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Abstract 22 

Carbon-based black pigments, a widely used class of pigments, are difficult to 23 

differentiate with the noninvasive techniques currently used in cultural heritage science. 24 

We utilize pump-probe microscopy, coupled with a support vector machine, to distinguish 25 

common carbon-based black pigments as pure pigments, as two-component black pigment 26 

mixtures, and as a mixture of a black and a colorful pigment. This work showcases the 27 

potential of pump-probe microscopy to spatially differentiate carbon-based black 28 

pigments, which would have interesting applications to works of art.  29 

Teaser 30 

Pump-probe microscopy, coupled with a support vector machine, identifies carbon-based 31 

black pigments in various mixtures.  32 

  33 
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MAIN TEXT 34 

 35 

Introduction 36 

There is an unmet need in cultural heritage science for noninvasive identification of 37 

carbon-based black pigments, which are broadly used in paintings, drawings, and prints 38 

either by themselves or for shading another pigment (1). These pigments are produced 39 

through controlled burning of a material such as wood, bone, or oil (resulting in charcoal, 40 

bone black, and lamp black respectively) or occur naturally, such as graphite (2). They 41 

have been identified in some of the oldest pieces of art known to date, such as the cave 42 

paintings of Nawarla Gabarnmang in northern Australia (3). As their sourcing and cost are 43 

not prohibitive, carbon-based black pigments still represent one of the primary black 44 

pigment sources.  45 

 46 

Material identification is essential for conservation of a work of art and provides insight 47 

into its historical context and provenance. In cultural heritage, there are two classification 48 

schemes for carbon-based black pigments (1, 2, 4-6). The first is by the form of carbon 49 

present in the material, such as graphitic carbons, flame carbons, chars, cokes, or coals. 50 

This information is often inaccessible for black pigments incorporated into artwork. The 51 

second classification is based on the materials’ origin, such as mineral, vegetable, animal, 52 

or soot and smoke, but reliable information for pigments in historic works, particularly 53 

carbon-based based pigments where the naming conventions are tangled, is often missing. 54 

The two classifications schemes focus on descriptions for carbon-based black pigments 55 

and should not be viewed with a lens of modern carbon materials nor modern production 56 

methods.  57 

 58 

In either classification scheme, carbon-based black pigments are difficult to distinguish by 59 

existing methods. The most specific method for identification, scanning electron 60 

microscopy with energy dispersive spectroscopy (SEM-EDS), distinguishes by 61 

morphology and, occasionally, elemental composition in pure reference samples (1, 2, 5, 62 

7, 8). However, this requires physical removal of a cross-section from the work. Another 63 

approach, thermogravimetric analysis and differential scanning calorimetry, can 64 

characterize pure reference samples, but also requires invasive sampling (9). The go-to 65 

noninvasive methods in cultural heritage science are linear reflectance techniques, such as 66 

fiber-optic reflectance spectroscopy, hyperspectral imaging, multispectral imaging, and 67 

Raman spectroscopy due to their ease of use and portability (10-15). Unfortunately, linear 68 

reflectance of carbon-based black pigments is structureless in the visible-NIR region (11, 69 

12). Raman spectroscopy is a versatile technique that has been shown to be a powerful 70 

tool for the characterization of carbons (16). Presence of a carbon-based black pigment, in 71 

cultural heritage, is confirmed by two characteristic peaks at approximately 1580 cm-1 and 72 

1350 cm-1 (6, 17-20). The 1580 cm-1 peak (G Band) is the characteristic Raman peak for 73 

crystalline graphite (6, 17). The 1350 cm-1 peak (D or Disorder Band) is used as a measure 74 

of disorder in the carbonaceous material; it suggests the presence of heteroatoms in the 75 

graphitic structure, in-plane defects, or defects at the edge of the aromatic structure such 76 

as a tetrahedral carbon rather than the expected trigonal planar carbon (6, 17). Two studies 77 

have delineated pigments using the minute differences between Raman spectra and have 78 

applied the findings to cross-sections from works of arts (18, 20). Another study utilized 79 

Raman spectroscopy with principal component analysis (PCA) to identify carbonaceous 80 

drawing materials (19). Raman studies have not yet been expanded to analyze or map 81 

mixtures of carbon-based black pigments.  82 
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 83 

Features in Fourier transform infrared (FTIR) spectra can be used to distinguish between 84 

reference carbon-based black pigments (5, 21). However, FTIR spectra from paintings 85 

have had mixed results. The spectra are either dominated by signals from the ground layer 86 

and the resin varnish; any features that would indicate a carbon-based pigment are 87 

overpowered by the other materials present (22) or they rely on other compounds present, 88 

like hydroxyapatite in ivory and bone black (23). X-ray fluorescence (XRF) is another 89 

noninvasive technique used in cultural heritage science; it cannot distinguish 90 

carbonaceous materials (24) but reveals secondary elements like Ca and P in compounds 91 

like hydroxyapatite to support an identification or rule them out (25-28). X-ray diffraction 92 

(XRD) can differentiate crystalline carbon-based black pigments (like graphite) from non-93 

crystalline forms and can make further distinctions based on noncarbon components 94 

similar to XRF (1, 2, 5, 29). One group identified hydroxyapatite, indicative of bone or 95 

ivory black, with macroscopic XRD in a still life painting, showing how detection of 96 

crystalline, noncarbon components can result in identification (30). However, XRD 97 

typically cannot differentiate non-crystalline, amorphous carbon-based black pigments (2, 98 

4, 29). Another study has shown good results using powder XRD and a synchrotron 99 

beamline in identifying the type of carbon-based black pigment present in archeological 100 

samples, but required invasive sampling and powdering of the sample taken (31).  101 

 102 

Nonlinear optical microscopy techniques, such as two-photon fluorescence, second-103 

harmonic generation, and coherent anti-Stokes Raman microscopy, have been shown to 104 

provide noninvasive, high-resolution imaging contrast in applications to biology (32) and, 105 

more recently, cultural heritage science (33-36). These contrasts are easily measured 106 

because they are emissive, generating light at wavelengths different from the excitation 107 

light. However, these conventional multiphoton techniques will not aid in distinguishing 108 

carbon-based black pigments; there is little to no fluorescence to analyze (12), and 109 

nonlinear methods for Raman spectra do not result in different information from 110 

spontaneous Raman spectra.  111 

 112 

We demonstrate here that another nonlinear optical technique, femtosecond pump-probe 113 

(P-P) microscopy, can identify and distinguish common carbon-based black pigments 114 

noninvasively. P-P microscopy takes advantage of the nonlinear interactions of two laser 115 

pulses with the sample to provide remarkable molecular specificity: in many cases there 116 

are multiple competing molecular mechanisms which provide substantial contrast between 117 

nominally similar molecules. We focus here on transient absorption (TA), a subset of P-P, 118 

shown in figure 1, in which an excitation (pump) pulse affects the absorption of a time-119 

delayed (probe) pulse. ‘Instantaneous’ mechanisms such as stimulated Raman scattering 120 

(SRS), two-photon absorption (TPA), sum-frequency generation (SFG), and cross-phase 121 

modulation (XPM) give signals only when the pump and probe pulses overlap in time. 122 

Other molecular mechanisms result in delayed time signals. The pump laser pulse excites 123 

population into higher electronic states, creating a population hole in the electronic ground 124 

state. Intermolecular vibrational redistribution rapidly rearranges the population of the 125 

electronically excited molecules, which can be transferred by the second pulse into a 126 

higher electronic state via excited state absorption (ESA) or to a vibrationally excited level 127 

of the ground state through stimulated emission (SE). ESA and SE occur on roughly the 128 

same timescale, but the other effects have independent rates. The population hole in the 129 

ground state created by the pump pulse reduces the number of molecules available to be 130 

excited, reducing the absorption of the probe, a mechanism labeled ground state bleach 131 

(GSB). Finally, pump absorption can cause localized heating, which in turn, can change 132 
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the index of refraction. This affects the scattering profile through the grains of the 133 

material, resulting in an effect called thermal scattering (TS). All of these non-emissive P-134 

P interactions are separated from background signals using a modulation transfer scheme, 135 

explained in more detail in reference (37). Briefly, the pump laser is amplitude modulated, 136 

and a lock-in amplifier is used to detect amplitude modulation transferred to the probe 137 

laser; this transfer is only possible if the mechanism involves both pump and probe 138 

photons, and thus suppresses the, normally larger, linear signal contributions. 139 

 140 

Two popular methods have been used in the past to evaluate TA curves and assign them to 141 

molecular species: PCA and model fitting (37-43). Because several nonlinear optical 142 

interactions contribute to the measured P-P signals, the resulting TA curves are generally 143 

bipolar superpositions of multiple exponential decays and intrinsically non-orthogonal. As 144 

PCA works best for linear and orthogonal data structures, we consider it non-ideal for 145 

identification of carbon-based black pigments. Model fitting of TA curves with 146 

exponential basis functions is a powerful method and could allow for pigment 147 

identification based on specific lifetimes and amplitudes. However, there exists no method 148 

to unambiguously separate the superposition of multiple exponential decays into 149 

fundamental components. Also, there are limitations on how precise amplitudes and 150 

lifetimes from exponential decays can be extracted for a given signal-to-noise level (44, 151 

45). Because the P-P signals from black pigments are generally weak, spatial resolution 152 

would need to be sacrificed by down-sampling to achieve an appropriate signal-to-noise 153 

level for fitting. Therefore, we opt for alternative methods better suited to handle the weak 154 

signals typical of black pigments. 155 

 156 

P-P microscopy has successfully been applied in a wide range of applications, including 157 

melanin characterization in biological tissue (38). This application provides a good 158 

example of its versatility: the melanin absorption spectrum is broad and featureless, but P-159 

P images reveal notable heterogeneity from many competing molecular mechanisms 160 

shown in figure 1, and the contrast correlates with disease progression in melanoma. 161 

Previous cultural heritage applications include identification of iron oxides and red 162 

organic dyes, visualization of vermilion and cadmium yellow degradation, and as a tool to 163 

noninvasively obtain a virtual cross-section of historical works of art (46-51). Here, we 164 

use P-P microscopy to identify and analyze four of the most used carbon-based black 165 

pigments, bone black, charcoal, graphite, and lamp black. We demonstrate that P-P 166 

microscopy resolves nonlinear features of these pigments that allow identification in two-167 

compound black-black mixtures, applicable in separating an underdrawing from black 168 

paint used in upper layers, and to identify black pigments in shading applications, i.e. a 169 

mixture of black with different colored pigments, such as ultramarine blue. 170 

For cultural heritage applications, a specific region or volume of interest is imaged to 171 

derive pigment identity maps or abundance maps. This is similar to methods used in 172 

hyperspectral or Raman imaging, where unmixing algorithms determine the proportion of 173 

an a-priori known reference spectrum within every pixel of the sample’s image. In the 174 

remainder of this manuscript, we present how we acquired and evaluated P-P image stacks 175 

of pure pigment paints and paints that are mixtures of two different pigments. First, we use 176 

P-P image stacks of pure pigments (reference samples) to train a classifier algorithm. This 177 

classifier algorithm is then used to classify P-P image stacks of two-pigment mixtures. We 178 

use an unmixing algorithm as a baseline and compare it to a support vector machine 179 

(SVM) that shows considerably better performance in identifying pigments. In a final 180 

section, we discuss our results, their limitations, and provide an outlook into next steps. 181 

 182 
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Results  183 

Pump-probe spectroscopic features of black pigments 184 

We acquired reference P-P image stacks of pure paint samples of bone black, charcoal, 185 

graphite, lamp black, and ultramarine blue with a pump wavelength of lpump = 720 nm and 186 

a probe wavelength of lprobe = 817 nm. The pigments were validated with reflectance 187 

spectroscopy, elemental analysis, and Raman spectroscopy, see figures S1-S7 and table 188 

S1. P-P data from the image stacks of pure pigments were averaged across the spatial 189 

dimensions, that is over the imaged field of view, and normalized. These curves are shown 190 

in figure 2, the curve for ultramarine blue is shown in figure S8. The non-normalized TA 191 

curves can be found in the supplementary materials, figure S9. The TA curves of the four 192 

black pigments exhibit distinctive qualitative differences. For graphite and lamp black, the 193 

duration of the temporal features (» 100 fs) is limited by the temporal resolution of our 194 

microscope. These ‘instantaneous’ signals suggest the involvement of virtual energy states 195 

in the nonlinear interaction, typical of processes like TPA, SRS, SFG, and XPM, as shown 196 

on the left in figure 1. In our convention, transient loss processes, such as TPA, are 197 

depicted as positive while transient gain processes are depicted as negative. For the given 198 

pump and probe wavelength, we would only detect Raman gain processes, thereby ruling 199 

SRS out as potential signal origin. SFG generates a new wavelength, which we have not 200 

observed, and XPM manifests in a sign change in the TA signal. This indicates TPA as the 201 

likely signal origin for graphite, bone black, and lamp black around the time delay of Dt=0 202 

ps. In the case of lamp black, there is a slow rise of the TA curve observable at time delays 203 

larger than 15ps. This is caused by an ESA event with a lifetime much longer than the 204 

observed 25ps. In addition to TPA, bone black contains an ESA process with a short 205 

lifetime, visible between 1 and 5 ps. Charcoal signals are dominated by multiple ESA 206 

processes, which are described by a superposition of multiple exponential decays. The 207 

differences in the TA curves highlight the potential of P-P microscopy to noninvasively 208 

identify and distinguish these four carbon-based black pigments. It is worth noting that 209 

these four curves, particularly graphite, also differ in amplitude as shown in figure S9. 210 

 211 

The spatially averaged curves shown in figure 2 obscure signal variations within the P-P 212 

image. For example, the averaged TA curve of charcoal is uniformly positive, peaking 213 

around a time delay of Dt=0.1 ps. However, high-resolution P-P images, shown in figure 214 

S10, reveal interspersed regions of positive and negative signal for charcoal. A convenient 215 

way of visualizing heterogeneity in P-P stacks is an adapted form of phasor analysis (52), 216 

see materials and methods. Nearby points in a phasor plot correspond to similar P-P 217 

signals. Phasor plots of the pure black pigments are shown in figure 3. It is evident that the 218 

phasor plot for charcoal falls into two distinct areas, aligning with positive and negative P-219 

P curves, respectively. We select all TA curves within these clusters, indicated by red and 220 

yellow circles, and plot their averages in figure 3B, respectively. The signals in charcoal 221 

appear to be the same aside from a sign difference. This suggests TS as an underlying 222 

molecular mechanism: a pump-induced change in refractive index transiently changes the 223 

angular distribution of the backscattered light, which in combination with an aperture in 224 

the beam path, causes a sign change in the measured signal. An alternative interpretation 225 

would be the presence of two distinct chemical species in charcoal, which coincidentally 226 

have nearly opposite signs at each delay. While bone black would be the pigment expected 227 

to show signals for two distinct chemical species, as it contains both the carbonized 228 

organic material of the bone and the inorganic hydroxyapatite (1, 2), we do not see this 229 

present in the P-P images. Conversely, P-P signals of bone black, graphite, and lamp black 230 

appear homogeneous in their phasor plots.  231 

 232 



Science Advances                                               Manuscript Template                                                                           Page 6 of 21 

 

We also acquired P-P image stacks of paints that are comprised of two different pigments. 233 

These include six 50-50 (by mass) pigment mixtures of each pair of two black pigments: 234 

bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite, 235 

charcoal-lamp black, and graphite-lamp black. Brightfield images can be found in figure 236 

S11. We acquired multiple P-P images from different areas of each mixture. Their average 237 

TA curves are shown in figure S12. In order to demonstrate pigment identification in 238 

shading applications, we imaged mixtures of each carbon-based black pigment with 239 

synthetic ultramarine blue (Na7Al6Si6O24S3), an artificial version of natural ultramarine 240 

blue which comes from the mineral lapis lazuli. We captured images of twelve 241 

combinations, mixing each of the four black pigments with ultramarine blue in three paint 242 

ratios: 25:75, 50:50, and 75:25. Brightfield images of all mixtures can be found in figure 243 

S13 and average TA curves are shown in figure S14. Based on the reference P-P image 244 

stacks, we characterize the pigments in the mixtures using an unmixing algorithm and an 245 

SVM to identify the pigments composing the mixtures. 246 

 247 

Pigment assignment by unmixing 248 

The averaged TA curves of the pigments, shown in figure 2, show distinct features that we 249 

will utilize to distinguish them in paint samples that are made of two pigments. We use the 250 

averaged P-P curves from pure pigments shown in figure 3 as reference TA curves for the 251 

unmixing algorithm. This includes two reference curves for charcoal, due to its noted 252 

heterogeneity. Phasor analysis is used to derive the two charcoal reference curves, the 253 

orange and yellow TA curves shown in figure 3B. The unmixing algorithm analyzes the 254 

TA curves of all pixels in a P-P image stack. It compares these curves with the reference 255 

curves from pure pigments and determines the abundance fraction, which represents the 256 

proportion of each reference pigment present in every pixel. Subsequently, after the 257 

unmixing process, abundance fractions for the two reference TA curves associated with 258 

charcoal are combined to a single charcoal abundance. More details can be found in the 259 

materials and methods section. 260 

The unmixing algorithm is first tested on pure pigment data and has an average accuracy 261 

of 83%. This means that when the unmixing algorithm is presented with a P-P TA curve 262 

from a single pixel of any of the five pigments (bone black, lamp black, charcoal, graphite, 263 

and ultramarine blue), it classifies it correctly 83 times out of 100. Due to the similarity of 264 

bone black and lamp black signals, we repeated the unmixing analysis with a reduced set 265 

of pigments. First, we only considered lamp black, charcoal, graphite, and ultramarine 266 

blue (unmix-nobb) and in a second run we only considered bone black, charcoal, graphite 267 

and ultramarine blue (unmix-nolb). The unmixing classification accuracy for pure 268 

pigments improves to 88% (92%) when bone black (lamp black) is left out.  269 

When presented with P-P image stacks of black pigment mixtures, the unmixing approach 270 

identified only 63% of pixels as being pigments which were actually present in the sample 271 

for the black-black mixtures and only 62% in the ultramarine blue-black mixtures. As 272 

above, we repeated the unmixing analysis with a reduced set of pigments in the unmixing 273 

algorithm (unmix-nobb, unmix-nolb). When bone black is left out, the unmixing approach 274 

correctly identified only 76% of the pixels in black-black mixtures and 72% in the 275 

ultramarine blue-black mixtures. When lamp black is left out, the unmixing approach 276 

correctly identified only 69% of the pixels in black-black mixtures and 64% in the 277 

ultramarine blue-black mixtures. The signal-to-noise ratio (SNR) in P-P data of black 278 

pigments is relatively low, increasing the variance in single-pixel data. We believe this to 279 

be a main limitation as spectral unmixing compares these noisy single-pixel spectra to 280 

highly averaged reference spectra, see figure S15, which may not handle the noise 281 

effectively. Given the low percentage of correctly identified pixels, we changed our 282 
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approach to methods that are better suited to the complex and heterogeneous nature of the 283 

black pigment P-P data. We summarized accuracies of all algorithms across this 284 

manuscript in table S2 in the supplementary material.   285 

 286 

Machine learning for pigment classification 287 

 288 

Due to the poor performance of the unmixing algorithm, the high dimensionality of TA 289 

curves, and the signal heterogeneity of charcoal, we decided to go a different route and 290 

train an SVM for classification. We trained an SVM with P-P TA curves from pure 291 

pigments and then used it to classify and identify pigments in two-component mixtures. 292 

We train the SVM with around 5500 TA curves of each of the five pigments exposing the 293 

SVM to the full range of signal variation for each pigment. A description of the training, 294 

validation, and testing process can be found in the materials and methods section of this 295 

manuscript. 296 

 297 

The resulting SVM has an overall accuracy of 85% for pure pigments. Due to the 298 

similarity of bone and lamp black signals and analogous to the unmixing case, we repeat 299 

the same procedure with reduced pigment sets: First, bone black is left out and in a second 300 

run lamp black is left out. The accuracy increases markedly in both cases to 96% (no bone 301 

black) and to 94% (no lamp black). However, the performance of the SVM will drop for 302 

P-P images of two-pigment mixtures, as discussed in the next sections. In the remainder of 303 

this manuscript, unless explicitly stated otherwise, "SVM" refers to the classifier trained 304 

on all pigments. If we refer to a classifier trained by leaving one pigment out, we will 305 

specify it as "SVM-nobb" (no bone black) or "SVM-nolb" (no lamp black). We 306 

summarized accuracies of all algorithms across this manuscript in table S2 in the 307 

supplementary material. 308 

 309 

Black-Black Mixtures 310 

The accuracies reported above were based on the pure reference samples and we want to 311 

test the SVM on a more realistic scenario, namely paints based on two pigment mixtures: 312 

bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite, 313 

charcoal-lamp black, and graphite-lamp black. We took images of at least three different 314 

areas for each mixture and presented the P-P image stacks to the SVM classifier. 315 

  316 

We summarize the overall performance of the SVM classifier with a bar chart in figure 4, 317 

one bar for each black-black mixture. It is crucial to note that we operate without a 318 

definitive "ground truth" in this context. While we know the two pigments comprising 319 

each mixture, their precise microscopic distribution remains unknown, and no alternative 320 

method exists for validating the results, to the best of our knowledge. To assess 321 

performance, we tally all classified pigments for a given mixture. We label pixels as 322 

correctly classified if they are identified as a pigment that is part of the mixture and as 323 

misclassified if not. Accuracy is computed by taking the ratio of correctly classified pixels 324 

over all classified pixels. A successful method to identify black pigments should have a 325 

high accuracy, meaning that the percentages of correctly identified pixels should be larger 326 

than any other misclassification. The SVM achieves accuracies of 55% (charcoal – lamp 327 

black), 57% (graphite – lamp black), 61% (bone black – graphite), 79% (charcoal – 328 

graphite), 93% (bone black - charcoal), and 97% (bone black-lamp black). The first three 329 

accuracies are low and stem from the similarity of bone black and lamp black signals. By 330 

pivoting to SVM-nobb and SVM-nolb, these accuracies are lifted to 94% (charcoal – lamp 331 

black with SVM-nobb), 89% (graphite – lamp black with SVM-nobb) and 79% (bone 332 
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black – graphite with SVM-nolb). A detailed list is presented in the supplementary 333 

materials, table S3. We will discuss the implications of these results in the discussion 334 

section. 335 

 336 

The SVM returns a pigment classification for each pixel in the P-P stack, and we use this 337 

information to generate a false-color pigment map (or abundance map). Three 338 

representative examples are shown in figure 5. The percentages in the legend represent 339 

pigments identified by the classifier. Note that these numbers represent one specific region 340 

of interest and therefore deviate from the overall average. For the charcoal-graphite 341 

mixture in figure 5A, 77% of the signal containing pixels are identified as charcoal (31%) 342 

or graphite (46%). The remaining 23% were misclassified, with 12% of the pixels 343 

misclassified as bone black. The graphite-lamp black mixture, shown in figure 5B, 344 

performs poorly with only 54% of pixels being correctly identified (20% graphite, 34% 345 

lamp black). The largest misclassification is again bone black (38%). This makes sense 346 

because of the similar signals for lamp black and bone black. If instead SVM-nobb is used 347 

to classify the same image stack we find 85% of pixels correctly identified. The direct 348 

comparison between abundance maps of SVM and SVM-nobb for this region of interest is 349 

shown in figure S16. In the bone black-charcoal mixture, figure 5C, 94% of pixels are 350 

accurately identified (bone black 35% and charcoal 59%) and with the most common 351 

misclassification being lamp black, with only 3% of the pixels.  352 

 353 

Ultramarine Blue-Black Mixtures: 354 

We also tested the SVM classification performance for shading applications on mixtures 355 

of a carbon-based black pigment with ultramarine blue. We presented 12 mixtures of a 356 

carbon-based black pigment and ultramarine blue in three different paint ratios to the 357 

SVM classifier. For each of the twelve samples, we imaged at least three different areas 358 

and computed the average classification accuracy. A summary of the classifier across all 359 

the shading combinations is presented in figure 6, see table S4 for full details. Like in the 360 

black-black mixture case, there exists no ground-truth for the pixel identities, and we 361 

therefore apply the same metric to measure accuracy. Our methodology yields a robust 362 

qualitative classification, demonstrating a strong correlation between the detected amount 363 

of ultramarine blue and the actual physical mixing ratio of the sample. This correlation is 364 

consistent for most of the black pigments used. Of the 12 mixtures, only the 25:75 365 

ultramarine blue – lamp black mixture performs poorly with only 50% of all pixels 366 

correctly classified. Four mixtures (50:50 ultramarine blue – bone black , 25:75 367 

ultramarine blue – bone black, 25:75 ultramarine blue – charcoal, 50:50 ultramarine blue – 368 

graphite) are classified with an accuracy ranging between 75% and 80% and all remaining 369 

mixtures are classified with a higher than 80% accuracy. As before, the alternative 370 

classifier SVM-nobb improves the classification accuracy for the 25:75 ultramarine blue – 371 

lamp black mixture to 64%. 372 

  373 

Like with the black-black mixtures, we can derive spatial maps of the black-blue mixtures. 374 

Three maps, of the 75:25 ultramarine blue – charcoal, 50:50 ultramarine blue – graphite, 375 

and 50:50 ultramarine blue – bone black mixtures, are shown in figure 7. As before, the 376 

derived mixing ratios deviate from the macroscopic mixing ratio, highlighting that without 377 

a true ground truth, genuine quantitative imaging remains a challenge. The images shown 378 

in figure 7, and the bar chart in figure 6, demonstrate good qualitative performance.  379 

 380 

Discussion  381 
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Our findings highlight the potential of P-P microscopy for the noninvasive differentiation 382 

and mapping of black pigments. This technology presents an appreciable advancement in 383 

the noninvasive analysis of cultural heritage artifacts, where the precise identification of 384 

pigments can provide invaluable insights into the techniques and materials used by artists. 385 

However, there are cases of misclassification within the set of targets. Here we will 386 

discuss the performance and limitations of our current classification approach and 387 

comment on the future application of P-P microscopy in cultural heritage science. 388 

 389 

Classification challenges and future strategies 390 

Our current classification approach faces several challenges. The primary challenge we 391 

encounter with our current classification approach is the absence of a definitive ground 392 

truth for the images. The derived pigments maps, as shown in figure 5, are a result of P-P 393 

imaging and an SVM classifier. To the best knowledge of the authors, there is no 394 

alternative method to validate the correct mapping for all pigments. The only ground truth 395 

we have is the mixing ratio used during sample preparation. The mixing ratio is a 396 

macroscopic quantity and the P-P images in this proof-of-principle study only sample 397 

three 36µm x 36µm areas. Within this small area, we expect variations in the pigment 398 

ratios that will vary from the macroscopic pigment distribution. For example, the 399 

measured pigment ratio in the 50:50 bone black-charcoal mixture, in figure 5, is 35/59»0.6 400 

which could be explained by a locally higher density of charcoal. 401 

 402 

A second challenge in pigment classification is the vast difference in SNR between 403 

different pigments. We show unnormalized curves of the four black pigments in the 404 

supplementary materials, figure S9. Graphite has the largest signal followed by 405 

ultramarine blue and charcoal which are around 5 times weaker. Lamp black is roughly 10 406 

times weaker and bone black around 20 times weaker than graphite. Signals of bone black 407 

and lamp black are close to the noise floor of our microscope and are therefore more 408 

difficult to classify compared to the high SNR signals of charcoal and graphite. We 409 

believe that this is the main reason for the small bone black percentages identified in 410 

black-black mixtures, depicted in figure 4. We hypothesize that the majority of 411 

misclassified pixels stem from the SNR limitations. We have plotted 5 randomly selected 412 

single pixel TA curves per reference pigment and overlayed them with their respective 413 

average curve in figure S15. Some of these TA curves contain sizable noise and 414 

qualitatively differ from their respective average curves. This also relates to the inherent 415 

tradeoff between spatial resolution and SNR: higher spatial resolution requires smaller 416 

sampling volumes and therefore leads to smaller SNR. Averaging neighboring pixels in an 417 

image increases SNR at the expense of spatial resolution. Spatial averaging, however, 418 

might mix TA curves of adjacent pigments. This causes two additional challenges. In case 419 

of a large signal amplitude mismatch, the pigment with the larger signal will overwhelm 420 

the features of the weaker pigment signal thereby skewing classification towards pigments 421 

with larger signal. Thus, even for a 50:50 mixture of two different pigments, their 422 

difference in signal strength can distort the pigment distribution that we measure towards 423 

the pigment with the larger signal. This effect can be seen in the mixtures of ultramarine 424 

blue with either bone black or lamp black, where the percentage of classified ultramarine 425 

is typically larger than the mixing ratio. Alternatively, if TA curves of comparable signal 426 

strengths are averaged, we create a de facto new TA curve that is unknown to the SVM 427 

classifier, which was only trained on pure TA curves, leading to increased 428 

misclassification. Currently, we choose a compromise between spatial averaging to 429 

achieve sufficient SNR and maintaining enough resolution to resolve most individual 430 

pigment grains. 431 
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 432 

Another reason for misclassification of TA curves is the inherent similarity between the 433 

signals of bone black and lamp black. The highly averaged curves of their pure reference 434 

samples, as shown in figure 2, only differ marginally in decay time between 1-5ps and in 435 

their offset at time delays larger than 15ps. The small signal amplitudes of lamp and bone 436 

black are not prominent enough on a pixel-by-pixel basis and cause misclassifications in 437 

the SVM classifier. This effect can be seen most prominently in the 50:50 charcoal – lamp 438 

black mixture where 40% of all pixels are misclassified as bone black and in the 50:50 439 

graphite – lamp black mixture where 37% of all pixels are misclassified as bone black. To 440 

mitigate this problem, we introduced the additional classifiers SVM-nobb and SVM-nolb 441 

by leaving out bone black and lamp black, respectively. These classifiers perform notably 442 

better in mixtures of two black pigments; however, additional a-priori knowledge of the 443 

sample would be required to select the appropriate classifier. This is only a limitation 444 

when restricted to solely use P-P microscopy. The presence of calcium and phosphorus in 445 

bone black offers another route to unambiguously distinguish bone black from lamp black. 446 

X-ray fluorescence spectroscopy can noninvasively detect both elements and could be 447 

used to decide if the SVM-nobb or SVM-nolb classifier should be used for further 448 

analysis. 449 

 450 

 In the future, we envision increasing SNR in two ways. First, by improving our detection 451 

capabilities, specifically by increasing collection efficiency by using higher numerical 452 

aperture objectives. Second, we intend to explore different pump and probe wavelengths 453 

that might offer different TA dynamics that could be used to distinguish bone black from 454 

lamp black and also offer a larger interaction cross-section for the currently weak signals 455 

of bone and lamp black.  456 

 457 

Our current classification scheme employs a relatively simple algorithm that analyzes 458 

individual pixels independently, without considering the contextual information from 459 

neighboring pixels. While SVMs provide robust performance in classifying TA curves on 460 

a per-pixel basis, the inherent spatial correlation within pigment grains suggests that 461 

adjacent pixels are likely to belong to the same pigment. This spatial dependency is not 462 

utilized in the current approach, potentially limiting the overall classification accuracy. 463 

Given the high probability that adjacent pixels represent the same pigment, leveraging this 464 

local image information could substantially enhance classification performance. 465 

Convolutional Neural Networks (CNNs) are particularly well-suited for this task, as they 466 

are designed to capture spatial hierarchies in data through convolutional layers that 467 

process local neighborhoods of pixels. Thus, we envision implementing a U-Net, a 468 

specialized CNN for semantic segmentation to integrate spatial context into the 469 

classification process to further improve classification accuracy and robustness of pigment 470 

identification (53). 471 

 472 

We also observe, at least heuristically, an increased misclassification rate at pigment grain 473 

boundaries. This can be seen in figure 5A and figure 7A, in which bone black appears 474 

around the edges of individual pigment grains. This can also be observed for other 475 

pigments such as lamp black. We attribute this to the qualitatively similar curves of bone 476 

black, lamp black and graphite. TA curves originating from grain boundaries are weaker 477 

because there is less material in the focal volume of the lasers to contribute to P-P signals. 478 

This could cause a graphite signal to be misclassified as either bone or lamp black, for 479 

example. We are confident that this problem can be circumvented by algorithms that take 480 

information from the pixel neighborhood into account, like CNNs.  481 
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 482 

Pump-Probe Signal Heterogeneity  483 

A surprising discovery was the intrinsic heterogeneity in the P-P signals of charcoal. As 484 

shown with phasor in figure 3B, charcoal has two distinct P-P signals, a positive and a 485 

negative signal. In addition to being the only pigment with a distinctive lifetime present in 486 

its positive signal longer than 5 ps, the presence of negative signal is also unique amongst 487 

the carbon-based black pigments studied. We hypothesize that two factors contribute to 488 

potential heterogeneity: First, the inherent microscopic heterogeneity of charcoal. Of the 489 

four pigments, only graphite has an ordered molecular structure (sheets of sp2 hybridized 490 

carbon), consistent with the observed homogeneous signal in the phasor plot in figure 3C. 491 

Lamp black, which undergoes a gas phase carbonization during production, is 492 

microscopically uniform (on the scale of the resolution of our microscope). Charcoal is 493 

derived from an extremely heterogeneous base material, wood, maintains a solid structure 494 

during carbonization, and therefore retains part of its initial structural complexity. While 495 

bone black also derives from a heterogenous starting material, bone, it undergoes a liquid 496 

phase during carbonization which would allow for some molecular rearrangement, with 497 

the resulting pigment being more homogenous. The other factor that could contribute to 498 

the heterogeneity in P-P signal of charcoal is the presence of heteroatoms or non-carbon 499 

constituents that commonly occur in carbon-based black pigments. Winter reports that 500 

incorporation of heteroatoms into the carbon matrix during the carbonization process is 501 

especially common for cokes and chars prepared at low temperatures (2). These factors 502 

may explain the higher degree of heterogeneity of signals in charcoal. Again, bone black 503 

notably has heteroatoms present in the form of hydroxyapatite, but we do not observe 504 

heterogeneity in its signal. The potential of P-P microscopy to analyze the heterogeneity 505 

of carbon-based black pigments is an exciting prospect for future studies. 506 

 507 

Beyond proof-of-principle studies towards applications to works of art  508 

This manuscript demonstrates the potential of P-P microscopy to noninvasively identify 509 

black pigments in mixtures. For this proof-of-principle demonstration we restricted 510 

ourselves to four black pigments and one colored pigment. Most works of art contain 511 

many more colors and, although we used the four most prevalent black pigments, there are 512 

other black pigments in use. Our group has analyzed a range of pigments, including red 513 

organic dyes, iron oxides, vermillion, and cadmium sulfide and we can incorporate these 514 

pigments into our classification scheme (46-51). Furthermore, P-P microscopy offers two 515 

powerful and easily accessible degrees of freedom: the choice of pump and probe 516 

wavelength. P-P signals reflect the population dynamics between molecular levels and are 517 

therefore strongly dependent on the pump and probe wavelengths. Pigments that present 518 

similar TA curves at a particular wavelength combination may differ drastically at another 519 

(47). A convenient approach would be pigment exploration in a broadband P-P 520 

spectroscopy setup, where many wavelengths can be probed simultaneously. We could 521 

then select a wavelength combination that offers a unique contrast for a specific pigment. 522 

Ultimately, multiple P-P images acquired with different wavelength combinations 523 

(hyperspectral P-P microscopy) will provide sufficient specificity to distinguish and 524 

identify many pigments. Extension of the SVM classifier to more pigments and to 525 

hyperspectral P-P images is conceptually straightforward and only requires the additional 526 

pure reference data in the training phase. In addition, polarization P-P microscopy, which 527 

offers improved chemically specific contrast based on the molecular anisotropy of 528 

pigments, can further improve pigment specificity (38, 54).  529 

 530 
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The multiphoton nature of P-P microscopy enables high resolution in all three spatial 531 

dimensions, even beneath the surface of highly scattering materials (32). In previous 532 

experiments, we were able to image up to a depth of » 90 µm in paint layers to produce 533 

virtual cross sections (49), thus allowing cultural heritage scientists and conservators to 534 

better understand pieces of art without invasive sampling. However, achievable 535 

penetration depths depend on the absorption and scattering properties of the materials 536 

present at the surface and the subsequent layers. Carbon-based black pigments strongly 537 

absorb visible to near-infrared light and therefore reduce optical penetration depth. This 538 

will be most prominent in works of art with a thick or opaque layer of carbon-based black 539 

paint, for example in oil or tempera paintings. In a work with thinner or more transparent 540 

layers, such as watercolor paintings or drawings and prints, the absorption of the black 541 

pigments would not greatly reduce penetration depth.  542 

 543 

Our study has successfully shown that P-P microscopy is an effective noninvasive tool for 544 

differentiating black pigments in a variety of combinations, including mixtures with other 545 

carbon-based black pigments and with ultramarine blue. This achievement highlights P-P 546 

microscopy's capability to fill a void in the field of cultural heritage science, where, until 547 

now, no noninvasive method for identifying carbon-based black pigments in mixtures with 548 

such certainty existed. We have outlined a clear strategy to further improve the 549 

performance and to increase the number of pigments in our approach and we envision 550 

applying this methodology to actual works of art. A particularly fascinating application 551 

would be Vermeer’s Girl with a Pearl Earring where bone black and charcoal are 552 

reported to exist together in an underlayer, currently only confirmed by analysis of a cross 553 

section (55). P-P microscopy could be used to further validate these findings as well as to 554 

provide additional information, i.e. a three-dimensional pigment map of both pigments 555 

across the painting.  556 

 557 

Materials and Methods  558 

Pump-Probe Microscopy  559 

A schematic of our P-P microscope is shown in figure S17. The output of a Ti:Sapphire 560 

laser (Coherent Chameleon Ultra II) with an 80 MHz repetition rate is split into two parts. 561 

One part serves as probe beam at a wavelength of lprobe = 817 nm. The second part is 562 

frequency converted into the pump with a wavelength of lpump = 720 nm with an optical 563 

parametric oscillator (Coherent Mira-OPO). The pump pulse train is intensity-modulated by 564 

an acousto-optic modulator at a rate of 2 MHz. Both laser beams are spatially superimposed, 565 

sent into a laser scanning microscope, and focused onto the sample with a 20x 0.7 NA dry 566 

objective. The inter-pulse delay Dt between pump and probe is controlled with a motorized 567 

translation stage in the probe beam path. We utilize a modulation transfer scheme to detect 568 

the weak signals generated by the nonlinear interaction between pump, probe, and sample. 569 

As the nonlinear interaction transfers the pump modulation onto the probe pulse train, these 570 

changes in absorption in the probe pulse train are measured with a photodiode and a lock-571 

in amplifier. For pigment imaging, we use a pump and probe pulse intensity of I = 4.4x108 572 

W/m2, (corresponding to 0.25 mW), and image an area of 36µm x 36µm for 24 time delays 573 

Dt spanning -1.5 to 25 ps. The resulting data structure (image stack) is a 3-dimensional data 574 

cube with two spatial and one temporal dimension. Each pixel in the P-P stack represents a 575 

P-P TA curve, the change of absorption as a function inter-pulse delay Dt.  576 

 577 

Validation of Pigments 578 

For reflectance spectroscopy, pigment was placed onto a glass slide and fixed with a gum 579 

arabic solution. A coverslip was placed over the sample and allowed to dry in the fume hood 580 
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overnight. Reflectance spectra were collected using a Cary 5000 spectrophotometer with a 581 

diffuse reflectance accessory. The reflectance measurements include both specular and 582 

diffuse reflectance. The spectra were collected from 400-1500 nm with a step size of 1 nm 583 

and a scan time of 0.1 s. A Labsphere diffuse reflectance standard was used as a reference. 584 

 585 

For elemental analysis, double-sided copper tape was placed on a sample mount for the 586 

instrument. Pigment powder was pressed onto this tape, with excess removed via nitrogen 587 

gas flow. The pigments remained uncoated. An Apreo S SEM by ThermoFisher Scientific 588 

with an Oxford Instruments X-Max-N 150 EDS was used for elemental analysis with an 589 

accelerating voltage of 20 kV. Due to the copper tape, copper does appear in the elemental 590 

spectra for the pigments analyzed. 591 

 592 

For Raman spectroscopy, pigment was placed onto a glass slide and held in place by a glass 593 

coverslip. Raman spectra were collected using a Horiba Jobin Yvon LabRAM ARAMIS 594 

Raman microscope with an air cooled (-70 C) charge-coupled device detector. A grating of 595 

1800 g/mm and a slit of 100 µm was used with a 50x objective and a wavelength of 633 596 

nm. The spectral resolution was approximately 1 cm-1. The spectra were collected from 597 

1050-1800 cm-1. Each spectrum was averaged 35 times with each acquisition being 30 598 

seconds, resulting in a total scan time of 18 minutes. 599 

 600 

Preparation of Pigments 601 

The pigments were commercially sourced from AGS Company (graphite), Coates Charcoal 602 

(charcoal), Kremer Pigments (bone black, exclusive and ultramarine blue, dark), and Rublev 603 

Colours (lamp black). Pure pigments were thoroughly mixed with gum arabic in a separate 604 

vessel to prepare a smooth watercolor paint. For the black-black mixtures, the powdered 605 

pigments were weighed and mixed with a mortar and pestle as powders, then together mixed 606 

with gum arabic to prepare the watercolor paint. The densities of the pigments were 607 

measured by packing the individual pigment into a known volume, 0.5 mL, and measuring 608 

the weight. The measured densities are as follows: Bone Black 0.71 g/cm3, Charcoal 0.36 609 

g/cm3, Graphite 0.74 g/cm3, Lamp Black 0.33 g/cm3. For ultramarine blue-black mixtures, 610 

the paints were prepared separately as described for pure pigments, then mixed together as 611 

one would on a palette. The prepared paints were applied to a commercially sourced pre-612 

primed canvas in two layers, allowing for drying in between. Note that gum arabic itself 613 

does not cause pump-probe signals, as shown in S18 in the supplementary material. 614 

 615 

Adapted Phasor Analysis for Visualization 616 

A more detailed description of adapted phasor analysis can be found here (52). In brief, 617 

single-frequency sine and cosine Fourier coefficients are calculated for TA curves in each 618 

pixel of a P-P image stack and plotted as the x- and y- coordinates on a 2-dimensional plane, 619 

the phasor plot. For example, phasor coordinates of a positive (negative) single-exponential 620 

decay would map onto a specific point on the semi-circle in the first quadrant (third 621 

quadrant). Nearby points in a phasor diagram correspond to similar P-P signals. Thus, 622 

adapted phasor analysis provides a simple way of visualizing the inherently three-623 

dimensional P-P image stacks. The phasor frequency, the frequency for which the Fourier 624 

components are calculated, is a degree of freedom that can be adjusted to tune the phasor 625 

plot, i.e. to be more sensitive to specific timescales in the TA data. For the black pigment 626 

data, we use a frequency of f = 0.25 THz which nicely separates the signals of charcoal into 627 

two distinct areas in the phasor plot. The first area is in the first quadrant and corresponds 628 

to the positive charcoal signals while the second area falls into the third quadrant which 629 

corresponds to the negative charcoal signals. Adapted phasor analysis thus provides a 630 
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convenient way of separating these signals based on their position in the phasor plot. The 631 

positive (negative) TA curve shown in red (yellow) in figure 3B corresponds to all pixels 632 

that are selected with the red (yellow) ellipse in the phasor plot.  633 

 634 

Data Analysis and Classification Algorithms 635 

The goal of our data analysis is to find a classifier function that predicts pigments based 636 

on TA curves. After data pre-processing, we use P-P image stacks of pure pigments 637 

(reference samples) to train a classifier algorithm. This classifier algorithm is then used to 638 

classify P-P image stacks of two-pigment mixtures. In many similar scenarios such as 639 

hyperspectral imaging or Raman imaging, where the spectra of reference samples are 640 

well-known, unmixing algorithms are the standard approach. Thus, we decided to use an 641 

unmixing algorithm as a baseline and compare it with an SVM which is more suited to 642 

deal with heterogeneous data such as TA curves. Here we describe the data pre-processing 643 

and training in more detail.  644 

  645 

Data pre-processing of pump-probe image stacks: Raw P-P data are pre-processed before 646 

training and classification in the following steps: (1) Due to pump-leakage into the 647 

detector and potential long-lived (t >> 12.5 ns, the time spacing between consecutive 648 

pulses) radiative states at the probe wavelength, we average three P-P images at negative 649 

time delays (Dt = -10 ps, -5 ps, and -2.5ps) and subtract them from the entire P-P stack, 650 

thereby eliminating a constant offset in the data. These three time delays are then removed 651 

from the image, resulting in the 24 time delays mentioned in the main text, to reduce the 652 

dimensionality for machine learning, improving training and classification speed. (2) Raw 653 

P-P data is intentionally oversampled beyond the diffraction limit, and we apply a spatial 654 

moving average filter of kernel size two to increase SNR. (3) A global intensity threshold 655 

is applied to all P-P stacks to discriminate noise from P-P signals. The threshold is based 656 

on the maximum in the histogram of all P-P stack projections. (4) We then reduce the 657 

image size with an average pooling by factor two, consistent with the oversampling, to 658 

reduce data amount and increase training and classification speed.  659 

 660 

Unmixing Algorithm: TA curves of pigments ultramarine blue, bone black, graphite, and 661 

lamp black are homogeneous, and their reference P-P stacks are spatially averaged to 662 

reference TA curves, as shown in figure 3 and S8. Charcoal is the only pigment showing 663 

appreciable signal heterogeneity, containing both negative and positive TA curves, see 664 

figure 3B. We use adapted phasor analysis to derive two reference TA curves for charcoal, 665 

as described in the “Adapted Phasor Analysis for Visualization” section of materials and 666 

methods. All transient absorption curves, averaged reference curves and single pixel 667 

curves of mixtures, are normalized to their respective extremum. The reference curves for 668 

each pigment are arranged into an endmember matrix U. The unmixing algorithm uses the 669 

endmember signatures in matrix U to perform a fully constrained least squares fit on each 670 

pixel, determining the proportion of each reference pigment in every pixel. “Fully 671 

constrained ” incorporates a non-negativity constraint, which permits only positive values 672 

in the abundance fractions and a “sum-to-1” constraint requiring the sum over the 673 

abundance fractions to be 1. This allows interpretation of the abundance fraction as 674 

probability, and we assign the pigment with the highest probability to a given pixel. The 675 

algorithm used in this manuscript is based on reference (56) and was implemented in 676 

pysptools 0.15.0 by Christian Therien (57). 677 

To assess the performance of the unmixing algorithm we randomly split the pure pigment 678 

data in a 50-50 ratio into test and train set. The train set is used to compute average 679 

reference TA curves, and these curves are then used to unmix the test data. The test 680 
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accuracy acctest describes the fraction of correctly identified TA curves in the test data. We 681 

repeat this procedure 5 times to compute the mean value and standard deviation of the test 682 

accuracy. We use three unmixing algorithms: “Unmix” which contains reference TA 683 

curves of all 5 pigments (bone black, charcoal, graphite, lamp black, ultramarine blue), 684 

“Unmix-nobb” without the pigment bone black, and “Unmix-nolb” without the pigment 685 

lamp black. The accuracy of correctly identifying pure pigment data of the “Unmix” 686 

algorithm is acctest = (83 ± 0), of the “Unmix-nobb” algorithm is acctest = (88 ± 0), and of 687 

the ”Unmix-lb” algorithm is acctest = (92 ± 0). A comprehensive summary of unmixing 688 

and SVM algorithm accuracies are shown in table S2 in the supplementary material. A 689 

graphical scheme of the unmixing algorithm and its data flow is shown in figure S19. For 690 

unmixing of pigment mixtures, the entire pure pigment data is used as average reference 691 

TA curves.  692 

 693 

Support Vector Machine (SVM): An SVM is a supervised learning algorithm that 694 

classifies data into one of two classes. The algorithm takes n-dimensional input vectors 695 

(here TA curves consisting of 24 time delays) and separates them by a n-1 dimensional 696 

hyperplane. This plane maximizes the margin between classes and is defined by the 697 

support vectors, the data points from each class that are nearest to the hyperplane and most 698 

influence its position. An SVM can be expanded to multiclass classification with a “one-699 

versus-rest” strategy. It naturally lends itself to heterogeneous data and is well suited for 700 

high-dimensional data. We use the scikit-learn 1.4 (58) and the imbalanced-learn 0.12.0 701 

(59) python packages for training, validation and testing of the SVM. We randomly select 702 

around 27,500, single pixel P-P TA curves (imblearn RandomUnderSampler), 5500 from 703 

each reference sample. We split them into training and testing sets with a ratio of 3:1. We 704 

perform a hyperparameter optimization (scikit-learn GridSearchCV) of C and γ for the 705 

SVM (scikit-learn SVC with radial basis functions as kernel). The regularization 706 

parameter C controls the trade-off between minimizing error on the training data and 707 

maintaining a smooth decision boundary. Lower values of C encourage a simpler, 708 

smoother decision boundary, which may allow for some misclassification in the training 709 

set but is more likely to generalize well to the test data. In contrast, higher values of C 710 

prioritize the correct classification of all training data, resulting in a more complex 711 

decision boundary that often leads to overfitting. The γ parameter determines the influence 712 

of a single training example on the decision boundary. A large γ value confines the 713 

influence of a training example to its immediate neighbors, which can create a more 714 

complex model that may overfit the data. Conversely, a smaller γ value allows each 715 

training example to have a broader influence, leading to a smoother decision boundary 716 

that is more likely to generalize better to unseen data. The hyperparameter optimization is 717 

performed on the training set with a stratified-5-fold cross validation strategy (scikit-learn 718 

StratifiedKFold), with accuracy as the scoring metric, and with a standard scaler applied to 719 

all TA curves (scikit-learn StandardScaler). The performance of the best classifier is 720 

inferred by measuring accuracy of the classifier applied on the test set. Accuracy is 721 

defined as the percentage of correctly classified pixels divided by all classified pixels. The 722 

entire procedure is repeated 5 times, and we compute the average and standard deviation 723 

over all five runs.  724 

We train three SVM classifiers: “SVM” which is trained on all pigments (bone black, 725 

charcoal, graphite, lamp black, ultramarine blue), “SVM-nobb” which is trained without 726 

the pigment bone black, and “SVM-nolb” which is trained without the pigment lamp 727 

black. The validation accuracy for the SVM that is trained on all pigments is accvalid = 728 

(85.15 ± 0.15)% and the testing accuracy is acctest = (85.43 ± 0.34)%. For the classifier 729 

SVM-nobb the validation accuracy is accvalid = (95.88 ± 0.04)% and the testing accuracy is 730 
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acctest = (96.01 ± 0.14)% and for the classifier SVM-nolb the validation accuracy is accvalid 731 

= (94.57 ± 0.11)% and the testing accuracy is acctest = (94.40 ± 0.38)%. The accuracies 732 

based on validation set are comparable to the accuracies based on the test set for all three 733 

classifiers which lets us conclude that they are well-trained and that we capture the whole 734 

range of signal variety. We then use the optimal hyperparameters and the entire reference 735 

data to train the final SVM classifiers that are used to classify two-pigment mixtures. Note 736 

that the final classifiers are solely trained on reference pigment data and have not been 737 

trained with any data from mixed samples. The confusion matrix of each classifier is 738 

shown in figure S20. A comprehensive summary of unmixing and SVM algorithm 739 

accuracies are shown in table S2 in the supplementary material. A graphical scheme of the 740 

SVM algorithm and its data flow is shown in figure S21. 741 

 742 

 743 
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Figure 1. Multiphoton nonlinear processes accessible in pump-probe microscopy. These interactions modulate the probe 

laser intensity, generally leading to complex, bipolar transient absorption curves as the time delay is varied.  

Figure 2. Spatially averaged pump-probe transient absorption curves of bone black, charcoal, graphite, and lamp black.  
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 10 

Figure 3. Phasor plots and pump-probe signal components of the carbon-based black pigments. Left: The phasor coordinates of all 

signal-containing pixels in pure pigments (bone black, charcoal, graphite, and lamp black, respectively) as histograms, computed with a 

phasor frequency of f=0.25 THz. Right: Averaged pump-probe signals corresponding to the circled regions of the phasor plot. 

Figure 4. Summary of SVM performance on two-black pigment mixtures. The bar charts display the breakdown for 

classification of each black-black mixture. The full bar represents 100%. Green corresponds to correctly classified pixels. Red 

corresponds to misclassified pixels. Percentages with an asterisk denote mixtures that have misclassification at comparable 

percentages of correct classifications. These mixtures perform better with the appropriate reduced pigment classifier. 
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 17 

 18 

Figure 5. Pigment map for three black-black mixtures. A: charcoal-graphite. B: graphite-lamp black. C: bone black-charcoal. 

The percentages are for these specific fields of view and deviate from the average for each mixture. 

Figure 6. Summary of SVM performance on blue - black mixtures. A: bone black-ultramarine blue. B: charcoal-ultramarine 

blue. C: graphite-ultramarine blue. D: lamp black-ultramarine blue. The full bar represents 100%. Blue and green correspond to 

correctly classified pixels, blue for ultramarine blue and green for the black pigment. Red corresponds to the misclassified pixels. 
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Figure 7. Pigment map for three ultramarine blue-black mixtures. A: 75:25 ultramarine blue – charcoal. B: 50:50 ultramarine 

blue – graphite. C: 50:50 ultramarine blue – bone black. The percentages are for these specific fields of view and deviate from the 

average for each mixture. 


