

1

2 FRONT MATTER

3

4 Noninvasive identification of carbon-based black pigments with pump-probe microscopy

5

6 Short title

7

Pump-probe microscopy of black pigments

8

9

Authors

10

Heidi V. Kastenholz,¹ Michael I. Topper,^{2,†} Warren S. Warren,^{1,2,3,4}, Martin C. Fischer,^{1,2,*} and David Grass¹

11

12

Affiliations

13

¹Department of Chemistry, Duke University, Durham, NC 27708, USA.

14

²Department of Physics, Duke University, Durham, NC 27708, USA.

15

³Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

16

⁴Department of Radiology, Duke University, Durham, NC 27710, USA.

17

*Corresponding author email: martin.fischer@duke.edu

18

† Presently at Department of Physics, University of Colorado, Boulder, CO 80309, USA.

19

20

21

Abstract

22

Carbon-based black pigments, a widely used class of pigments, are difficult to differentiate with the noninvasive techniques currently used in cultural heritage science. We utilize pump-probe microscopy, coupled with a support vector machine, to distinguish common carbon-based black pigments as pure pigments, as two-component black pigment mixtures, and as a mixture of a black and a colorful pigment. This work showcases the potential of pump-probe microscopy to spatially differentiate carbon-based black pigments, which would have interesting applications to works of art.

23

Teaser

24

Pump-probe microscopy, coupled with a support vector machine, identifies carbon-based black pigments in various mixtures.

25

34 **MAIN TEXT**

35

36 **Introduction**

37 There is an unmet need in cultural heritage science for noninvasive identification of
38 carbon-based black pigments, which are broadly used in paintings, drawings, and prints
39 either by themselves or for shading another pigment (1). These pigments are produced
40 through controlled burning of a material such as wood, bone, or oil (resulting in charcoal,
41 bone black, and lamp black respectively) or occur naturally, such as graphite (2). They
42 have been identified in some of the oldest pieces of art known to date, such as the cave
43 paintings of Nawarla Gabarnmang in northern Australia (3). As their sourcing and cost are
44 not prohibitive, carbon-based black pigments still represent one of the primary black
45 pigment sources.

46
47 Material identification is essential for conservation of a work of art and provides insight
48 into its historical context and provenance. In cultural heritage, there are two classification
49 schemes for carbon-based black pigments (1, 2, 4-6). The first is by the form of carbon
50 present in the material, such as graphitic carbons, flame carbons, chars, cokes, or coals.
51 This information is often inaccessible for black pigments incorporated into artwork. The
52 second classification is based on the materials' origin, such as mineral, vegetable, animal,
53 or soot and smoke, but reliable information for pigments in historic works, particularly
54 carbon-based based pigments where the naming conventions are tangled, is often missing.
55 The two classifications schemes focus on descriptions for carbon-based black pigments
56 and should not be viewed with a lens of modern carbon materials nor modern production
57 methods.

58
59 In either classification scheme, carbon-based black pigments are difficult to distinguish by
60 existing methods. The most specific method for identification, scanning electron
61 microscopy with energy dispersive spectroscopy (SEM-EDS), distinguishes by
62 morphology and, occasionally, elemental composition in pure reference samples (1, 2, 5,
63 7, 8). However, this requires physical removal of a cross-section from the work. Another
64 approach, thermogravimetric analysis and differential scanning calorimetry, can
65 characterize pure reference samples, but also requires invasive sampling (9). The go-to
66 noninvasive methods in cultural heritage science are linear reflectance techniques, such as
67 fiber-optic reflectance spectroscopy, hyperspectral imaging, multispectral imaging, and
68 Raman spectroscopy due to their ease of use and portability (10-15). Unfortunately, linear
69 reflectance of carbon-based black pigments is structureless in the visible-NIR region (11,
70 12). Raman spectroscopy is a versatile technique that has been shown to be a powerful
71 tool for the characterization of carbons (16). Presence of a carbon-based black pigment, in
72 cultural heritage, is confirmed by two characteristic peaks at approximately 1580 cm⁻¹ and
73 1350 cm⁻¹ (6, 17-20). The 1580 cm⁻¹ peak (G Band) is the characteristic Raman peak for
74 crystalline graphite (6, 17). The 1350 cm⁻¹ peak (D or Disorder Band) is used as a measure
75 of disorder in the carbonaceous material; it suggests the presence of heteroatoms in the
76 graphitic structure, in-plane defects, or defects at the edge of the aromatic structure such
77 as a tetrahedral carbon rather than the expected trigonal planar carbon (6, 17). Two studies
78 have delineated pigments using the minute differences between Raman spectra and have
79 applied the findings to cross-sections from works of arts (18, 20). Another study utilized
80 Raman spectroscopy with principal component analysis (PCA) to identify carbonaceous
81 drawing materials (19). Raman studies have not yet been expanded to analyze or map
82 mixtures of carbon-based black pigments.

83
84 Features in Fourier transform infrared (FTIR) spectra can be used to distinguish between
85 reference carbon-based black pigments (5, 21). However, FTIR spectra from paintings
86 have had mixed results. The spectra are either dominated by signals from the ground layer
87 and the resin varnish; any features that would indicate a carbon-based pigment are
88 overpowered by the other materials present (22) or they rely on other compounds present,
89 like hydroxyapatite in ivory and bone black (23). X-ray fluorescence (XRF) is another
90 noninvasive technique used in cultural heritage science; it cannot distinguish
91 carbonaceous materials (24) but reveals secondary elements like Ca and P in compounds
92 like hydroxyapatite to support an identification or rule them out (25-28). X-ray diffraction
93 (XRD) can differentiate crystalline carbon-based black pigments (like graphite) from non-
94 crystalline forms and can make further distinctions based on noncarbon components
95 similar to XRF (1, 2, 5, 29). One group identified hydroxyapatite, indicative of bone or
96 ivory black, with macroscopic XRD in a still life painting, showing how detection of
97 crystalline, noncarbon components can result in identification (30). However, XRD
98 typically cannot differentiate non-crystalline, amorphous carbon-based black pigments (2,
99 4, 29). Another study has shown good results using powder XRD and a synchrotron
100 beamline in identifying the type of carbon-based black pigment present in archeological
101 samples, but required invasive sampling and powdering of the sample taken (31).

102
103 Nonlinear optical microscopy techniques, such as two-photon fluorescence, second-
104 harmonic generation, and coherent anti-Stokes Raman microscopy, have been shown to
105 provide noninvasive, high-resolution imaging contrast in applications to biology (32) and,
106 more recently, cultural heritage science (33-36). These contrasts are easily measured
107 because they are emissive, generating light at wavelengths different from the excitation
108 light. However, these conventional multiphoton techniques will not aid in distinguishing
109 carbon-based black pigments; there is little to no fluorescence to analyze (12), and
110 nonlinear methods for Raman spectra do not result in different information from
111 spontaneous Raman spectra.

112
113 We demonstrate here that another nonlinear optical technique, femtosecond pump-probe
114 (P-P) microscopy, can identify and distinguish common carbon-based black pigments
115 noninvasively. P-P microscopy takes advantage of the nonlinear interactions of two laser
116 pulses with the sample to provide remarkable molecular specificity: in many cases there
117 are multiple competing molecular mechanisms which provide substantial contrast between
118 nominally similar molecules. We focus here on transient absorption (TA), a subset of P-P,
119 shown in figure 1, in which an excitation (pump) pulse affects the absorption of a time-
120 delayed (probe) pulse. ‘Instantaneous’ mechanisms such as stimulated Raman scattering
121 (SRS), two-photon absorption (TPA), sum-frequency generation (SFG), and cross-phase
122 modulation (XPM) give signals only when the pump and probe pulses overlap in time.
123 Other molecular mechanisms result in delayed time signals. The pump laser pulse excites
124 population into higher electronic states, creating a population hole in the electronic ground
125 state. Intermolecular vibrational redistribution rapidly rearranges the population of the
126 electronically excited molecules, which can be transferred by the second pulse into a
127 higher electronic state via excited state absorption (ESA) or to a vibrationally excited level
128 of the ground state through stimulated emission (SE). ESA and SE occur on roughly the
129 same timescale, but the other effects have independent rates. The population hole in the
130 ground state created by the pump pulse reduces the number of molecules available to be
131 excited, reducing the absorption of the probe, a mechanism labeled ground state bleach
132 (GSB). Finally, pump absorption can cause localized heating, which in turn, can change

133 the index of refraction. This affects the scattering profile through the grains of the
134 material, resulting in an effect called thermal scattering (TS). All of these non-emissive P-
135 P interactions are separated from background signals using a modulation transfer scheme,
136 explained in more detail in reference (37). Briefly, the pump laser is amplitude modulated,
137 and a lock-in amplifier is used to detect amplitude modulation transferred to the probe
138 laser; this transfer is only possible if the mechanism involves both pump and probe
139 photons, and thus suppresses the, normally larger, linear signal contributions.
140

141 Two popular methods have been used in the past to evaluate TA curves and assign them to
142 molecular species: PCA and model fitting (37-43). Because several nonlinear optical
143 interactions contribute to the measured P-P signals, the resulting TA curves are generally
144 bipolar superpositions of multiple exponential decays and intrinsically non-orthogonal. As
145 PCA works best for linear and orthogonal data structures, we consider it non-ideal for
146 identification of carbon-based black pigments. Model fitting of TA curves with
147 exponential basis functions is a powerful method and could allow for pigment
148 identification based on specific lifetimes and amplitudes. However, there exists no method
149 to unambiguously separate the superposition of multiple exponential decays into
150 fundamental components. Also, there are limitations on how precise amplitudes and
151 lifetimes from exponential decays can be extracted for a given signal-to-noise level (44,
152 45). Because the P-P signals from black pigments are generally weak, spatial resolution
153 would need to be sacrificed by down-sampling to achieve an appropriate signal-to-noise
154 level for fitting. Therefore, we opt for alternative methods better suited to handle the weak
155 signals typical of black pigments.
156

157 P-P microscopy has successfully been applied in a wide range of applications, including
158 melanin characterization in biological tissue (38). This application provides a good
159 example of its versatility: the melanin absorption spectrum is broad and featureless, but P-
160 P images reveal notable heterogeneity from many competing molecular mechanisms
161 shown in figure 1, and the contrast correlates with disease progression in melanoma.
162 Previous cultural heritage applications include identification of iron oxides and red
163 organic dyes, visualization of vermillion and cadmium yellow degradation, and as a tool to
164 noninvasively obtain a virtual cross-section of historical works of art (46-51). Here, we
165 use P-P microscopy to identify and analyze four of the most used carbon-based black
166 pigments, bone black, charcoal, graphite, and lamp black. We demonstrate that P-P
167 microscopy resolves nonlinear features of these pigments that allow identification in two-
168 compound black-black mixtures, applicable in separating an underdrawing from black
169 paint used in upper layers, and to identify black pigments in shading applications, i.e. a
170 mixture of black with different colored pigments, such as ultramarine blue.
171 For cultural heritage applications, a specific region or volume of interest is imaged to
172 derive pigment identity maps or abundance maps. This is similar to methods used in
173 hyperspectral or Raman imaging, where unmixing algorithms determine the proportion of
174 an a-priori known reference spectrum within every pixel of the sample's image. In the
175 remainder of this manuscript, we present how we acquired and evaluated P-P image stacks
176 of pure pigment paints and paints that are mixtures of two different pigments. First, we use
177 P-P image stacks of pure pigments (reference samples) to train a classifier algorithm. This
178 classifier algorithm is then used to classify P-P image stacks of two-pigment mixtures. We
179 use an unmixing algorithm as a baseline and compare it to a support vector machine
180 (SVM) that shows considerably better performance in identifying pigments. In a final
181 section, we discuss our results, their limitations, and provide an outlook into next steps.
182

183

Results

184

Pump-probe spectroscopic features of black pigments

185 We acquired reference P-P image stacks of pure paint samples of bone black, charcoal,
186 graphite, lamp black, and ultramarine blue with a pump wavelength of $\lambda_{pump} = 720$ nm and
187 a probe wavelength of $\lambda_{probe} = 817$ nm. The pigments were validated with reflectance
188 spectroscopy, elemental analysis, and Raman spectroscopy, see figures S1-S7 and table
189 S1. P-P data from the image stacks of pure pigments were averaged across the spatial
190 dimensions, that is over the imaged field of view, and normalized. These curves are shown
191 in figure 2, the curve for ultramarine blue is shown in figure S8. The non-normalized TA
192 curves can be found in the supplementary materials, figure S9. The TA curves of the four
193 black pigments exhibit distinctive qualitative differences. For graphite and lamp black, the
194 duration of the temporal features (≈ 100 fs) is limited by the temporal resolution of our
195 microscope. These ‘instantaneous’ signals suggest the involvement of virtual energy states
196 in the nonlinear interaction, typical of processes like TPA, SRS, SFG, and XPM, as shown
197 on the left in figure 1. In our convention, transient loss processes, such as TPA, are
198 depicted as positive while transient gain processes are depicted as negative. For the given
199 pump and probe wavelength, we would only detect Raman gain processes, thereby ruling
200 SRS out as potential signal origin. SFG generates a new wavelength, which we have not
201 observed, and XPM manifests in a sign change in the TA signal. This indicates TPA as the
202 likely signal origin for graphite, bone black, and lamp black around the time delay of $\Delta t=0$
203 ps. In the case of lamp black, there is a slow rise of the TA curve observable at time delays
204 larger than 15ps. This is caused by an ESA event with a lifetime much longer than the
205 observed 25ps. In addition to TPA, bone black contains an ESA process with a short
206 lifetime, visible between 1 and 5 ps. Charcoal signals are dominated by multiple ESA
207 processes, which are described by a superposition of multiple exponential decays. The
208 differences in the TA curves highlight the potential of P-P microscopy to noninvasively
209 identify and distinguish these four carbon-based black pigments. It is worth noting that
210 these four curves, particularly graphite, also differ in amplitude as shown in figure S9.

211
212 The spatially averaged curves shown in figure 2 obscure signal variations within the P-P
213 image. For example, the averaged TA curve of charcoal is uniformly positive, peaking
214 around a time delay of $\Delta t=0.1$ ps. However, high-resolution P-P images, shown in figure
215 S10, reveal interspersed regions of positive and negative signal for charcoal. A convenient
216 way of visualizing heterogeneity in P-P stacks is an adapted form of phasor analysis (52),
217 see materials and methods. Nearby points in a phasor plot correspond to similar P-P
218 signals. Phasor plots of the pure black pigments are shown in figure 3. It is evident that the
219 phasor plot for charcoal falls into two distinct areas, aligning with positive and negative P-
220 P curves, respectively. We select all TA curves within these clusters, indicated by red and
221 yellow circles, and plot their averages in figure 3B, respectively. The signals in charcoal
222 appear to be the same aside from a sign difference. This suggests TS as an underlying
223 molecular mechanism: a pump-induced change in refractive index transiently changes the
224 angular distribution of the backscattered light, which in combination with an aperture in
225 the beam path, causes a sign change in the measured signal. An alternative interpretation
226 would be the presence of two distinct chemical species in charcoal, which coincidentally
227 have nearly opposite signs at each delay. While bone black would be the pigment expected
228 to show signals for two distinct chemical species, as it contains both the carbonized
229 organic material of the bone and the inorganic hydroxyapatite (1, 2), we do not see this
230 present in the P-P images. Conversely, P-P signals of bone black, graphite, and lamp black
231 appear homogeneous in their phasor plots.

We also acquired P-P image stacks of paints that are comprised of two different pigments. These include six 50-50 (by mass) pigment mixtures of each pair of two black pigments: bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite, charcoal-lamp black, and graphite-lamp black. Brightfield images can be found in figure S11. We acquired multiple P-P images from different areas of each mixture. Their average TA curves are shown in figure S12. In order to demonstrate pigment identification in shading applications, we imaged mixtures of each carbon-based black pigment with synthetic ultramarine blue ($\text{Na}_7\text{Al}_6\text{Si}_6\text{O}_{24}\text{S}_3$), an artificial version of natural ultramarine blue which comes from the mineral lapis lazuli. We captured images of twelve combinations, mixing each of the four black pigments with ultramarine blue in three paint ratios: 25:75, 50:50, and 75:25. Brightfield images of all mixtures can be found in figure S13 and average TA curves are shown in figure S14. Based on the reference P-P image stacks, we characterize the pigments in the mixtures using an unmixing algorithm and an SVM to identify the pigments composing the mixtures.

Pigment assignment by unmixing

The averaged TA curves of the pigments, shown in figure 2, show distinct features that we will utilize to distinguish them in paint samples that are made of two pigments. We use the averaged P-P curves from pure pigments shown in figure 3 as reference TA curves for the unmixing algorithm. This includes two reference curves for charcoal, due to its noted heterogeneity. Phasor analysis is used to derive the two charcoal reference curves, the orange and yellow TA curves shown in figure 3B. The unmixing algorithm analyzes the TA curves of all pixels in a P-P image stack. It compares these curves with the reference curves from pure pigments and determines the abundance fraction, which represents the proportion of each reference pigment present in every pixel. Subsequently, after the unmixing process, abundance fractions for the two reference TA curves associated with charcoal are combined to a single charcoal abundance. More details can be found in the materials and methods section.

The unmixing algorithm is first tested on pure pigment data and has an average accuracy of 83%. This means that when the unmixing algorithm is presented with a P-P TA curve from a single pixel of any of the five pigments (bone black, lamp black, charcoal, graphite, and ultramarine blue), it classifies it correctly 83 times out of 100. Due to the similarity of bone black and lamp black signals, we repeated the unmixing analysis with a reduced set of pigments. First, we only considered lamp black, charcoal, graphite, and ultramarine blue (unmix-nobb) and in a second run we only considered bone black, charcoal, graphite and ultramarine blue (unmix-nolb). The unmixing classification accuracy for pure pigments improves to 88% (92%) when bone black (lamp black) is left out.

When presented with P-P image stacks of black pigment mixtures, the unmixing approach identified only 63% of pixels as being pigments which were actually present in the sample for the black-black mixtures and only 62% in the ultramarine blue-black mixtures. As above, we repeated the unmixing analysis with a reduced set of pigments in the unmixing algorithm (unmix-nobb, unmix-nolb). When bone black is left out, the unmixing approach correctly identified only 76% of the pixels in black-black mixtures and 72% in the ultramarine blue-black mixtures. When lamp black is left out, the unmixing approach correctly identified only 69% of the pixels in black-black mixtures and 64% in the ultramarine blue-black mixtures. The signal-to-noise ratio (SNR) in P-P data of black pigments is relatively low, increasing the variance in single-pixel data. We believe this to be a main limitation as spectral unmixing compares these noisy single-pixel spectra to highly averaged reference spectra, see figure S15, which may not handle the noise effectively. Given the low percentage of correctly identified pixels, we changed our

283 approach to methods that are better suited to the complex and heterogeneous nature of the
284 black pigment P-P data. We summarized accuracies of all algorithms across this
285 manuscript in table S2 in the supplementary material.

287 Machine learning for pigment classification

288
289 Due to the poor performance of the unmixing algorithm, the high dimensionality of TA
290 curves, and the signal heterogeneity of charcoal, we decided to go a different route and
291 train an SVM for classification. We trained an SVM with P-P TA curves from pure
292 pigments and then used it to classify and identify pigments in two-component mixtures.
293 We train the SVM with around 5500 TA curves of each of the five pigments exposing the
294 SVM to the full range of signal variation for each pigment. A description of the training,
295 validation, and testing process can be found in the materials and methods section of this
296 manuscript.

297
298 The resulting SVM has an overall accuracy of 85% for pure pigments. Due to the
299 similarity of bone and lamp black signals and analogous to the unmixing case, we repeat
300 the same procedure with reduced pigment sets: First, bone black is left out and in a second
301 run lamp black is left out. The accuracy increases markedly in both cases to 96% (no bone
302 black) and to 94% (no lamp black). However, the performance of the SVM will drop for
303 P-P images of two-pigment mixtures, as discussed in the next sections. In the remainder of
304 this manuscript, unless explicitly stated otherwise, "SVM" refers to the classifier trained
305 on all pigments. If we refer to a classifier trained by leaving one pigment out, we will
306 specify it as "SVM-nobb" (no bone black) or "SVM-nolb" (no lamp black). We
307 summarized accuracies of all algorithms across this manuscript in table S2 in the
308 supplementary material.

309
310 Black-Black Mixtures

311 The accuracies reported above were based on the pure reference samples and we want to
312 test the SVM on a more realistic scenario, namely paints based on two pigment mixtures:
313 bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite,
314 charcoal-lamp black, and graphite-lamp black. We took images of at least three different
315 areas for each mixture and presented the P-P image stacks to the SVM classifier.

316
317 We summarize the overall performance of the SVM classifier with a bar chart in figure 4,
318 one bar for each black-black mixture. It is crucial to note that we operate without a
319 definitive "ground truth" in this context. While we know the two pigments comprising
320 each mixture, their precise microscopic distribution remains unknown, and no alternative
321 method exists for validating the results, to the best of our knowledge. To assess
322 performance, we tally all classified pigments for a given mixture. We label pixels as
323 *correctly classified* if they are identified as a pigment that is *part of the mixture* and as
324 misclassified if not. Accuracy is computed by taking the ratio of correctly classified pixels
325 over all classified pixels. A successful method to identify black pigments should have a
326 high accuracy, meaning that the percentages of correctly identified pixels should be larger
327 than any other misclassification. The SVM achieves accuracies of 55% (charcoal – lamp
328 black), 57% (graphite – lamp black), 61% (bone black – graphite), 79% (charcoal –
329 graphite), 93% (bone black - charcoal), and 97% (bone black-lamp black). The first three
330 accuracies are low and stem from the similarity of bone black and lamp black signals. By
331 pivoting to SVM-nobb and SVM-nolb, these accuracies are lifted to 94% (charcoal – lamp
332 black with SVM-nobb), 89% (graphite – lamp black with SVM-nobb) and 79% (bone

333 black – graphite with SVM-nobb). A detailed list is presented in the supplementary
334 materials, table S3. We will discuss the implications of these results in the discussion
335 section.

337 The SVM returns a pigment classification for each pixel in the P-P stack, and we use this
338 information to generate a false-color pigment map (or abundance map). Three
339 representative examples are shown in figure 5. The percentages in the legend represent
340 pigments identified by the classifier. Note that these numbers represent one specific region
341 of interest and therefore deviate from the overall average. For the charcoal-graphite
342 mixture in figure 5A, 77% of the signal containing pixels are identified as charcoal (31%)
343 or graphite (46%). The remaining 23% were misclassified, with 12% of the pixels
344 misclassified as bone black. The graphite-lamp black mixture, shown in figure 5B,
345 performs poorly with only 54% of pixels being correctly identified (20% graphite, 34%
346 lamp black). The largest misclassification is again bone black (38%). This makes sense
347 because of the similar signals for lamp black and bone black. If instead SVM-nobb is used
348 to classify the same image stack we find 85% of pixels correctly identified. The direct
349 comparison between abundance maps of SVM and SVM-nobb for this region of interest is
350 shown in figure S16. In the bone black-charcoal mixture, figure 5C, 94% of pixels are
351 accurately identified (bone black 35% and charcoal 59%) and with the most common
352 misclassification being lamp black, with only 3% of the pixels.

353

354 *Ultramarine Blue-Black Mixtures:*

355 We also tested the SVM classification performance for shading applications on mixtures
356 of a carbon-based black pigment with ultramarine blue. We presented 12 mixtures of a
357 carbon-based black pigment and ultramarine blue in three different paint ratios to the
358 SVM classifier. For each of the twelve samples, we imaged at least three different areas
359 and computed the average classification accuracy. A summary of the classifier across all
360 the shading combinations is presented in figure 6, see table S4 for full details. Like in the
361 black-black mixture case, there exists no ground-truth for the pixel identities, and we
362 therefore apply the same metric to measure accuracy. Our methodology yields a robust
363 qualitative classification, demonstrating a strong correlation between the detected amount
364 of ultramarine blue and the actual physical mixing ratio of the sample. This correlation is
365 consistent for most of the black pigments used. Of the 12 mixtures, only the 25:75
366 ultramarine blue – lamp black mixture performs poorly with only 50% of all pixels
367 correctly classified. Four mixtures (50:50 ultramarine blue – bone black, 25:75
368 ultramarine blue – bone black, 25:75 ultramarine blue – charcoal, 50:50 ultramarine blue –
369 graphite) are classified with an accuracy ranging between 75% and 80% and all remaining
370 mixtures are classified with a higher than 80% accuracy. As before, the alternative
371 classifier SVM-nobb improves the classification accuracy for the 25:75 ultramarine blue –
372 lamp black mixture to 64%.

373 Like with the black-black mixtures, we can derive spatial maps of the black-blue mixtures.
374 Three maps, of the 75:25 ultramarine blue – charcoal, 50:50 ultramarine blue – graphite,
375 and 50:50 ultramarine blue – bone black mixtures, are shown in figure 7. As before, the
376 derived mixing ratios deviate from the macroscopic mixing ratio, highlighting that without
377 a true ground truth, genuine quantitative imaging remains a challenge. The images shown
378 in figure 7, and the bar chart in figure 6, demonstrate good qualitative performance.

379

380 **Discussion**

382 Our findings highlight the potential of P-P microscopy for the noninvasive differentiation
383 and mapping of black pigments. This technology presents an appreciable advancement in
384 the noninvasive analysis of cultural heritage artifacts, where the precise identification of
385 pigments can provide invaluable insights into the techniques and materials used by artists.
386 However, there are cases of misclassification within the set of targets. Here we will
387 discuss the performance and limitations of our current classification approach and
388 comment on the future application of P-P microscopy in cultural heritage science.
389

390 *Classification challenges and future strategies*

391 Our current classification approach faces several challenges. The primary challenge we
392 encounter with our current classification approach is the absence of a definitive ground
393 truth for the images. The derived pigments maps, as shown in figure 5, are a result of P-P
394 imaging and an SVM classifier. To the best knowledge of the authors, there is no
395 alternative method to validate the correct mapping for all pigments. The only ground truth
396 we have is the mixing ratio used during sample preparation. The mixing ratio is a
397 macroscopic quantity and the P-P images in this proof-of-principle study only sample
398 three $36\mu\text{m} \times 36\mu\text{m}$ areas. Within this small area, we expect variations in the pigment
399 ratios that will vary from the macroscopic pigment distribution. For example, the
400 measured pigment ratio in the 50:50 bone black-charcoal mixture, in figure 5, is $35/59 \approx 0.6$
401 which could be explained by a locally higher density of charcoal.
402

403 A second challenge in pigment classification is the vast difference in SNR between
404 different pigments. We show unnormalized curves of the four black pigments in the
405 supplementary materials, figure S9. Graphite has the largest signal followed by
406 ultramarine blue and charcoal which are around 5 times weaker. Lamp black is roughly 10
407 times weaker and bone black around 20 times weaker than graphite. Signals of bone black
408 and lamp black are close to the noise floor of our microscope and are therefore more
409 difficult to classify compared to the high SNR signals of charcoal and graphite. We
410 believe that this is the main reason for the small bone black percentages identified in
411 black-black mixtures, depicted in figure 4. We hypothesize that the majority of
412 misclassified pixels stem from the SNR limitations. We have plotted 5 randomly selected
413 single pixel TA curves per reference pigment and overlayed them with their respective
414 average curve in figure S15. Some of these TA curves contain sizable noise and
415 qualitatively differ from their respective average curves. This also relates to the inherent
416 tradeoff between spatial resolution and SNR: higher spatial resolution requires smaller
417 sampling volumes and therefore leads to smaller SNR. Averaging neighboring pixels in an
418 image increases SNR at the expense of spatial resolution. Spatial averaging, however,
419 might mix TA curves of adjacent pigments. This causes two additional challenges. In case
420 of a large signal amplitude mismatch, the pigment with the larger signal will overwhelm
421 the features of the weaker pigment signal thereby skewing classification towards pigments
422 with larger signal. Thus, even for a 50:50 mixture of two different pigments, their
423 difference in signal strength can distort the pigment distribution that we measure towards
424 the pigment with the larger signal. This effect can be seen in the mixtures of ultramarine
425 blue with either bone black or lamp black, where the percentage of classified ultramarine
426 is typically larger than the mixing ratio. Alternatively, if TA curves of comparable signal
427 strengths are averaged, we create a de facto new TA curve that is unknown to the SVM
428 classifier, which was only trained on pure TA curves, leading to increased
429 misclassification. Currently, we choose a compromise between spatial averaging to
430 achieve sufficient SNR and maintaining enough resolution to resolve most individual
431 pigment grains.

432
433 Another reason for misclassification of TA curves is the inherent similarity between the
434 signals of bone black and lamp black. The highly averaged curves of their pure reference
435 samples, as shown in figure 2, only differ marginally in decay time between 1-5ps and in
436 their offset at time delays larger than 15ps. The small signal amplitudes of lamp and bone
437 black are not prominent enough on a pixel-by-pixel basis and cause misclassifications in
438 the SVM classifier. This effect can be seen most prominently in the 50:50 charcoal – lamp
439 black mixture where 40% of all pixels are misclassified as bone black and in the 50:50
440 graphite – lamp black mixture where 37% of all pixels are misclassified as bone black. To
441 mitigate this problem, we introduced the additional classifiers SVM-nobb and SVM-nolb
442 by leaving out bone black and lamp black, respectively. These classifiers perform notably
443 better in mixtures of two black pigments; however, additional a-priori knowledge of the
444 sample would be required to select the appropriate classifier. This is only a limitation
445 when restricted to solely use P-P microscopy. The presence of calcium and phosphorus in
446 bone black offers another route to unambiguously distinguish bone black from lamp black.
447 X-ray fluorescence spectroscopy can noninvasively detect both elements and could be
448 used to decide if the SVM-nobb or SVM-nolb classifier should be used for further
449 analysis.
450

451 In the future, we envision increasing SNR in two ways. First, by improving our detection
452 capabilities, specifically by increasing collection efficiency by using higher numerical
453 aperture objectives. Second, we intend to explore different pump and probe wavelengths
454 that might offer different TA dynamics that could be used to distinguish bone black from
455 lamp black and also offer a larger interaction cross-section for the currently weak signals
456 of bone and lamp black.
457

458 Our current classification scheme employs a relatively simple algorithm that analyzes
459 individual pixels independently, without considering the contextual information from
460 neighboring pixels. While SVMs provide robust performance in classifying TA curves on
461 a per-pixel basis, the inherent spatial correlation within pigment grains suggests that
462 adjacent pixels are likely to belong to the same pigment. This spatial dependency is not
463 utilized in the current approach, potentially limiting the overall classification accuracy.
464 Given the high probability that adjacent pixels represent the same pigment, leveraging this
465 local image information could substantially enhance classification performance.
466 Convolutional Neural Networks (CNNs) are particularly well-suited for this task, as they
467 are designed to capture spatial hierarchies in data through convolutional layers that
468 process local neighborhoods of pixels. Thus, we envision implementing a U-Net, a
469 specialized CNN for semantic segmentation to integrate spatial context into the
470 classification process to further improve classification accuracy and robustness of pigment
471 identification (53).
472

473 We also observe, at least heuristically, an increased misclassification rate at pigment grain
474 boundaries. This can be seen in figure 5A and figure 7A, in which bone black appears
475 around the edges of individual pigment grains. This can also be observed for other
476 pigments such as lamp black. We attribute this to the qualitatively similar curves of bone
477 black, lamp black and graphite. TA curves originating from grain boundaries are weaker
478 because there is less material in the focal volume of the lasers to contribute to P-P signals.
479 This could cause a graphite signal to be misclassified as either bone or lamp black, for
480 example. We are confident that this problem can be circumvented by algorithms that take
481 information from the pixel neighborhood into account, like CNNs.

483 Pump-Probe Signal Heterogeneity

484 A surprising discovery was the intrinsic heterogeneity in the P-P signals of charcoal. As
 485 shown with phasor in figure 3B, charcoal has two distinct P-P signals, a positive and a
 486 negative signal. In addition to being the only pigment with a distinctive lifetime present in
 487 its positive signal longer than 5 ps, the presence of negative signal is also unique amongst
 488 the carbon-based black pigments studied. We hypothesize that two factors contribute to
 489 potential heterogeneity: First, the inherent microscopic heterogeneity of charcoal. Of the
 490 four pigments, only graphite has an ordered molecular structure (sheets of sp² hybridized
 491 carbon), consistent with the observed homogeneous signal in the phasor plot in figure 3C.
 492 Lamp black, which undergoes a gas phase carbonization during production, is
 493 microscopically uniform (on the scale of the resolution of our microscope). Charcoal is
 494 derived from an extremely heterogeneous base material, wood, maintains a solid structure
 495 during carbonization, and therefore retains part of its initial structural complexity. While
 496 bone black also derives from a heterogeneous starting material, bone, it undergoes a liquid
 497 phase during carbonization which would allow for some molecular rearrangement, with
 498 the resulting pigment being more homogenous. The other factor that could contribute to
 499 the heterogeneity in P-P signal of charcoal is the presence of heteroatoms or non-carbon
 500 constituents that commonly occur in carbon-based black pigments. Winter reports that
 501 incorporation of heteroatoms into the carbon matrix during the carbonization process is
 502 especially common for cokes and chars prepared at low temperatures (2). These factors
 503 may explain the higher degree of heterogeneity of signals in charcoal. Again, bone black
 504 notably has heteroatoms present in the form of hydroxyapatite, but we do not observe
 505 heterogeneity in its signal. The potential of P-P microscopy to analyze the heterogeneity
 506 of carbon-based black pigments is an exciting prospect for future studies.

508 Beyond proof-of-principle studies towards applications to works of art

509 This manuscript demonstrates the potential of P-P microscopy to noninvasively identify
 510 black pigments in mixtures. For this proof-of-principle demonstration we restricted
 511 ourselves to four black pigments and one colored pigment. Most works of art contain
 512 many more colors and, although we used the four most prevalent black pigments, there are
 513 other black pigments in use. Our group has analyzed a range of pigments, including red
 514 organic dyes, iron oxides, vermillion, and cadmium sulfide and we can incorporate these
 515 pigments into our classification scheme (46-51). Furthermore, P-P microscopy offers two
 516 powerful and easily accessible degrees of freedom: the choice of pump and probe
 517 wavelength. P-P signals reflect the population dynamics between molecular levels and are
 518 therefore strongly dependent on the pump and probe wavelengths. Pigments that present
 519 similar TA curves at a particular wavelength combination may differ drastically at another
 520 (47). A convenient approach would be pigment exploration in a broadband P-P
 521 spectroscopy setup, where many wavelengths can be probed simultaneously. We could
 522 then select a wavelength combination that offers a unique contrast for a specific pigment.
 523 Ultimately, multiple P-P images acquired with different wavelength combinations
 524 (hyperspectral P-P microscopy) will provide sufficient specificity to distinguish and
 525 identify many pigments. Extension of the SVM classifier to more pigments and to
 526 hyperspectral P-P images is conceptually straightforward and only requires the additional
 527 pure reference data in the training phase. In addition, polarization P-P microscopy, which
 528 offers improved chemically specific contrast based on the molecular anisotropy of
 529 pigments, can further improve pigment specificity (38, 54).

531 The multiphoton nature of P-P microscopy enables high resolution in all three spatial
532 dimensions, even beneath the surface of highly scattering materials (32). In previous
533 experiments, we were able to image up to a depth of ≈ 90 μm in paint layers to produce
534 virtual cross sections (49), thus allowing cultural heritage scientists and conservators to
535 better understand pieces of art without invasive sampling. However, achievable
536 penetration depths depend on the absorption and scattering properties of the materials
537 present at the surface and the subsequent layers. Carbon-based black pigments strongly
538 absorb visible to near-infrared light and therefore reduce optical penetration depth. This
539 will be most prominent in works of art with a thick or opaque layer of carbon-based black
540 paint, for example in oil or tempera paintings. In a work with thinner or more transparent
541 layers, such as watercolor paintings or drawings and prints, the absorption of the black
542 pigments would not greatly reduce penetration depth.
543

544 Our study has successfully shown that P-P microscopy is an effective noninvasive tool for
545 differentiating black pigments in a variety of combinations, including mixtures with other
546 carbon-based black pigments and with ultramarine blue. This achievement highlights P-P
547 microscopy's capability to fill a void in the field of cultural heritage science, where, until
548 now, no noninvasive method for identifying carbon-based black pigments in mixtures with
549 such certainty existed. We have outlined a clear strategy to further improve the
550 performance and to increase the number of pigments in our approach and we envision
551 applying this methodology to actual works of art. A particularly fascinating application
552 would be Vermeer's *Girl with a Pearl Earring* where bone black and charcoal are
553 reported to exist together in an underlayer, currently only confirmed by analysis of a cross
554 section (55). P-P microscopy could be used to further validate these findings as well as to
555 provide additional information, i.e. a three-dimensional pigment map of both pigments
556 across the painting.
557

558 Materials and Methods

559 Pump-Probe Microscopy

560 A schematic of our P-P microscope is shown in figure S17. The output of a Ti:Sapphire
561 laser (Coherent Chameleon Ultra II) with an 80 MHz repetition rate is split into two parts.
562 One part serves as probe beam at a wavelength of $\lambda_{\text{probe}} = 817$ nm. The second part is
563 frequency converted into the pump with a wavelength of $\lambda_{\text{pump}} = 720$ nm with an optical
564 parametric oscillator (Coherent Mira-OPO). The pump pulse train is intensity-modulated by
565 an acousto-optic modulator at a rate of 2 MHz. Both laser beams are spatially superimposed,
566 sent into a laser scanning microscope, and focused onto the sample with a 20x 0.7 NA dry
567 objective. The inter-pulse delay Δt between pump and probe is controlled with a motorized
568 translation stage in the probe beam path. We utilize a modulation transfer scheme to detect
569 the weak signals generated by the nonlinear interaction between pump, probe, and sample.
570 As the nonlinear interaction transfers the pump modulation onto the probe pulse train, these
571 changes in absorption in the probe pulse train are measured with a photodiode and a lock-
572 in amplifier. For pigment imaging, we use a pump and probe pulse intensity of $I = 4.4 \times 10^8$
573 W/m^2 , (corresponding to 0.25 mW), and image an area of $36\mu\text{m} \times 36\mu\text{m}$ for 24 time delays
574 Δt spanning -1.5 to 25 ps. The resulting data structure (image stack) is a 3-dimensional data
575 cube with two spatial and one temporal dimension. Each pixel in the P-P stack represents a
576 P-P TA curve, the change of absorption as a function inter-pulse delay Δt .
577

578 Validation of Pigments

579 For reflectance spectroscopy, pigment was placed onto a glass slide and fixed with a gum
580 arabic solution. A coverslip was placed over the sample and allowed to dry in the fume hood

overnight. Reflectance spectra were collected using a Cary 5000 spectrophotometer with a diffuse reflectance accessory. The reflectance measurements include both specular and diffuse reflectance. The spectra were collected from 400-1500 nm with a step size of 1 nm and a scan time of 0.1 s. A Labsphere diffuse reflectance standard was used as a reference.

For elemental analysis, double-sided copper tape was placed on a sample mount for the instrument. Pigment powder was pressed onto this tape, with excess removed via nitrogen gas flow. The pigments remained uncoated. An Apreo S SEM by ThermoFisher Scientific with an Oxford Instruments X-Max-N 150 EDS was used for elemental analysis with an accelerating voltage of 20 kV. Due to the copper tape, copper does appear in the elemental spectra for the pigments analyzed.

For Raman spectroscopy, pigment was placed onto a glass slide and held in place by a glass coverslip. Raman spectra were collected using a Horiba Jobin Yvon LabRAM ARAMIS Raman microscope with an air cooled (-70 C) charge-coupled device detector. A grating of 1800 g/mm and a slit of 100 μ m was used with a 50x objective and a wavelength of 633 nm. The spectral resolution was approximately 1 cm^{-1} . The spectra were collected from 1050-1800 cm^{-1} . Each spectrum was averaged 35 times with each acquisition being 30 seconds, resulting in a total scan time of 18 minutes.

Preparation of Pigments

The pigments were commercially sourced from AGS Company (graphite), Coates Charcoal (charcoal), Kremer Pigments (bone black, exclusive and ultramarine blue, dark), and Rublev Colours (lamp black). Pure pigments were thoroughly mixed with gum arabic in a separate vessel to prepare a smooth watercolor paint. For the black-black mixtures, the powdered pigments were weighed and mixed with a mortar and pestle as powders, then together mixed with gum arabic to prepare the watercolor paint. The densities of the pigments were measured by packing the individual pigment into a known volume, 0.5 mL, and measuring the weight. The measured densities are as follows: Bone Black 0.71 g/cm³, Charcoal 0.36 g/cm³, Graphite 0.74 g/cm³, Lamp Black 0.33 g/cm³. For ultramarine blue-black mixtures, the paints were prepared separately as described for pure pigments, then mixed together as one would on a palette. The prepared paints were applied to a commercially sourced pre-primed canvas in two layers, allowing for drying in between. Note that gum arabic itself does not cause pump-probe signals, as shown in S18 in the supplementary material.

Adapted Phasor Analysis for Visualization

A more detailed description of adapted phasor analysis can be found here (52). In brief, single-frequency sine and cosine Fourier coefficients are calculated for TA curves in each pixel of a P-P image stack and plotted as the x- and y- coordinates on a 2-dimensional plane, the phasor plot. For example, phasor coordinates of a positive (negative) single-exponential decay would map onto a specific point on the semi-circle in the first quadrant (third quadrant). Nearby points in a phasor diagram correspond to similar P-P signals. Thus, adapted phasor analysis provides a simple way of visualizing the inherently three-dimensional P-P image stacks. The phasor frequency, the frequency for which the Fourier components are calculated, is a degree of freedom that can be adjusted to tune the phasor plot, i.e. to be more sensitive to specific timescales in the TA data. For the black pigment data, we use a frequency of $f = 0.25$ THz which nicely separates the signals of charcoal into two distinct areas in the phasor plot. The first area is in the first quadrant and corresponds to the positive charcoal signals while the second area falls into the third quadrant which corresponds to the negative charcoal signals. Adapted phasor analysis thus provides a

631 convenient way of separating these signals based on their position in the phasor plot. The
632 positive (negative) TA curve shown in red (yellow) in figure 3B corresponds to all pixels
633 that are selected with the red (yellow) ellipse in the phasor plot.
634

635 Data Analysis and Classification Algorithms

636 The goal of our data analysis is to find a classifier function that predicts pigments based
637 on TA curves. After data pre-processing, we use P-P image stacks of pure pigments
638 (reference samples) to train a classifier algorithm. This classifier algorithm is then used to
639 classify P-P image stacks of two-pigment mixtures. In many similar scenarios such as
640 hyperspectral imaging or Raman imaging, where the spectra of reference samples are
641 well-known, unmixing algorithms are the standard approach. Thus, we decided to use an
642 unmixing algorithm as a baseline and compare it with an SVM which is more suited to
643 deal with heterogeneous data such as TA curves. Here we describe the data pre-processing
644 and training in more detail.
645

646 *Data pre-processing of pump-probe image stacks:* Raw P-P data are pre-processed before
647 training and classification in the following steps: (1) Due to pump-leakage into the
648 detector and potential long-lived ($\tau \gg 12.5$ ns, the time spacing between consecutive
649 pulses) radiative states at the probe wavelength, we average three P-P images at negative
650 time delays ($\Delta t = -10$ ps, -5 ps, and -2.5ps) and subtract them from the entire P-P stack,
651 thereby eliminating a constant offset in the data. These three time delays are then removed
652 from the image, resulting in the 24 time delays mentioned in the main text, to reduce the
653 dimensionality for machine learning, improving training and classification speed. (2) Raw
654 P-P data is intentionally oversampled beyond the diffraction limit, and we apply a spatial
655 moving average filter of kernel size two to increase SNR. (3) A global intensity threshold
656 is applied to all P-P stacks to discriminate noise from P-P signals. The threshold is based
657 on the maximum in the histogram of all P-P stack projections. (4) We then reduce the
658 image size with an average pooling by factor two, consistent with the oversampling, to
659 reduce data amount and increase training and classification speed.
660

661 *Unmixing Algorithm:* TA curves of pigments ultramarine blue, bone black, graphite, and
662 lamp black are homogeneous, and their reference P-P stacks are spatially averaged to
663 reference TA curves, as shown in figure 3 and S8. Charcoal is the only pigment showing
664 appreciable signal heterogeneity, containing both negative and positive TA curves, see
665 figure 3B. We use adapted phasor analysis to derive two reference TA curves for charcoal,
666 as described in the “Adapted Phasor Analysis for Visualization” section of materials and
667 methods. All transient absorption curves, averaged reference curves and single pixel
668 curves of mixtures, are normalized to their respective extremum. The reference curves for
669 each pigment are arranged into an endmember matrix U . The unmixing algorithm uses the
670 endmember signatures in matrix U to perform a fully constrained least squares fit on each
671 pixel, determining the proportion of each reference pigment in every pixel. “Fully
672 constrained” incorporates a non-negativity constraint, which permits only positive values
673 in the abundance fractions and a “sum-to-1” constraint requiring the sum over the
674 abundance fractions to be 1. This allows interpretation of the abundance fraction as
675 probability, and we assign the pigment with the highest probability to a given pixel. The
676 algorithm used in this manuscript is based on reference (56) and was implemented in
677 pysptools 0.15.0 by Christian Therien (57).

678 To assess the performance of the unmixing algorithm we randomly split the pure pigment
679 data in a 50-50 ratio into test and train set. The train set is used to compute average
680 reference TA curves, and these curves are then used to unmix the test data. The test

accuracy acc_{test} describes the fraction of correctly identified TA curves in the test data. We repeat this procedure 5 times to compute the mean value and standard deviation of the test accuracy. We use three unmixing algorithms: “Unmix” which contains reference TA curves of all 5 pigments (bone black, charcoal, graphite, lamp black, ultramarine blue), “Unmix-nobb” without the pigment bone black, and “Unmix-nolb” without the pigment lamp black. The accuracy of correctly identifying pure pigment data of the “Unmix” algorithm is $acc_{test} = (83 \pm 0)$, of the “Unmix-nobb” algorithm is $acc_{test} = (88 \pm 0)$, and of the “Unmix-lb” algorithm is $acc_{test} = (92 \pm 0)$. A comprehensive summary of unmixing and SVM algorithm accuracies are shown in table S2 in the supplementary material. A graphical scheme of the unmixing algorithm and its data flow is shown in figure S19. For unmixing of pigment mixtures, the entire pure pigment data is used as average reference TA curves.

Support Vector Machine (SVM): An SVM is a supervised learning algorithm that classifies data into one of two classes. The algorithm takes n-dimensional input vectors (here TA curves consisting of 24 time delays) and separates them by a n-1 dimensional hyperplane. This plane maximizes the margin between classes and is defined by the support vectors, the data points from each class that are nearest to the hyperplane and most influence its position. An SVM can be expanded to multiclass classification with a “one-versus-rest” strategy. It naturally lends itself to heterogeneous data and is well suited for high-dimensional data. We use the scikit-learn 1.4 (58) and the imbalanced-learn 0.12.0 (59) python packages for training, validation and testing of the SVM. We randomly select around 27,500, single pixel P-P TA curves (imblearn RandomUnderSampler), 5500 from each reference sample. We split them into training and testing sets with a ratio of 3:1. We perform a hyperparameter optimization (scikit-learn GridSearchCV) of C and γ for the SVM (scikit-learn SVC with radial basis functions as kernel). The regularization parameter C controls the trade-off between minimizing error on the training data and maintaining a smooth decision boundary. Lower values of C encourage a simpler, smoother decision boundary, which may allow for some misclassification in the training set but is more likely to generalize well to the test data. In contrast, higher values of C prioritize the correct classification of all training data, resulting in a more complex decision boundary that often leads to overfitting. The γ parameter determines the influence of a single training example on the decision boundary. A large γ value confines the influence of a training example to its immediate neighbors, which can create a more complex model that may overfit the data. Conversely, a smaller γ value allows each training example to have a broader influence, leading to a smoother decision boundary that is more likely to generalize better to unseen data. The hyperparameter optimization is performed on the training set with a stratified-5-fold cross validation strategy (scikit-learn StratifiedKFold), with accuracy as the scoring metric, and with a standard scaler applied to all TA curves (scikit-learn StandardScaler). The performance of the best classifier is inferred by measuring accuracy of the classifier applied on the test set. Accuracy is defined as the percentage of correctly classified pixels divided by all classified pixels. The entire procedure is repeated 5 times, and we compute the average and standard deviation over all five runs.

We train three SVM classifiers: “SVM” which is trained on all pigments (bone black, charcoal, graphite, lamp black, ultramarine blue), “SVM-nobb” which is trained without the pigment bone black, and “SVM-nolb” which is trained without the pigment lamp black. The validation accuracy for the SVM that is trained on all pigments is $acc_{valid} = (85.15 \pm 0.15)\%$ and the testing accuracy is $acc_{test} = (85.43 \pm 0.34)\%$. For the classifier SVM-nobb the validation accuracy is $acc_{valid} = (95.88 \pm 0.04)\%$ and the testing accuracy is

731 $acc_{test} = (96.01 \pm 0.14)\%$ and for the classifier SVM-nolb the validation accuracy is acc_{valid}
732 $= (94.57 \pm 0.11)\%$ and the testing accuracy is $acc_{test} = (94.40 \pm 0.38)\%$. The accuracies
733 based on validation set are comparable to the accuracies based on the test set for all three
734 classifiers which lets us conclude that they are well-trained and that we capture the whole
735 range of signal variety. We then use the optimal hyperparameters and the entire reference
736 data to train the final SVM classifiers that are used to classify two-pigment mixtures. Note
737 that the final classifiers are solely trained on reference pigment data and have not been
738 trained with any data from mixed samples. The confusion matrix of each classifier is
739 shown in figure S20. A comprehensive summary of unmixing and SVM algorithm
740 accuracies are shown in table S2 in the supplementary material. A graphical scheme of the
741 SVM algorithm and its data flow is shown in figure S21.

745 References

1. J. Winter, E. West FitzHugh, "Pigments Based on Carbon" in *Artists' Pigments*, B. H. Berrie, Ed. (Archetype Publications, 2007), vol. 4.
2. J. Winter, The characterization of pigments based on carbon. *Studies in Conservation* **28**, 49-66 (1983).
3. B. David, B. Barker, F. Petchey, J.-J. Delannoy, J.-M. Geneste, C. Rowe, M. Eccleston, L. Lamb, R. Whear, A 28,000 year old excavated painted rock from Nawarla Gabarnmang, northern Australia. *Journal of Archaeological Science* **40**, 2493-2501 (2013).
4. N. Eastaugh, V. Walsh, T. Chaplin, *Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments* (Butterworth-Heinemann, 2008).
5. E. Tomasini, G. Siracusano, M. S. Maier, Spectroscopic, morphological and chemical characterization of historic pigments based on carbon. Paths for the identification of an artistic pigment. *Microchemical Journal* **102**, 28-37 (2012).
6. A. Coccato, J. Jehlicka, L. Moens, P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments. *Journal of Raman Spectroscopy* **46**, 1003-1015 (2015).
7. P.-O. Autran, C. Dejoie, P. Bordet, J.-L. Hodeau, C. Dugand, M. Gervason, M. Anne, P. Martinetto, Revealing the Nature of Black Pigments Used on Ancient Egyptian Papyri from Champollion Collection. *Analytical Chemistry* **93**, 1135-1142 (2021).
8. E. Basso, F. Carò, D. H. Abramitis, Polychromy in Ancient Greek Sculpture: New Scientific Research on an Attic Funerary Stele at the Metropolitan Museum of Art. *Applied Sciences* **13**, 3102 (2023).
9. A. Lluveras-Tenorio, A. Spepi, M. Pieraccioni, S. Legnaioli, G. Lorenzetti, V. Palleschi, M. Vendrell, M. P. Colombini, M. R. Tine, C. Duce, I. Bonaduce, A multi-analytical characterization of artists' carbon-based black pigments. *J. Therm. Anal. Calorim.* **138**, 3287-3299 (2019).
10. M. Picollo, M. Bacci, A. Casini, F. Lotti, S. Porcinai, B. Radicati, L. Stefani, "Fiber Optics Reflectance Spectroscopy: A Non-destructive Technique for the Analysis of Works of Art" in *Optical Sensors and Microsystems: New Concepts, Materials, Technologies*, S. Martellucci, A. N. Chester, A. G. Mignani, Eds. (Springer US, Boston, MA, 2000), pp. 259-265.
11. M. Aceto, A. Agostino, G. Fenoglio, A. Idone, M. Gulmini, M. Picollo, P. Ricciardi, J. K. Delaney, Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. *Analytical Methods* **6**, 1488-1500 (2014).
12. A. Cosentino, Identification of pigments by multispectral imaging; a flowchart method. *Heritage Science* **2**, 8 (2014).

781 13. C. Cucci, J. K. Delaney, M. Picollo, Reflectance Hyperspectral Imaging for Investigation
782 of Works of Art: Old Master Paintings and Illuminated Manuscripts. *Accounts of*
783 *Chemical Research* **49**, 2070-2079 (2016).

784 14. O. Dill, M. Vermeulen, A. McGeachy, M. Walton, Multi-Modal, Non-Invasive
785 Investigation of Modern Colorants on Three Early Modern Prints by Maria Sibylla
786 Merian. *Heritage* **4**, 1590-1604 (2021).

787 15. D. Lauwers, A. G. Hutado, V. Tanevska, L. Moens, D. Bersani, P. Vandenabeele,
788 Characterisation of a portable Raman spectrometer for in situ analysis of art objects.
789 *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **118**, 294-301
790 (2014).

791 16. A. Merlen, J. G. Buijnsters, C. Pardanaud, A Guide to and Review of the Use of
792 Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon
793 Solids: from Graphene to Amorphous Carbons. *Coatings* **7**, 153 (2017).

794 17. O. Beyssac, B. Goffé, J.-P. Petitet, E. Froigneux, M. Moreau, J.-N. Rouzaud, On the
795 characterization of disordered and heterogeneous carbonaceous materials by Raman
796 spectroscopy. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **59**,
797 2267-2276 (2003).

798 18. E. P. Tomasini, E. B. Halac, M. Reinoso, E. J. Di Liscia, M. S. Maier, Micro-Raman
799 spectroscopy of carbon-based black pigments. *Journal of Raman Spectroscopy* **43**, 1671-
800 1675 (2012).

801 19. N. S. Daly, M. Sullivan, L. Lee, K. Trentelman, Multivariate analysis of Raman spectra of
802 carbonaceous black drawing media for the in situ identification of historic artist materials.
803 *Journal of Raman Spectroscopy* **49**, 1497-1506 (2018).

804 20. E. P. Tomasini, B. Gómez, E. B. Halac, M. Reinoso, E. J. Di Liscia, G. Siracusano, M. S.
805 Maier, Identification of carbon-based black pigments in four South American polychrome
806 wooden sculptures by Raman microscopy. *Heritage Science* **3**, 19 (2015).

807 21. A. Vila, N. Ferrer, J. F. García, Chemical composition of contemporary black printing
808 inks based on infrared spectroscopy: Basic information for the characterization and
809 discrimination of artistic prints. *Analytica Chimica Acta* **591**, 97-105 (2007).

810 22. G. Abdel-Maksoud, M. Ibrahim, Y. M. Issa, M. Magdy, Investigation of painting
811 technique of Coptic icon by integrated analytical methods: imaging, spectroscopic and
812 chemometric methods. *Journal of Archaeological Science: Reports* **29**, 102085 (2020).

813 23. A. Daveri, M. Malagodi, M. Vagnini, The Bone Black Pigment Identification by
814 Noninvasive, In Situ Infrared Reflection Spectroscopy. *Journal of Analytical Methods in*
815 *Chemistry* **2018**, 6595643 (2018).

816 24. G. D. Smith, R. J. Clark, Raman microscopy in archaeological science. *Journal of*
817 *archaeological science* **31**, 1137-1160 (2004).

818 25. M. Sawczak, A. Kamińska, G. Rabczuk, M. Ferretti, R. Jendrzejewski, G. Śliwiński,
819 Complementary use of the Raman and XRF techniques for non-destructive analysis of
820 historical paint layers. *Applied Surface Science* **255**, 5542-5545 (2009).

821 26. V. Gonzalez, T. Calligaro, L. Pichon, G. Wallez, B. Mottin, Leonardo da Vinci's drapery
822 studies: characterization of lead white pigments by μ -XRD and 2D scanning XRF.
823 *Applied Physics A* **121**, 849-856 (2015).

824 27. C. Caliri, M. Bicchieri, P. Biocca, F. P. Romano, In situ macro X-Ray fluorescence
825 scanning on a Leonardo da Vinci portrait. *X-Ray Spectrometry* **50**, 332-340 (2021).

826 28. S. Kogou, L. Lee, G. Shahtahmassebi, H. Liang, A new approach to the interpretation of
827 XRF spectral imaging data using neural networks. *X-Ray Spectrometry* **50**, 310-319
828 (2021).

829 29. C. I. Hiley, G. Hansford, N. Eastaugh, High-resolution non-invasive X-ray diffraction
830 analysis of artists' paints. *Journal of Cultural Heritage* **53**, 1-13 (2022).

831 30. J. Simoen, S. De Meyer, F. Vanmeert, N. de Keyser, E. Avranovich, G. Van der Snickt, A.
832 Van Loon, K. Keune, K. Janssens, Combined Micro- and Macro scale X-ray powder
833 diffraction mapping of degraded Orpiment paint in a 17th century still life painting by
834 Martinus Nellius. *Heritage Science* **7**, 83 (2019).

835 31. S. Cersoy, P. Martinetto, P. Bordet, J. L. Hodeau, E. Van Elslande, P. Walter, Identifying
836 and quantifying amorphous and crystalline content in complex powdered samples:
837 application to archaeological carbon blacks. *Journal of Applied Crystallography* **49**, 585-
838 593 (2016).

839 32. W. R. Zipfel, R. M. Williams, W. W. Webb, Nonlinear magic: multiphoton microscopy in
840 the biosciences. *Nature Biotechnology* **21**, 1369-1377 (2003).

841 33. G. Filippidis, G. J. Tserevelakis, A. Selimis, C. Fotakis, Nonlinear imaging techniques as
842 non-destructive, high-resolution diagnostic tools for cultural heritage studies. *Applied
843 Physics A* **118**, 417-423 (2015).

844 34. M. Mari, G. Filippidis, Non-Linear Microscopy: A Well-Established Technique for
845 Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage
846 Studies. *Sustainability* **12**, 1409 (2020).

847 35. A. Dal Fovo, M. Castillejo, R. Fontana, Nonlinear optical microscopy for artworks
848 physics. *La Rivista del Nuovo Cimento* **44**, 453-498 (2021).

849 36. A. Dal Fovo, M. Sanz, M. Oujja, R. Fontana, S. Mattana, R. Cicchi, P. Targowski, M.
850 Sylwestrzak, A. Romani, C. Grazia, G. Filippidis, S. Psilodimitrakopoulos, A. Lemonis,
851 M. Castillejo, In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation
852 Fluorescence Microscopy. *Sustainability* **12**, 3831 (2020).

853 37. M. C. Fischer, J. W. Wilson, F. E. Robles, W. S. Warren, Invited Review Article: Pump-
854 probe microscopy. *Review of Scientific Instruments* **87**, 031101 (2016).

855 38. D. Grass, G. M. Beasley, M. C. Fischer, M. A. Selim, Y. Zhou, W. S. Warren, Contrast
856 mechanisms in pump-probe microscopy of melanin. *Opt. Express* **30**, 31852-31862
857 (2022).

858 39. D. y. Davydova, A. de la Cadena, D. Akimov, B. Dietzek, Transient absorption
859 microscopy: advances in chemical imaging of photoinduced dynamics. *Laser & Photonics
860 Reviews* **10**, 62-81 (2016).

861 40. G. Delport, S. Macpherson, S. D. Stranks, Imaging Carrier Transport Properties in Halide
862 Perovskites using Time-Resolved Optical Microscopy. *Advanced Energy Materials* **10**,
863 1903814 (2020).

864 41. S. Deng, D. D. Blach, L. Jin, L. Huang, Imaging Carrier Dynamics and Transport in
865 Hybrid Perovskites with Transient Absorption Microscopy. *Advanced Energy Materials*
866 **10**, 1903781 (2020).

867 42. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Long-range hot-carrier transport
868 in hybrid perovskites visualized by ultrafast microscopy. *Science* **356**, 59-62 (2017).

869 43. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, W. S. Warren, Pump-Probe
870 Imaging Differentiates Melanoma from Melanocytic Nevi. *Science Translational
871 Medicine* **3**, 71ra15-71ra15 (2011).

872 44. A. A. Istratov, O. F. Vyvenko, Exponential analysis in physical phenomena. *Review of
873 Scientific Instruments* **70**, 1233-1257 (1999).

874 45. M. Bertero, P. Boccacci, E. R. Pike, On the recovery and resolution of exponential
875 relaxation rates from experimental data: a singular-value analysis of the Laplace transform
876 inversion in the presence of noise. *Proceedings of the Royal Society A: Mathematical and
877 Physical Sciences* **383**, 15-29 (1982).

878 46. T. Villafana, W. Brown, W. Warren, M. Fischer, *Ultrafast pump-probe dynamics of iron
879 oxide based earth pigments for applications to ancient pottery manufacture* (SPIE Optical
880 Metrology, SPIE, 2015), vol. 9527.

881 47. J. Yu, W. S. Warren, M. C. Fischer, Spectroscopic Differentiation and Microscopic
882 Imaging of Red Organic Pigments Using Optical Pump–Probe Contrast. *Analytical*
883 *Chemistry* **90**, 12686-12691 (2018).

884 48. J. Yu, W. S. Warren, M. C. Fischer, Visualization of vermillion degradation using pump-
885 probe microscopy. *Science Advances* **5**, eaaw3136 (2019).

886 49. T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, M. C. Fischer,
887 Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork.
888 *Proc Natl Acad Sci U S A* **111**, 1708-1713 (2014).

889 50. T. E. Villafana, J. K. Delaney, W. S. Warren, M. C. Fischer, High-resolution, three-
890 dimensional imaging of pigments and support in paper and textiles. *Journal of Cultural*
891 *Heritage* **20**, 583-588 (2016).

892 51. Y. Zhou, D. Grass, W. S. Warren, M. C. Fischer, Non-destructive three-dimensional
893 imaging of artificially degraded CdS paints by pump-probe microscopy. *Journal of*
894 *Physics: Photonics* **6**, 025013 (2024).

895 52. F. E. Robles, J. W. Wilson, M. C. Fischer, W. S. Warren, Phasor analysis for nonlinear
896 pump-probe microscopy. *Opt. Express* **20**, 17082-17092 (2012).

897 53. O. Ronneberger, P. Fischer, T. Brox, in *Medical Image Computing and Computer-Assisted*
898 *Intervention – MICCAI 2015*, N. Navab, J. Hornegger, W. M. Wells, A. F. Frangi, Eds.
899 (Springer International Publishing, Cham, 2015), pp. 234-241.

900 54. J. Jiang, D. Grass, Y. Zhou, W. S. Warren, M. C. Fischer, Beyond intensity modulation:
901 new approaches to pump-probe microscopy. *Opt. Lett.* **46**, 1474-1477 (2021).

902 55. A. Vandivere, A. van Loon, K. A. Dooley, R. Haswell, R. G. Erdmann, E. Leonhardt, J.
903 K. Delaney, Revealing the painterly technique beneath the surface of Vermeer’s Girl with
904 a Pearl Earring using macro- and microscale imaging. *Heritage Science* **7**, 64 (2019).

905 56. D. C. Heinz, C.-I. Chang, M. L. G. Althouse, Fully constrained least-squares based linear
906 unmixing [hyperspectral image classification]. *IEEE 1999 International Geoscience and*
907 *Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293)* **2**, 1401-1403 vol.1402
908 (1999).

909 57. C. Therien, PySptools, version 0.15.0, SourceForge (2018);
910 <https://pysptools.sourceforge.io/index.html>

911 58. F. Pedregosa, G. Varoquax, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
912 Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
913 Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python. *Journal of*
914 *Machine Learning Research* **12**, 2825-2830 (2011).

915 59. G. Lemaitre, F. Nogueira, C. K. Aridas, Imbalanced-learn: A Python Toolbox to Tackle
916 the Curse of Imbalanced Datasets in Machine Learning. *Journal of Machine Learning*
917 *Research* **18** (17), 1-5 (2017).

918 60. H. V. Kastenholz, M. I. Topper, W. S. Warren, M. C. Fischer, D. Grass, Noninvasive
919 identification of carbon-based black pigments with pump-probe microscopy, V2, Duke
920 Research Data Repository (2023); <https://doi.org/10.7924/r48059m9k>

921
922
923 **Acknowledgments**

924 We thank Yuxiao (Michelle) Wei for stimulating discussions and support for spectral
925 unmixing. We thank Yue Zhou and Jacob Lindale for discussions and support regarding
926 pump-probe microscopy and cultural heritage science. The elemental analysis and Raman
927 spectroscopy was performed using instruments at the Duke University Shared Materials
928 Instrumentation Facility (SMIF), a member of the North Carolina Research Triangle
929 Nanotechnology Network (RTNN), which is supported by the National Science

930 Foundation (award number ECCS-2025064) as part of the National Nanotechnology
931 Coordinated Infrastructure (NNCI).

932
933 **Funding:** This material is based upon work supported by the National Science Foundation
934 Division of Chemistry under Award No. CHE-2108623 (M.C.F.). Martin Fischer also
935 received salary support from the Chan Zuckerberg Initiative (grant no. 2021-242921).
936

937 **Author contributions:** Conceptualization and Methodology: HVK, DG, MCF, WSW;
938 Investigation: HVK, MT; Formal Analysis: DG; Visualization: HVK, DG, MCF; Writing-
939 original draft: HVK, DG; Writing-review & editing: HVK, DG, MCF, WSW, MT;
940 Funding acquisition and Supervision: WSW, MCF.
941

942 **Competing interests:** Authors declare that they have no competing interests.
943

944 **Data and materials availability:** All data needed to evaluate the conclusions in the paper
945 are present in the paper and/or the Supplementary Materials. Pump-probe data sets and
946 evaluation code are made available on the Duke University Research Data Repository
947 <https://doi.org/10.7924/r48059m9k> (60).
948

949 **Supplementary Materials**

950 Fig. S1. Reflectance spectra
951

952 Table S1. Summary of elements identified in pigments
953

954 Fig. S2. Elemental spectrum of bone black
955

956 Fig. S3. Elemental spectrum of charcoal
957

958 Fig. S4. Elemental spectrum of graphite
959

960 Fig. S5. Elemental spectrum of lamp black
961

962 Fig. S6. Elemental spectrum of ultramarine blue
963

964 Fig. S7. Raman spectra of pure carbon-based black pigments
965

966 Fig. S8. Average transient absorption curve and pump-probe image for ultramarine blue
967

968 Fig. S9 Transient absorption curves of bone black, charcoal, graphite, lamp black, and
969 ultramarine blue
970

971 Fig. S10. Pump-probe images for bone black, charcoal, graphite, and lamp black
972

973 Fig. S11. Brightfield images of the six black-black mixtures
974

975 Fig. S12. Average transient absorption curves of all black-black mixtures
976

977 Fig. S13. Brightfield images of the twelve shading mixtures and the five pure pigments
978

979 Fig. S14. Average transient absorption curves of all blue-black mixtures
980

981 Fig. S15. Randomly selected single pixel transient absorption curves of all five pigments
982

983 Table S2. Overall accuracy for SVM, SVM-nobb, SVM-nolb, unmixing, unmixing-nobb,
984 and unmixing-nolb classifiers
985

986 Table S3. Support Vector Machine classification accuracy for the black-black mixtures
987

988 Fig. S16. Pigment map comparison between SVM-nobb and SVM of Graphite – Lamp
989 Black
990

991 Table S4. Support Vector Machine classification accuracy for the shading mixtures
992

993 Fig. S17. Schematic of experimental set-up for pump-probe microscopy
994

995 Fig. S18. Transient absorption curve of gum arabic
996

997 Fig. S19. Unmixing algorithm schematic
998

999 Fig. S20. Confusion matrix for classifiers SVM, SVM-nobb, and SVM-nolb for pure
999 pigments

980 Fig. S21. Support Vector Machine algorithm schematic
981

982 **Figure Captions**
983

984 **Figure 1. Multiphoton nonlinear processes accessible in pump-probe microscopy.**
985 These interactions modulate the probe laser intensity, generally leading to complex,
986 bipolar transient absorption curves as the time delay is varied.

987 **Figure 2. Spatially averaged pump-probe transient absorption curves of bone black,**
988 **charcoal, graphite, and lamp black.**

989 **Figure 3. Phasor plots and pump-probe signal components of the carbon-based black**
990 **pigments.** Left: The phasor coordinates of all signal-containing pixels in pure pigments
991 (bone black, charcoal, graphite, and lamp black, respectively) as histograms, computed
992 with a phasor frequency of $f=0.25$ THz. Right: Averaged pump-probe signals
993 corresponding to the circled regions of the phasor plot.

994 **Figure 4. Summary of SVM performance on two-black pigment mixtures.** The bar
995 charts display the breakdown for classification of each black-black mixture. The full bar
996 represents 100%. Green corresponds to correctly classified pixels. Red corresponds to
997 misclassified pixels. Percentages with an asterisk denote mixtures that have
998 misclassification at comparable percentages of correct classifications. These mixtures
999 perform better with the appropriate reduced pigment classifier.

1000 **Figure 5. Pigment map for three black-black mixtures.** A: charcoal-graphite. B:
1001 graphite-lamp black. C: bone black-charcoal. The percentages are for these specific fields
1002 of view and deviate from the average for each mixture.

1003 **Figure 6. Summary of SVM performance on blue - black mixtures.** A: bone black-
1004 ultramarine blue. B: charcoal-ultramarine blue. C: graphite-ultramarine blue. D: lamp
1005 black-ultramarine blue. The full bar represents 100%. Blue and green correspond to
1006 correctly classified pixels, blue for ultramarine blue and green for the black pigment. Red
1007 corresponds to the misclassified pixels.

1008 **Figure 7. Pigment map for three ultramarine blue-black mixtures.** A: 75:25
1009 ultramarine blue – charcoal. B: 50:50 ultramarine blue – graphite. C: 50:50 ultramarine
1010 blue – bone black. The percentages are for these specific fields of view and deviate from
1011 the average for each mixture.

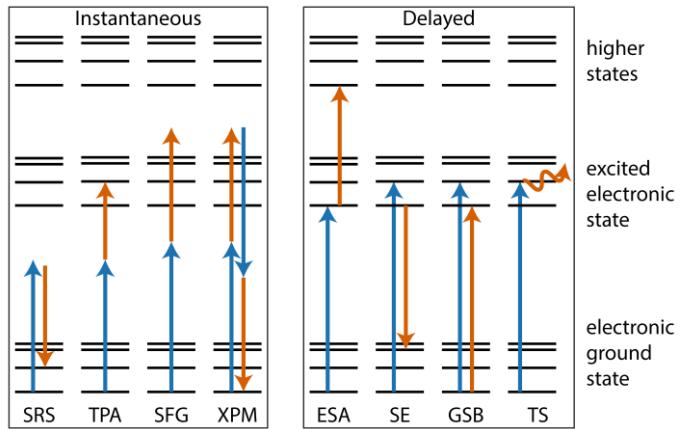
1 **FIGURES**

Figure 1. Multiphoton nonlinear processes accessible in pump-probe microscopy. These interactions modulate the probe laser intensity, generally leading to complex, bipolar transient absorption curves as the time delay is varied.

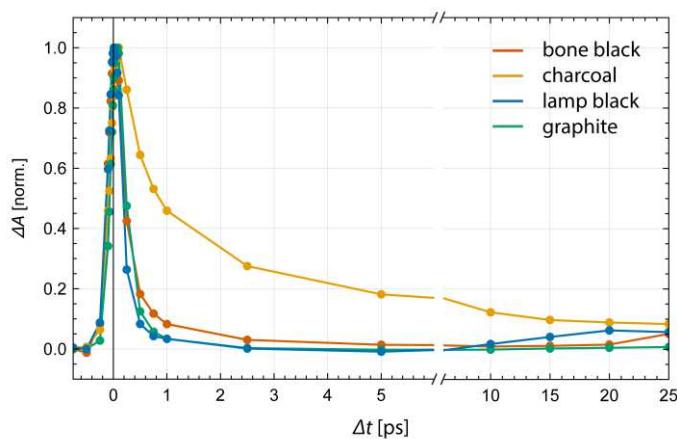
2
3
4

Figure 2. Spatially averaged pump-probe transient absorption curves of bone black, charcoal, graphite, and lamp black.

5
6
7

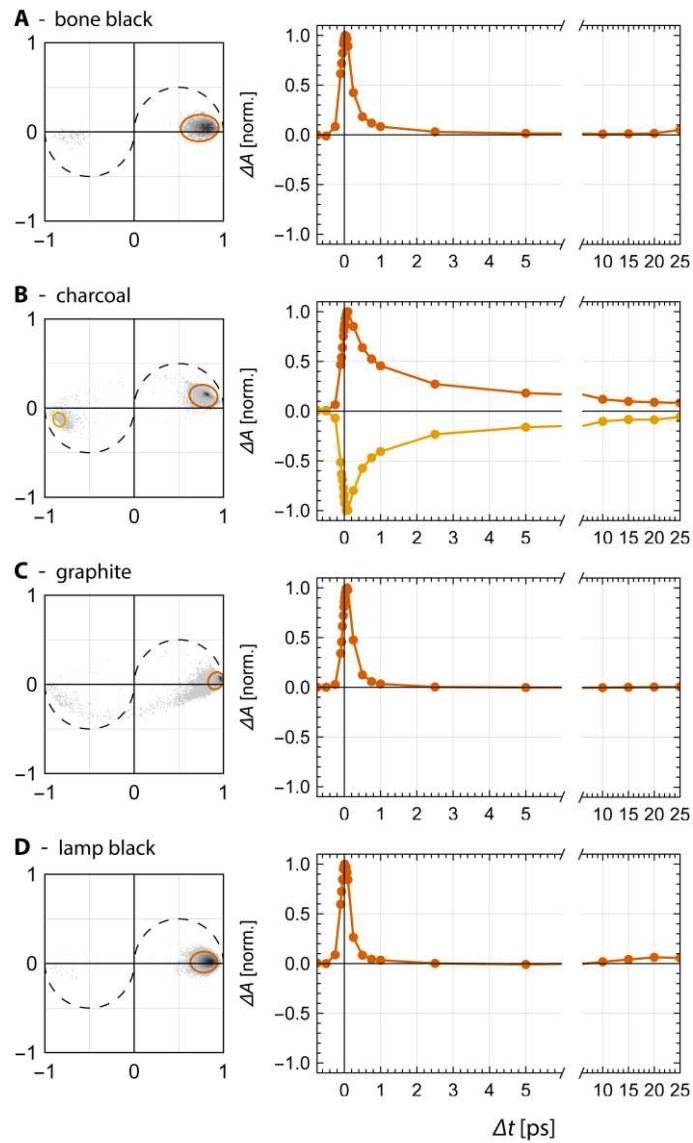


Figure 3. Phasor plots and pump-probe signal components of the carbon-based black pigments. Left: The phasor coordinates of signal-containing pixels in pure pigments (bone black, charcoal, graphite, and lamp black, respectively) as histograms, computed with phasor frequency of $f=0.25$ THz. Right: Averaged pump-probe signals corresponding to the circled regions of the phasor plot.

8
9

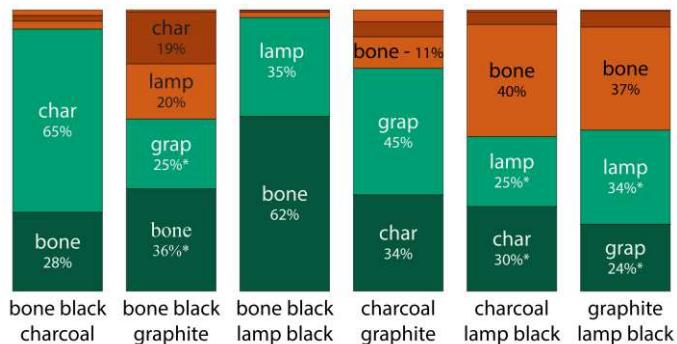


Figure 4. Summary of SVM performance on two-black pigment mixtures. The bar charts display the breakdown for classification of each black-black mixture. The full bar represents 100%. Green corresponds to correctly classified pixels. Red corresponds to misclassified pixels. Percentages with an asterisk denote mixtures that have misclassification at comparable percentages of correct classifications. These mixtures perform better with the appropriate reduced pigment classifier.

10

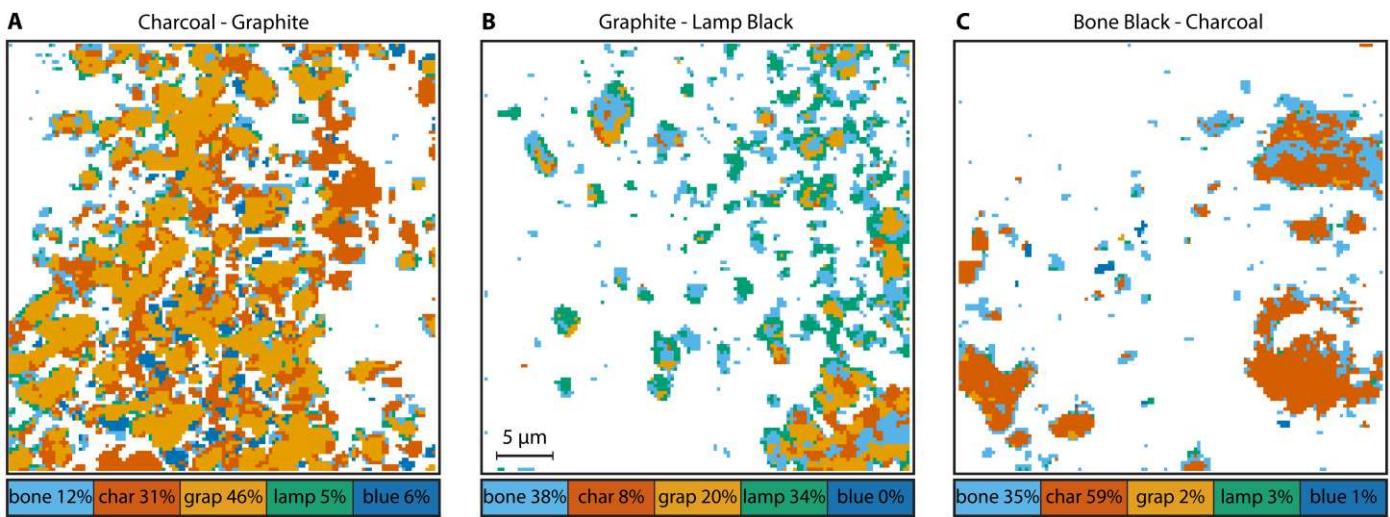


Figure 5. Pigment map for three black-black mixtures. A: charcoal-graphite. B: graphite-lamp black. C: bone black-charcoal. The percentages are for these specific fields of view and deviate from the average for each mixture.

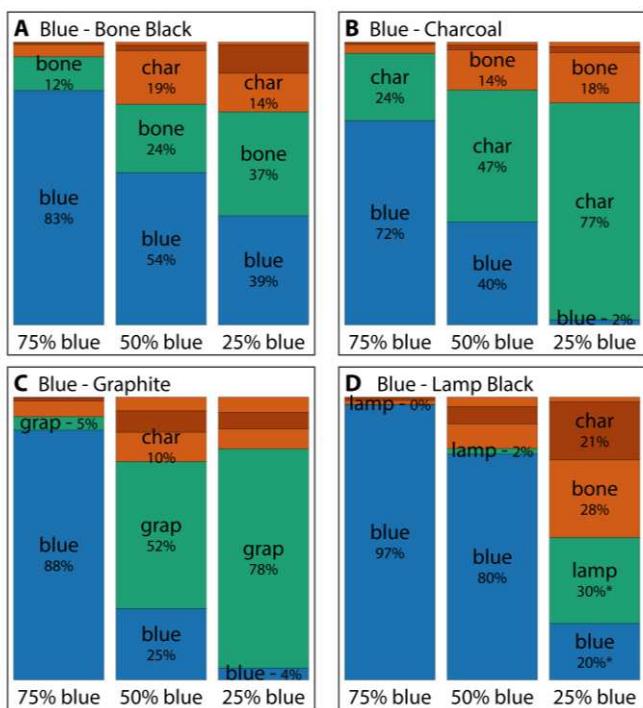


Figure 6. Summary of SVM performance on blue - black mixtures. A: bone black-ultramarine blue. B: charcoal-ultramarine blue. C: graphite-ultramarine blue. D: lamp black-ultramarine blue. The full bar represents 100%. Blue and green correspond to correctly classified pixels, blue for ultramarine blue and green for the black pigment. Red corresponds to the misclassified pixels.

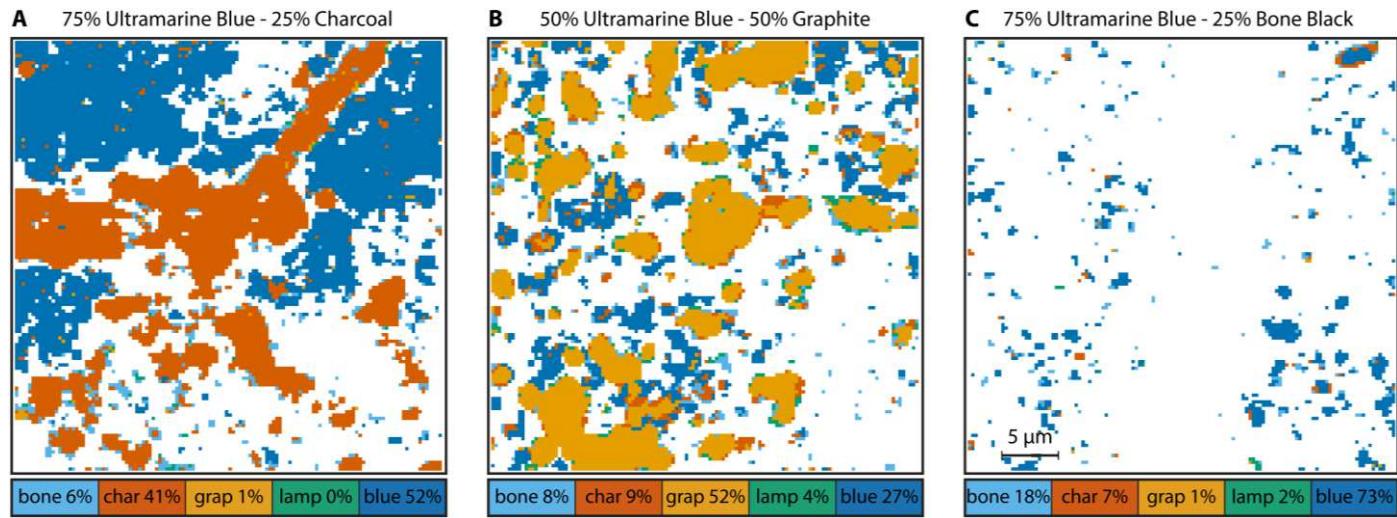


Figure 7. Pigment map for three ultramarine blue-black mixtures. A: 75:25 ultramarine blue – charcoal. B: 50:50 ultramarine blue – graphite. C: 50:50 ultramarine blue – bone black. The percentages are for these specific fields of view and deviate from the average for each mixture.