like the third figure in the top row of Figure 4.1.
Since the modified diagrams H′′

1 and H′′
2 are admissible, it follows that the corresponding modified diagram

(H1 ∗ H2)
′′ (third figure in the third row of Figure 4.1), and hence H1 ∗ H2 itself, is also admissible.

3. Certain local isotopies

Let Hαβ = (Σ(g), α
(g+k−1), β(g+k−1), w(k)) be a Heegaard diagram for S3, which possibly is non-

admissible, and S ⊂ Σ be an open subsurface. Let AHαβ ,S ⊆ GHαβ
be the set of all the generators,

none of whose coordinates lie inside S, and let BHαβ ,S = GHαβ
\ AHαβ ,S denote the rest of the generators.

Let us assume that S contains a disk D that looks like the first part of Figure 3.1 (with the train track
convention): there are b β arcs, all parallel to each other, with b ≥ 1; there are a1+1+a2 α arcs, all parallel
to each other, with a1, a2 ≥ 0, such that a2 of them are disjoint from the β arcs, and each of the a1 + 1
others, intersect each of the b β arcs in exactly two points; there is a w marking, such that the oriented
boundary of the component of D \ (α∪β) containing the w marking, is an α arc followed by a β arc followed
by an arc in ∂D. Note that these b β arcs need not belong to b different β circles, and these a1 + 1 + a2 α
arcs need not belong to a1 + 1 + a2 different α circles.

Let Hγβ = (Σ, γ, β, w) be the Heegaard diagram (also possibly non-admissible) obtained from H after
the local isotopy as shown in Figure 3.1. The surface Σ, the β circles, the w markings, and the subsurface S
are unchanged. The α circles are replaced by the γ circles, which for the most part, are small perturbations
of the corresponding α circles, except for one of the arcs in the disk D. There are a1 + 1 + a2 γ arcs in
D ⊂ S ⊂ Σ in Hγβ , of which 1+a2 of them are disjoint from the β arcs, and each of the remaining a1 of them
intersect each of the b β arcs in exactly two points. This is shown in the second part of Figure 3.1, with the γ
train tracks and arcs being denoted by thick and thin pink lines respectively. Once again, let AHγβ ,S ⊂ GHγβ

be the set of all the generators, none of whose coordinates lie inside S, and let BHγβ ,S = GHγβ
\ AHγβ ,S

denote the rest of the generators. There is an obvious bijection AHαβ ,S

∼=
−→ AHγβ ,S , and we will always
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m1

mb−1

mb

u1

ub−1

ub

m0

s

u0 = 0

m1

m1

mb−1

mb−1

mb

u1

ub−1

ub

m0

m0

s

u0 = 0

s+m1 −m0

s+mb−1 −m0

s+mb −m0

Figure 3.2. The local coefficients of D1 and D2 in Hγβ and Hαβ. We prove that if
D1 is a positive domain, then so is D2, which follows once we show that s+mi−m0 ≥ s+ui.

implicitly identify them by this bijection; there is an obvious injection BHγβ ,S →֒ BHαβ ,S , and we will always
implicitly treat BHγβ ,S as a subset of BHαβ ,S by this injection.

Proposition 3.1. If there are no empty positive domains from AHαβ ,S to BHαβ ,S, then there are no empty
positive domains from AHγβ ,S to BHγβ ,S.

Proof. We will prove the contrapositive of the statement. The basic idea is that any positive domain
from AHγβ ,S to BHγβ ,S induces a corresponding positive domain in the original diagram, simply by tracing
multiplicities through the reversal of the isotopy. To make this precise, let us assume that D1 ∈ D0(x, y)
is a positive domain, from some generator x ∈ AHγβ ,S to some generator y ∈ BHγβ ,S . Let x̄ ∈ AHαβ ,S and

ȳ ∈ BHαβ ,S be the images of x and y under the bijection AHγβ ,S

∼=
−→ AHαβ ,S and the injection BHγβ ,S →֒

BHαβ ,S , respectively. The empty domain D1 gives rise to another empty domain D2 ∈ D0(x̄, ȳ). The local
coefficients of D1 and D2 are shown in Figure 3.2. We will simply show that D2 is also a positive domain.

Towards this end, we will prove that none of the coefficients m1, . . . ,mb are smaller than the coefficient
m0. We will prove this by showing that ui ≤ mi−m0, for all 0 ≤ i ≤ b. Since each ui ≥ 0, this will complete
the proof.

We will prove ui ≤ mi − m0 by an induction on i. Since, u0 = 0 = m0 − m0, the base case is trivial.
Assume by induction that the statement is true for i. Before we prove the statement for i+ 1, let us make
one small observation about the domain D1.

Since ∂(∂D1∩β) = x−y, and since none of the coordinates of x lie in the disk D, we therefore have that
∂(∂D1 ∩ β), viewed as a 0-chain, does not contain any point with positive sign in the local neighborhood
D. Let τ be an oriented arc, which is a subspace of a β circle, and is supported entirely inside D. Let the
coefficient of ∂D1 ∩ β near the beginning of τ be c > 0. The observation that ∂(∂D1 ∩ β) does not contain
any positively signed point in D, implies that the coefficient of ∂D1 ∩ β near the end of τ is greater than or
equal to c. We summarize this observation by the statement that “∂D1 ∩ β does not stop inside D”.

Now, we are all set to prove the induction statement for i + 1. In the Heegaard diagram Hγβ , let β1

be the β circle that separates the elementary region with coefficient mi+1 from the elementary region with
coefficient mi, and let τ be an oriented subarc of β1, running from the elementary region with coefficient mi

to the elementary region with coefficient ui. Therefore, the signed coefficients of ∂D1 ∩β near the beginning
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mi

mi+1

ui

ui+1

ui − ui+1

mi −mi+1

Figure 3.3. The induction step. Assuming ui ≤ mi −m0, we prove ui+1 ≤ mi+1 −m0

by showing ui+1 − ui ≤ mi+1 −mi. The coefficients of D1 and the coefficients of ∂D1 ∩ β
are shown.

α1

γ1

Figure 3.4. The Heegaard diagram Hαβγ in the neighborhood D. As before, α, β,
γ are red, blue, and pink, respectively. A thin brown curve denotes a train track which is
pair of parallel α and γ curves, and a thick brown curve is a train track of such train tracks.

and the end of τ are mi−mi+1 and ui−ui+1 respectively, as shown in Figure 3.3. In light of the observation
above that ∂D1 ∩ β does not stop inside D, it follows that coefficient of ∂D1 ∩ β near the end of τ is greater
than or equal to that at the end:

mi −mi+1 ≤ ui − ui+1.

Subtracting m0 from both sides of the inequality, and rearranging, we have:

ui+1 +mi −m0 − ui ≤ mi+1 −m0

But the inductive hypothesis is that 0 ≤ mi −m0 − ui, hence ui+1 ≤ mi+1 −m0, as desired. �

Now, we prove a similar statement for triangular domains. Let Hαβγ = (Σ, α, β, γ, w) be the triple
Heegaard diagram, obtained by combining the above two diagrams; it is also possibly non-admissible. We
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θi

αi

γi

θ1

α1

γ1

Figure 3.5. Neighborhoods Ni of αi ∪ γi. For i 6= 1 (left), the small bigon region is
disjoint from D, while for i = 1 (right), the small bigon region is contained inside D. The
coordinates of the top generator θ are shown by white dots.

assume that γi is a small translate of αi, intersecting it transversely in exactly two points, so that γi is
disjoint from αj for i 6= j. Let α1 be the α circle that is changed to the γ circle γ1 in Figure 3.4. Therefore,
a neighborhood Ni of αi∪γi for i 6= 1 looks like the first part of Figure 3.5, with none of the two intersection
points in αi ∩ γi lying in the neighborhood D. A neighborhood N1 of α1 ∪ γ1 looks like the second part of
Figure 3.5, with both the intersection points in α1 ∩ γ1 lying in the neighborhood D. The coordinates of the
top generator θ are shown.

Proposition 3.2. If there are no empty positive domains from AHαβ ,S to BHαβ ,S, then there are no empty
positive triangular domains from AHαβ ,S to BHγβ ,S.

Proof. Let D1 ∈ T0(x, y) be a positive triangular domain, for some x ∈ AHαβ ,S and y ∈ BHγβ ,S . Let
ȳ ∈ BHαβ ,S be the image of y under the injection BHγβ ,S →֒ BHαβ ,S . It is easy to see that there is a unique
empty triangular domain D2 ∈ T0(ȳ, y), whose non-zero coefficients are supported inside the neighborhoods
Ni, such that ∂D2 ∩ γ = ∂D1 ∩ γ. Then, the 2-chain D3 = D1 −D2 is a domain in D0(x, ȳ). We will show
that D3 is also a positive domain, establishing the contrapositive of the given statement.

The coefficients of D2 are zero outside ∪iNi, and the neighborhoods Ni for i 6= 1 can be considered as
special cases of the neighborhood N1. Therefore, we only need to concentrate on the coefficients of D3 in
N1. Figure 3.6 shows the coefficients of D1, ∂D1∩γ1 and D3 in this neighborhood. The coordinates of θ and
y on γ1 are shown. The coefficient of ∂D1 ∩ γ1 is either r or r + 1 (which need not be positive), as shown.

Since D1 is a positive domain, and since the region with coefficient qℓ in D1 has γ1 on its boundary
with coefficient r + 1, we must have qℓ ≥ r + 1 for all 1 ≤ ℓ ≤ d. Similarly, we must have pℓ ≥ r for all
1 ≤ ℓ ≤ c and m0 ≥ −r. Therefore, in order to show that D3 is also a positive domain, we only need to
show that each of the coefficients m1, . . . ,mb are greater than or equal to −r. However, exactly as in the
proof of Proposition 3.1, using the fact that x has no coordinates inside the disk D, we can show that none
of the coefficients m1, . . . ,mb are smaller than m0, and this completes the proof. �

Let us henceforth assume that the Heegaard diagram Hγβ is admissible. Then Hαβ and Hαβγ are also

admissible, and in that case, C̃FHαβ
and C̃FHγβ

are the chain complexes, freely generated over F2, by GHαβ
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m0

m1

mb

p1pc
q1

qd

r
r

r

r + 1

r + 1

m0 + r

m1 + r

mb + r

p1 − r

pc − r
q1 − r − 1

qd − r − 1

Figure 3.6. Coefficients of D1 (left) and D3 (right) in the neighborhood N1 of
α1 ∪ γ1. The coordinates of θ and y are shown by white dots. The coefficients of ∂D1 ∩ γ1
are also shown on the left.

and GHγβ
, respectively. Let S̃FHαβ ,S and S̃FHγβ ,S be the F2-submodules, freely generated by AHαβ ,S and

AHγβ ,S , respectively.

Theorem 3.3. Assume that there are no empty positive domains from AHαβ ,S to BHαβ ,S. Then S̃FHαβ ,S

is a subcomplex of C̃FHαβ
, S̃FHγβ ,S is a subcomplex of C̃FHγβ

, and the chain map from C̃FHαβ
to C̃FHγβ

induces a chain map from S̃FHαβ ,S to S̃FHγβ ,S. Furthermore, the chain maps C̃FHαβ
→ C̃FHγβ

and

S̃FHαβ ,S → S̃FHγβ ,S are quasi-isomorphisms.

Proof. Proposition 3.1 implies that there are no empty positive domains from AHγβ ,S to BHγβ ,S , and Propo-
sition 3.2 implies that there are no empty positive triangular domains from AHαβ ,S to BHγβ ,S . Since the

non-zero terms in the boundary maps on C̃FHαβ
and C̃FHγβ

come only from empty positive domains, and

the non-zero terms in the chain map from C̃FHαβ
to C̃FHγβ

come only from empty positive triangular

domains, S̃FHαβ ,S →֒ C̃FHαβ
is a subcomplex, S̃FHγβ ,S →֒ C̃FHγβ

is a subcomplex, and the chain map

C̃FHαβ
→ C̃FHγβ

induces a chain map S̃FHαβ ,S → S̃FHγβ ,S , resulting in the following commuting square.

S̃FHαβ ,S

S̃FHγβ ,S

C̃FHαβ

C̃FHγβ

We will now show that the vertical arrows induce isomorphisms on homology. A 2-cochain on a Heegaard
diagram or a triple Heegaard diagram is a map which assigns real numbers to the elementary regions; a non-
negative 2-cochain is a 2-cochain which only assigns non-negative numbers; and a positive 2-cochain is a
2-cochain which only assigns positive numbers. Since Hγβ is admissible, by [OS04c, Lemma 4.12], there
exists a positive 2-cochain C0 on Hγβ , which evaluates to zero on all empty periodic domains in Hγβ .
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A cochain in Hαβγ induces cochains in Hαβ and Hγβ , by forgetting the γ circles and the α circles,
respectively, as well as the coefficients of the cochain on the thin elementaty regions that lie entirely inside
the neighbordhoods Ni. We will now construct a non-negative cochain C on Hαβγ , such that: C assigns
zero precisely to the elementary regions that lie entirely in the neighborhoods Ni; and C induces the positive
cochain C0 in Hγβ . Since the empty periodic domains in Hαβγ are generated by the empty periodic domains
in Hγβ and the periodic domains that are supported in ∪iNi, this would imply that C evaluates to zero
on any empty periodic domain in Hαβγ . The way to construct C is fairly straightforward. Let R be an
elementary region in Hγβ , and let r be the assignment of C0 on R. The region R might get cut up into
several elementary regions R1, . . . , Rn in Hαβγ , and some of them might lie entirely in the neighborhoods
Ni, but at least one of them does not. Choose non-negative real numbers r1, . . . , rn, such that,

∑
i ri = r

and ri = 0 if and only if Ri lies entirely in ∪iNi. Then assign the number ri to the elementary region Ri in
the 2-cochain C.

This non-negative 2-cochain C gives rise to filtrations on the mapping cones S̃FHαβ ,S → S̃FHγβ ,S and

C̃FHαβ
→ C̃FHγβ

, as follows: given any two generators x, y ∈ GHαβ
∪ GHγβ

, the relative filtration grading
between them is 〈C,D〉, for any D in D0(x, y) or T0(x, y) as the case may be. On the associated graded
level, we only count domains or triangular domains that lie entirely inside these neighborhoods Ni, and then
it is a fairly straightforward to check that the associated graded maps on the associated graded objects are
isomorphisms, and therefore, the original chain maps must have been quasi-isomorphisms as well. �

4. Main theorems

Proof of Theorem 1.1. Following the notations from Section 2.4, let H1, H2 and H1∗H2, as shown in Figures
2.4 and 2.5, be the Heegaard diagrams adapted to Seifert surfaces R1, R2 and R1 ∗ R2 for the links L1, L2

and L = L1 ∗ L2, respectively. The corresponding Heegaard surfaces contain embedded subsurfaces S1, S2

and S1 ∗ S2, which represent R1, R2 and R1 ∗ R2, respectively. Furthermore, H1 has (l1 + δ1) w-markings,
H2 has (l2 + δ2) w-markings, H1 ∗ H2 has (l + δ) w-markings.

Thanks to Corollary 2.9, we only need to produce an isomorphism of graded chain complexes

FH1∗H2

(
−

1

2
(l + 2δ − χ(R1 ∗R2))

)
[l + δ − 1]

∼= FH1

(
−

1

2
(l1 + 2δ1 − χ(R1))

)
[l1 + δ1 − 1]⊗FH2

(
−

1

2
(l2 + 2δ2 − χ(R2))

)
[l2 + δ2 − 1],

or in terms of the notation from Section 3, since (l + δ − n) = (l1 + δ1 − n) + (l2 + δ2 − n),

(4.1) S̃FH1∗H2,S1∗S2
[n− 1] ∼= S̃FH1,S1

[n− 1]⊗ S̃FH2,S2
[n− 1].

Let (H, S) denote any of (H1, S1), (H2, S2) or (H1 ∗H2, S1 ∗S2), as shown in the first row of Figure 4.1.
The sphere S2 of the Murasugi sum is represented by the squares on the page, with L1 lying below the page
and L2 lying above. Let Σ be the Heegaard surface and let Σ1 (respectively, Σ2) be the portion of Σ that
lies inside (respectively, outside) the sphere S2.

Let H′ be the Heegaard diagrams for S3 obtained from H by forgetting the z markings, and let S′ be
the open subsurface of the Heegaard surface of H, obtained by slightly modifying S in a neighborhood of
the 2n-gon A1A2 . . . A2n so as to include all the intersections between α and β circles near the erstwhile
z-markings. These modified diagrams (H′, S′) are shown in the second row of Figure 4.1.

Since we have not changed the underlying Heegaard diagrams, clearly, C̃FH′ = C̃FH. Next we claim
that any generator x ∈ GH that does not have any coordinate in S can not have any coordinate in S′ either.
This is a simple counting argument. Indeed, let us say Hi has a total of ni α-circles and ni β-circles; of
them, exactly (n− 1) α-circles and (n− 1) β-circles lie entirely inside the S2. Then H1 ∗ H2 has a total of
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Figure 4.1. The Heegaard diagrams appearing in the proof of Theorems 1.1
and 1.2. The left, middle, right columns represent diagrams obtained fromH1, H2, H1∗H2,
respectively; the consecutive rows represent the diagrams H, H′, H′′, and H′′′; X and O
denote handles going down (into the page) and up (towards the reader), respectively.
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(n1 + n2 − n+ 1) α-circles and (n1 + n2 − n+ 1) β-circles, again with exactly (n− 1) α-circles and (n− 1)
β-circles lying entirely inside the S2. For H 6= H2, we see that (n1 − n+ 1) α circles of H lie entirely within
Σ1∪S, and so x must have at least (n1−n+1) coordinates in Σ1 (as it avoids the surface S, by assumption).
Similarly, for H 6= H1, we see that (n2 − n + 1) β circles of H lie entirely within Σ2 ∪ S, and so x must
have at least (n2 − n + 1) coordinates in Σ2. Therefore, in all cases, x has at most (n − 1) coordinates in
the sphere S2. It follows that, in fact, x must have exactly (n − 1) coordinates in the sphere, occupied by
the (n − 1) α and β circles that lie entirely therein. Specifically, they must be the white dots as shown in

the first row of Figure 4.1. Therefore, we get that S̃FH′,S′ = S̃FH,S . Moreover, since there are no positive

domains from generators of S̃FH,S to the other generators of C̃FH due to Alexander grading, there are no

positive domains from the generators of S̃FH′,S′ to the generators of C̃FH′ as well, and we have the following
identification of subcomplexes.

(4.2)

S̃FH,S

S̃FH′,S′

C̃FH

C̃FH′

= =
As in Section 3, we perform local isotopies to separate the α and β curves in the neighborhood of the

erstwhile z-markings so that we obtain the Heegaard diagrams in the third row of Figure 4.1, which we
denote by (H′′, S′). The aforementioned isotopies are supported inside S′, and there are no domains from

the generators of S̃FH′,S′ to the other generators of C̃FH′ . Recalling that the Heegaard diagrams were
constructed to ensure that H′′ is admissible (see (M-7)), we see that the hypotheses of Propositions 3.1
and 3.2 are satisfied. Applying the propositions, we obtain a quasi-isomorphism between the following
two-step filtered complexes.

(4.3)

S̃FH′,S′

S̃FH′′,S′

C̃FH′

C̃FH′′

q.i. q.i.

Next we claim that for any generator x of C̃FH′′ , all its coordinates in S2 must be the white or black
dots from the third row of Figure 4.1. It is once again a counting argument, but with the roles of α and β
reversed. For H′′ 6= H′′

2 , we see that (n1 − n+ 1) β circles of H′′ have no intersections with α circles in S2,
so x must have at least (n1 − n+ 1) coordinates in Σ1. Similarly, for H′′ 6= H′′

1 , we see that (n2 − n+ 1) α
circles of H′′ have no intersections with β circles in S2, so x must have at least (n2 − n+ 1) coordinates in
Σ2. In all cases, x has at most (n−1) coordinates in the sphere S2, and therefore, they must be occupied by
the (n− 1) α and β circles that lie entirely in S2; moreover, they must be the white or black dots as shown
in the third row of Figure 4.1.

After numbering the α circles that lie entirely in S2 arbitrarily (but consistently across Heegaard dia-
grams) from 1 to n − 1, each generator x can be represented as a pair (~a, xo), where ~a = (a1, . . . , an−1) ∈
{0, 1}n−1 with ai = 0 if and only if αi contains the white dot, and xo denotes the coordinates of x that

lie outside S2. Consider the usual partial order on {0, 1}n−1 with ~a ≤ ~b if ai ≤ bi for all i, and the usual
L1-norm on {0, 1}n−1 given by |~a| =

∑
i ai. Since empty positive domains are not allowed to pass through

the w markings, we see that if D ∈ D0((~a, x
o), (~b, yo)) is an empty positive domain, then ~b ≤ ~a. Let C̃F

W

H′′

denote the subcomplex of C̃FH′′ spanned by generators with ~a = 0, that is, generators with only white dots.
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Then we have nested subcomplexes

S̃FH′′,S′ →֒ C̃F
W

H′′ →֒ C̃FH′′ .

For any generator x of C̃F (H1∗H2)′′ , let x
i be all its coordinates that lie in Σi. Then the map

(~0, x1, x2) 7→ (~0, x1)⊗ (~0, x2)

produces the following identification between the following chain groups:

(4.4)

S̃F (H1∗H2)′′,(S1∗S2)′

S̃FH′′
1
,S′

1
⊗ S̃FH′′

2
,S′

2

C̃F
W

(H1∗H2)′′

C̃F
W

H′′
1

⊗ C̃F
W

H′′
2

∼= ∼=

Let us now prove that the vertical arrows are relative Maslov grading preserving chain maps—that is,
the above identifications are identifications of chain complexes, up to a single absolute Maslov grading shift.

Let (~0, x1, x2) and (~0, y1, y2) be two generators of C̃F
W

(H1∗H2)′′ and let D ∈ D((~0, x1, x2), (~0, y1, y2)) be an

empty positive domain in (H1 ∗ H2)
′′ connecting them. Such a domain has to be disjoint from S2. Indeed,

the fact the domain has no corner points in S2 forces it to restrict to a periodic domain therein, which the
admissibility condition then ensures is the trivial domain with zero multiplicities. It follows that D splits as a
disjoint union D1∪D2 of empty positive domains, with Di ∈ D((~0, xi), (~0, yi)) in H′′

i . Recall from Section 2.2
that D can only contribute to the differential if one of D1 and D2 is the trivial domain. Furthermore, since
such domains avoid S2, we may choose complex structures (and their perturbations) for the three Heegaard
diagrams so that they agree on Σ1 and Σ2 (and their corresponding symmetric products); therefore, if D1

(respectively, D2) is the trivial domain, then the contribution of D will agree with the contribution of D2

(respectively, D1). This is an instance of the localization principle [Ras03, Section 9.4], and it establishes
that the vertical arrows are chain maps, and indeed chain isomorphisms. To see that the vertical arrows

also respect the relative Maslov gradings, consider generators (0, xi), (0, yi) of C̃F
W

H′′

i
, and choose empty

domains Di in H′′
i (not necessarily positive) connecting them. In H′′

1 (respectively, H′′
2 ) consider the (n− 1)

α (respectively, β) circles that lie entirely inside S2; each of them bounds a disk also entirely inside S2, and
each such disk is comprised of two bigon-shaped elementary regions—one containing a basepoint, and one
without. By adding some number of copies of these disks to the domain Di, we can get a domain Ei (not
necessarily empty) connecting (0, xi) to (0, yi) in H′′

i , which has coefficient zero in the bigon region that does
not contain the basepoint. Simply by adding the underlying 2-chains, these two domains E1 and E2 induce
a domain E in (H1 ∗H2)

′′ connecting (0, x1, y1) to (0, x2, y2). It follows from Lipshitz’ Maslov index formula
[Lip06] that µ(E) = µ(E1)+µ(E2), and it is immediate that nw(E) = nw(E

1)+nw(E
2). Consequently, the

relative Maslov grading is preserved. Therefore, in order to finish the proof, we only need to calculate the
absolute Maslov grading shift under the given isomorphism of relatively Z-graded chain complexes. We will
calculate this shift using the triangle maps associated to handleslides of the circles in S2 over curves in the
remainder of the diagram.

Towards this end, modify the Heegaard diagrams H′′ once more to get the Heegaard diagrams H′′′ of the
fourth row of Figure 4.1. Namely, we slide the α circles inside S2 off the attaching handles of Σ2 (the ones
marked O in Figure 4.1) and we slide the β circles inside S2 off the attaching handles of Σ1 (the ones marked
X in Figure 4.1). There is an obvious identification between α circles, β circles, and generators (~a, xo) of
H′′ and the corresponding objects of H′′′; let ᾱ, β̄, and (~a, x̄o) denote the corresponding objects in H′′′.
Then each α circle only intersects the corresponding ᾱ circle, and does so at two points. So the Heegaard
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diagram (Σ, α, β, ᾱ) is of the type as described in Section 2.3. The top generator θ has coordinates just next
the white dots of H′′ and H′′′, and indeed, there is a small Maslov index zero triangular domain connecting
(~0, xo) and (~0, x̄o). Therefore, the Maslov grading of (~0, xo) is same as the Maslov grading of (~0, x̄o). A
similar argument, but with the roles of α and β reversed, proves that the Maslov grading is preserved under
the handleslides of the β-circles as well.

Now C̃FH′′′ decomposes into 2n−1 direct summands, one for each ~a ∈ {0, 1}n−1. Moreover, the map

(0, xo) 7→ (~a, xo) is an isomorphism between C̃F
W

H′′′ [|~a|] and the summand corresponding to ~a. Let H′′′
d

denote the Heegaard diagram destabilized n− 1 times, obtained from H′′′ by removing the (n− 1) α and β
circles that lie inside S2, and the (n− 1) w-markings enclosed by them. Then by Theorem 2.5,

(4.5) C̃F
W

H′′′ [n− 1] ∼= C̃FH′′′

d

via the map (~0, xo) 7→ xo.
Now the map (x1, x2) 7→ x1 ⊗ x2 produces an identification of chain groups following a similar but

simpler argument of Equation 4.4:

(4.6) C̃F (H1∗H2)′′′d

∼= C̃F (H1)′′′d
⊗ C̃F (H2)′′′d

.

Moreover, this map is a relative Maslov grading preserving chain map, using a similar (but easier) localization
principle argument to that above. However, (H1)

′′′
d , (H2)

′′′
d , and (H1 ∗ H2)

′′′
d are Heegaard diagrams for S3

with (l1+δ1−n+1), (l2+δ2−n+1), and (l+δ−n+1) basepoints, respectively; therefore, by Theorem 2.5 (and
since (l1+δ1−n)+(l2+δ2−n) = (l+δ−n)), either side of the equation has homology ⊗l+δ−n(F2⊕F2[−1]),
so the chain isomorphism (4.6) preserves absolute Maslov grading as well.

Combining this with Equation (4.5) and the previous fact that corresponding generators in H′′ and
H′′′ have equal Maslov gradings, we conclude that the isomorphism from Equation (4.4) shifts gradings
by n − 1. Then with the aid of Equations (4.2) and (4.3), we arrive at the desired graded isomorphism
Equation (4.1). �

We turn now to Theorem 1.2, which states that τtop of a Murasugi sum is maximal if and only if τtop of
each summand is maximal.

Proof of Theorem 1.2. By Proposition 2.10, we may take mirrors and prove the following statement for τbot:
If L is a Murasugi sum of links L1 and L2 along minimal index Seifert surfaces, then τbot(Li) = −g(Li) for
all i ∈ {1, 2} if and only if τbot(L) = −g(L).

We will continue from the previous proof, and re-use the same notation. Thanks to Corollary 2.9 and
Proposition 2.10, we only need to prove that, for both i = 1, 2, the inclusion

S̃FHi,Si
→֒ C̃FHi

induces a non-zero map on homology if and only if the inclusion

S̃FH1∗H2,S1∗S2
→֒ C̃FH1∗H2

induces a non-zero map on homology.
Thanks to Equations (4.2) and (4.3), it is enough to prove the above for (H′′, S′), that is,

(4.7) ∀i
(
H∗(S̃FH′′

i ,S
′

i
) → H∗(C̃FH′′

i
) is non-zero

)
⇔ H∗(S̃FH′′

1
∗H′′

2
,S′

1
∗S′

2
) → H∗(C̃FH′′

1
∗H′′

2
) is non-zero.

Recall that we have nested subcomplexes

S̃FH′′,S′ →֒ C̃F
W

H′′ →֒ C̃FH′′ .
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We claim the map C̃F
W

H′′ →֒ C̃FH′′ is injective on homology for H′′ = H′′
1 , H

′′
2 , or H′′

1 ∗ H′′
2 . For each of

the three diagrams, the homology of C̃F
W

H′′ is isomorphic, up to a grading shift, to the homology of the
(n − 1)-times destabilized diagrams H′′′

d (recall Equation (4.5)); let ω denote its rank. By counting the

number of basepoints, in each of the three cases, the homology of C̃FH′′ has rank 2n−1ω. As before, the

generators of C̃FH′′ can be represented as pairs (~a, xo) where ~a ∈ {0, 1}n−1, and the differential is filtered
with respect to ~a. The associated graded complex of this filtration has 2n−1 summands, each isomorphic to

C̃F
W

H′′ . By a spectral sequence argument, the homology of the quotient complex C̃FH′′/C̃F
W

H′′ has rank at
most (2n−1 − 1)ω. Therefore, in the exact triangle

H∗(C̃F
W

H′′)

H∗(C̃FH′′)

H∗(C̃FH′′/C̃F
W

H′′)

the three terms have ranks ω, 2n−1ω, and at most (2n−1 − 1)ω, which implies that the map H∗(C̃F
W

H′′) →

H∗(C̃FH′′) is injective.
Thanks to this, instead of Equation (4.7), it is enough to prove

∀i
(
H∗(S̃FH′′

i ,S
′

i
) → H∗(C̃F

W

H′′

i
) is non-zero

)
⇔ H∗(S̃FH′′

1
∗H′′

2
,S′

1
∗S′

2
) → H∗(C̃F

W

H′′
1
∗H′′

2

) is non-zero,

which follows from Equation (4.4). �

Remark 4.1. We remark that one direction of the theorem (maximality of τtop of a Murasugi sum implies
maximality for its summands) could be deduced from the fact that maximality of τtop is preserved under
taking subsurfaces of a minimal index Seifert surfaces. The latter fact is a consequence of a bound satisfied
by τtop for cobordisms between links, analagous to [HR20, Theorem 1].
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