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ABSTRACT

We introduce a self supervised framework for learning rep-
resentations in the context of dictionary learning. We cast
the problem as a kernel matching task between the input and
the representation space, with constraints on the latent ker-
nel. By adjusting these constraints, we demonstrate how the
framework can adapt to different learning objectives. We then
formulate a novel Alternate Direction Method of Multipli-
ers (ADMM) based algorithm to solve the optimization prob-
lem and connect the dynamics to classical alternate minimiza-
tion techniques. This approach offers a unique way of learn-
ing representations with kernel constraints, that enable us im-
plicitly learn a generative map for the data from the learned
representations which can have broad applications in repre-
sentation learning tasks both in machine learning and neuro-
science.

Index Terms— Dictionary Learning, Kernel Matching,
Self-Supervised, Sparse coding, Manifold learning

1. INTRODUCTION

Self supervised approaches have recently been a popular
framework in unsupervised learning to learn good and ro-
bust representations from given data samples and have found
widespread applications developing models for artificial and
biological intelligence. In the former case, these approaches
have made deep strides in enhancing the performance for
computer vision (CV) and natural language processing (NLP)
[1, 2, 3, 4] tasks. While in neuroscience, such unsupervised
approaches for representation learning have led to biolog-
ically plausible architectures that shed light how neuronal
systems can encode external stimuli [5, 6] and thus far have
not been explored for learning representations in a generative
framework. The key idea in these methods is that represen-
tations of inputs that “look alike”, should be closer to one
another, whereas dissimilar data points should have represen-
tations that are far apart. Mathematically, the representations

SC would like thank to Kempner Institute for the study of Natural
and Artificial Intelligence, Harvard University for funding and compute re-
sources.

in such scenarios can be obtained by solving the following
optimization problem:

min d(Kx,Kz) (D

where, X € RVXT is the input data, Z € REXT are the
learned representations, 7' denotes the number of samples, N
is the dimensionality of the input data, K is the dimensional-
ity of the representation space, Kx, Cz € RT*7 capture the
associations between different input samples and representa-
tions samples respectively (often called the kernel matrix) and
d measures the notion of distance / similarity between the two
kernel matrices, with the goal being to minimize the distance
between two kernels i.e. match the two kernels.

Sparse Dictionary Learning is a popular generative
framework widely used in the field of signal processing, ma-
chine learning and neuroscience to obtain parsimonious rep-
resentations from the input data while learning a generative
map from the representation to the input space (dictionary).
Recent work [7] have also focused on extending these ap-
proaches to learn manifold approximations. In this paper, we
provide a self supervised representation learning framework
for dictionary learning. By using properties of bi-level op-
timization, we show that dictionary learning is equivalent to
a self-supervised representation learning problem (shown in
equation 1) with constraints on the representation kernel. We
show the flexibility of the framework by incorporating differ-
ent priors on the latent space leading to a piece-wise manifold
approximation problem. A key bottleneck in the initial for-
mulation is the need to access the entire dataset to compute
the objective and constraints. To overcome this, we formulate
a separable version of the problem, allowing us to split the
objective over different samples. We propose an Alternate
Direction Method of Multipliers (ADMM) based formula-
tion to optimize this objective and show that under certain
optimization schedules, the dynamics of the algorithm can
be connected to classical alternate minimization techniques.
The rest of the paper is organized as follows — in section
2, we discuss the kernel matching formulation for sparse
dictionary learning and its extension to piece-wise manifold
approximation. In section 3, we discuss the optimization

Authorized licensed use limited to: Harvard Library. Downloaded on December 19,2024 at 17:13:12 UTC from IEEE Xplore. Restrictions apply.



algorithm and the different schedules for optimization. In
section 4, we present experiments on simulated and real data
to demonstrate our approach and conclude with discussion
about limitations and future work in section 5.

2. SELF SUPERVISED DICTIONARY LEARNING
USING KERNEL MATCHING

2.1. Kernel Matching Objective for Sparse Dictionary
Learning

We start with a modified sparse dictionary learning problem
as defined in [8] which is given by:

Py mip fHX AZ||F+ IIZH1+ A7 w>0 @
where, A € RV*X is the dictionary. The constraint 4[| A%
is added to avoid scaling ambiguities in the optimization pro-
cess. Equation 2 is a bi-level optimization problem in A and
Z. We use the lemma described below to flip the order of
optimization in A and Z.

Lemma 1. Let f(x,y) by a function with finite minima where
x € R™andy € R for m,n € N, then the following holds:

minmin f(x,y) = minmin f(x,y)
x y y x

Applying Lemma 1 to equation 2 and solving the inner op-
timization problem w.r.t A, we obtain a closed form optima

-1
A* = XfT (ZIZ,T —i—wI) . Substituting this back into

the objective in equation 2 we arrive at the following propo-
sition:

Proposition 1.1. Let Py be the sparse dictionary problem as
defined in equation 2, and ()1 be the optimization problem
described below. Then Py and Q1 are equivalent.

. : 1 T T yrr—1 A
Kxo K 3
zz"
s.t. H = +wl

We see that equation 3 follows the structure defined in
equation 2 where the input kernel, Xx = X7 X and the
representation kernel, Kz = Z"H'Z, and H~! deter-
mines the representation kernel structure. The trace term cap-
tures the matrix inner product which tries to align / match the
representation kernel subject to constraints on the representa-
tion space. Additionally, solving the objective in equation 3
leads to an implicit dictionary learned by the model, given
by A = %X ZTH~1, determined completely by the learned
representations Z and the representation kernel matrix H .

2.2. Extension to different priors (Manifold Learning)

We adapt the objective in equation 2 to different structural
priors imposed on the latent space, which can lead to inter-
esting behaviors. Specifically, we focus on a particular case

where constraining the representations on a probability sim-
plex gives rise to manifold learning behavior. We start with
the objective proposed in a recent work [7] where a piece-
wise linear manifold approximation problem using a dictio-
nary learning framework. The objective is given by:

Z Z zptll@r — aglf;

klll

Py r}‘un—HX AZ|% + =

K

S-t-zzkl =1, 2z, >0, V
k=1

le{1,2,...,T}

“)
The dictionary A here represents the anchor points on the data
manifold and piece-wise approximate using convex polygons
with these anchor points serving as the vertices of these poly-
gons. Using lemma 1, we can arrive at an equivalent kernel
matching formulation as shown in the proposition below.
Proposition 1.2. Let P; be the piece-wise manifold approx-
imation problem as defined in equation 4, and Q2 be the op-
timization problem described below. Then P, and Qs are
equivalent.

i 1 Ty 7T py—1
Q2 : min =~ o (X' XZ"H ' Z)
st. ZT1g =17

Z >0

ZZT
H =

+ wD where D = diag <Z;T)
®)

Equation 5 follows a similar structure as equation 3 and
equation 2, with the representations now constraint to a prob-
ability simplex. Similar to before, the implicit dictionary
learned by the model can be given by A = + XZTH !
which serve as anchor points on the data manifold.

2.3. A Separable Formulation

A key challenge in solving the optimization problem de-
scribed in equation 3 and equation 5 is that the objective
computation requires access to the entire dataset to compute
Kx and Kz and H. We introduce variables W (sample-
independent) and P; (sample-dependent) to separate the
objective and constraints over different samples. This is
inspired by online formulation proposed in [5, 6] which in-
volves taking the Legendre transformation of the trace term
in the objective. This leads us to the following propositions:

Proposition 1.3. Let Ry be the optimization problem de-
scribed below. Then R; is equivalent to Q.

. 1~ T
Ry Jmin - 2 (] W'z)
C LS wrew) ¢ anznl ©
2T~

sit. Py = zizl + 0l Vze{l,l...,T}
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Proposition 1.4. Let R, be the optimization problem de-
scribed below. Then Rs is equivalent to Q5.

T T
. 1 1
Ry : zi]frlgglw 7 ; (:ciTWTzi) + T ;Tr (WTPiW)
K
S.1. Zzij =1, Zij >0
j=1
P, = z;2] +wdiag(z;) Viec{l,2,....,T}

@)
3. SOLVING THE OPTIMIZATION PROBLEM

In this section, we discuss the optimization procedure to
solve the problems described by R; and R,. For brevity,
we would discuss the optimization procedure for [2; which
can be adapted for Ry with small modifications. Since the
problems described in equation 6 and equation 7 are separa-
ble constraint optimization problems, we resort to Alternate
Direction Method of Multipliers (ADMM) [9] to formulate
the dynamics for optimization. Consequently, the augmented
Lagrangian for R; can be written as:

T
1
L= fZ& (2, W, P, M;)

=1
1
where, £; = —x] Wz; + 3 Tr(WTP,W) + \||zill1 (8)
+ Te(M] (zi2] +wI — P))
+ Sllzzl +wl - P}

The separable formulation of the Lagrangian, allows us to use
batch approximations to update the sample independent term
W in the ADMM formulation. The full ADMM algorithm
for optimizing the Lagrangian is presented in Algorithm 1.

Since the Z-Step, P-Step and M-Step only depend on the
current sample ¢, we can leverage parallel computing to do
these steps in parallel over all the samples. The Z-Step in the
above algorithm consists of a quartic function in z; for which
closed form minimization non-trivial. We discuss proximal
gradient based approaches for this step in the Appendix. Sim-
ilarly, we perform gradient based optimization for the W-Step,
to avoid matrix inversion in the closed form minimization.
Further, algorithm 1 defers slightly from the standard ADMM
formulation as the primal variable W is updated (W-Step) af-
ter the Lagrange multiplier M, is updated (M-Step). This is
possible because the M-Step does not depend on the current
value of W and vice-versa (See Appendix).

4. EXPERIMENTS

4.1. Optimization dynamics and relation to classical
methods

A key bottleneck in the formulation in the ADMM formula-
tion is optimizing the quartic function in the Z-Step. To help

Algorithm 1: ADMM steps for solving R; and Ro

Input: data matrix X = [z1, xa, ... x7], x; € RY
Output: latent matrix Z = [z1, 22, ... 27| ,
P Vie{l,2,...,T}
fork=1,2,... do
for:=1,2,...T do
zf“ + argmin L;(z;, PF, MF) (Z-Step)
z

PEL
arg min Ei(zf+17 P, MF) (P-Step)

P
Mt MF+

2kttt
p| 2T fwl— PP (M-Step)

T
end
WhtL
argmin & > L;(zF T, PFTY W, M) (W-Step)
w =1
end

tackle this issue (further details discussed in the Appendix)
and understand how the optimization dynamics of Algorithm
1, we formulate three optimization schedules as follows:

1. Schedule 1: In this schedule, we perform the P-
Step for every gradient update in the Z-Step, i.e.
the variable P; tracks the updates to z;. We per-
form a modified M-Step after the W-Step, by updating
MM M Under this scheme the al-

gorithm performs alternate minimization with Iterative

Soft Thresholding (ISTA) for the sparse coding step and

W acting similar to the dictionary.

2. Schedule 2: In this schedule, we perform the P-Step
for every gradient update in the Z-Step before moving
to the M-Step and W-Step as described in Algorithm
1. Under this scheme the algorithm performs a slightly
modified version of ISTA for the sparse coding step.
Both this and the previous schedule enforce that the
constraints on the representation structure captured by
P; are updated as soon as the latent representations Z
get updated.

3. Schedule 3: In this schedule, we perform the optimiza-
tion steps as described in Algorithm 1. In this case, P;
is updated only after aggregating the updates to Z over
successive iterations in the Z-step, affecting the dynam-
ics in the Z-Step.

To study the different optimization schedules we generate
a synthetic dataset with N = 30, K = 16 and T' = 1500.
The true dictionary A is generated from a N (0, I) and the
true representations have [y norm of 2. For every schedule,
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we warm start the algorithm by initializis
ter centers obtained from K means on !
malize them to unit ball and solve the sg
corresponding to W+ to obtain Z;,,;;
after, we initialize Lagrange multiplier
Pjinit — init zinit" | T with the batc
0.5, 7w = 0.01, and w = 10~* as the cl
rameters. We run the proximal gradient
and updated the parameter W using mi
scent. We run the algorithm for each ¢
convergence. Figure 1 shows the results
the synthetic dataset alongside a compa
optimization schedules.
Figure 1 (c), (d) shows that both Scheaute 1 ana Schedute
2 have similar rates of convergence and are faster (slope in-
creases as R? — 1) than Schedule 3, suggesting tracking the
updates to P; can help in faster convergence. In addition, the
order of convergence is approximately linear (Figure 1 (e)).

4.2. Sparse Dictionary Learning on Real Data

We next use the objective in proposition 1.1 to learn represen-
tations from a real data set in significantly higher dimension.
For this task, we choose the MNIST[10] handwritten digit
dataset and patches extracted from natural scenes [11].

Experiment with MNIST: We chose a subset of the MNIST
dataset (classes [0, 3, 4, 6, 7], 9000 samples) to optimize
the objective in proposition 1.1. The dimension of the repre-
sentation space K was chosen to be 500, A = 0.1, the batch
size B = 128, w = 10~% and nyw = 10~* (learning rate
for W update). We warm start the algorithm through the ini-
tialization scheme described in the synthetic data experiment.
The proximal gradient for the Z-Step is run for 15 iterations,

logio (|RZ = 1)

and we run the algorithm for 8000 iterations using Schedule 1.
We obtain an R? ~ (.75 at the end of 8000 iterations. We vi-
sualize the estimated dictionary in figure 2 (a) and observe
that the atoms of the estimated dictionary resemble the digits
in the MNIST dataset indicating the algorithm has learned a
good generative map for the data.

Experiment with patches: We train the objective in propo-
sition 1.1 on 4000 samples of each of size 16 x 16 extracted
randomly from 10 natural scene images of size 512 x 512.
The dimension of the representation space K was chosen to
be 192[11], A = 0.9, the batch size B = 128, w = 10~% and
nw = 107%. We again warm start the algorithm similar to
previous experiments and let the algorithm run under Sched-
ule 1 for 5000 iterations, with the proximal gradient for the
Z-Step performed for 15 iterations respectively. We obtain an

Estimated Dictionaries from MNIST Estimated Dictionaries from Natural Scene Patches

W N T |
e A
!!lﬂ!(glﬂ!!

(a)
Fig. 2. Estimated atoms of the dictionary learned from the
MNIST dataset (a) and patches from natural scenes (b) (We
show the first 100 atoms)

4.3. Reconstructing Data Manifolds

Finally, we demonstrate the flexibility of the formulation in
equation 2 by using the objective in proposition 1.2 to learn
a piece-wise manifold approximation on a synthetic dataset.
We use the moons dataset [12] with 2500 samples. We also set
the noise level to 0.01. K is chosen to be 12, w = 0.1, B =
128, nw = 2 x 1073, The projected gradient update for the
Z-Step is performed for 15 iterations and the entire algorithm
is run for 5500 iterations under Schedule 1. Figure 3(a) shows
the estimated atoms of the dictionary on the manifold and the
reconstructed data points (in green) alongside a histogram of
the Ly norm of the representations in figure 3 (b) which shows
that most samples have an Ly norm of 2. This suggests that
the data manifold can be piece-wise approximated using the
lines suggesting that the intrinsic dimensionality of the data

manifold is 1.
5. CONCLUSION

We introduce a self supervised framework for dictionary
learning where the representations are learned by aligning
the input and the latent kernels which in turn leads to an im-
plicit learning of the dictionary through the representations.
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as a convex combination.
Implementing proximal gradient method for quar-

We apply this framework to different priors on the representa- tic function

tion space and show that the leaned representations are able to

capture good generative maps. To solve the objective, we pro- Because the objective is quartic in z;, we resort to gra-
pose a novel ADMM based optimization algorithm and show dient based optimization to solve this problem. In order
that classical alternate minimization techniques for solving to deal with the non-smooth /; norm, we use the prox-
dictionary learning are a special case of the ADMM frame- imal gradient method to solve the problem. The up-
work under certain optimization schedules. In conclusion, date rule for the 7"/ iteration of the proximal gradient
our work provides a novel perspective on dictionary learning method is given by:

by extending the kernel matching objectives to a generative

T+1 _ T
paradigm opening up avenues of exploring neurally plausible z =Sl

. . . . k

jdrc.hltectures for generative modelhng b}’ expanding upon ex- n (20 (2 zZT ol — 1_—,ik + M; 27— Wk,

isting kernel based representation learning approaches ([5]). p

Future work would involve investigating the theoretical prop- 9)

erties of the algorithm and developing a neurally plausible where S is the element wise soft thresholding oper-

architecture that could mimic the dynamics as stated in the ation and 7 = % where, L = pax(WWT) where

algorithm. Omax denotes the maximum singular value. The value
6. APPENDIX of n as described works well for problems where the

objective has a uniform Lipschitz upper bound, which
6.1. Proof of Lemma 1 ov) | Lipschutz upp

is not the case for the given objective. However, warm
Proof. Letus assume WLOG, Inain Inyin f(z,y) > rr;in n}cin f(x,y). starting the algorithm with the initialization scheme de-
scribed before, allows us to be close to the proximal so-

Let f(z*,y*) = minmin f(z,y)and (', y") = minmin f(z,
J@y?) = minuin f(@,y)and (@, y1) = minmin f@2,y) )L ined by ISTA., allowing the choice of 1 to be

then, we have f(x*,y*) > f(z',yT). However, appropriate for our case.
f(a:T, yT) > min f(e, yT) » P-Step: The P-Step update is given as:
T
> i . kyr kT
= (@) Pt = ; (Mk W ;V )‘szﬂzi(kﬂ)TerI
= f(x*,y*) = A contradiction p

(10)

Therefore, the only possibility is f(x*,y*) = f(z',y") or
yP yis [@hy) = J(2'y!) * W-Step: The update for W is again done by standard

minmin f(x,y) = minmin f(x, O
z oy (@) y = f(@.y) gradient descent as follows:
6.2. Proof of Proposition 1.1 B
1
T k41 _ yark k+1,.T k+1yxrk
1 Wi =Wh—nw | 5 ) (-2 z; + /7 W
Ry : min min — — (:clTWTzi) (B ;( )
z.p, W T4
i=1 an
1 I AL For sparse coding analysis, to avoid tuning the hyper-
+ oT Z Tt (WTPW) + T Z IEAE parameter w, we normalize the rows of W' to unit norm
i=1 i=1 after every update to ensure representation magnitudes
st. P, = ZiziT R | Vie{1,2,...,T} are correctly estimated.
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* M-Step: The update for M; is given by:

f“zf“T ol — Pik—i-l)
(12)

Note that equation 12 does not depend on the value of W*
and similarly equation equation 11 does not depend on the
value of M. This allows us to update W in a batch manner
after the M, update, thereby speeding up the optimization
process.

Mf“:M{“er(z

6.4. Optimization Steps for R,

The optimization step for Ry is similar to R; with slight mod-
ifications to the Z-Step and P-Step to account for the proba-
bility simplex constraint. The Z-Step is given by:

PARRIE [zf -7 (—Wk:ci

?

M
2 (282" +wDF — PF 4 L
P ( =] wb; i P (13)
M}k
pw diag <zfsz +wD¥ — PF + ‘) 1)]
p
where, D; = diag(z;) is a diagonal matrix and P; is the

projection operator onto the probability simplex [13]. The P-
Step is given by:

’CT
Pi = 1 (Mk B WEW ) +zf+1zi(k+1)T 4w DA

(14)
The W-Step and M-Step remain the same as described in the
previous section.
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