ScienceAdvances ~— Manuscript

Template

AVAAAS
1
2 FRONT MATTER
3
4 Noninvasive identification of carbon-based black pigments with pump-probe microscopy
5
6  Short title
7 Pump-probe microscopy of black pigments
8
9  Authors
10 Heidi V. Kastenholz,! Michael 1. Topper,> ¥ Warren S. Warren,->>4, Martin C.
11 Fischer,'?* and David Grass!
12
13 Affiliations
14 "Department of Chemistry, Duke University, Durham, NC 27708, USA.
15 2Department of Physics, Duke University, Durham, NC 27708, USA.
16 3Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
17 “Department of Radiology, Duke University, Durham, NC 27710, USA.
18
19 *Corresponding author email: martin.fischer@duke.edu
20 1 Presently at Department of Physics, University of Colorado, Boulder, CO 80309, USA.
21
22 Abstract
23 Carbon-based black pigments, a widely used class of pigments, are difficult to
24 differentiate with the noninvasive techniques currently used in cultural heritage science.
25 We utilize pump-probe microscopy, coupled with a support vector machine, to distinguish
26 common carbon-based black pigments as pure pigments, as two-component black pigment
27 mixtures, and as a mixture of a black and a colorful pigment. This work showcases the
28 potential of pump-probe microscopy to spatially differentiate carbon-based black
29 pigments, which would have interesting applications to works of art.
30  Teaser
31 Pump-probe microscopy, coupled with a support vector machine, identifies carbon-based
32 black pigments in various mixtures.
33

Science Advances Manuscript Template Page 1 of 21



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

MAIN TEXT

Introduction

There is an unmet need in cultural heritage science for noninvasive identification of
carbon-based black pigments, which are broadly used in paintings, drawings, and prints
either by themselves or for shading another pigment (/). These pigments are produced
through controlled burning of a material such as wood, bone, or oil (resulting in charcoal,
bone black, and lamp black respectively) or occur naturally, such as graphite (2). They
have been identified in some of the oldest pieces of art known to date, such as the cave
paintings of Nawarla Gabarnmang in northern Australia (3). As their sourcing and cost are
not prohibitive, carbon-based black pigments still represent one of the primary black
pigment sources.

Material identification is essential for conservation of a work of art and provides insight
into its historical context and provenance. In cultural heritage, there are two classification
schemes for carbon-based black pigments (/, 2, 4-6). The first is by the form of carbon
present in the material, such as graphitic carbons, flame carbons, chars, cokes, or coals.
This information is often inaccessible for black pigments incorporated into artwork. The
second classification is based on the materials’ origin, such as mineral, vegetable, animal,
or soot and smoke, but reliable information for pigments in historic works, particularly
carbon-based based pigments where the naming conventions are tangled, is often missing.
The two classifications schemes focus on descriptions for carbon-based black pigments
and should not be viewed with a lens of modern carbon materials nor modern production
methods.

In either classification scheme, carbon-based black pigments are difficult to distinguish by
existing methods. The most specific method for identification, scanning electron
microscopy with energy dispersive spectroscopy (SEM-EDS), distinguishes by
morphology and, occasionally, elemental composition in pure reference samples (/, 2, 5,
7, 8). However, this requires physical removal of a cross-section from the work. Another
approach, thermogravimetric analysis and differential scanning calorimetry, can
characterize pure reference samples, but also requires invasive sampling (9). The go-to
noninvasive methods in cultural heritage science are linear reflectance techniques, such as
fiber-optic reflectance spectroscopy, hyperspectral imaging, multispectral imaging, and
Raman spectroscopy due to their ease of use and portability (/0-15). Unfortunately, linear
reflectance of carbon-based black pigments is structureless in the visible-NIR region (71,
12). Raman spectroscopy is a versatile technique that has been shown to be a powerful
tool for the characterization of carbons (/6). Presence of a carbon-based black pigment, in
cultural heritage, is confirmed by two characteristic peaks at approximately 1580 cm™ and
1350 cm (6, 17-20). The 1580 cm™! peak (G Band) is the characteristic Raman peak for
crystalline graphite (6, /7). The 1350 cm! peak (D or Disorder Band) is used as a measure
of disorder in the carbonaceous material; it suggests the presence of heteroatoms in the
graphitic structure, in-plane defects, or defects at the edge of the aromatic structure such
as a tetrahedral carbon rather than the expected trigonal planar carbon (6, /7). Two studies
have delineated pigments using the minute differences between Raman spectra and have
applied the findings to cross-sections from works of arts (/8, 20). Another study utilized
Raman spectroscopy with principal component analysis (PCA) to identify carbonaceous
drawing materials (/9). Raman studies have not yet been expanded to analyze or map
mixtures of carbon-based black pigments.
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Features in Fourier transform infrared (FTIR) spectra can be used to distinguish between
reference carbon-based black pigments (5, 27). However, FTIR spectra from paintings
have had mixed results. The spectra are either dominated by signals from the ground layer
and the resin varnish; any features that would indicate a carbon-based pigment are
overpowered by the other materials present (22) or they rely on other compounds present,
like hydroxyapatite in ivory and bone black (23). X-ray fluorescence (XRF) is another
noninvasive technique used in cultural heritage science; it cannot distinguish
carbonaceous materials (24) but reveals secondary elements like Ca and P in compounds
like hydroxyapatite to support an identification or rule them out (25-28). X-ray diffraction
(XRD) can differentiate crystalline carbon-based black pigments (like graphite) from non-
crystalline forms and can make further distinctions based on noncarbon components
similar to XRF (/, 2, 5, 29). One group identified hydroxyapatite, indicative of bone or
ivory black, with macroscopic XRD in a still life painting, showing how detection of
crystalline, noncarbon components can result in identification (30). However, XRD
typically cannot differentiate non-crystalline, amorphous carbon-based black pigments (2,
4, 29). Another study has shown good results using powder XRD and a synchrotron
beamline in identifying the type of carbon-based black pigment present in archeological
samples, but required invasive sampling and powdering of the sample taken (37).

Nonlinear optical microscopy techniques, such as two-photon fluorescence, second-
harmonic generation, and coherent anti-Stokes Raman microscopy, have been shown to
provide noninvasive, high-resolution imaging contrast in applications to biology (32) and,
more recently, cultural heritage science (33-36). These contrasts are easily measured
because they are emissive, generating light at wavelengths different from the excitation
light. However, these conventional multiphoton techniques will not aid in distinguishing
carbon-based black pigments; there is little to no fluorescence to analyze (/2), and
nonlinear methods for Raman spectra do not result in different information from
spontaneous Raman spectra.

We demonstrate here that another nonlinear optical technique, femtosecond pump-probe
(P-P) microscopy, can identify and distinguish common carbon-based black pigments
noninvasively. P-P microscopy takes advantage of the nonlinear interactions of two laser
pulses with the sample to provide remarkable molecular specificity: in many cases there
are multiple competing molecular mechanisms which provide substantial contrast between
nominally similar molecules. We focus here on transient absorption (TA), a subset of P-P,
shown in figure 1, in which an excitation (pump) pulse affects the absorption of a time-
delayed (probe) pulse. ‘Instantaneous’ mechanisms such as stimulated Raman scattering
(SRS), two-photon absorption (TPA), sum-frequency generation (SFG), and cross-phase
modulation (XPM) give signals only when the pump and probe pulses overlap in time.
Other molecular mechanisms result in delayed time signals. The pump laser pulse excites
population into higher electronic states, creating a population hole in the electronic ground
state. Intermolecular vibrational redistribution rapidly rearranges the population of the
electronically excited molecules, which can be transferred by the second pulse into a
higher electronic state via excited state absorption (ESA) or to a vibrationally excited level
of the ground state through stimulated emission (SE). ESA and SE occur on roughly the
same timescale, but the other effects have independent rates. The population hole in the
ground state created by the pump pulse reduces the number of molecules available to be
excited, reducing the absorption of the probe, a mechanism labeled ground state bleach
(GSB). Finally, pump absorption can cause localized heating, which in turn, can change
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the index of refraction. This affects the scattering profile through the grains of the
material, resulting in an effect called thermal scattering (TS). All of these non-emissive P-
P interactions are separated from background signals using a modulation transfer scheme,
explained in more detail in reference (37). Briefly, the pump laser is amplitude modulated,
and a lock-in amplifier is used to detect amplitude modulation transferred to the probe
laser; this transfer is only possible if the mechanism involves both pump and probe
photons, and thus suppresses the, normally larger, linear signal contributions.

Two popular methods have been used in the past to evaluate TA curves and assign them to
molecular species: PCA and model fitting (37-43). Because several nonlinear optical
interactions contribute to the measured P-P signals, the resulting TA curves are generally
bipolar superpositions of multiple exponential decays and intrinsically non-orthogonal. As
PCA works best for linear and orthogonal data structures, we consider it non-ideal for
identification of carbon-based black pigments. Model fitting of TA curves with
exponential basis functions is a powerful method and could allow for pigment
identification based on specific lifetimes and amplitudes. However, there exists no method
to unambiguously separate the superposition of multiple exponential decays into
fundamental components. Also, there are limitations on how precise amplitudes and
lifetimes from exponential decays can be extracted for a given signal-to-noise level (44,
45). Because the P-P signals from black pigments are generally weak, spatial resolution
would need to be sacrificed by down-sampling to achieve an appropriate signal-to-noise
level for fitting. Therefore, we opt for alternative methods better suited to handle the weak
signals typical of black pigments.

P-P microscopy has successfully been applied in a wide range of applications, including
melanin characterization in biological tissue (38). This application provides a good
example of its versatility: the melanin absorption spectrum is broad and featureless, but P-
P images reveal notable heterogeneity from many competing molecular mechanisms
shown in figure 1, and the contrast correlates with disease progression in melanoma.
Previous cultural heritage applications include identification of iron oxides and red
organic dyes, visualization of vermilion and cadmium yellow degradation, and as a tool to
noninvasively obtain a virtual cross-section of historical works of art (46-51). Here, we
use P-P microscopy to identify and analyze four of the most used carbon-based black
pigments, bone black, charcoal, graphite, and lamp black. We demonstrate that P-P
microscopy resolves nonlinear features of these pigments that allow identification in two-
compound black-black mixtures, applicable in separating an underdrawing from black
paint used in upper layers, and to identify black pigments in shading applications, i.e. a
mixture of black with different colored pigments, such as ultramarine blue.

For cultural heritage applications, a specific region or volume of interest is imaged to
derive pigment identity maps or abundance maps. This is similar to methods used in
hyperspectral or Raman imaging, where unmixing algorithms determine the proportion of
an a-priori known reference spectrum within every pixel of the sample’s image. In the
remainder of this manuscript, we present how we acquired and evaluated P-P image stacks
of pure pigment paints and paints that are mixtures of two different pigments. First, we use
P-P image stacks of pure pigments (reference samples) to train a classifier algorithm. This
classifier algorithm is then used to classify P-P image stacks of two-pigment mixtures. We
use an unmixing algorithm as a baseline and compare it to a support vector machine
(SVM) that shows considerably better performance in identifying pigments. In a final
section, we discuss our results, their limitations, and provide an outlook into next steps.
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Results
Pump-probe spectroscopic features of black pigments

We acquired reference P-P image stacks of pure paint samples of bone black, charcoal,
graphite, lamp black, and ultramarine blue with a pump wavelength of Ayump = 720 nm and
a probe wavelength of 4,00 = 817 nm. The pigments were validated with reflectance
spectroscopy, elemental analysis, and Raman spectroscopy, see figures S1-S7 and table
S1. P-P data from the image stacks of pure pigments were averaged across the spatial
dimensions, that is over the imaged field of view, and normalized. These curves are shown
in figure 2, the curve for ultramarine blue is shown in figure S8. The non-normalized TA
curves can be found in the supplementary materials, figure S9. The TA curves of the four
black pigments exhibit distinctive qualitative differences. For graphite and lamp black, the
duration of the temporal features (= 100 fs) is limited by the temporal resolution of our
microscope. These ‘instantaneous’ signals suggest the involvement of virtual energy states
in the nonlinear interaction, typical of processes like TPA, SRS, SFG, and XPM, as shown
on the left in figure 1. In our convention, transient loss processes, such as TPA, are
depicted as positive while transient gain processes are depicted as negative. For the given
pump and probe wavelength, we would only detect Raman gain processes, thereby ruling
SRS out as potential signal origin. SFG generates a new wavelength, which we have not
observed, and XPM manifests in a sign change in the TA signal. This indicates TPA as the
likely signal origin for graphite, bone black, and lamp black around the time delay of A=0
ps. In the case of lamp black, there is a slow rise of the TA curve observable at time delays
larger than 15ps. This is caused by an ESA event with a lifetime much longer than the
observed 25ps. In addition to TPA, bone black contains an ESA process with a short
lifetime, visible between 1 and 5 ps. Charcoal signals are dominated by multiple ESA
processes, which are described by a superposition of multiple exponential decays. The
differences in the TA curves highlight the potential of P-P microscopy to noninvasively
identify and distinguish these four carbon-based black pigments. It is worth noting that
these four curves, particularly graphite, also differ in amplitude as shown in figure S9.

The spatially averaged curves shown in figure 2 obscure signal variations within the P-P
image. For example, the averaged TA curve of charcoal is uniformly positive, peaking
around a time delay of Ar=0.1 ps. However, high-resolution P-P images, shown in figure
S10, reveal interspersed regions of positive and negative signal for charcoal. A convenient
way of visualizing heterogeneity in P-P stacks is an adapted form of phasor analysis (52),
see materials and methods. Nearby points in a phasor plot correspond to similar P-P
signals. Phasor plots of the pure black pigments are shown in figure 3. It is evident that the
phasor plot for charcoal falls into two distinct areas, aligning with positive and negative P-
P curves, respectively. We select all TA curves within these clusters, indicated by red and
yellow circles, and plot their averages in figure 3B, respectively. The signals in charcoal
appear to be the same aside from a sign difference. This suggests TS as an underlying
molecular mechanism: a pump-induced change in refractive index transiently changes the
angular distribution of the backscattered light, which in combination with an aperture in
the beam path, causes a sign change in the measured signal. An alternative interpretation
would be the presence of two distinct chemical species in charcoal, which coincidentally
have nearly opposite signs at each delay. While bone black would be the pigment expected
to show signals for two distinct chemical species, as it contains both the carbonized
organic material of the bone and the inorganic hydroxyapatite (/, 2), we do not see this
present in the P-P images. Conversely, P-P signals of bone black, graphite, and lamp black
appear homogeneous in their phasor plots.
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We also acquired P-P image stacks of paints that are comprised of two different pigments.
These include six 50-50 (by mass) pigment mixtures of each pair of two black pigments:
bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite,
charcoal-lamp black, and graphite-lamp black. Brightfield images can be found in figure
S11. We acquired multiple P-P images from different areas of each mixture. Their average
TA curves are shown in figure S12. In order to demonstrate pigment identification in
shading applications, we imaged mixtures of each carbon-based black pigment with
synthetic ultramarine blue (Na7AlsSi6024S3), an artificial version of natural ultramarine
blue which comes from the mineral lapis lazuli. We captured images of twelve
combinations, mixing each of the four black pigments with ultramarine blue in three paint
ratios: 25:75, 50:50, and 75:25. Brightfield images of all mixtures can be found in figure
S13 and average TA curves are shown in figure S14. Based on the reference P-P image
stacks, we characterize the pigments in the mixtures using an unmixing algorithm and an
SVM to identify the pigments composing the mixtures.

Pigment assignment by unmixing

The averaged TA curves of the pigments, shown in figure 2, show distinct features that we
will utilize to distinguish them in paint samples that are made of two pigments. We use the
averaged P-P curves from pure pigments shown in figure 3 as reference TA curves for the
unmixing algorithm. This includes two reference curves for charcoal, due to its noted
heterogeneity. Phasor analysis is used to derive the two charcoal reference curves, the
orange and yellow TA curves shown in figure 3B. The unmixing algorithm analyzes the
TA curves of all pixels in a P-P image stack. It compares these curves with the reference
curves from pure pigments and determines the abundance fraction, which represents the
proportion of each reference pigment present in every pixel. Subsequently, after the
unmixing process, abundance fractions for the two reference TA curves associated with
charcoal are combined to a single charcoal abundance. More details can be found in the
materials and methods section.

The unmixing algorithm is first tested on pure pigment data and has an average accuracy
of 83%. This means that when the unmixing algorithm is presented with a P-P TA curve
from a single pixel of any of the five pigments (bone black, lamp black, charcoal, graphite,
and ultramarine blue), it classifies it correctly 83 times out of 100. Due to the similarity of
bone black and lamp black signals, we repeated the unmixing analysis with a reduced set
of pigments. First, we only considered lamp black, charcoal, graphite, and ultramarine
blue (unmix-nobb) and in a second run we only considered bone black, charcoal, graphite
and ultramarine blue (unmix-nolb). The unmixing classification accuracy for pure
pigments improves to 88% (92%) when bone black (lamp black) is left out.

When presented with P-P image stacks of black pigment mixtures, the unmixing approach
identified only 63% of pixels as being pigments which were actually present in the sample
for the black-black mixtures and only 62% in the ultramarine blue-black mixtures. As
above, we repeated the unmixing analysis with a reduced set of pigments in the unmixing
algorithm (unmix-nobb, unmix-nolb). When bone black is left out, the unmixing approach
correctly identified only 76% of the pixels in black-black mixtures and 72% in the
ultramarine blue-black mixtures. When lamp black is left out, the unmixing approach
correctly identified only 69% of the pixels in black-black mixtures and 64% in the
ultramarine blue-black mixtures. The signal-to-noise ratio (SNR) in P-P data of black
pigments is relatively low, increasing the variance in single-pixel data. We believe this to
be a main limitation as spectral unmixing compares these noisy single-pixel spectra to
highly averaged reference spectra, see figure S15, which may not handle the noise
effectively. Given the low percentage of correctly identified pixels, we changed our
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approach to methods that are better suited to the complex and heterogeneous nature of the
black pigment P-P data. We summarized accuracies of all algorithms across this
manuscript in table S2 in the supplementary material.

Machine learning for pigment classification

Due to the poor performance of the unmixing algorithm, the high dimensionality of TA
curves, and the signal heterogeneity of charcoal, we decided to go a different route and
train an SVM for classification. We trained an SVM with P-P TA curves from pure
pigments and then used it to classify and identify pigments in two-component mixtures.
We train the SVM with around 5500 TA curves of each of the five pigments exposing the
SVM to the full range of signal variation for each pigment. A description of the training,
validation, and testing process can be found in the materials and methods section of this
manuscript.

The resulting SVM has an overall accuracy of 85% for pure pigments. Due to the
similarity of bone and lamp black signals and analogous to the unmixing case, we repeat
the same procedure with reduced pigment sets: First, bone black is left out and in a second
run lamp black is left out. The accuracy increases markedly in both cases to 96% (no bone
black) and to 94% (no lamp black). However, the performance of the SVM will drop for
P-P images of two-pigment mixtures, as discussed in the next sections. In the remainder of
this manuscript, unless explicitly stated otherwise, "SVM" refers to the classifier trained
on all pigments. If we refer to a classifier trained by leaving one pigment out, we will
specify it as "SVM-nobb" (no bone black) or "SVM-nolb" (no lamp black). We
summarized accuracies of all algorithms across this manuscript in table S2 in the
supplementary material.

Black-Black Mixtures

The accuracies reported above were based on the pure reference samples and we want to
test the SVM on a more realistic scenario, namely paints based on two pigment mixtures:
bone black-charcoal, bone black-graphite, bone black-lamp black, charcoal-graphite,
charcoal-lamp black, and graphite-lamp black. We took images of at least three different
areas for each mixture and presented the P-P image stacks to the SVM classifier.

We summarize the overall performance of the SVM classifier with a bar chart in figure 4,
one bar for each black-black mixture. It is crucial to note that we operate without a
definitive "ground truth" in this context. While we know the two pigments comprising
each mixture, their precise microscopic distribution remains unknown, and no alternative
method exists for validating the results, to the best of our knowledge. To assess
performance, we tally all classified pigments for a given mixture. We label pixels as
correctly classified if they are identified as a pigment that is part of the mixture and as
misclassified if not. Accuracy is computed by taking the ratio of correctly classified pixels
over all classified pixels. A successful method to identify black pigments should have a
high accuracy, meaning that the percentages of correctly identified pixels should be larger
than any other misclassification. The SVM achieves accuracies of 55% (charcoal — lamp
black), 57% (graphite — lamp black), 61% (bone black — graphite), 79% (charcoal —
graphite), 93% (bone black - charcoal), and 97% (bone black-lamp black). The first three
accuracies are low and stem from the similarity of bone black and lamp black signals. By
pivoting to SVM-nobb and SVM-nolb, these accuracies are lifted to 94% (charcoal — lamp
black with SVM-nobb), 89% (graphite — lamp black with SVM-nobb) and 79% (bone
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black — graphite with SVM-nolb). A detailed list is presented in the supplementary
materials, table S3. We will discuss the implications of these results in the discussion
section.

The SVM returns a pigment classification for each pixel in the P-P stack, and we use this
information to generate a false-color pigment map (or abundance map). Three
representative examples are shown in figure 5. The percentages in the legend represent
pigments identified by the classifier. Note that these numbers represent one specific region
of interest and therefore deviate from the overall average. For the charcoal-graphite
mixture in figure 5A, 77% of the signal containing pixels are identified as charcoal (31%)
or graphite (46%). The remaining 23% were misclassified, with 12% of the pixels
misclassified as bone black. The graphite-lamp black mixture, shown in figure 5B,
performs poorly with only 54% of pixels being correctly identified (20% graphite, 34%
lamp black). The largest misclassification is again bone black (38%). This makes sense
because of the similar signals for lamp black and bone black. If instead SVM-nobb is used
to classify the same image stack we find 85% of pixels correctly identified. The direct
comparison between abundance maps of SVM and SVM-nobb for this region of interest is
shown in figure S16. In the bone black-charcoal mixture, figure 5C, 94% of pixels are
accurately identified (bone black 35% and charcoal 59%) and with the most common
misclassification being lamp black, with only 3% of the pixels.

Ultramarine Blue-Black Mixtures:

We also tested the SVM classification performance for shading applications on mixtures
of a carbon-based black pigment with ultramarine blue. We presented 12 mixtures of a
carbon-based black pigment and ultramarine blue in three different paint ratios to the
SVM classifier. For each of the twelve samples, we imaged at least three different areas
and computed the average classification accuracy. A summary of the classifier across all
the shading combinations is presented in figure 6, see table S4 for full details. Like in the
black-black mixture case, there exists no ground-truth for the pixel identities, and we
therefore apply the same metric to measure accuracy. Our methodology yields a robust
qualitative classification, demonstrating a strong correlation between the detected amount
of ultramarine blue and the actual physical mixing ratio of the sample. This correlation is
consistent for most of the black pigments used. Of the 12 mixtures, only the 25:75
ultramarine blue — lamp black mixture performs poorly with only 50% of all pixels
correctly classified. Four mixtures (50:50 ultramarine blue — bone black , 25:75
ultramarine blue — bone black, 25:75 ultramarine blue — charcoal, 50:50 ultramarine blue —
graphite) are classified with an accuracy ranging between 75% and 80% and all remaining
mixtures are classified with a higher than 80% accuracy. As before, the alternative
classifier SVM-nobb improves the classification accuracy for the 25:75 ultramarine blue —
lamp black mixture to 64%.

Like with the black-black mixtures, we can derive spatial maps of the black-blue mixtures.
Three maps, of the 75:25 ultramarine blue — charcoal, 50:50 ultramarine blue — graphite,
and 50:50 ultramarine blue — bone black mixtures, are shown in figure 7. As before, the
derived mixing ratios deviate from the macroscopic mixing ratio, highlighting that without
a true ground truth, genuine quantitative imaging remains a challenge. The images shown
in figure 7, and the bar chart in figure 6, demonstrate good qualitative performance.

Discussion
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Our findings highlight the potential of P-P microscopy for the noninvasive differentiation
and mapping of black pigments. This technology presents an appreciable advancement in
the noninvasive analysis of cultural heritage artifacts, where the precise identification of
pigments can provide invaluable insights into the techniques and materials used by artists.
However, there are cases of misclassification within the set of targets. Here we will
discuss the performance and limitations of our current classification approach and
comment on the future application of P-P microscopy in cultural heritage science.

Classification challenges and future strategies

Our current classification approach faces several challenges. The primary challenge we
encounter with our current classification approach is the absence of a definitive ground
truth for the images. The derived pigments maps, as shown in figure 5, are a result of P-P
imaging and an SVM classifier. To the best knowledge of the authors, there is no
alternative method to validate the correct mapping for all pigments. The only ground truth
we have is the mixing ratio used during sample preparation. The mixing ratio is a
macroscopic quantity and the P-P images in this proof-of-principle study only sample
three 36um x 36pum areas. Within this small area, we expect variations in the pigment
ratios that will vary from the macroscopic pigment distribution. For example, the
measured pigment ratio in the 50:50 bone black-charcoal mixture, in figure 5, is 35/59=0.6
which could be explained by a locally higher density of charcoal.

A second challenge in pigment classification is the vast difference in SNR between
different pigments. We show unnormalized curves of the four black pigments in the
supplementary materials, figure S9. Graphite has the largest signal followed by
ultramarine blue and charcoal which are around 5 times weaker. Lamp black is roughly 10
times weaker and bone black around 20 times weaker than graphite. Signals of bone black
and lamp black are close to the noise floor of our microscope and are therefore more
difficult to classify compared to the high SNR signals of charcoal and graphite. We
believe that this is the main reason for the small bone black percentages identified in
black-black mixtures, depicted in figure 4. We hypothesize that the majority of
misclassified pixels stem from the SNR limitations. We have plotted 5 randomly selected
single pixel TA curves per reference pigment and overlayed them with their respective
average curve in figure S15. Some of these TA curves contain sizable noise and
qualitatively differ from their respective average curves. This also relates to the inherent
tradeoff between spatial resolution and SNR: higher spatial resolution requires smaller
sampling volumes and therefore leads to smaller SNR. Averaging neighboring pixels in an
image increases SNR at the expense of spatial resolution. Spatial averaging, however,
might mix TA curves of adjacent pigments. This causes two additional challenges. In case
of a large signal amplitude mismatch, the pigment with the larger signal will overwhelm
the features of the weaker pigment signal thereby skewing classification towards pigments
with larger signal. Thus, even for a 50:50 mixture of two different pigments, their
difference in signal strength can distort the pigment distribution that we measure towards
the pigment with the larger signal. This effect can be seen in the mixtures of ultramarine
blue with either bone black or lamp black, where the percentage of classified ultramarine
is typically larger than the mixing ratio. Alternatively, if TA curves of comparable signal
strengths are averaged, we create a de facto new TA curve that is unknown to the SVM
classifier, which was only trained on pure TA curves, leading to increased
misclassification. Currently, we choose a compromise between spatial averaging to
achieve sufficient SNR and maintaining enough resolution to resolve most individual
pigment grains.
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Another reason for misclassification of TA curves is the inherent similarity between the
signals of bone black and lamp black. The highly averaged curves of their pure reference
samples, as shown in figure 2, only differ marginally in decay time between 1-5ps and in
their offset at time delays larger than 15ps. The small signal amplitudes of lamp and bone
black are not prominent enough on a pixel-by-pixel basis and cause misclassifications in
the SVM classifier. This effect can be seen most prominently in the 50:50 charcoal — lamp
black mixture where 40% of all pixels are misclassified as bone black and in the 50:50
graphite — lamp black mixture where 37% of all pixels are misclassified as bone black. To
mitigate this problem, we introduced the additional classifiers SVM-nobb and SVM-nolb
by leaving out bone black and lamp black, respectively. These classifiers perform notably
better in mixtures of two black pigments; however, additional a-priori knowledge of the
sample would be required to select the appropriate classifier. This is only a limitation
when restricted to solely use P-P microscopy. The presence of calcium and phosphorus in
bone black offers another route to unambiguously distinguish bone black from lamp black.
X-ray fluorescence spectroscopy can noninvasively detect both elements and could be
used to decide if the SVM-nobb or SVM-nolb classifier should be used for further
analysis.

In the future, we envision increasing SNR in two ways. First, by improving our detection
capabilities, specifically by increasing collection efficiency by using higher numerical
aperture objectives. Second, we intend to explore different pump and probe wavelengths
that might offer different TA dynamics that could be used to distinguish bone black from
lamp black and also offer a larger interaction cross-section for the currently weak signals
of bone and lamp black.

Our current classification scheme employs a relatively simple algorithm that analyzes
individual pixels independently, without considering the contextual information from
neighboring pixels. While SVMs provide robust performance in classifying TA curves on
a per-pixel basis, the inherent spatial correlation within pigment grains suggests that
adjacent pixels are likely to belong to the same pigment. This spatial dependency is not
utilized in the current approach, potentially limiting the overall classification accuracy.
Given the high probability that adjacent pixels represent the same pigment, leveraging this
local image information could substantially enhance classification performance.
Convolutional Neural Networks (CNN5s) are particularly well-suited for this task, as they
are designed to capture spatial hierarchies in data through convolutional layers that
process local neighborhoods of pixels. Thus, we envision implementing a U-Net, a
specialized CNN for semantic segmentation to integrate spatial context into the
classification process to further improve classification accuracy and robustness of pigment
identification (53).

We also observe, at least heuristically, an increased misclassification rate at pigment grain
boundaries. This can be seen in figure SA and figure 7A, in which bone black appears
around the edges of individual pigment grains. This can also be observed for other
pigments such as lamp black. We attribute this to the qualitatively similar curves of bone
black, lamp black and graphite. TA curves originating from grain boundaries are weaker
because there is less material in the focal volume of the lasers to contribute to P-P signals.
This could cause a graphite signal to be misclassified as either bone or lamp black, for
example. We are confident that this problem can be circumvented by algorithms that take
information from the pixel neighborhood into account, like CNNss.
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Pump-Probe Signal Heterogeneity

A surprising discovery was the intrinsic heterogeneity in the P-P signals of charcoal. As
shown with phasor in figure 3B, charcoal has two distinct P-P signals, a positive and a
negative signal. In addition to being the only pigment with a distinctive lifetime present in
its positive signal longer than 5 ps, the presence of negative signal is also unique amongst
the carbon-based black pigments studied. We hypothesize that two factors contribute to
potential heterogeneity: First, the inherent microscopic heterogeneity of charcoal. Of the
four pigments, only graphite has an ordered molecular structure (sheets of sp2 hybridized
carbon), consistent with the observed homogeneous signal in the phasor plot in figure 3C.
Lamp black, which undergoes a gas phase carbonization during production, is
microscopically uniform (on the scale of the resolution of our microscope). Charcoal is
derived from an extremely heterogeneous base material, wood, maintains a solid structure
during carbonization, and therefore retains part of its initial structural complexity. While
bone black also derives from a heterogenous starting material, bone, it undergoes a liquid
phase during carbonization which would allow for some molecular rearrangement, with
the resulting pigment being more homogenous. The other factor that could contribute to
the heterogeneity in P-P signal of charcoal is the presence of heteroatoms or non-carbon
constituents that commonly occur in carbon-based black pigments. Winter reports that
incorporation of heteroatoms into the carbon matrix during the carbonization process is
especially common for cokes and chars prepared at low temperatures (2). These factors
may explain the higher degree of heterogeneity of signals in charcoal. Again, bone black
notably has heteroatoms present in the form of hydroxyapatite, but we do not observe
heterogeneity in its signal. The potential of P-P microscopy to analyze the heterogeneity
of carbon-based black pigments is an exciting prospect for future studies.

Bevond proof-of-principle studies towards applications to works of art

This manuscript demonstrates the potential of P-P microscopy to noninvasively identify
black pigments in mixtures. For this proof-of-principle demonstration we restricted
ourselves to four black pigments and one colored pigment. Most works of art contain
many more colors and, although we used the four most prevalent black pigments, there are
other black pigments in use. Our group has analyzed a range of pigments, including red
organic dyes, iron oxides, vermillion, and cadmium sulfide and we can incorporate these
pigments into our classification scheme (46-517). Furthermore, P-P microscopy offers two
powerful and easily accessible degrees of freedom: the choice of pump and probe
wavelength. P-P signals reflect the population dynamics between molecular levels and are
therefore strongly dependent on the pump and probe wavelengths. Pigments that present
similar TA curves at a particular wavelength combination may differ drastically at another
(47). A convenient approach would be pigment exploration in a broadband P-P
spectroscopy setup, where many wavelengths can be probed simultaneously. We could
then select a wavelength combination that offers a unique contrast for a specific pigment.
Ultimately, multiple P-P images acquired with different wavelength combinations
(hyperspectral P-P microscopy) will provide sufficient specificity to distinguish and
identify many pigments. Extension of the SVM classifier to more pigments and to
hyperspectral P-P images is conceptually straightforward and only requires the additional
pure reference data in the training phase. In addition, polarization P-P microscopy, which
offers improved chemically specific contrast based on the molecular anisotropy of
pigments, can further improve pigment specificity (38, 54).
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The multiphoton nature of P-P microscopy enables high resolution in all three spatial
dimensions, even beneath the surface of highly scattering materials (32). In previous
experiments, we were able to image up to a depth of = 90 pum in paint layers to produce
virtual cross sections (49), thus allowing cultural heritage scientists and conservators to
better understand pieces of art without invasive sampling. However, achievable
penetration depths depend on the absorption and scattering properties of the materials
present at the surface and the subsequent layers. Carbon-based black pigments strongly
absorb visible to near-infrared light and therefore reduce optical penetration depth. This
will be most prominent in works of art with a thick or opaque layer of carbon-based black
paint, for example in oil or tempera paintings. In a work with thinner or more transparent
layers, such as watercolor paintings or drawings and prints, the absorption of the black
pigments would not greatly reduce penetration depth.

Our study has successfully shown that P-P microscopy is an effective noninvasive tool for
differentiating black pigments in a variety of combinations, including mixtures with other
carbon-based black pigments and with ultramarine blue. This achievement highlights P-P
microscopy's capability to fill a void in the field of cultural heritage science, where, until
now, no noninvasive method for identifying carbon-based black pigments in mixtures with
such certainty existed. We have outlined a clear strategy to further improve the
performance and to increase the number of pigments in our approach and we envision
applying this methodology to actual works of art. A particularly fascinating application
would be Vermeer’s Girl with a Pearl Earring where bone black and charcoal are
reported to exist together in an underlayer, currently only confirmed by analysis of a cross
section (55). P-P microscopy could be used to further validate these findings as well as to
provide additional information, i.e. a three-dimensional pigment map of both pigments
across the painting.

Materials and Methods
Pump-Probe Microscopy

A schematic of our P-P microscope is shown in figure S17. The output of a Ti:Sapphire
laser (Coherent Chameleon Ultra IT) with an 80 MHz repetition rate is split into two parts.
One part serves as probe beam at a wavelength of A,se = 817 nm. The second part is
frequency converted into the pump with a wavelength of Ayump = 720 nm with an optical
parametric oscillator (Coherent Mira-OPO). The pump pulse train is intensity-modulated by
an acousto-optic modulator at a rate of 2 MHz. Both laser beams are spatially superimposed,
sent into a laser scanning microscope, and focused onto the sample with a 20x 0.7 NA dry
objective. The inter-pulse delay At between pump and probe is controlled with a motorized
translation stage in the probe beam path. We utilize a modulation transfer scheme to detect
the weak signals generated by the nonlinear interaction between pump, probe, and sample.
As the nonlinear interaction transfers the pump modulation onto the probe pulse train, these
changes in absorption in the probe pulse train are measured with a photodiode and a lock-
in amplifier. For pigment imaging, we use a pump and probe pulse intensity of 7= 4.4x108
W/m?, (corresponding to 0.25 mW), and image an area of 36pum x 36um for 24 time delays
At spanning -1.5 to 25 ps. The resulting data structure (image stack) is a 3-dimensional data
cube with two spatial and one temporal dimension. Each pixel in the P-P stack represents a
P-P TA curve, the change of absorption as a function inter-pulse delay Az.

Validation of Pigments

For reflectance spectroscopy, pigment was placed onto a glass slide and fixed with a gum
arabic solution. A coverslip was placed over the sample and allowed to dry in the fume hood
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overnight. Reflectance spectra were collected using a Cary 5000 spectrophotometer with a
diffuse reflectance accessory. The reflectance measurements include both specular and
diffuse reflectance. The spectra were collected from 400-1500 nm with a step size of 1 nm
and a scan time of 0.1 s. A Labsphere diffuse reflectance standard was used as a reference.

For elemental analysis, double-sided copper tape was placed on a sample mount for the
instrument. Pigment powder was pressed onto this tape, with excess removed via nitrogen
gas flow. The pigments remained uncoated. An Apreo S SEM by ThermoFisher Scientific
with an Oxford Instruments X-Max-N 150 EDS was used for elemental analysis with an
accelerating voltage of 20 kV. Due to the copper tape, copper does appear in the elemental
spectra for the pigments analyzed.

For Raman spectroscopy, pigment was placed onto a glass slide and held in place by a glass
coverslip. Raman spectra were collected using a Horiba Jobin Yvon LabRAM ARAMIS
Raman microscope with an air cooled (-70 C) charge-coupled device detector. A grating of
1800 g/mm and a slit of 100 um was used with a 50x objective and a wavelength of 633
nm. The spectral resolution was approximately 1 cm!. The spectra were collected from
1050-1800 cm!. Each spectrum was averaged 35 times with each acquisition being 30
seconds, resulting in a total scan time of 18 minutes.

Preparation of Pigments

The pigments were commercially sourced from AGS Company (graphite), Coates Charcoal
(charcoal), Kremer Pigments (bone black, exclusive and ultramarine blue, dark), and Rublev
Colours (lamp black). Pure pigments were thoroughly mixed with gum arabic in a separate
vessel to prepare a smooth watercolor paint. For the black-black mixtures, the powdered
pigments were weighed and mixed with a mortar and pestle as powders, then together mixed
with gum arabic to prepare the watercolor paint. The densities of the pigments were
measured by packing the individual pigment into a known volume, 0.5 mL, and measuring
the weight. The measured densities are as follows: Bone Black 0.71 g/cm?®, Charcoal 0.36
g/cm?, Graphite 0.74 g/cm?, Lamp Black 0.33 g/cm?. For ultramarine blue-black mixtures,
the paints were prepared separately as described for pure pigments, then mixed together as
one would on a palette. The prepared paints were applied to a commercially sourced pre-
primed canvas in two layers, allowing for drying in between. Note that gum arabic itself
does not cause pump-probe signals, as shown in S18 in the supplementary material.

Adapted Phasor Analysis for Visualization

A more detailed description of adapted phasor analysis can be found here (52). In brief,
single-frequency sine and cosine Fourier coefficients are calculated for TA curves in each
pixel of a P-P image stack and plotted as the x- and y- coordinates on a 2-dimensional plane,
the phasor plot. For example, phasor coordinates of a positive (negative) single-exponential
decay would map onto a specific point on the semi-circle in the first quadrant (third
quadrant). Nearby points in a phasor diagram correspond to similar P-P signals. Thus,
adapted phasor analysis provides a simple way of visualizing the inherently three-
dimensional P-P image stacks. The phasor frequency, the frequency for which the Fourier
components are calculated, is a degree of freedom that can be adjusted to tune the phasor
plot, i.e. to be more sensitive to specific timescales in the TA data. For the black pigment
data, we use a frequency of /= 0.25 THz which nicely separates the signals of charcoal into
two distinct areas in the phasor plot. The first area is in the first quadrant and corresponds
to the positive charcoal signals while the second area falls into the third quadrant which
corresponds to the negative charcoal signals. Adapted phasor analysis thus provides a
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convenient way of separating these signals based on their position in the phasor plot. The
positive (negative) TA curve shown in red (yellow) in figure 3B corresponds to all pixels
that are selected with the red (yellow) ellipse in the phasor plot.

Data Analysis and Classification Algorithms

The goal of our data analysis is to find a classifier function that predicts pigments based
on TA curves. After data pre-processing, we use P-P image stacks of pure pigments
(reference samples) to train a classifier algorithm. This classifier algorithm is then used to
classify P-P image stacks of two-pigment mixtures. In many similar scenarios such as
hyperspectral imaging or Raman imaging, where the spectra of reference samples are
well-known, unmixing algorithms are the standard approach. Thus, we decided to use an
unmixing algorithm as a baseline and compare it with an SVM which is more suited to
deal with heterogeneous data such as TA curves. Here we describe the data pre-processing
and training in more detail.

Data pre-processing of pump-probe image stacks: Raw P-P data are pre-processed before
training and classification in the following steps: (1) Due to pump-leakage into the
detector and potential long-lived (7 >> 12.5 ns, the time spacing between consecutive
pulses) radiative states at the probe wavelength, we average three P-P images at negative
time delays (4¢ =-10 ps, -5 ps, and -2.5ps) and subtract them from the entire P-P stack,
thereby eliminating a constant offset in the data. These three time delays are then removed
from the image, resulting in the 24 time delays mentioned in the main text, to reduce the
dimensionality for machine learning, improving training and classification speed. (2) Raw
P-P data is intentionally oversampled beyond the diffraction limit, and we apply a spatial
moving average filter of kernel size two to increase SNR. (3) A global intensity threshold
is applied to all P-P stacks to discriminate noise from P-P signals. The threshold is based
on the maximum in the histogram of all P-P stack projections. (4) We then reduce the
image size with an average pooling by factor two, consistent with the oversampling, to
reduce data amount and increase training and classification speed.

Unmixing Algorithm: TA curves of pigments ultramarine blue, bone black, graphite, and
lamp black are homogeneous, and their reference P-P stacks are spatially averaged to
reference TA curves, as shown in figure 3 and S8. Charcoal is the only pigment showing
appreciable signal heterogeneity, containing both negative and positive TA curves, see
figure 3B. We use adapted phasor analysis to derive two reference TA curves for charcoal,
as described in the “Adapted Phasor Analysis for Visualization” section of materials and
methods. All transient absorption curves, averaged reference curves and single pixel
curves of mixtures, are normalized to their respective extremum. The reference curves for
each pigment are arranged into an endmember matrix U. The unmixing algorithm uses the
endmember signatures in matrix U to perform a fully constrained least squares fit on each
pixel, determining the proportion of each reference pigment in every pixel. “Fully
constrained ” incorporates a non-negativity constraint, which permits only positive values
in the abundance fractions and a “sum-to-1" constraint requiring the sum over the
abundance fractions to be 1. This allows interpretation of the abundance fraction as
probability, and we assign the pigment with the highest probability to a given pixel. The
algorithm used in this manuscript is based on reference (56) and was implemented in
pysptools 0.15.0 by Christian Therien (57).

To assess the performance of the unmixing algorithm we randomly split the pure pigment
data in a 50-50 ratio into test and train set. The train set is used to compute average
reference TA curves, and these curves are then used to unmix the test data. The test
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accuracy accres: describes the fraction of correctly identified TA curves in the test data. We
repeat this procedure 5 times to compute the mean value and standard deviation of the test
accuracy. We use three unmixing algorithms: “Unmix” which contains reference TA
curves of all 5 pigments (bone black, charcoal, graphite, lamp black, ultramarine blue),
“Unmix-nobb” without the pigment bone black, and “Unmix-nolb” without the pigment
lamp black. The accuracy of correctly identifying pure pigment data of the “Unmix”
algorithm is acces: = (83 £ 0), of the “Unmix-nobb” algorithm is accress = (88 £ 0), and of
the "Unmix-1b” algorithm is accress = (92 £ 0). A comprehensive summary of unmixing
and SVM algorithm accuracies are shown in table S2 in the supplementary material. A
graphical scheme of the unmixing algorithm and its data flow is shown in figure S19. For
unmixing of pigment mixtures, the entire pure pigment data is used as average reference
TA curves.

Support Vector Machine (SVM): An SVM is a supervised learning algorithm that
classifies data into one of two classes. The algorithm takes n-dimensional input vectors
(here TA curves consisting of 24 time delays) and separates them by a n-1 dimensional
hyperplane. This plane maximizes the margin between classes and is defined by the
support vectors, the data points from each class that are nearest to the hyperplane and most
influence its position. An SVM can be expanded to multiclass classification with a “one-
versus-rest” strategy. It naturally lends itself to heterogeneous data and is well suited for
high-dimensional data. We use the scikit-learn 1.4 (58) and the imbalanced-learn 0.12.0
(59) python packages for training, validation and testing of the SVM. We randomly select
around 27,500, single pixel P-P TA curves (imblearn RandomUnderSampler), 5500 from
each reference sample. We split them into training and testing sets with a ratio of 3:1. We
perform a hyperparameter optimization (scikit-learn GridSearchCV) of C and y for the
SVM (scikit-learn SVC with radial basis functions as kernel). The regularization
parameter C controls the trade-off between minimizing error on the training data and
maintaining a smooth decision boundary. Lower values of C encourage a simpler,
smoother decision boundary, which may allow for some misclassification in the training
set but is more likely to generalize well to the test data. In contrast, higher values of C
prioritize the correct classification of all training data, resulting in a more complex
decision boundary that often leads to overfitting. The y parameter determines the influence
of a single training example on the decision boundary. A large y value confines the
influence of a training example to its immediate neighbors, which can create a more
complex model that may overfit the data. Conversely, a smaller y value allows each
training example to have a broader influence, leading to a smoother decision boundary
that is more likely to generalize better to unseen data. The hyperparameter optimization is
performed on the training set with a stratified-5-fold cross validation strategy (scikit-learn
StratifiedKFold), with accuracy as the scoring metric, and with a standard scaler applied to
all TA curves (scikit-learn StandardScaler). The performance of the best classifier is
inferred by measuring accuracy of the classifier applied on the test set. Accuracy is
defined as the percentage of correctly classified pixels divided by all classified pixels. The
entire procedure is repeated 5 times, and we compute the average and standard deviation
over all five runs.

We train three SVM classifiers: “SVM” which is trained on all pigments (bone black,
charcoal, graphite, lamp black, ultramarine blue), “SVM-nobb” which is trained without
the pigment bone black, and “SVM-nolb” which is trained without the pigment lamp
black. The validation accuracy for the SVM that is trained on all pigments is accyaia =
(85.15 £ 0.15)% and the testing accuracy is accrest = (85.43 £ 0.34)%. For the classifier
SVM-nobb the validation accuracy is accyaia = (95.88 £ 0.04)% and the testing accuracy is
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acciest = (96.01 £ 0.14)% and for the classifier SVM-nolb the validation accuracy is accyaiia
=(94.57 £ 0.11)% and the testing accuracy is accrest = (94.40 £ 0.38)%. The accuracies
based on validation set are comparable to the accuracies based on the test set for all three
classifiers which lets us conclude that they are well-trained and that we capture the whole
range of signal variety. We then use the optimal hyperparameters and the entire reference
data to train the final SVM classifiers that are used to classify two-pigment mixtures. Note
that the final classifiers are solely trained on reference pigment data and have not been
trained with any data from mixed samples. The confusion matrix of each classifier is
shown in figure S20. A comprehensive summary of unmixing and SVM algorithm
accuracies are shown in table S2 in the supplementary material. A graphical scheme of the
SVM algorithm and its data flow is shown in figure S21.
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Figure Captions

Figure 1. Multiphoton nonlinear processes accessible in pump-probe microscopy.
These interactions modulate the probe laser intensity, generally leading to complex,
bipolar transient absorption curves as the time delay is varied.

Figure 2. Spatially averaged pump-probe transient absorption curves of bone black,
charcoal, graphite, and lamp black.

Figure 3. Phasor plots and pump-probe signal components of the carbon-based black
pigments. Left: The phasor coordinates of all signal-containing pixels in pure pigments
(bone black, charcoal, graphite, and lamp black, respectively) as histograms, computed
with a phasor frequency of /=0.25 THz. Right: Averaged pump-probe signals
corresponding to the circled regions of the phasor plot.

Figure 4. Summary of SVM performance on two-black pigment mixtures. The bar
charts display the breakdown for classification of each black-black mixture. The full bar
represents 100%. Green corresponds to correctly classified pixels. Red corresponds to
misclassified pixels. Percentages with an asterisk denote mixtures that have
misclassification at comparable percentages of correct classifications. These mixtures
perform better with the appropriate reduced pigment classifier.

Figure 5. Pigment map for three black-black mixtures. A: charcoal-graphite. B:
graphite-lamp black. C: bone black-charcoal. The percentages are for these specific fields
of view and deviate from the average for each mixture.

Figure 6. Summary of SVM performance on blue - black mixtures. A: bone black-
ultramarine blue. B: charcoal-ultramarine blue. C: graphite-ultramarine blue. D: lamp
black-ultramarine blue. The full bar represents 100%. Blue and green correspond to
correctly classified pixels, blue for ultramarine blue and green for the black pigment. Red
corresponds to the misclassified pixels.

Figure 7. Pigment map for three ultramarine blue-black mixtures. A: 75:25
ultramarine blue — charcoal. B: 50:50 ultramarine blue — graphite. C: 50:50 ultramarine
blue — bone black. The percentages are for these specific fields of view and deviate from
the average for each mixture.
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Figure 1. Multiphoton nonlinear processes accessible in pump-probe microscopy. These interactions modulate the probe
laser intensity, generally leading to complex, bipolar transient absorption curves as the time delay is varied.
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Figure 2. Spatially averaged pump-probe transient absorption curves of bone black, charcoal, graphite, and lamp black.
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Figure 3. Phasor plots and pump-probe signal components of the carbon-based black pigments. Left: The phasor coordinates of

signal-containing pixels in pure pigments (bone black, charcoal, graphite, and lamp black, respectively) as histograms, computed with
phasor frequency of /=0.25 THz. Right: Averaged pump-probe signals corresponding to the circled regions of the phasor plot.
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Figure 4. Summary of SVM performance on two-black pigment mixtures. The bar charts display the breakdown for
classification of each black-black mixture. The full bar represents 100%. Green corresponds to correctly classified pixels. Red
corresponds to misclassified pixels. Percentages with an asterisk denote mixtures that have misclassification at comparable
percentages of correct classifications. These mixtures perform better with the appropriate reduced pigment classifier.
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Figure 5. Pigment map for three black-black mixtures. A: charcoal-graphite. B: graphite-lamp black. C: bone black-charcoal.

The percentages are for these specific fields of view and deviate from the average for each mixture.
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Figure 6. Summary of SVM performance on blue - black mixtures. A: bone black-ultramarine blue. B: charcoal-ultramarine
blue. C: graphite-ultramarine blue. D: lamp black-ultramarine blue. The full bar represents 100%. Blue and green correspond to
correctly classified pixels, blue for ultramarine blue and green for the black pigment. Red corresponds to the misclassified pixels.
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Figure 7. Pigment map for three ultramarine blue-black mixtures. A: 75:25 ultramarine blue — charcoal. B: 50:50 ultramarine
blue — graphite. C: 50:50 ultramarine blue — bone black. The percentages are for these specific fields of view and deviate from the
average for each mixture.
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