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Abstract 

Segmenting autophagic bodies in yeast TEM images is a key technique for measuring changes in 
autophagosome size and number in order to better understand macroautophagy/autophagy. 
Manual segmentation of these images can be very time consuming, particularly because 
hundreds of images are needed for accurate measurements. Here we describe a validated 
Cellpose 2.0 model that can segment these images with accuracy comparable to that of human 
experts. This model can be used for fully automated segmentation, eliminating the need for 
manual body outlining, or for model-assisted segmentation, which allows human oversight but is 
still five times as fast as the current manual method. The model is specific to segmentation of 
autophagic bodies in yeast TEM images, but researchers working in other systems can use a 
similar process to generate their own Cellpose 2.0 models to attempt automated segmentations. 
Our model and instructions for its use are presented here for the autophagy community.  
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Introduction 

When an autophagosome fuses with the yeast vacuole, its inner membrane and contents are 
delivered into the vacuole lumen, forming an autophagic body (AB). Normally, ABs are rapidly 
degraded by vacuolar hydrolases. However, the inhibition of protease activity in the vacuole, for 
example by genetic removal of the activating protease Pep4, allows ABs to accumulate so they 
can be measured [1]. The size and number of ABs in a vacuole corresponds to the size and 
number of autophagosomes that were formed. Therefore, measuring ABs in different conditions 
or different mutants can provide valuable insights into the process of autophagosome formation 

[2-6]. 

The only microscopy technique with a high enough resolution to allow measurement of 
AB size is transmission electron microscopy (TEM). However, because regular TEM visualizes 
only a thin slice of the cell, many hundreds of cells must be imaged to provide enough data for 
accurate estimation of original body size and number [7]. Manually labeling the ABs in these 
images is a laborious process that takes many hours of expert time, creating a clear need for an 
automated solution.  

Rapid advances in computer vision over the past decade have led to the hope that an 
algorithm could be developed to automatically recognize and label ABs in TEM images. 
However, this has proven to be a particularly difficult task. Structures in TEM images, unlike 
those in many fluorescent images, are identified by subtle differences in contrast and texture. 
Regular TEM images show only a slice of the cell, so there are no three-dimensional data to aid 
in identifying complete structures. (Collecting 3D TEM images through techniques such as serial 
sectioning is possible but challenging, and not practical for the large sample sizes we need to 
accurately assess average AB size and number.) Finally, ABs can have other cellular membranes 
inside them that can look like the boundary of a body, while at the same time imperfect TEM 
preservation can make the actual boundaries incomplete. Together these factors can make it 
challenging to distinguish one body from the next, and even experts vary somewhat in their 
labeling of a given image. Despite these challenges, we found that a custom model created using 
the cellular segmentation program Cellpose 2.0 was able to label autophagic bodies in TEM 
images with an accuracy comparable to that of human experts.     

Results     

The application of computer vision to scientific images is an area of active research, and over the 
past years we screened a number of tools to see if any were suitable to this particular task. Our 
screening criteria were threefold. First, the tool should be targeted at our problem (object 
recognition in TEM images), or something similar and easily generalizable. Secondly, it should 
have good documentation and be easy to use, with the features we need. Key features included 
the potential to work in a fully automated fashion, the ability for the user to easily correct the 
automated output, and a simple method for exporting the results for downstream measurement. 
Third, the tool should give promising initial results with minimal training to show that it is on the 
right track and worth the effort of further optimization.  

Prior to 2022, the available tools we tested did not meet these criteria. Cellprofiler [8], a 
widely used program that can achieve excellent results with fluorescent microscopy images by 
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application of methods such as threshold and watershed, was not able to segment ABs in our 
tests, likely because the characteristics of TEM images are quite different. Similarly, the 
MorpholibJ library of tools, as well as other tools available in ImageJ, were not able to approach 
this problem in our hands [9,10]. In general, it seemed that traditional methods of automated 
image analysis were not up to the task, and that a machine learning approach was likely to be 
necessary. WEKA is a trainable machine-learning tool that integrates into ImageJ [11]. However, 
it also gave poor initial results on our images and did not seem suitable to this problem. Slightly 
more promising was Ilastik, a suite of tools specifically designed for segmenting TEM images 
[12]. Ilastik’s trainable Multicut tool could occasionally recognize bodies accurately, but it was 
optimized for segmenting an entire image and therefore gave many spurious results, had 
somewhat limited user control, and did not seem to improve with training on our images. We 
also tested a proprietary commercial solution from a computer vision company, which created a 
custom model trained on 100 of our images. It performed vastly better than the other tools, likely 
due to this more extensive training, but was still quite a bit worse than a human segmenter and 
ultimately not good enough to be useful in practice. Stardist, a publicly available machine 
learning tool, was optimized for detecting whole cells in fluorescence microscopy images and 
did not give promising results on our TEM images [13]. Segment Anything, in contrast, is a 
completely generalist machine learning image segmentation model recently made publicly 
available [14].  Unfortunately, it also gave poor initial results, likely because it is too general and 
not sufficiently optimized for our images, which are more challenging than average. Of course, 
these tools are under continual development, and it is possible that with new updates some of 
them may soon (or even now) be suitable to our task. However, the first program that we were 
able to find that met our screening criteria with promising initial results was Cellpose 2.0 [15]. 

Cellpose 1.0, published in 2021, was a generalist segmentation tool that consisted of a 
neural network model pretrained on a large and diverse set of microscopy images combined with 
a GUI (graphical user interface) that allowed easy user editing and exporting of the results [16]. 
It introduced a new watershed method based on vector flows that helped it find the center and 
edges of structures of a predefined size, and the model they trained outperformed Stardist on the 
images that they tested. Although described as a generalist model, it was primarily trained and 
tested on fluorescent microscopy images and did not prove suitable for segmenting autophagic 
bodies in TEM images. Cellpose 2.0, published in 2022, extended the original Cellpose tool with 
a key capability: it allowed users to train their own specialized models for segmenting specific 
types of images according to their needs [15]. Even though Cellpose 2.0 was not specifically 
designed for labeling TEM images, we decided to try training it on our TEM images of ABs.  

Traditional machine learning methods require training on a large number of images to 
reach optimal performance. Cellpose 2.0 bootstraps this process with the use of partially 
pretrained models; the user selects a model from the provided model zoo and then trains it 
further with their own labeled images. Our preliminary tests with the pretrained models in the 
model zoo indicated that “CPx” with a diameter parameter of 130 pixels (where our images are 
2.16 nm per pixel) gave the most promising initial results. This is not surprising given that CPx 
was the model pre-trained on the widest variety of images, while the other models were trained 
on exclusively fluorescent or differential interference contrast images [15]. The initial results 
with CPx were already better than those achieved with any other tools we tried, and the Cellpose 
program had all of the features that we needed. At the same time, the results with CPx alone 
were clearly not good enough for actual use, so more training on our specific images was needed.        
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In previous reports, Cellpose 2.0 was able to achieve optimal training on fluorescent 
microscopy segmentation problems using only 500-1000 labeled regions of interest (ROIs) when 
beginning with a pretrained model then proceeding to further train on specific images [15]. In 
those applications, an ROI is typically a cell or nucleus, while in our context an ROI is a profile 
of an AB in a thin TEM section. The images we segment typically contain between one and 40 
AB profiles per image, averaging around 10, raising the possibility that as few as 50-100 images 
might be sufficient for training. To determine if this estimate would apply to recognizing ABs in 
electron microscopy images, we trained four separate models using different numbers of labeled 
ABs. We also trained each model for different numbers of epochs (1 to 999) to determine how 
many were required for optimal performance; using too many training epochs runs the risk of 
overtraining the model, which can reduce its performance on novel images. After training, each 
model was tested on a set of 51 images, and the model's automated labels were compared to the 
human-labeled ground truth using the same calculation that Cellpose uses: the average precision 
(AvP) at intersection over union (IoU) thresholds of 0.5 and 0.75 [15]. (Note that previous 
publications abbreviated “average precision” as AP, but here we use AvP to avoid confusion 
with “autophagosome” for readers of this journal.) An IoU of 0.5 means that 50% of the total 
pixels of both labels of the same object were in agreement with each other and indicates that the 
human and machine had identified roughly the same structure, while an IoU of 0.75 is a “good” 
agreement between two labels of the same structure. Therefore, if a model had an AvP score of 
0.65 at IoU threshold = 0.5 and 0.45 at IoU threshold = 0.75, that means it labeled 45% of the 
ABs the same as the reference segmentation and labeled a total of 65% fairly similarly.  

Figure 1A shows how the accuracy of the models changed during training. We found that 
each model’s accuracy reached a plateau by about 100 epochs, and evidence of overtraining 
started around 300 epochs.  In addition, we found that increasing the number of ROIs did not 
significantly enhance the model's performance: Model 2, trained on 1400 ABs, performed only 
slightly better than Model 0, trained on 350; Model 3, trained on 1837 ABs, actually performed 
slightly worse than Model 2 (Figure 1A). This is consistent with previous claims that Cellpose 
2.0 requires relatively few ROIs for training and is beneficial should other researchers desire to 
train their own models. We selected Model 2 at 201 epochs as our best performing model for 
further testing and use. 

Model 2 had an AvP score of 0.65 at IoU threshold = 0.5. This is significantly better than 
the original CPx model, which had an AvP score of only 0.124 at IoU threshold = 0.5 on our 
images, underscoring the importance of the training we performed. However, published Cellpose 
2.0 models for fluorescent or differential interference contrast images were able to reach AvP 
scores of 0.7 to 0.8 at IoU threshold = 0.5 [15]. One explanation for our lower score (0.65) would 
be if TEM images of ABs were particularly difficult to segment even for humans. To test this, 
we measured between-human agreement on AB labeling by asking eight human experts to 
segment nine challenging test images. We found the average human AvP score to be only 0.49 at 
IoU threshold = 0.5 and 0.35 at IoU threshold = 0.75 (Figure 1B). This underscores the fact that 
segmentation of ABs in these images is somewhat ambiguous, and individual scientists may 
interpret them differently. We used Model 2 to segment those same nine test images, and it 
achieved an AvP score of 0.53 at IoU threshold = 0.5 and AvP of 0.40 at IoU threshold = 0.75, 
suggesting that it can perform this segmentation on par with human experts (Figure 1B,C).  

Even though Cellpose 2.0 performs as well as a typical expert, a given researcher might 
want to revise Cellpose’s segmentations to make sure they conform to their own best judgment. 
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Fortunately, this is also easy to do, thanks to Cellpose 2.0’s GUI that allows rapid editing of the 
segmentation. To estimate how much time could be saved by this sort of “model-assisted 
segmentation,” we used Cellpose 2.0’s GUI with Model 2 loaded to segment 20 new test images 
one at a time, manually editing any segmentations we were not completely satisfied with. That 
took a total of 12 min of computation time plus 7 min of human time for the editing. In contrast, 
manually segmenting the same 20 images took 39 min. Therefore, model-assisted segmentation 
took less than one fifth as much human time as fully manual segmentation – a major speed 
improvement.   

ABs will continue to accumulate in the vacuole over the course of an extended starvation. 
At times, vacuole cross-sections are found that are completely full of AB cross-sections. Our 
training and test images were from a 3-h nitrogen starvation, and only ~6% of these showed 
cross-sections that were mostly or entirely full. To specifically test if Cellpose 2.0 would still be 
able to accurately recognize ABs after longer starvations or when they fill the vacuole cross-
section, we tested Model 2 on two additional sets of test images. The first set was 40 random 
images from cells that had undergone 4 h of nitrogen starvation (~15% of these showed cross-
sections that were mostly or entirely full). The second set was 20 images from either 3 or 4 h of 
nitrogen starvation that had been handpicked because they showed vacuole cross-sections that 
were mostly or entirely full of AB cross-sections. In both cases, Model 2 performed well - not 
quite as well as it had on the original 3-h starvation images, but as well as it had on the nine 
challenging test images chosen to test the segmentations of various experts (Figure 2A-C). 
Model 2’s slightly poorer performance on these new images is not surprising, because sets of 
images from separate experiments may differ slightly in appearance and preservation. Overall, 
this suggests that longer starvation times and higher number of bodies is not a significant 
challenge to our Cellpose model, even when a vacuole section is completely full of autophagic 
body sections.  

One of the main factors that Cellpose models consider when identifying objects is the 
size (in pixels) of the desired features. ABs come in a range of sizes, and some mutants affect 
average AB size [2,4]. This raises the question of whether our model might struggle to recognize 
larger or smaller ABs.  To partially address this, we included images in our training dataset from 
a mutant with reduced expression of Atg7 that gives ~20% smaller average AB cross-sections 
than wild type (WT) cells [6]. When Model 2 was tested on only these images, its performance 
was equivalent to its performance when tested on only WT type images (Figure 2D), 
demonstrating that this small size difference was not an issue. We then analyzed the range of 
sizes of AB cross-sections identified by Cellpose in all test images, and found that 99% of the 
cross-sections it labeled were between 60 and 600 nm in diameter, with the remaining 1% being 
larger, up to 850 nm (Figure 2E).  ABs formed by bulk macroautophagy are around 400-900 nm 
in diameter [17], while some of the smallest bodies formed by selective macroautophagy 
(cytoplasm-to-vacuole targeting/Cvt pathway vesicles) are 150 nm [18]. Of course, random 
cross-sections taken from these structures are mostly smaller than those maximum diameters. 
This suggests that Model 2 should be able to recognize cross-sections from most ABs formed by 
either bulk or selective macroautophagy without difficulty.       

In addition to the ABs formed via bulk and selective macroautophagy, starvation induced 
microautophagy - which involves the invagination of the vacuolar membrane instead of the de 
novo formation of an autophagosome - also gives rise to ABs. These microautophagic bodies, of 
which there are different types, can range in size from around 25 nm to 500 nm in diameter [19]. 
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While the larger end of this range falls into that recognized by Model 2, the lower end does not, 
suggesting that this model may not be appropriate for recognizing ABs resulting from 
microautophagy. Similarly, multivesicular bodies (MVBs) are ~25 nm in diameter [19], and 
would likely not be recognized. It should be noted that formation of both microautophagic bodies 
and MVBs is dependent on the ESCRT machinery, including Vps4. Our training and test images 
were taken from strain lacking Vps4 (this is commonly done in order to eliminate the 
background from these processes when studying macroautophagy). Therefore, Model 2 is trained 
only to recognize ABs from macroautophagy, not those from microautophagy or MVBs.   

In order to determine whether Model 2 would also recognize microautophagic bodies and 
MVBs, despite not being trained to do so, we tested it on 90 images of starved cells that 
contained Vps4 but were deleted for ATG9. Each of these images contain many small lumenal 
vesicles that likely represent MVBs and/or microautophagic bodies, but should contain no 
macroautophagic bodies due to the lack of Atg9. Often these vesicles were found in clusters 
within the vacuole (Figure 2F). The vast majority of these vesicles and clusters were not 
recognized by model 2; only 16 total vesicle clusters were labeled by our Cellpose model out of 
the 90 total images. In addition, the model mistakenly identified 22 other structures in these 90 
images, 10 of which resemble ABs, 3 of which are other structures in the vacuole, and 9 of 
which were structures not found in the vacuole. For researchers using our model to study 
macroautophagy, this represents a relatively small background of misidentified structures, some 
of which might also fool a human. Our model would not be suitable for researchers more 
interested in microautophagy or the MVB pathway, as it is not good at recognizing those 
structures. However, our experience suggests that a new Cellpose 2.0 model could likely be 
trained to recognize such structures of interest.        

The only limitation that we found to Cellpose 2.0’s performance on our task is that it was 
not very good at recognizing images that had no ABs in the vacuole (important for estimation of 
AB number). It was able to correctly identify only about 70% of empty vacuoles, placing 
spurious ABs in the others, and this performance did not improve at all with training (Figure 
2G).  This is likely because we could not include any images with 0 AB in the training data, as 
the neural network is not set up to train on 0 AB/ROI. It is beyond the scope of this work to 
make any major changes to the Cellpose 2.0 code. Fortunately, this limitation does not 
significantly impede the usefulness of Cellpose 2.0 for segmentation of ABs because empty 
vacuoles can be quickly and easily recognized by humans and require no segmentation, so they 
can simply be separated from the images to segment before application of Cellpose.    

Discussion 

Manual segmentation of large numbers of TEM images has been a rate-limiting factor in the 
analysis of how different mutations affect autophagosome size and number, as is true of many 
TEM-based techniques. This not only slows the pace of research but also limits the practical 
sample size, potentially reducing the accuracy of the final results. In addition, individual 
variations in segmentation style may lead to issues when comparing results between researchers. 
Fortunately, advances in machine learning have now made it possible for a computer algorithm 
to segment ABs in TEM images with reasonable accuracy. The Cellpose 2.0 model that we 
present here is as accurate as an independent human expert, but much faster and with 
reproducible results.    
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In addition, this model can be further customized as needed. The Cellpose 2.0 GUI 
allows a user to easily edit the automatically generated segmentations. Moreover, those edited 
segmentations can be used to further train the model to adjust its style, a procedure described by 
the Cellpose authors as “human-in-the-loop” training [15]. Because the model requires only a 
few hundred ROI’s to reach essentially maximum performance, it is even feasible to train an 
entirely new model if desired. However, using the model presented here without further training 
or editing of the results would have the advantage of allowing greater reproducibility between 
studies.   

Our recommendation is to first try the provided model on a few of the desired images.  If 
results are satisfactory, it can then be used as is to automatically label all images. If the user is 
dissatisfied with some of the labels generated, these can be easily altered using the Cellpose 2.0 
GUI, and the user can proceed with model-assisted segmentation, or, if desired, train their own 
model instead.   

How to measure ABs using Cellpose 2.0 for labeling 

1. Acquire TEM images of AB in yeast vacuoles, carefully following the steps described in 
section 2.1 of Backues et al. 2014 [7].  To avoid potential biases, the images should be 
labeled using a code so that the downstream analysis can be done in a blinded fashion.     

2. Manually sort out images of vacuoles that do not contain any bodies. These will still be 
used for the analysis of AB number, but do not need to be segmented. 

3. Download the trained AB model from https://osf.io/wrez4/ 
4. Download, install and run Cellpose 2.0 to segment the images containing ABs 

a. For simplest use, install the Cellpose 2.0 GUI using instructions from 
https://github.com/MouseLand/cellpose. The Cellpose 2.0 GUI allows images to 
be segmented one at a time: Load the AB model, load the desired image, choose 
“run model” to generate masks, alter these if desired, and then save them as 
png/tif.  

b. For those with more computational experience, automated segmentation can be 
performed faster in batch using Pycharm and a Docker container 
(biocontainers/cellpose:2.1.1_cv2); utilities for this can be found at 
https://github.com/StevenBackues/cellpose_AB.  

5. Copy the mask files to their own folder and use these to measure the area of each labeled 
AB and the number of ABs per vacuole. This can be easily done in python using code 
provided in the cellpose_AB utilities in GitHub and in Google Colab at 
https://colab.research.google.com/drive/1y1Z5k7bKxJ3PsExf_e5IYFMKMxF3aDpS.  
Alternatively, it can be done in ImageJ using the MorphoLibJ library [9,10]. 

6. Estimate the original size and number distribution of the bodies from this data following 
the instructions in section 2.3 of Backues et al. 2014 [7]. 

Methods 

Images of ABs used for the training and test sets were obtained and segmented as previously 
described [7]. In brief, yeast were starved for 3 or 4 h in medium without nitrogen (SD-N) to 
induce autophagy, and prepared for TEM via chemical fixation. Each image was captured at a 
magnification of 30,000x, yielding images of 2240 x 2240 pixels, with a scale of 1 px = 2.16 nm. 
Each image included one yeast near the center, and some had small portions of other yeast near 
the edges or corners, but no image showed two entire yeast vacuoles. Ground truth manual 

https://osf.io/wrez4/
https://github.com/MouseLand/cellpose
https://github.com/StevenBackues/cellpose_APB
https://colab.research.google.com/drive/1y1Z5k7bKxJ3PsExf_e5IYFMKMxF3aDpS?usp=sharing
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segmentations were performed by J., S. or R. Backues and verified by S. Backues before use. 
Details on the strains and images used for training and testing are included in the Table 1 and 
Table 2, while the images themselves, including ground truth segmentations, have been made 
publicly available at https://osf.io/tuhwn/.  

For stand-alone use via the GUI, Cellpose 2.0 was downloaded from its official Github 
repository, https://github.com/mouseland/cellpose. For batch labeling, model training and 
testing, we used Pycharm Professional and Docker Desktop with the Cellpose 2.0 Docker 
container biocontainers/cellpose:2.1.1_cv2. All training and tests were run using an nVidia RTX 
4090 24GB graphics card; the model can also be used on other systems (GPU or CPU) with 
essentially identical results. Details of code used can be found at 
https://github.com/StevenBackues/cellpose_AB.   

We thus proceeded to train “CPx” into custom models using different sized sets of AB 
training data (350, 700, 1400 and 1837 ROIs) and training for 1 to 1000 epochs. Stratification 
was used to ensure a diverse number of ABs per image (but always more than 0) in both the test 
and training sets. In addition, we used an empty-vacuole image test set which contained 33 
images with no AB. Average Precision (AvP) at different IoU thresholds was measured using 
Cellpose’s built-in testing utility [16], with AvP scores averaged over all test images. The 
proportion of empty vacuoles correctly identified was calculated using a simple Boolean where 
True corresponds to correctly predicting that an image had no AB, and False corresponds to any 
failure to do so (i.e. predicting the presence of any AB in the empty vacuoles). The number of 
correct predictions was divided by the total number of empty vacuoles tested (33) to give the 
final score.    

Table 1. Strains used in this study. 
Name Strain genotype Source 
atg9Δ SEY6210 pho13Δ pho8Δ60 atg9Δ::LEU2 

pep4Δ::KAN  
Jin et al. 2014 [5] 

pho23Δ SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 
pho23Δ::KAN 

Jin et al. 2014 [5] 

Reduced Atg7 
(E1) 

SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 atg7Δ::HIS5     
ura3-52::pRS406-GAL3p-ATG7-PA 

Cawthon et al. 2018 [6] 

rim11Δ SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 
rim11Δ::URA3 

This study 

SEY6210 MATα his3Δ200 leu2-3,112 lys2-801 suc2-Δ9 
trp1Δ901 ura3-52 

Robinson et al. 1998 
[20] 

WT SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 Cheong et al. 2005 [2] 
Wild type 
(B4) 

SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 atg1Δ::HIS5     
ura3-52::pRS406-ATG23p-ATG1-PA 

This study 

Wild type 
(B6+C2) 

SEY6210 vps4Δ::TRP1 pep4Δ::LEU2 atg7Δ::HIS5      
ura3-52::pRS406-ATG7p-ATG7-PA 

Cawthon et al. 2018 [6] 

 
An unpublished analysis from our lab has shown the size of AB cross-sections in cells 
expressing Atg1-PA under the ATG23 promoter (“Wild Type B4”) to be indistinguishable from 
cells expressing Atg1-PA under the native ATG1 promoter, thus we classify this strain as wild 
type in regards to AB size.   

https://osf.io/tuhwn/
https://github.com/mouseland/cellpose
https://github.com/StevenBackues/cellpose_APB
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Table 2. Images used in this study. 

Image Set Strain name Starvation 
time 

# of 
images 

Model 2 (training) 
Wild type (B4) 3 h 48 
Wild type (B6+C2) 3 h 75 
Reduced Atg7 (E1) 3 h 9 

3 h starvation (initial testing) 
Wild type (B4) 3 h 16 
Wild type (B6+C2) 3 h 31 
Reduced Atg7 (E1) 3 h 4 

Wild type (testing) Wild type (B6+C2) 3 h 31 
Reduced Atg7 (testing) Reduced Atg7 (E1) 3 h 8 

4 h starvation (testing) rim11Δ 4 h 20 
WT 4 h 18 

Filled vacuoles (testing) 
pho23Δ 3 h 5 
rim11Δ 4 h 7 
WT 4 h 8 

atg9Δ (testing) atg9Δ 3 h 90 

Empty vacuoles (testing) 
Wild type (B4) 3 h 21 
Wild type (B6+C2) 3 h 11 
Reduced Atg7 (E1) 3 h 1 
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Figure 1. Evaluation of Cellpose 2.0 models trained to accurately predict ABs.  (A) Performance 
of Cellpose models trained on increasing numbers of ABs for various epochs when tested on 51 
images not in the training set, as measured by the average precision (AvP) at intersection over 
union (IoU) thresholds of 0.5 and 0.75. No additional improvement in performance was seen 
after 200 epochs of training, and very little improvement was seen beyond 350 ABs, showing 
that Cellpose 2.0 can be accurately trained on relatively little data. (B) Comparison of the best 
Cellpose model (Model 2, 201 epochs) to the AB segmentation performance of eight human 
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experts on nine challenging TEM images. All segmentations were compared to the “ground 
truth” segmentation of a ninth human expert who had overseen the ground truth segmentation of 
the training images, and AvP values were calculated at IoU thresholds of 0.5 and 0.75. Hollow 
circles represent the performance of individual segmenters, while bar graphs are the average 
performance and error bars indicate the standard deviation. Cellpose performed as well as any of 
the human experts on this task. (C) A portion of one of the nine TEM images and examples of 
various segmentations of that image, including the ground truth reference segmentation, 
segmentations by two separate human experts, and the segmentation generated by Cellpose using 
Model 2. AvP values relative to the ground truth segmentation are shown. In lower panels, 
magenta outlines indicate the ground truth segmentation and yellow outlines indicate the test 
segmentation. Scale bars: 600nm.   
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Figure 2. Macroautophagic bodies of varying sizes generated by different starvation times can 
still be recognized by Model 2. (A) Performance of Model 2 on ABs in the vacuole of a cell 
starved for four h instead of three. This was a typical result, with AvP values similar to the 
average of all forty 4-h starvation test images. In lower panels, magenta outlines indicate the 
ground truth segmentation and yellow outlines indicate the Cellpose segmentation. (B) 
Performance of Model 2 on an image selected because it showed a vacuole cross-section 
completely filled with AB cross-sections. This was a typical result, with AvP values similar to 
the average of all twenty images selected for this feature. (C) Comparison of the performance of 
Model 2 on different image test sets. The 3-h test set consisted of 51 images from the same 
samples as the training images, while the 4-h test set and the filled vacuoles test set were from 
different samples, and the nine test images were those used to compare the performance of 
Model 2 to that of human experts (Figure 1B). (D) Comparison of the performance of Model 2 
on normal sized bodies (Wild type) and bodies from a mutant with reduced Atg7 that were an 
average of 20% smaller. Both types of bodies had been included in the training data. (E) Dot plot 
of the diameter of AB cross-sections labeled by Model 2 in the 3-h test set. The smallest cross-
sections recognized were ~ 60 nm in diameter. N = 694 ROIs. (F) TEM image of the vacuole of 
an atg9Δ pep4Δ cell starved for 3 h. No macroautophagic bodies are present due to the lack of 
Atg9, but numerous smaller vesicles (multivesicular bodies and/or microautophagic bodies) can 
be seen due to the presence of functional ESCRT machinery in these cells. Model 2 did not 
identify any ROIs in this image. (G) The ability of Cellpose models to correctly identify empty 
vacuoles was tested on 33 images with no ABs; Cellpose’s performance was relatively poor on 
this task and did not improve with training, likely because it was not possible to include empty 
vacuole images in the training set. Scale bars: 600nm.   


