
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2024) 38:42
https://doi.org/10.1007/s10458-024-09672-7

Graphical house allocation with identical valuations

Hadi Hosseini1 · Andrew McGregor2 · Justin Payan2 · Rik Sengupta2,3 · Rohit Vaish4 ·
Vignesh Viswanathan2

Accepted: 8 August 2024 / Published online: 28 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The classical house allocation problem involves assigning n houses (or items) to n agents
according to their preferences. A key criterion in such problems is satisfying some fair-
ness constraints such as envy-freeness. We consider a generalization of this problem, called
Graphical House Allocation, wherein the agents are placed along the vertices of a graph
(corresponding to a social network), and each agent can only experience envy towards
its neighbors. Our goal is to minimize the aggregate envy among the agents as a natu-
ral fairness objective, i.e., the sum of the envy value over all edges in a social graph. We
focus on graphical house allocation with identical valuations. When agents have identical
and evenly-spaced valuations, our problem reduces to the well-studied Minimum Linear
Arrangement. For identical valuations with possibly uneven spacing, we show a number
of deep and surprising ways in which our setting is a departure from this classical prob-
lem. More broadly, we contribute several structural and computational results for various
classes of graphs, including NP-hardness results for disjoint unions of paths, cycles, stars,
cliques, and complete bipartite graphs; we also obtain fixed-parameter tractable (and, in
some cases, polynomial-time) algorithms for paths, cycles, stars, cliques, complete bipar-
tite graphs, and their disjoint unions. Additionally, a conceptual contribution of our work
is the formulation of a structural property for disconnected graphs that we call splittability,
which results in efficient parameterized algorithms for finding optimal allocations.

Keywords  Fair allocation · House allocation · Envy minimization · Local envy

1  Introduction

The house allocation problem has attracted interest from the computer science and multia-
gent systems communities for a long time. The classical problem deals with assigning a
set of n houses to n agents with (possibly) different valuations over the houses. It is often
desirable to find assignments that satisfy some economic property of interest. In this work,
we focus on the well-motivated economic notion of fairness, and in particular, study the
objective of minimizing the aggregate envy among the agents.

A preliminary version of this paper appeared in the proceedings of the 22nd International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS) [1].

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-024-09672-7&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 2 of 47

Despite the historical interest in this problem, to the best of our knowledge, the house
allocation problem has not been studied thoroughly over graphs, a setting in which the
agents are placed on the vertices of an undirected graph G and each agent’s potential envy
is only towards its neighbors in G, with only a few exceptions [2, 3].

Incorporating the social structure over a graph enables us to capture the underlying
restrictions of dealing with partial information, which is representative of constraints in
many real-world applications. Thus, the classical house allocation problem is the special
case of our problem when the underlying graph is complete.

Our work is in line with recent literature on examining various problems in computa-
tional social choice on social networks, including voting [4–6], fair division [7, 8], and
hedonic games [9, 10]. By focusing on graphs, we aim to gain insights into how the struc-
ture of the social network impacts fairness in house allocation. We focus on identical valu-
ation functions and show that even under this seemingly strong restriction, the problem is
computationally hard, yet structurally rich. We provide a series of observations and insights
about graph structures that help identify, and in some cases overcome, these computational
bottlenecks.

1.1 � Overview and our contributions

We assume that the agents are placed at the vertices of a graph representing a social net-
work, and that they have identical valuation functions over the houses. Our objective is to
find an allocation of the houses among the agents to minimize the total envy in the graph.
We call this the problem of Graphical House Allocation with Identical Valuations,
or Graphical House Allocation for short, where an instance of the problem consists of
the underlying graph together with the set of values for any of the (identical) valuation
functions.

This is a beautiful combinatorial problem in its own right, as it can be restated as the
problem where, given an undirected graph and a multiset of nonnegative numbers, the
numbers need to be placed on the vertices in a way that minimizes the sum of the edgewise
absolute differences.

In Sect. 2, we present the formal model and set up some preliminaries.
In Sect. 3, we present computational lower bounds and inapproximability results for the

problem, even for very simple graphs. We start by establishing the connection between the
graphical house allocation problem and the Minimum Linear Arrangement problem, which
has several notable similarities and differences. We show NP-hardness for the Graphical
House Allocation problem, even when the graph is a disjoint union of paths, cycles, stars,
or cliques, which all have known polynomial-time algorithms for linear arrangements.

In Sect. 4, we focus on connected graphs and completely characterize optimal alloca-
tions when the graph is a path, cycle, star, or a complete bipartite graph. We also prove a
technically involved structural result for binary trees.

In Sect. 5, we focus on disconnected graphs, starting with a fundamental difference
between graphical house allocation and linear arrangements, motivating our definitions
of splittable, strongly splittable, and unsplittable1 disconnected graphs. We employ these

1  These terms were initially separable, strongly separable, and inseparable respectively in the conference
version [1]. They have been changed subsequently to avoid ambiguity with other standard definitions of
separability, as (different) graph theoretic properties; see Hammer and Maffray [11], for example.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 3 of 47  42

characterizations to prove algorithmic results for a variety of graphs. In particular, we show
that disjoint unions of paths, cycles, stars, and equal-sized cliques are strongly splittable
and develop natural fixed parameter tractable (FPT) algorithms for these graphs.2 More-
over, we show that disjoint unions of arbitrary cliques, as well as “balanced” complete
bipartite graphs, satisfy splittability (but not strong splittability) and admit XP algorithms.3

Finally, in Sect. 6, we wrap up with a concluding discussion.
In the interest of readability, we defer the details of the more involved proofs to the

appendix.

1.2 � Related work

House allocation has been traditionally studied in the economics literature under the hous-
ing market model, where agents enter the market with a house (or an endowment) each and
are allowed to engage in cyclic exchanges [12]. This model has found important practical
applications, most notably in kidney exchange [13, 14].

While the initial work on house allocation focused on the economic notions of core and
strategyproofness [15], subsequent work has explored fairness issues. [16] study the house
allocation problem under ordinal preferences (specifically, weak rankings) and provide a
polynomial-time algorithm for determining the existence of an envy-free allocation. By
contrast, the problem becomes NP-hard when agents’ preferences are specified as a set of
pairwise comparisons [17]. Kamiyama et al. [18] study house allocation under cardinal
preferences (similar to our work) and examine the complexity of finding a “fair” assign-
ment for various notions of fairness such as proportionality, equitability, and maximizing
the number of envy-free agents (they do not consider aggregate envy). They show that the
latter problem is hard to approximate under general valuations, and remains NP-hard even
for the restricted case of binary valuations. Madathil et al. [19] similarly study various
notions of envy minimization and show that these problems are intractable for most classes
of binary, cardinal and ordinal valuations. For binary valuations, the problem of finding
the largest envy-free partial matching has also been studied [20]. Gross-Humbert et al. [21]
introduce a notion of group envy-freeness for house allocation and present an algorithm
to approximate this notion. Aziz et al. [22] study the computation of envy free allocations
when agent preferences are uncertain. Choo et al. [23] study the minimum subsidy required
to ensure envy-freeness in house allocation and its computational aspects. It is worth not-
ing that many of these works [16–23] assume there are more houses than agents. On the
other hand, in our work, we assume the number of houses is equal to the number of agents.

Recent studies have considered graphical aspects of house allocation (similar to our
work), though with different objectives. For a comprehensive review of work on fairness
objectives on graphs and other structured sets, we refer the reader to the survey by Biswas
et al. [24]. For instance, Massand and Simon [2] consider house allocation under exter-
nalities and study various kinds of stability-based objectives. Beynier et al. [3] study local
envy-freeness in house allocation, which entails checking the existence of an allocation
with no envy along any edge of the graph. Their work is close to ours, but their model

2  FPT is the class of problems solvable in time O(f (k) ⋅ poly(n)) , where n is the input length, k is a given
parameter, and f (⋅) is a computable function.
3  XP is the class of problems solvable in time O(nf (k)) , where n is the input length, k is a given parameter,
and f (⋅) is a computable function.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 4 of 47

involves agents with distinct ordinal preferences (as opposed to identical preferences). The
problem under distinct preferences turns out to be computationally intractable even for
simple graph structures like paths and matchings [3].

A recent follow-up work studies approximation algorithms for the Graphical House
Allocation problem with identical valuations, and provides tight bounds on the approxi-
mability of the aggregate envy objective for many classes of graphs [25].

There is also a growing literature on fair allocation of indivisible objects among agents
who are part of a social network. Bredereck et al. [8] study the computational complex-
ity of finding locally envy-free allocations when agents correspond to nodes in a directed
graph. This is very similar to our work with the key difference being that they study the set-
ting where each agent can receive multiple items. They present fixed-parameter tractabil-
ity results, mainly parameterized by the number of agents, though they leave results using
graph structure to future work. Eiben et al. [26] extend these results, showing a number
of parameterized complexity results relating the treewidth, cliquewidth, number of agent
types, and number of item types to the complexity of determining if an envy-free allocation
exists on a graph. It is worth noting that this line of work focuses on deciding if envy-free
allocations exist, rather than minimizing envy.

Other works seek to obtain envy-free allocations, maximum welfare allocations, or other
objectives by swapping objects along a graphical structure [27–30]. In particular, Gour-
vès et al. [29] studies the house allocation problem as well; the key difference being that
their work considers global objectives (like Pareto efficiency) which need to be reached via
swaps between neighbors in a graph, whereas our work studies local envy-freeness which
is defined by a graphical structure.

House allocation has also been studied in the setting where the houses are nodes on a
graph (representing the neighborhood the houses are in) [31]. In that work, agents have
preferences not only over the houses, but also over their neighboring agents in the graph
according to the computed allocation.

2 � Preliminaries

For any natural number t ≥ 1 , we use [t] to denote the set {1, 2,… , t} . There is a set of n
agents N = [n] and n houses H = {h1, h2,… , hn} (often called items). Each agent i has a
valuation function vi ∶ H → ℝ≥0 , where vi(h) indicates agent i’s value for house h ∈ H . An
allocation � is a bijective mapping from agents to houses. For each i ∈ N , �(i) is the house
allocated to agent i under the allocation � , and vi(�(i)) is its utility.

Given N, H, and {vi}i∈N , our goal is to output an allocation � that is “fair” to all the
agents, for some reasonable definition of fairness. A natural way to define fairness
is using envy. An agent i is said to envy agent j under allocation � if vi(𝜋(i)) < vi(𝜋(j)) .
While we would ideally like to find envy-free allocations, this may not always be pos-
sible — consider a simple example with two agents and two houses, but (exactly) one
of the houses is valued at 0 by both agents. Therefore, we instead focus on the magni-
tude of envy that agent i has towards agent j, for a fixed allocation � . This is defined as
envy�(i, j) ∶= max{vi(�(j)) − vi(�(i)), 0}.

We define an undirected graph G = (N,E) over the set of agents, which represents the
underlying social network. Our goal is to compute an allocation that minimizes the total envy
along the edges of the graph, defined as ����(�,G) ∶=

∑
(i,j)∈E(envy�(i, j) + envy�(j, i)) ;

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 5 of 47  42

note that edges are undirected. An allocation that minimizes the total envy is referred to as
a minimum envy allocation. The minimum envy allocation may not be unique.

When the graph G is a complete graph Kn , a minimum envy allocation can be computed
in polynomial time by means of a reduction to a bipartite minimum-weight matching prob-
lem. We prove this formally below.

Proposition 2.1  When G is the complete graph Kn, and agents have arbitrary (non-identi-
cal) valuation functions, a minimum envy allocation can be computed in polynomial time.

Proof  Given N, H, and {vi}i∈N , we construct a weighted bipartite graph Ĝ . The constructed
instance Ĝ is a complete bipartite graph with bipartition (N, H), with edge weights as fol-
lows: for i ∈ N and h ∈ H , the edge (i, h) has weight

∑
h�∈H⧵h max{vi(h

�) − vi(h), 0}.
Perfect matchings in Ĝ correspond bijectively to allocations � . In fact, if a

matching in Ĝ corresponds to an allocation � , then the weight of the matching is ∑
i∈N

∑
h�∈H⧵�(i) max{vi(h

�) − vi(�(i)), 0} , which equals ����(�,G) . Therefore, computing a
minimum envy allocation is equivalent to computing a minimum weight matching in Ĝ . It
is well-known that this can be done in polynomial time [32]. 	� ◻

Unfortunately, Proposition 2.1 cannot generalize much beyond complete graphs. It is
known that for several other simple graphs like paths and matchings, computing a mini-
mum envy allocation is NP-complete [3]. Given this computational intractability, we there-
fore explore a natural restriction of the problem, when all agents have identical valuations,
to gain insights into the computational and structural aspects of fairness in social networks.
We call this the Graphical House Allocation with Identical Valuations problem, or
Graphical House Allocation for short. Formally, an instance of Graphical House Allo-
cation consists of a set N of agents, a set H of houses, an undirected graph G = (N,E) , and
a fixed valuation function v ∶ H → ℝ≥0 , that represents the common valuation function for
all agents in N. Identical valuations capture a natural aspect of real-world housing markets,
where the house prices are independent of agents.

When all agents have the same valuation function v, the total envy of an allocation �
along the edges of a graph G = (N,E) can be written as

This formulation also yields a new expression for envy along an edge e = (i, j) ∈ E as
envy�(e) = |v(�(i)) − v(�(j))| . This value equals envy�(i, j) + envy�(j, i) , as one of those
terms is zero under identical valuations.

When G is Kn , under identical valuations, an optimal allocation is trivially computable,
as all allocations are equivalent.

For the rest of this paper, we will assume without loss of generality that the house val-
ues are all distinct unless stated otherwise (refer to Lemma A.1 in Appendix A for a for-
mal justification). In particular, every agent’s valuation function (denoted by v) gives each
house a unique nonnegative value, with v(h1) < v(h2) < … < v(hn) . We will say h1 ≺ h2 to
mean v(h1) < v(h2).

For an allocation � and a subset N′ ⊆ N , we will refer to the set of houses received by
N′ as �(N�) . If G′ is a subgraph of G, we will use �(G�) in the same way. For graphs G1 and
G2 , we will use G1 + G2 to mean the disjoint union of G1 and G2.

����(�,G) ∶=
∑

(i,j)∈E

|v(�(i)) − v(�(j))| .

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 6 of 47

Definition 2.2  For an instance of Graphical House Allocation, the valuation interval is
defined as the closed interval [v(h1), v(hn)] ⊂ ℝ≥0 with each v(hk) marked.

The motivation for Definition 2.2 is as follows. For an arbitrary allocation � , for
each edge e = (i, j) ∈ E , we can draw a line segment from v(�(i)) to v(�(j)) . This line
segment has length |v(�(i)) − v(�(j))| = envy�(e) . It follows that ����(�,G) is the sum
of the lengths of all such line segments. An optimal allocation �∗ is any allocation that
attains this minimum sum. See Fig. 1 for an example of a valuation interval, together
with a graph G, and a particular allocation on G depicted under the valuation interval.

A subset of houses H� = {hi1 ,… , hik} ⊆ H with hi1 ≺ … ≺ hik is called contigu-
ous if there is no house h� ∈ H ⧵ H� with hi1 ≺ h′ ≺ hik . Pictorially, the values in H′
form an uninterrupted sub-interval of the valuation interval, with no value outside of
H′ appearing inside that sub-interval. In Fig. 1, the subsets {h1, h2, h3} and {h5} are
contiguous, whereas the subsets {h1, h2, h5} and {h3, h5} are not. Note that a subset of
houses is contiguous if and only if it contains houses with only consecutive indices,
i.e., {h1, h2} is contiguous but {h1, h3} is not.

We will often interchangeably talk about allocating hi and allocating v(hi) to an
agent, and we will also sometimes refer to houses as being marked points on the valua-
tion interval. We close this section with the following useful definition.

Definition 2.3  Let (N, H, G, v) be an instance of the Graphical House Allocation prob-
lem and let � be any allocation for this instance. For any S ⊆ N and x ∈ ℝ , we define
n<
S,𝜋

(x) as the number of agents in S who are allocated a house with a value less than x in
the allocation � . We define n>

S,𝜋
(x) similarly.

3 � Hardness and lower bounds

In this section, we prove hardness results for the Graphical House Allocation prob-
lem. This section is divided into three subsections; in each of these subsections, we
show hardness for a restricted version of the problem by either reducing to problems
in graph theory (Sects. 3.1 and 3.2) or by reducing to the classic bin packing problem
(Sect. 3.3).

Fig. 1   (Left) A graph G on five agents along with a particular allocation � . The valuations are identical and
are given by v = (1, 2, 4, 5, 6) . (Right) The valuation interval is shown via the thick horizontal line in black.
The five line segments in red denote the envy along the five edges of the graph G. The total length of these
line segments is ����(�,G) = 15 (Color figure online)

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 7 of 47  42

3.1 � Connection to the linear arrangement problem

The Minimum Linear Arrangement problem is the problem where, given an undirected
n-vertex graph G = (V ,E) , we want to find a bijective function � ∶ V → [n] that mini-
mizes

∑
(i,j)∈E ��(i) − �(j)� . Minimum Linear Arrangement is a special case of Graphical

House Allocation where the valuation interval has evenly spaced values (or in other
words, �����(v) = [n] and v is one-to-one).

For specific graphs like paths, stars, and trees, Minimum Linear Arrangement can be
solved in polynomial time [33]. However, finding a minimum linear arrangement is NP-
hard for general graphs [34], with a best known run-time of O(2nm) , where |V| = n and
|E| = m , using a dynamic programming algorithm [35]. The problem remains NP-hard
even for bipartite graphs [36]. Both of these hardness results immediately extend to the
Graphical House Allocation problem.

We also find that optimal arrangements satisfy properties that optimal house alloca-
tions are not guaranteed to satisfy. For example, we may assume without loss of gener-
ality that the underlying graph G in any instance of Minimum Linear Arrangement is
connected. This is a consequence of the following observation.

Proposition 3.1  (Seidvasser [37]) If G is any Minimum Linear Arrangement instance, then
some optimal solution assigns a contiguous subset of [n] to each connected component of
G.

Proof  Consider an optimal solution � that does not assign contiguous subsets of [n] to
the connected components of G. Order the components of G in any arbitrary order, say
G1 ∪… ∪ Gk , where Gi = (Vi,Ei) has ni vertices, for each i ∈ [k] . Consider the allocation
�′ , obtained by assigning the first n1 values in [n] to G1 , the next n2 values to G2 , and so on,
satisfying the constraint that for all intra-component pairs j, j� ∈ Gi , we have 𝜋�(vj) < 𝜋�(vj�)
if and only if 𝜋(vj) < 𝜋(vj�) . Note that �′ is well-defined. Now, consider any edge e = (u, v)
of G, and say without loss of generality that 𝜋(v) > 𝜋(u) (and therefore, 𝜋�(v) > 𝜋�(u) ). The
envy along this edge e in �′ is the length 𝜋�(v) − 𝜋�(u) = 1 + |{w ∶ 𝜋�(u) < 𝜋�(w) < 𝜋�(v)}| .
But note that any vertex w ∈ V satisfying 𝜋�(u) < 𝜋�(w) < 𝜋�(v) must also satisfy
𝜋(u) < 𝜋(w) < 𝜋(v) (the converse need not be true for all w). This means that the number
of values falling between ��(u) and ��(v) cannot increase from � to �′ , i.e.,

It follows that the edge e incurs at most as much envy under �′ as it does under � . Since
this is true for all edges e, it follows that �′ incurs at most as much envy as � does. There-
fore, �′ is also optimal, and it is an allocation that assigns contiguous subsets of [n] to the
connected components of G. 	� ◻

We will see in Sect. 5 that in the Graphical House Allocation problem, this prop-
erty no longer holds; that is, it no longer suffices to only consider connected graphs. We
use this property (or lack thereof) to establish a separation between the two problems.
Specifically, we show that, when the graph is a disjoint union of paths (or cycles or

𝜋�(v) − 𝜋�(u) = 1 + |{w ∶ 𝜋�(u) < 𝜋�(w) < 𝜋�(v)}|
≤ 1 + |{w ∶ 𝜋(u) < 𝜋(w) < 𝜋(v)}|
= 𝜋(v) − 𝜋(u) .

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 8 of 47

stars), the optimal linear arrangement can be trivially found in linear time, but finding
the optimal house allocation is NP-hard.

3.2 � Connection to the minimum bisection problem

Our problem is NP-complete (for arbitrary graphs and valuations), because the special case
of minimum linear arrangements is already NP-complete, as stated in Sect. 3.1. We next
provide a different NP-completeness proof that uses a reduction from the Minimum Bisec-
tion problem. This hardness proof immediately implies inapproximability of the problem
on general graphs.

Definition 3.2  The Minimum Bisection problem asks, for an n-vertex graph G and a natu-
ral number k, if there is a partition of V(G) into two parts of size n/2, with at most k edges
crossing the cut.

The Minimum Bisection problem is a known NP-complete problem [34, 38, 39]. Fur-
thermore, it is also known to be hard to approximate efficiently, a fact that is useful in light
of the following observation.

Theorem 3.3  There is a polynomial-time reduction from the Minimum Bisection problem to
the Graphical House Allocation problem with identical valuations.

Proof  In the decision version of the Minimum Bisection problem, we are given an instance
⟨G, k⟩ , and we ask if there is a bisection of G with k or fewer edges crossing the cut. Given
such an instance, we construct an instance of the Graphical House Allocation problem
as follows. We use the same graph G, and our valuation interval has a cluster of n/2 values
around 0 (within a subinterval of length � ) and a cluster of n/2 values around 1 (within a
subinterval of length � ), where n is the number of vertices of G. We will choose � later.

We claim that there is a bisection of G with k or fewer edges crossing the cut if and only
if there is an allocation in our instance with total envy at most k + n2� . The forward direc-
tion is trivial, just by allocating houses to G in accordance with the bisection. To see the
converse, note that if the total envy is extremely close to k, then at most k edges can cross
the length of the valuation interval between the two clusters.

To make this condition true, we set � ≈ n−3 . Note that this is a polynomial-time reduc-
tion. 	� ◻

It follows immediately that the inapproximability results for the Minimum Bisection
problem carry over to the Graphical House Allocation problem. In particular, for any
fixed constant 𝜖 > 0 , unless P = NP, there is no polynomial-time algorithm that can approx-
imate the optimal bisection within an additive term of n2−� [39]. This implies that we can-
not approximate the optimal total envy under the Graphical House Allocation problem
within an additive term of n2−�(v(hn) − v(h1)) . Since on connected graphs, any allocation
must incur an envy of at least v(hn) − v(h1) , this means that the problem cannot be approxi-
mated to an n2−� multiplicative factor unless P = NP.4 Additionally, the minimum bisection

4  It is worth remarking that any allocation is an n2-approximation for connected graphs. The result above
shows that we cannot improve this in general.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 9 of 47  42

problem has no PTAS unless NP has randomized algorithms in subexponential time [38];
this result applies to Graphical House Allocation as well. Thus our problem is hard to
approximate even with identical valuations.

3.3 � Hardness of Graphical House Allocation with disconnected graphs

Finally, in this section, we show that Graphical House Allocation is NP-complete even
on simple instances of graphs which can be solved in near-linear time in the case of linear
arrangements using Proposition 3.1, such as disjoint unions of paths, cycles, cliques, or
stars (and any combinations of them).

Theorem 3.4  (Hardness of Disjoint Unions) Let A be any collection of connected graphs,
such that there is a polynomial-time, one-to-one mapping from each nonnegative integer t
(given in unary) to a graph in A of size t. Let G be the class of graphs whose members are
the finite sub-multisets of A (as connected components). Then, finding a minimum envy
allocation is NP-hard on the class G.

Proof  We will reduce from the Unary Bin Packing problem.5 In this problem, we are given
a set I of items, item sizes s(i) ∈ ℤ

+ for all i ∈ I , a bin size B, and a target integer k, all in
unary. The problem asks, does there exist a packing of the items into at most k bins? A
packing is a partition of the set of items into the bins, such that for any bin, the sum of the
sizes of its constituent items does not exceed the bin size B.

Given an arbitrary instance ⟨I, s(⋅),B, k⟩ of Unary Bin Packing, we create an instance of
the Graphical House Allocation problem as follows. Fix some very large C and some
very small 𝜖 > 0 , and let n = kB . For each item i ∈ I , take the graph in A that is the image
of s(i), and let G be the disjoint union of all of these graphs. To ensure G has exactly n
nodes, we add isolated vertices s(1) to the graph to make up for the gap between total item
size and total bin capacity. Note that G ∈ G , and it is also constructible in polynomial time
using the one-to-one mapping. Define H = {h1,… , hn} , and for the valuation interval,
define (identical) valuations v(hj) =

⌊

j
B

⌋

⋅ C + �j
B

 . Note that this consists of k clusters of B val-
ues, each spanning length � , with the distance between any two consecutive clusters at least
C.

We wish to show that the given instance is in Unary Bin Packing if and only if the
Graphical House Allocation instance (possibly padded with isolated vertices to add up to
kB) has an allocation with envy less than C.

The forward direction is trivial; for the packing that attains the capacity constraints, put
the graphs in the corresponding clusters on the valuation interval, putting the isolated ver-
tices on the remaining values. No edge is between two different clusters, and so this alloca-
tion attains envy much smaller than C, as long as � is small enough.

Conversely, if the envy is smaller than C, then no edge can span two distinct clusters.
Therefore, each connected component can be mapped to a particular cluster on the val-
uation interval. Simply put the corresponding item in the corresponding bin to obtain a
packing.

5  The hardness of Unary Bin Packing can be shown using a straightforward reduction from the NP-com-
plete problem Unary 3-Partition [40].

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 10 of 47

Note that this is a polynomial-time reduction, as the bin packing instance was given in
unary. We can take C to be large enough and � to be small enough, while still being polyno-
mial in the input size. 	� ◻

Corollary 3.5  The Graphical House Allocation problem under identical valuations is NP-
complete on: (a) disjoint unions of arbitrary paths, (b) disjoint unions of arbitrary cycles,
(c) disjoint unions of arbitrary stars, and (d) disjoint unions of arbitrary cliques.

In Sect. 5 we show that despite the hardness suggested by Corollary 3.5, it is possible to
exploit a structural property to develop FPT algorithms for the first three problems (we also
show a tractable approach to the fourth one).

4 � Connected graphs

In this section, we characterize optimal house allocations when the underlying graph G is a
star, path, cycle, complete bipartite graph, or binary tree.

These network structures are both mathematically convenient and ubiquitous in
real-world social layouts. Any of these layouts can occur spatially; workers may be
arranged in any of the above layouts in an office or factory, and allocating resources
to these workers gives us an instance of Graphical House Allocation. Stars, paths,
and cycles in particular naturally arise in scenarios where social networks reflect
physical constraints. Properties and plots within the same neighborhood are often
arranged in paths and cycles, while cities in a metro area are often spread out but
connected through the central district (creating a star). The Graphical House Allo-
cation problem appears when distributing items (e.g., patio sets or rain-water catch-
ment systems) to these neighbors, or when distributing funded projects to cities in
a metro area. In both cases, agents can model their preferences using the monetary
values of the items or projects, leading to identical valuation functions. Complete
bipartite graphs reflect us-versus-them social structures. In these scenarios, members
of one group are not jealous of other members of the same group, but may be deeply
offended if the other group receives strongly preferable items. Trees appear in any
hierarchical social structure. For example, we might wish to avoid envy between man-
agers and subordinates, while being less concerned with envy amongst peers [8]. A
few illustrative graphs covered by our results are shown in Fig. 2.

4.1 � Stars

Consider the star graph K1,n−1 , which has a single central node and n − 1 other nodes of
degree 1, all of them connected to the central node but not to each other.

Theorem 4.1  If G is the star K1,n−1, then the minimum envy allocation �∗ under identical
valuations corresponds to:

•	 for odd n, putting the unique median value in the center of the star, and
all the houses on the degree-1 nodes in any order; the value of the envy is ∑

i>(n−1)∕2+1 v(hi) −
∑

i≤(n−1)∕2 v(hi).

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 11 of 47  42

•	 for even n, putting either of the medians in the center of the star, and all other
houses on the degree-1 nodes in any order; the value of the envy for either median is ∑

i>(n+1)∕2 v(hi) −
∑

i<(n+1)∕2 v(hi).

Proof  The proof is a restatement of the well-known fact that in any multiset of real num-
bers, the sum of the L1-distances is minimized by the median of the multiset. It is easy to
verify that for even n, both medians yield the same value. 	� ◻

4.2 � Paths and cycles

Consider the path graph Pn . We can characterize optimal allocations on these paths as
follows.

Theorem 4.2  If G is the path graph Pn, then the minimum envy allocation �∗ under identi-
cal valuations attains a total envy of v(hn) − v(h1), is unique (up to reversing the values
along the path), and corresponds to placing the houses in sorted order along Pn.

Proof  The result is trivial when n ≤ 2 , so suppose n > 2 . Fix an arbitrary allocation � ,
and observe that h1 and hn (the minimum and maximum-valued houses) have to be placed
on some two vertices of Pn . Suppose the sub-path between them is (i1,… , ik) , with
�(i1) = h1 and �(ik) = hn . Then, the envy along that sub-path is, using the triangle inequal-
ity repeatedly,

It follows that ����(�,Pn) ≥ v(hn) − v(h1) for all allocations � . It is straightforward to see
that this minimum is attained by sorting the houses in order along the path, and further-
more, this is unique. 	� ◻

Now, consider the cycle graph Cn . We characterize optimal allocations on these cycles
as follows.

Theorem 4.3  If G is the cycle graph Cn, then any minimum envy allocation �∗ under identi-
cal valuations attains a total envy of 2(v(hn) − v(h1)), and corresponds to the following:
place h1 and hn arbitrarily on any two vertices of the cycle, and then place the remaining
houses so that each of the two paths from h1 to hn along the cycle consists of houses in
sorted order.

k−1∑

r=1

|v(�(ir+1)) − v(�(ir))| ≥ |v(�(ik)) − v(�(i1))| = v(hn) − v(h1) .

Fig. 2   Examples of characterized connected graphs

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 12 of 47

Proof  The result is trivial when n ≤ 3 , so suppose n > 3 . Fix an arbitrary allocation � , and
observe that h1 and hn have to placed on some two vertices on the cycle Cn . As in the
proof of Theorem 4.2, we know each of the two paths along the cycle from h1 to hn must
have envy at least v(hn) − v(h1) , and so ����(�,Cn) ≥ 2(v(hn) − v(h1)) for all allocations � .
Once again, it is straightforward to see that this minimum is attained by sorting the houses
in order along each of the two paths. 	� ◻

Corollary 4.4  For n ≥ 3, the number of optimal allocations along the cycle Cn is 2n−3, up to
rotations and reversals.

Proof  We fix an arbitrary agent in Cn who receives h1 . Subsequently, we can choose an
arbitrary subset of H ⧵ {h1, hn} to appear along one of the paths to hn . Note that this choice
completely determines an optimal allocation, as the other path contains the complement of
the selected subset, and each subset appears in sorted order along the paths. The number
of such subsets is 2n−2 . Since choosing the complement of our selected subset would have
given us the same allocation up to a reversal and rotation, we have over-counted by a factor
of two, and the result follows. 	� ◻

Perhaps slightly non-obviously, the proofs of Theorems 4.2 and 4.3 can be seen as
purely geometric arguments using the valuation interval. To see this, consider the path
Pn , and take any allocation � that does not satisfy the form stated in Theorem 4.2, and
consider how the allocation looks with respect to the valuation interval. First, observe
that every sub-interval of the valuation interval between consecutive houses needs to be
covered by some line segment from the allocation. Otherwise, there would be no edge
with a house from the left to a house from the right of the sub-interval, which is impos-
sible, as Pn is connected. But the only way to meet this lower bound of one line segment
for each sub-interval of the valuation interval is to sort the houses along the path. The
visualization of this argument for paths is shown in Fig. 3a. The geometric argument for
cycles is similar, with the allocation shown in Fig. 3b.

4.3 � Complete bipartite graphs

Let us start with the complete bipartite graph Kr,r (r ≥ 1) where both parts have equal
size. Note that n = 2r in this case.

Theorem 4.5  When G is the graph Kr,r, the minimum envy allocation �∗ has the following
property: for every i ∈ [r] the houses {h2i−1, h2i} cannot be allocated to agents in the same
side of the bipartite graph. Moreover, all allocations which satisfy this property have the
same (optimal) envy.

Proof  For notational ease, let the graph have bipartition (L, R), with |L| = |R| = r . We refer
to the property in the theorem statement as the optimal property. This proof will use the
notation n<

L,𝜋
(x) , n>

L,𝜋
(x), n<

R,𝜋
(x) and n>

R,𝜋
(x) from Definition 2.3.

Assume for contradiction that some optimal allocation �∗ does not satisfy the optimal
property. We will improve on this allocation, thereby reaching a contradiction.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 13 of 47  42

Because �∗ does not satisfy the optimal property, there must exist an i ∈ [r] such that
both h2i−1 and h2i are allocated to the same part. Let j be the least such i where this is true.
Assume without loss of generality that h2j−1 and h2j are allocated to agents in L.

Let {h2j−1, h2j,… , h2j+k} be the set of houses allocated to agents in L such that h2j+k+1
is allocated to some agent in R. Note that by our assumption, we have k ≥ 0 . Note that
2j + k + 1 must be at most 2r because otherwise, the allocation allocates more items to L
than R, which contradicts the definition of an allocation itself.

Construct an allocation �′ from �∗ by swapping the houses h2j+k and h2j+k+1 . Note that
we swap a house allocated to some agent in L with a house allocated to some agent in R.
This has been pictorially described in Fig. 4.

Let us compute the difference in envy between allocations �∗ and �′ . In this analysis
we slightly abuse notation and refer to the total envy between an agent and their neighbors
as their envy towards their neighbors. For any agent with value less than v(h2j+k) under
�∗ in L, their envy towards their neighbors in �′ is less than their envy in �∗ by exactly
v(h2j+k+1) − v(h2j+k) . Similarly, for any agent with value greater than v(h2j+k) under �∗
in L, their envy towards their neighbors in �′ is greater than their envy in �∗ by exactly
v(h2j+k+1) − v(h2j+k) . Extending this reasoning, we get the following expression for differ-
ence in envy

The third equality follows from our choice of j; for any i < j , exactly one of h2i−1 and h2i is
allocated to L under �∗ . The inequality follows since k ≥ 0 and v(h2j+k+1) − v(h2j+k) > 0 .
This implies that �′ has a lower envy than �∗ , which contradicts the optimality of �∗ . It fol-
lows that all minimum envy allocations have the optimal property.

We now complete the proof by showing that in any allocation that satisfies the optimal
property, for any i ∈ [r] , swapping h2i−1 and h2i results in an allocation with equal envy.

����(𝜋�,G) − ����(𝜋∗,G)

=
[
n>
L,𝜋∗ (v(h2j+k)) − n<

L,𝜋∗ (v(h2j+k))
](
v(h2j+k+1) − v(h2j+k)

)

+
[
n<
R,𝜋∗ (v(h2j+k+1)) − n>

R,𝜋∗ (v(h2j+k+1))
](
v(h2j+k+1) − v(h2j+k)

)

=
(
v(h2j+k+1) − v(h2j+k)

)
[n>

L,𝜋∗ (v(h2j+k)) − n<
L,𝜋∗ (v(h2j+k))

+ n<
R,𝜋∗ (v(h2j+k+1)) − n>

R,𝜋∗ (v(h2j+k+1))]

=
(
v(h2j+k+1) − v(h2j+k)

)
[(r − (k + 2 + j − 1)) − (k + 1 + j − 1)

+ (j − 1) − (r − j)]

=
(
v(h2j+k+1) − v(h2j+k)

)[
2j − 2(k + j) − 2

]

=
(
v(h2j+k+1) − v(h2j+k)

)
[−2k − 2]

< 0 .

Fig. 3   Visualizations of the path and cycle optimal allocations

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 14 of 47

This observation can be repeatedly applied to show that any two allocations that satisfy the
optimal property have the same envy. Note that permuting the allocation within a specific
part (L or R) does not affect the total envy.

Formally, let � be any allocation that satisfies the optimal property. Pick an arbitrary
i ∈ [r] and swap h2i−1 and h2i to create the allocation �′ ; Without loss of generality, assume
h2i−1 is allocated to some agent in L in � . The difference in envy of the two allocations is
given by:

	� ◻

This also implies a straightforward polynomial time algorithm to compute a mini-
mum envy allocation for instances on Kr,r.

����(𝜋�,G) − ����(𝜋,G)

=
[
n>
L,𝜋

(v(h2i−1)) − n<
L,𝜋

(v(h2i−1))
](
v(h2i) − v(h2i−1)

)

+
[
n<
R,𝜋

(v(h2i)) − n>
R,𝜋

(v(h2i))
](
v(h2i) − v(h2i−1)

)

=
(
v(h2i) − v(h2i−1)

)
[n>

L,𝜋
(v(h2i−1)) − n<

L,𝜋
(v(h2i−1))

+ n<
R,𝜋

(v(h2i)) − n>
R,𝜋

(v(h2i))]

=
(
v(h2i) − v(h2i−1)

)
[(r − i) − (i − 1) + (i − 1) − (r − i)]

= 0.

Fig. 4   A pictorial description of the allocation � in the proof of Theorem 4.5. To create the allocation �′ we
swap the houses allocated to the shaded nodes, i.e., we swap h2j+k and h2j+k+1

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 15 of 47  42

We can now generalize this result to complete bipartite graphs where the two parts have
unequal size. We relegate the proof to Appendix B, due to its similarity with the previous
proof.

Theorem 4.6  When G is the graph Kr,s ( r > s), the minimum envy allocation �∗ has the fol-
lowing property:

(1)	 If r − s =∶ 2m is even, then the first and last m houses are allocated to the larger part,
and for all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to different parts.

(2)	 If r − s =∶ 2m + 1 is odd, then the first m and last m + 1 houses are allocated to the
larger part. For all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to the larger and
smaller parts respectively.

Moreover, all allocations which satisfy this property have the same (optimal) envy.
The following corollary is now due to a simple counting argument.

Corollary 4.7  For any complete bipartite graph Kr,s ( r ≥ s),

•	 If r − s is even, there are 2s optimal allocations;
•	 If r − s is odd, there is exactly one optimal allocation,

up to permutations over allocations to the same side of the graph.
Proof  For simplicity, let L and R denote the larger and smaller parts of the bipartition
respectively. Therefore, |L| = r ≥ s = |R|.

We wish to count the number of allocations which allocate a different set of houses to L
(and therefore, R as well). There are of course, r! allocations given a set of houses to allo-
cate to agents in L but we ignore this factor.

When r − s is even, there are s different choices we can make. That is, for each i ∈ [s] ,
we can choose which of hm+2i−1 and hm+2i goes to L and which one goes to R (Theorem 4.6).
This gives us 2s different allocations.

When r − s is odd, there is no choice since Theorem 4.6 shows that only one specific set
of houses allocated to L achieves the optimal envy. Therefore, not counting permutations
over allocations to the same part, there is only one unique allocation. 	� ◻

It is easy to see that the simple structural characterization of optimal solutions from
Theorem 4.6 implies a straightforward polynomial time algorithm for computing exact
optimal allocations on general complete bipartite graphs. We remark here that, in fact, The-
orem 4.6 generalizes Theorem 4.1 as well. When the number of outer (non-center) nodes
in the star is odd, there are two possible houses that can be allocated to the center in an
optimal allocation. But when the number of outer nodes is even, any optimal allocation
allocates a unique house to the center.

4.4 � Binary trees

In this subsection, we consider binary trees. A binary tree T is defined as a rooted tree
where each node has either 0 or 2 children.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 16 of 47

Our main result is a structural property characterizing at least one of the optimal alloca-
tions for any instance where the underlying graph is a binary tree. We call this the local
median property.

Definition 4.8  (Local Median Property) An allocation on a binary tree satisfies the local
median property if, for any internal node, exactly one of its children is allocated a house
with value less than that of the node.

The proofs in this section will use the following lemma. We define the inverse of a valu-
ation function v as a valuation function vinv such that vinv(h) = −v(h) for all h ∈ H (appro-
priately shifted so that all values of v are nonnegative). We note that any allocation has the
same envy along any edge with respect to the inverted valuation and the original valuation.

Lemma 4.9  The envy along any edge of the graph G under an allocation � with respect to
the valuation v is equal to the envy along the same edge of the graph G under the alloca-
tion � with respect to the valuation vinv.

Proof  For any edge (i, j) in the graph G and any allocation � , we have

	� ◻

We will now show that at least one minimum envy allocation satisfies the local median
property. More formally, we show the following: given a binary tree T and any allocation
� , there exists an allocation that satisfies the local median property and has equal or lower
total envy. The proof relies on the following lemma.

Lemma 4.10  Let � be an allocation on a binary tree T, not satisfying the local median
property. Let i be an internal node furthest from the root which is not allocated the median
among the values given to it and its children. Then, there exists an allocation �′ such that

(a)	 For the subtree T ′ rooted at i, we have that ����(𝜋(T �),T �) > ����(𝜋�(T �), T �);
(b)	 For any other subtree T ′′ not contained by T ′, we have that

����(�(T ��), T ��) ≥ ����(��(T ��), T ��).

Proof  Let the node i have value y under � and its children have values xm and zm respec-
tively under � . By assumption, either y < min{xm, zm} or y > max{xm, zm} . We show that in
either case, the lemma holds. Since allocations are bijective and the values can be assumed
to be distinct, we will refer to tree nodes using the value allocated to them in �.

Case 1 ( y < min{xm, zm} ). Assume without loss of generality that xm < zm . We con-
struct a path recursively as follows. Initialize the path as (y). If the final node on the
path either has no children or has at least one child with allocated value lower than
the value at the start of the path, i.e., y, then stop. Otherwise, pick the least valued
child of the final node on the path and append it to the path. This gives us a path
(y, xm, xm−1,… , x1) for some nodes with value xm, xm−1,… , x1 in T. Note that by defi-
nition, this path has at least 2 vertices, i.e., m ≥ 1 . We construct a new allocation �′

|v(�(i)) − v(�(j))| = |(−v(�(i))) − (−v(�(j)))| = |vinv(�(i)) − vinv(�(j))|.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 17 of 47  42

from � by cyclically transferring houses as follows: we give the agent with value y the
house with value xm , we give the agent with value xm the house with value xm−1 and
so on till finally we give the agent with value x1 the house with value y. This has been
described in Fig. 5.

The solid edges and dashed edges in Fig. 5 cover all possible edges e in T where
envy�(e) ≠ envy�� (e) . From our path construction and our assumption that i is a node fur-
thest from the root which does not satisfy the local median property, we have the following
two properties: (a) max{xj, zj} > xj+1 > min{xj, zj} for all j ∈ [m − 1] , and (b) xj < zj for all
j ∈ [m].

These two properties allow us to compare the envy along the solid edges:

Combining the two values, we get

To compute the difference in envy along the dashed lines, some straightforward casework
is required. There are many different possible relations between u, v, x1 , and y, and between
r, y, and xm . All possible cases and their corresponding results are summarized in Table 1.
There are two assumptions made in Table 1. First, without loss of generality we assume
u < v . Second, u < y , since this is the termination condition from our path construction.

If y is the root of the tree (i.e., r does not exist and T � = T  ), from Table 1, we get:

Therefore, the total envy of �′ is strictly less than that of �.
If r exists, the above analysis shows that the total envy along the subtree rooted at

y (denoted by T ′ ) strictly reduces. Let us now study the envy of any tree T ′′ that is not
contained by T ′ . Either T ′′ contains T ′ , or T ′′ and T ′ are disjoint. If they are disjoint, then
����(�, T ��) = ����(��, T ��) , since the allocation on the subtree T ′′ is the same in � and �′ .
If T ′′ strictly contains T ′ , T ′′ must contain the node r. From Table 1, we get:

envy�(solid) = (xm − y) + (zm − y) +

[
m∑

j=2

((xj − xj−1) + (zj−1 − xj))

]

=

[
m−1∑

j=1

(zj − xj)

]
+ (zm − y) + (xm − y) .

envy�� (solid) = (x1 − y) + (z1 − x1) +

[
m∑

j=2

((xj − xj−1) + (zj − xj))

]

=

[
m∑

j=1

(zj − xj)

]
+ (xm − x1) + (x1 − y) .

envy�� (solid) − envy�(solid) = y − xm.

����(𝜋�, T �) − ����(𝜋, T �)

= envy𝜋� (solid) − envy𝜋(solid) + envy𝜋� (dashed) − envy𝜋(dashed)

≤ (y − xm) + 0

< 0 .

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 18 of 47

Therefore the total envy weakly decreases and we are done.

����(��, T ��) − ����(�, T ��)

= envy�� (solid) − envy�(solid) + envy�� (dashed) − envy�(dashed)

≤ (y − xm) + (xm − y)

= 0 .

Fig. 5   Cyclic swap to show the local median property holds (Lemma 4.10). Solid edges are guaranteed to
exist. Dashed edges may or may not exist

Table 1   Cases for the possible values of envy�� (dashed) − envy�(dashed)

Cases r does not exist r < y < xm y < r < xm y < xm < r

u and v do not exist 0 (xm − y) < (xm − y) (y − xm)

u < y < v < x1 < 0 < (xm − y) < (xm − y) < (y − xm)

u < y < x1 < v 0 (xm − y) < (xm − y) (y − xm)

u < v < y < x1 < 0 < (xm − y) < (xm − y) < (y − xm)

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 19 of 47  42

Case 2 ( y > max{xm, zm} ). This implies −y < min{−xm,−zm} . We can therefore apply
Case 1 to the allocation � under the inverted valuations vinv . It follows that, with respect
to vinv , there is an allocation �′ which has a strictly lower total envy along the subtree T ′
rooted at i and a weakly lower total envy along any subtree T ′′ that is not contained by T ′ .
Applying Lemma 4.9 with the allocations �′ and � , we get the required result. 	� ◻

Lemma 4.10 immediately gives rise to the following corollary.

Theorem 4.11  For any binary tree T, at least one minimum envy allocation satisfies the
local median property.

Proof  Given any tree T and a node i, we use Ti to denote the subtree of T rooted at node i.
We also use i.��� � and i.����� to refer to i’s left and right child respectively.

Given any tree T rooted at some node i, consider the allocation � which lexicographi-
cally minimizes the vector:

It is easy to see that � is an optimal allocation. It is also easy to see that � satisfies the
local median property as well. If � does not satisfy the local median property, applying
Lemma 4.10, we get that there is an allocation �′ such that u(�,T) is lexicographically
greater than u(��, T) , which is a contradiction. 	� ◻

Unfortunately, the local median property is too weak to exploit for a polynomial time
algorithm. Ideally, we would like to use the property to show that some minimum envy
allocation satisfies an even stronger property called the global median property.

Definition 4.12  (Global Median Property) An allocation on a binary tree satisfies the
global median property if, for every internal node, all the houses in one subtree of the node
have value less than the house allocated to the node, and all the houses in the other subtree
have value greater than the house allocated to the node.

If T is a binary tree of maximum depth d where an optimal allocation satisfies the global
median property, there is a straightforward divide-and-conquer algorithm that computes
an optimal allocation in time O(4d) : the algorithm guesses which subtree of the root is
allocated values more than that of the root, and which subtree is allocated values less than
that of the root. The root has a unique allocation that satisfies the constraints placed by the
guesses; the algorithm allocates the root this unique house and then applies the same pro-
cedure to each of the subtrees of the root. The time complexity comes from the recursive
expression T(d) ≤ 4T(d − 1) + O(1) , where the 4 comes from the fact that we have to solve
the problem on two subtrees for each of the two global median choices. Solving this gives
us a runtime of O(4d) . In particular, if T were close to being balanced, this algorithm would
run in polynomial time in the size of T.

Conjecture 4.13  There is an algorithm that computes an optimal allocation on a binary
tree of maximum depth d in time O(4d) . In particular, this algorithm runs in polynomial
time on (nearly) balanced trees.

u(�, T) = (����(�, T),����(�,Ti.��� �),����(�, Ti.�����),����(�, Ti.��� �.��� �),

����(�,Ti.��� �.�����),����(�, Ti.�����.��� �),����(�, Ti.�����.�����),…) .

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 20 of 47

It was recently shown in [25] that not all instances have an optimal allocation that sat-
isfies the global median property; in fact, there is a counterexample even on a depth-3
complete binary tree. However, the counterexample does not rule out the possibility of the
global median property being true on “most” trees, or of efficient algorithmic approaches
not needing to exploit the local or global median properties, so Conjecture 4.13 remains
open.

4.5 � General trees

How do we take the approaches for binary trees and build towards arbitrary trees? Note
that one consequence of Theorem 4.11 is that in at least one optimal allocation on a binary
tree, the minimum and the maximum must both appear on leaves.

In the Minimum Linear Arrangement problem, it is known [37] that when the under-
lying graph is a tree, some optimal allocation assigns both the minimum and maximum
values to leaves, and furthermore, the (unique) path from this minimum to the maximum
consists of monotonically increasing values. This characterization is used crucially in
designing the polynomial time algorithm on trees [33].

Empirically, this same property for trees seems to hold for non-uniformly spaced values
as well. The proof technique used in Seidvasser [37] does not extend to our setting, but
testing the problem on 1000 randomly generated trees and uniformly random values on
the interval [0, 100] always gives us these properties on trees: the minimum and maximum
values both end up on leaves.

It would be remarkable if this kind of structural characterizations held for our problem,
but we remark here that the polynomial time algorithm exploiting these characterizations
[33] does not generalize. Recently, in fact, Hosseini et al. [25] showed that the Graphical
House Allocation problem, unlike Minimum Linear Arrangement, is NP-hard on trees.

5 � Disconnected graphs

In this section, we consider disconnected graphs, starting with a structural characteriza-
tion, and then using that to obtain upper bounds for several natural classes of disconnected
graphs with hardness results (Sect. 3).

5.1 � A structural characterization

Recall from Proposition 3.1 that optimal allocations in Minimum Linear Arrangement
have the property that the connected components of the graph are assigned contigu-
ous values. We might hope that this simple and elegant property is true for Graphical
House Allocation as well. However, this turns out to be a crucial point of difference
between these two problems: Proposition 3.1 is false in our setting, and so we can no
longer assume our graph is connected without loss of generality. To see this, consider
an instance when the underlying graph G is a disjoint union of an edge P2 and a triangle
C3 . The two valuation intervals in Fig. 6 yield very different optimal structures for this
same instance.

We remark that this major departure from the Minimum Linear Arrangement prob-
lem implies that the spacing of the values along the valuation interval becomes a key

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 21 of 47  42

factor in the structure of optimal allocations in Graphical House Allocation. This
serves as a motivation to classify disconnected graphs according to whether their con-
nected components are always assigned contiguous values for all valuation interval
instances. We call the relevant property splittability, defined as follows.

Definition 5.1  (Splitting) Let G1 = (N1,E1) and G2 = (N2,E2) be two of the connected
components of G = (N,E) , and fix an arbitrary allocation � . We say G1 splits G2 in � if the
values of �(G1) form a contiguous subset of the values in �(G1) ∪ �(G2).

Definition 5.2  (Splittability and Strong Splittability) Let G be a disconnected graph with
connected components G1,… ,Gk . Then,

1.	 G is splittable if there exists an ordering G1,… ,Gk of the components where, for all
valuation intervals, there is an optimal allocation where for all 1 ≤ i < j ≤ k , Gi splits
Gj.

2.	 G is strongly splittable if, in addition to the above, Gj also splits Gi . Note that this is only
possible if an optimal allocation assigns a contiguous subset of values to each connected
component.

3.	 G is unsplittable if it is not splittable.

A class A of graphs is splittable (resp. strongly splittable) if every graph in it is splittable
(resp. strongly splittable). Conversely, A is unsplittable if it contains an unsplittable graph.

Intuitively, splittability requires that the connected components of the graph G can
be ordered such that each component receives a contiguous set of values, if we ignore
items assigned to components appearing earlier in the ordering. This ordering of the
components is fixed with respect to the graph structure, and does not depend on the
valuation interval. For example, we see in Theorem 5.15 that for disjoint unions of

Fig. 6   For the valuation interval on top, the optimal allocation to P2 + C3 is to give the two low-valued
houses to the edge, and to give the three high-valued houses to the triangle. This is the only allocation
where the envy is negligible. For the valuation interval on the bottom, the optimal allocation to P2 + C3 is
to give the two extreme-valued houses to the edge, and the cluster in the middle to the triangle. Any other
allocation has to count one of the long halves of the interval multiple times, and is therefore strictly subop-
timal. This is an instance where we see one of the connected components being “split” by another in the
valuation interval. We prove in Theorem 5.15 that the graph P2 + C3 is splittable, because we can always
assign a contiguous sequence of items to the C3 component, and the P2 component receives a contiguous
sequence of items ignoring the other 3 items. It is not strongly splittable because P2 does not always split C3
(as in the second example above)

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 22 of 47

cliques, for any valuation interval, the cliques can be ordered in decreasing order of
size. We must assign a contiguous interval to the largest clique; upon removing those
items, we must assign a contiguous interval to the second-largest clique; and so on.
This is a descriptive statement rather than a computational statement, since it is non-
trivial to determine which contiguous interval to allocate to each component of the
graph.

For the graph to be strongly splittable, the set of values assigned to each component
must be contiguous with respect to the entire valuation interval. In this case, any order suf-
fices to show (strong) splittability, because any pair of components Gi and Gj would both
split each other. Figure 6 shows a graph that is splittable but not strongly splittable, since
C3 always splits P2 , but P2 may not split C3 , depending on the valuation interval.

We note that G is unsplittable precisely when there is a valuation interval where for each
optimal allocation � , there are components G1 and G2 with u, u� ∈ �(G1) and v, v� ∈ �(G2)
such that u ≺ v ≺ u′ ≺ v′ . Furthermore, G is strongly splittable only if it is splittable.

In the Minimum Linear Arrangement problem, all disconnected graphs are strongly
splittable, by Proposition 3.1. In contrast, for our problem, Fig. 6 already provides an
example of a graph that is not strongly splittable. We discuss several examples of strongly
splittable graphs in our problem in Sects. 5.2, 5.3, and 5.4; in particular, disjoint unions of
paths, cycles, stars, identical cliques, or identical complete bipartite graphs satisfy strong
splittability.

Our formulation of splittability and strong splittability has an immediate algorithmic
consequence.

Proposition 5.3  Suppose G has k connected components (where k is not necessarily a
constant). If G is strongly splittable, and we can find a minimum envy allocation for each
component in time O(poly (n)), then we can find a minimum envy allocation on G in time
O(poly (n) ⋅ k!) . If G is splittable, and we can find a minimum envy allocation for each
component in time O(poly (n)), then we can find a minimum envy allocation on G in time
nO(k).

Proof  The proof follows straightforwardly from the definitions of (strong) splittability. If G
is strongly splittable and has k connected components, we can try all k! orderings of these
components along the valuation interval. Each such ordering takes O(poly (n)) to evaluate
(since k ≤ n ), and one of the orderings is optimal by definition. If G is splittable, for any
ordering of its components, we can place the first component on any of O(n) contiguous
subintervals along the interval, and then place the second component on any of the O(n)
contiguous subintervals among the remaining values, and so on. This ordering takes nO(k)
time to output an optimal envy. We need to test this on all k! orderings of the components,
which costs k! ⋅ nO(k) , which is still nO(k) , as k ≤ n . 	� ◻

It is not immediately obvious that there are splittable graphs that are not strongly
splittable. Figure 6 shows an example of such a graph (Theorem 5.15 proves splittabil-
ity). We will see more examples of this later, but we remark that there are even split-
table forests that are not strongly splittable (Fig. 7). Even less obviously, unsplittable
forests exist (Fig. 8). We formalize these below.

Proposition 5.4  The following are both true.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 23 of 47  42

1.	 There exists a splittable forest that is not strongly splittable.
2.	 There exists an unsplittable forest.

Proof  We can prove these one part at a time.

1.	 The graph G given in Fig. 7 is a splittable forest that is not strongly splittable.
	  It is trivial that G is splittable, as one component is a single vertex that always splits

the other component on the valuation interval.
	  Consider the lower valuation interval that is depicted in Fig. 7. Assume that the

clusters along the valuation interval are sufficiently packed (each within a subinterval
of length � ∶= 0.001∕n2 , where n = 7 ), and furthermore, the sole valuation in the mid-
dle is exactly at the center of the interval. Without loss of generality, assume the entire
valuation interval has length 1. Note that the allocation that places the induced stars of
G in the clusters attains a total envy of at most 1.001.

	  We first claim that an optimal allocation cannot place both the degree-3 vertices in
the same cluster. In such an allocation, one of the two large subintervals needs to be
covered by at least two edges, and so the total envy is at least 3/2.

Fig. 7   Example of a splittable
forest that is not strongly split-
table. The forest is trivially split-
table, as one component is just
a single vertex. For the bottom
valuation line, an optimal alloca-
tion must allocate the extreme
clusters in the interval to the
larger connected component

Fig. 8   Example of an unsplittable forest. Suppose s1 < s2 < s3 < s4 , and they satisfy for all i, j, |si − sj| ≥ 3 ,
and for all i, j, k, si + sj > sk + 2 . Then, an optimal allocation on this instance must allocate the entire clus-
ter of size si + 1 on the valuation interval to the corresponding star-like cluster of the given forest

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 24 of 47

	  We next claim that an optimal allocation cannot place a degree-3 vertex in the center.
If it does, then again by a similar casework as in the previous paragraph, one large
subinterval has to be covered by at least two edges, and so the total envy is at least 3/2.

	  Therefore, every optimal allocation must place the degree-3 vertices in different clus-
ters. The edge between those two vertices, therefore, incurs an envy of 1 by itself. Now,
if the isolated vertex is anywhere but the center, there the center must be a leaf attached
to a degree-3 vertex. The edge from this leaf to the degree-3 vertex incurs an additional
envy of 1/2, pushing the total envy up to 3/2. It follows that the isolated vertex must be
at the center.

2.	 The graph given in Fig. 8 is an unsplittable forest.
	  Assume that the clusters along the valuation interval are sufficiently packed (each

within a subinterval of length � ), and furthermore, they are equispaced along the entire
valuation interval, and without loss of generality assume the entire valuation interval
has length 1.

	  Of course, note that each of the three “large” subintervals (of length 1/3 each) must be
counted at least once in any allocation: the first must be counted since it is not possible
to take a set of s1 + 1 vertices of the forest with no edges going to its complement; the
third must be counted for the same reason, using si + sj > sk + 2 , making it impossible
to pack in either of the components entirely within the last cluster; and the second must
be counted because neither component can fit perfectly inside the first two clusters, again
using si + sj > sk + 2 and |si − sj| ≥ 3 . This immediately ensures an envy of at least 1,
for any allocation.

	  Note that the allocation that places the induced stars of the given graph in the corre-
sponding clusters along the valuation interval attains a total envy of at most 4∕3 + 0.001
(assuming � is small enough). Let the four vertices of degree 2 or more be x1, x2, x3, x4 ,
where xi is incident to exactly si degree-1 vertices. Let us also number the clusters along
the valuation interval 1, 2, 3, 4 from left to right.

	  We first claim that in any optimal allocation, xi cannot be in cluster j for j < i . Other-
wise, at least three of the si neighbors of xi must lie in other clusters, so one of the three
large subintervals must be counted three or more times. Together with the two other
subintervals (which must be counted), it is then easy to see that the envy in this case
would exceed 5/3. We next claim that xi and xj cannot be in the same cluster, for i ≠ j .
Otherwise, again, at least three edges pass over the same large subinterval, and so the
envy exceeds 5/3 again.

	  It follows that xi must belong to the ith cluster, for all i. The result follows immedi-
ately.

	� ◻

5.2 � Disjoint unions of paths, cycles, and stars

We now move on to algorithmic approaches and characterizations of minimum envy
allocations, and start with the setting where G is a disjoint union of paths. Suppose
G = Pn1

+⋯ + Pnr
 . What does an optimal allocation on G look like?

Theorem 5.5  Let G be a disjoint union of paths, Pn1
+⋯ + Pnr

 . Then, G is strongly splitta-
ble. Furthermore, in any optimal allocation, within each path, the houses appear in sorted
order.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 25 of 47  42

Proof  By Theorem 4.2, we know that each of the paths should have its allocated houses in
sorted order. Now, suppose there are values hk ≺ h

�
≺ hm , with hk and hm being allocated

to Pni
 , and h

�
 to a different path Pnj

.
We can reallocate the houses only on these two paths and strictly improve the allocation.

For instance, suppose Hi ∶= �(Pni
) and Hj ∶= �(Pnj

) . We can now allocate the ni lowest-
valued houses in Hi ∪ Hj to Pni

 and the nj highest-valued houses in Hi ∪ Hj to Pnj
 , keeping

the rest of the allocation the same. Now, note that every subinterval among the values in
Hi ∪ Hj counted by both paths in this new allocation was also counted by both paths in the
old allocation. However, at least one subinterval (e.g., the subinterval between the ni lowest
values and the nj highest values) is counted by strictly fewer paths in the new allocation.
Therefore, this leads to an allocation with strictly lower envy than before, and this con-
cludes the proof. 	� ◻

The following corollary, which follows directly from Proposition 5.3, shows an FPT
algorithm on the disjoint union of paths, parameterized by the number r of different paths.
We simply check each of the r! orderings of these paths, and return the one with the least
envy.

Corollary 5.6  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of paths in time Õ(nr!), where r is the number of paths.6

If G is a disjoint union of cycles, say G = Cn1
+⋯ + Cnr

 , the same theorems character-
izing optimal allocations go through, using Theorem 4.3. We omit the proofs, but state the
results formally.

Theorem 5.7  Let G be a disjoint union of cycles, Cn1
+⋯ + Cnr

 . Then G is strongly split-
table. Furthermore, in any optimal allocation, within each cycle, the houses appear in the
form characterized in Theorem 4.3.

Corollary 5.8  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of cycles in time Õ(nr!), where r is the number of cycles.

If t is the number of different path (or cycle) lengths, then a straightforward dynamic
programming algorithm computes the minimum envy allocation in time O(tnt+1).

Proposition 5.9  Let G be a disjoint union of paths. If t is the number of different path
lengths in G, then we can find an optimal allocation on G for any instance in time O(tnt+1).

Proof  The result for t = 1 is trivial. For t > 1 , if the distinct path lengths are n1,… , nt , then
suppose �(r1,… , rt,�) denotes the optimal envy using ri paths of length ni , for i = 1,… , t ,
on the house set {h1,… , h

�
} . Using Theorem 5.5 and Theorem 4.2, we have the recursion

6  We suppress the logarithmic factors required for integer addition henceforth, in order to avoid the minor
technical considerations of bit representation.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 26 of 47

Dynamically solving this yields an O(tnt+1) algorithm to find the optimal allocation on the
given instance. 	� ◻

Corollary 5.10  Let G be a disjoint union of cycles. If t is the number of different cycle
lengths in G, then we can find an optimal allocation on G for any instance in time O(tnt+1).

Combining the two approaches from Corollary 5.6 and Proposition 5.9, we have a
time complexity of O(min(nr!, tnt+1)) . An immediate application of this dynamic pro-
gramming algorithm is for graphs with degree at most one. These graphs are special
cases of the disjoint union of paths where the path length can either be 0 or 1. By Prop-
osition 5.9, we can find an optimal allocation for these instances in time O(n3).

Perhaps remarkably, there is no particularly elegant structural characterization when
the underlying graph G is a disjoint union of paths and cycles, even when there is only
one path and one cycle. This is a consequence of Fig. 6.

Finally, a similar result holds for disjoint unions of stars, though the proof is some-
what different. We omit the proof of Corollary 5.12, which follows from Theorem 5.11.

Theorem 5.11  Let G be a disjoint union of stars, K1,n1
+…+ K1,nr

 . Then G is strongly
splittable. Furthermore, in any optimal allocation, within each star, the houses appear in
the form characterized in Theorem 4.1.

Proof  We “split” any two stars while improving on our objective. Consider two stars K1,n1

and K1,n2
 . Let � be any optimal allocation that allocates the values a1,… , an1+1 to K1,n1

 and
b1,… , bn2+1 to K1,n2

.
We provide a simple two-step procedure that creates a new allocation �′ that allocates

contiguous intervals to both stars and attains total envy at most that of � . In the first step,
we simply re-arrange the values allocated to each star to ensure they satisfy the characteri-
zation for an optimal envy allocation from Theorem 4.1. In the second step, assuming with-
out loss of generality the center of K1,n1

 has a lower value than that of K1,n2
 , we re-arrange

the values allocated to the spokes of both stars by allocating the least n1 values to K1,n1
 and

the greatest n2 values to K1,n2
 ; crucially, we do not change the value allocated to the center

of either star. It is easy to see that neither of these steps can increase the total envy: this is
immediate by design in the first step, and follows from a similar argument to the proof of
Theorem 5.5 in the second step.

It is also easy to see that, if the stars are not allocated contiguous intervals, the above
two step procedure changes the allocation and strictly reduces the envy. This shows that not
allocating contiguous intervals to each star is sub-optimal. 	� ◻

Corollary 5.12  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of stars in time Õ(nr!), where r is the number of stars.

�(r1,… , rt,�) = min{�(r1 − 1, r2,… , rt,� − n1) + (v(h
�
) − v(h

�−n1+1
)),

… ,�(r1,… , rt1 , rt − 1,� − nt) + (v(h
�
) − v(h

�−nt+1
))}.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 27 of 47  42

5.3 � Disjoint unions of cliques

We now turn our attention to disjoint unions of cliques. We first demonstrate that when
all cliques have the same size, we maintain strong splittability.

Theorem 5.13  Let G be a disjoint union of cliques with equal sizes, K1
n∕r

+⋯ + Kr
n∕r

 . Then,
G is strongly splittable.

Proof  We prove the result for the case of two cliques Kn∕2 + Kn∕2 . The result for r cliques
follows by showing that each pair of cliques must be split from each other.

Let (V, E) and (V �,E�) be the set of vertices and edges of each copy of Kn∕2 . Let
� ∶ V → V � be any bijective mapping from V to V ′.

Let � be any allocation on Kn∕2 + Kn∕2 , we show that if � does not allocate contiguous
intervals to each component, we can create a better allocation �′.

Let a1 < a2 < … < an∕2 be the values allocated to the nodes in V and
b1 < b2 < … < bn∕2 be the values allocated to the nodes in V ′ in some optimal allocation � .
We rearrange the goods allocated to V ′ such that if node v ∈ V receives ai , then node �(v)
receives bn∕2−i . This does not change the total envy of the allocation.

If each component is not allocated a contiguous interval, the least-valued n/2 houses
must have some a values and some b values. Let’s call the least-valued n/2 houses H′ and
let’s say there are k ai ’s in H′ . Therefore H′ contains a1, a2,… , ak and b1, b2,… , bn∕2−k.

We create a new allocation �′ from � as follows. For all i ∈ [k] , we swap ai with bn∕2−i .
Note that for each house among the least-valued n/2 houses, if ai is allocated to v ∈ V  , we
swap the houses given to v and �(v) . This has been pictorially described in Fig. 9.

Let us now compute the change in envy between �′ and � . We do this by showing that,
for every edge (u, v) ∈ E , the total sum of the envies along the edges (u, v) and (�(u), �(v))
decreases.

Case 1 u and v are unaffected by the swap. Then �(u) and �(v) are unaffected as well.
Therefore the total envy along these two edges does not change.

Case 2 u and v are both affected by the swap. Then, envy�� (u, v) = envy�(�(u), �(v))
and envy�(u, v) = envy�� (�(u), �(v)) . Therefore, the total envy along these two edges does
not change.

Case 3 Only u is affected by the swap. This means �(v) is not affected by the swap. The
total envy along these two edges under � is

where j > k > i . This can be re-written as

The total envy along these two edges under �′ is

The change in envy is

envy�(u, v) + envy�(�(u), �(v)) = (aj − ai) + (bn∕2−i − bn∕2−j)

envy�(u, v) + envy�(�(u), �(v)) = 2min{aj, bn∕2−i} + |aj − bn∕2−i|
− 2max{ai, bn∕2−j} + |ai − bn∕2−j| .

envy�� (u, v) + envy�� (�(u), �(v)) = |aj − bn∕2−i| + |ai − bn∕2−j| .

2max{ai, bn∕2−j} − 2min{aj, bn∕2−i} < 0 .

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 28 of 47

The inequality holds since j > k > i.
When k ≥ 1 , at least one edge belongs to Case 3 and so the total envy of �′ is strictly

less than the total envy of � . 	� ◻

Because the cliques are all of equal sizes and agents have identical valuations, Theo-
rem 5.13 implies that there is a trivial algorithm for assigning houses to agents. We can
assign the first n/r houses to one clique, the next n/r houses to the next clique, and so on.

Corollary 5.14  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of equal-sized cliques in time Õ(n).

We now turn our attention to the case when the cliques are not all of the same size.
As Fig. 6 demonstrates, strong splittability must be ruled out when cliques have differ-

ent sizes. We will show that splittability still holds. We show further that the largest clique
splits all other cliques, the second largest clique splits all cliques except (possibly) the larg-
est one, and so on. The detailed proof is quite technical, and is relegated to Appendix C.

Theorem 5.15  Let G be a disjoint union of cliques with arbitrary sizes, Kn1
+⋯ + Knr

,
where n1 ≥ … ≥ nr . Then, G is splittable (but not necessarily strongly splittable if the ni’s
are not all equal). In particular, for all 1 ≤ i < j ≤ r, in every optimal allocation, Kni

 splits
Knj

.

Theorem 5.15 implies an XP algorithm for finding a minimum envy allocation on
unions of cliques. We state this formally as a corollary here.

Corollary 5.16  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of cliques in time O(nr+2), where r is the number of
cliques.

Proof  We sort the cliques in a non-increasing order of their size to get r cliques
K1,K2,… ,Kr such that |K1| ≥ |K2| ≥ … ≥ |Kr| . From Theorem 5.15, we know that K1
receives a contiguous set of values in the optimal allocation, subject to which, K2 must
receive a contiguous set of values among the remaining houses, and so on.

Fig. 9   A pictorial description of the allocation � in the proof of Theorem 5.13. Shaded nodes denote nodes
that are allocated one of the highest n/2 valued houses. To construct �′ from � , we swap the houses allo-
cated to the unshaded nodes on the left clique with those allocated to the shaded nodes on the right clique

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 29 of 47  42

This gives us a recursive procedure where we try out all possible contiguous sets of val-
ues of size |K1| to give to K1 and subject to that, we try out all possible contiguous sets of
values to give to K2 and so on. From Theorem 5.15, we know that one of these allocations
will be optimal, so we output the allocation we find with the lowest envy in this way.

The pseudocode is presented in Algorithm 1. The algorithm maintains a partial alloca-
tion � and updates it using recursive calls.

Algorithm 1   Minimum Envy House Allocation on Cliques

To analyze the time complexity, note that we compute at most O(nr) allocations. For
each allocation, finding the envy of the allocation takes O(n2) time trivially. Note that the
sorting step is just O(r log r) , which is o(n2) , and is therefore subsumed by the other term.
This gives us a total time complexity of O(nr+2) . 	� ◻

There seems to be a separation between unions of differently-sized cliques and unions
of stars, cycles, paths, or equi-sized cliques. We suspect the problem may be W[1]-hard
for unions of arbitrary cliques.

5.4 � Disjoint unions of complete bipartite graphs

We can extend the techniques used in Sect. 5.3 to prove splittability guarantees for com-
plete bipartite graphs as well. The proofs in this section are significantly more involved
than the proofs in the previous section and are relegated to the appendix.

Combining techniques from Theorem 4.6 and Theorem 5.13, we can show that dis-
joint unions of identical complete bipartite graphs are strongly splittable.

Theorem 5.17  If G = Kr,s for any r, s ∈ ℕ, then G + G is strongly splittable.

Note that, as in Sect. 5.3, we can leverage Theorem 5.17 and Theorem 4.6 to give us an
easy FPT algorithm on disjoint unions of identical complete bipartite graphs. We state this as
a corollary without proof, as it is very similar to Corollary 5.14.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 30 of 47

Corollary 5.18  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of identical complete bipartite graphs in time Õ(n).

Next, we combine techniques from Theorem 4.6 and Theorem 5.15 to show that disjoint
unions of (unequal-sized) symmetric bipartite graphs {Kr,r}r∈ℕ are splittable but not strongly
splittable.

Theorem 5.19  Let G be a disjoint union of symmetric complete bipartite graphs
Kn1,n1

+ Kn2,n2
+⋯ + Kn

𝓁
,n

𝓁

, where n1 ≥ n2 ≥ … ≥ n
�
 . Then G is splittable (but not neces-

sarily strongly splittable if n1 > n
�
) and the order of splittability is Kn1,n1

,… ,Kn
�
,n

�

.

This is one of our most technically involved proofs, and it can be found in Appendix C.
The following proposition shows that for these graphs, strong splittability can be ruled out

almost immediately, and so splittability is really the best property to hope for.

Proposition 5.20  Disjoint unions of (unequal) symmetric complete bipartite graphs are not
necessarily strongly splittable.

Proof  Consider K1,1 + K2,2 , which is the disjoint union of an edge and a 4-cycle. Consider
an instance {h1,… , h6} where v(h1) = 0 , v(h6) = 1 , and the values v(h2),… , v(h5) are con-
centrated in an �-interval around 0.5. Then, any optimal allocation assigns h1 and h6 to the
K1,1 , showing that the graph is not strongly splittable. 	� ◻

We end by noting that Theorem 5.19 immediately implies an XP algorithm to compute a
minimum envy allocation over the disjoint union of symmetric complete bipartite graphs. We
state this below but omit the proof, as it is similar to Corollary 5.16.

Corollary 5.21  We can find an optimal allocation for an instance on an undirected n-agent
graph G that is the disjoint union of symmetric complete bipartite graphs in time nO(r) ,
where r is the number of symmetric complete bipartite graphs.

We have shown strong splittability for disjoint copies of identical complete bipartite graphs
and splittability for symmetric complete bipartite graphs. We conjecture that the disjoint
unions of arbitrary complete bipartite graphs are splittable as well. This result would general-
ize Theorems 5.19 and 5.11.

Conjecture 5.22  Let G be the disjoint union of arbitrary complete bipartite graphs. Then G
is splittable.

5.5 � Splittability and graph properties

It is worth asking the question of whether there is a clear structural property of a graph that
determines whether it is splittable or strongly splittable. This would allow us to generalize
beyond specific classes of graphs, and state purely structural results that would generalize
several results from Sects. 5.2, 5.3, and 5.4 under one compact umbrella.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 31 of 47  42

From the graph classes considered in those sections, let us examine the ones that are
regular. These would include disjoint unions of edges, cycles, equal-sized cliques, or iden-
tical symmetric complete bipartite graphs. By Theorems 5.5, 5.7, 5.13, and 5.17, we know
that each of those graphs is strongly splittable. This might lead us to conjecture that dis-
connected regular graphs are strongly splittable as well. The following proposition shows
that this is not the case. In fact, they need not even be splittable.

Proposition 5.23  There exists a 3-regular unsplittable graph.

Before we delve into the proof, we first need to define a bicycle graph.

Definition 5.24  For any odd number 2t + 1 , take the cycle C2t+1 , and suppose its vertices
are {v1,… , v2t+1} in order along the cycle. Now, add every edge (vi, vt+i) for 1 ≤ i ≤ t . This
defines a graph where every vertex except for v2t+1 has degree 3. Call this a (2t + 1)-wheel
W2t+1 , and call v2t+1 its rim. Observe that m-wheels exist for every odd m ≥ 3 . Now, for any
two odd numbers m1,m2 , define the (m1,m2)-bicycle Bm1,m2

 as the graph obtained from a
Wm1

 and a Wm2
 by joining the two rims by an edge. Note that every bicycle is 3-regular.

See Fig. 10 for examples of wheels and bicycles.
We are now ready to prove Proposition 5.23. Consider the graph G which is the disjoint

union of two bicycles, B401,201 + B301,101 , and consider a valuation interval with four equis-
paced clusters with 401, 301, 201, and 101 values in those clusters in order, as shown in
Fig. 11. It can be shown that any optimal allocation needs to place the entirety of W401 in
the first cluster, the entirety of W301 in the second cluster, the entirety of W201 in the third
cluster, and the entirety of W101 in the fourth cluster, contradicting splittability. The details
of the proof are in Appendix C.

Finally, from the graph classes considered in Sects. 5.2, 5.3, and 5.4, let us examine the
ones formed by taking the disjoint union of identical copies of the same graph. As stated
before, every single one of those examples has corresponded to a strongly splittable graph,
which again might lead to the very natural conjecture that disconnected graphs obtained by
taking disjoint unions of the same connected graph are strongly splittable. The following
proposition shows that this is not the case, and in fact, shows unsplittability.

Proposition 5.25  There exists a connected graph G such that G + G is unsplittable.

Proof  Consider the graph G + G shown in Fig. 12, along with the valuation interval. The
connected component G consists of a clique Ka , joined by an edge to a clique Kb , joined
by an edge to a clique Kc , where a ≫ b ≫ c ≫ 1 . The valuation interval consists of six
clusters of width � each, consisting of a, a, b, b, c, and c values in order. Of course, in any
optimal allocation, none of the Ka ’s can have any presence outside of the first two clusters,
as then there will be many edges crossing over at least one of the intervals. By a similar
argument, each of the Ka ’s needs be entirely within one of the first two clusters. By similar
arguments, it can be shown that each of the Kb ’s needs to be inside one of the third and
fourth clusters, and each of the Kc ’s needs to be inside one of the last two clusters. But now,
no matter how we distribute the clusters among the two copies of G, this cannot be split-
table, as neither copy can receive a contiguous subset of the values along the interval. 	
� ◻

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 32 of 47

Propositions 5.23 and 5.25 above show counterexamples to seemingly quite reasonable
conjectures, and pave the way for an in-depth investigation into the mysterious property of
splittability. We relegate this to future work.

6 � Conclusion and discussions

We investigated a generalization of the classical house allocation problem where the agents
are on the vertices of a graph representing the underlying social network, under the condition
that the agents have identical valuations. We wish to allocate the houses to the agents so as to

Fig. 10   a–c contain the wheels W5 , W7 , and W9 respectively. In each case, the rim is the vertex of degree 2
at the top. d describes the bicycle B5,7 , which is 3-regular

Fig. 11   The instance proving Proposition 5.23. Note that the vertices on the outer cycles are just connected
to other vertices on these cycles, not to any central vertex

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 33 of 47  42

minimize the aggregate envy among neighbors. Even for identical valuations, we showed that
the problem is computationally hard and structurally rich. Furthermore, our structural insights
facilitate algorithmic results for several natural and well-motivated graph classes.

There are a few natural questions for future research. We might consider other fairness
objectives such as minimizing the maximum envy present on any edge of the graph. For
evenly-spaced valuations, this corresponds to the classical graph theoretic property of band-
width, which is also known to be NP-complete for general graphs, and hard to approximate
as well [41, 42]. It would be interesting to know whether trees admit polynomial time charac-
terizations of the minimum envy, or—more remarkably—whether they are NP-complete but
admit the structural similarities to the Minimum Linear Arrangement problem discussed in
Sect. 4.5. We might hope to completely characterize all strongly splittable graphs in terms of
their graph theoretic structure. Another important future direction would be to extend some of
these results for non-identical valuations.

7 � Supplementary information

This article has an accompanying appendix which is 15 pages long. References appear after
the appendix as required by the Springer Nature format. An accompanying information sheet
has also been submitted as part of the supplementary material in accordance with the submis-
sion guidelines.

Appendix A: Distinct valuations

Lemma A.1  Given any instance (N, H, G, v) of Graphical House Allocation, there exists a
valuation function v′ such that v′ gives each house a distinct value, and any optimal alloca-
tion under v′ is also optimal under v.

Fig. 12   The instance proving Proposition 5.25

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 34 of 47

Proof  Let 𝛿 > 0 be the smallest nonzero envy difference between two allocations of H to G
under the valuation v, and let 𝛾 > 0 be the smallest nonzero difference between the values
of two houses. If either � or � are not well-defined, then all allocations have the same opti-
mal envy, and we can define any arbitrary one-to-one function v′ to satisfy the lemma. So
assume both � and � are well-defined and positive. Define � = min{�∕2, �} . We will show
that there is a one-to-one valuation function v′ , such that for any allocation � , the total envy
under v′ differs from the total envy under v by at most an additive term of � . For hk ∈ H ,
define

It is easy to see that this function is one-to-one by the definition of � . For any allocation �
on G, consider the envy between agents i and j. If �(i) = hk and �(j) = h

�
 , we have, using

the triangle inequality,

We also similarly have

Summing over the at most n2 edges of G, we have ����v(G,�) − � < ����v′ (G,�) < ����v(G,�) + � ,
as desired, where the subscripts v and v′ denote the valuation functions being used in each
case.

For any allocation �∗ which minimizes envy under v′ , if we compare against another
allocation �′ such that �∗ and �′ have different total envies under v, we see that

By the definition of � = min{�∕2, �} , we can infer that if �∗ is optimal under v′ , then it
must be optimal under v as well. If �∗ is not optimal under v, then there will be an alloca-
tion �′ which is optimal under v that violates the inequality above; that is, we will have
����v(G,�

�) ≤ ����v(G,�
∗) − 2� by the definition of � . 	� ◻

Appendix B: Technical Proofs from Section 4

Theorem 4.6  When G is the graph Kr,s ( r > s ), the minimum envy allocation �∗ has the fol-
lowing property:

v�(hk) ∶= v(hk) +
�

n22k
.

||v�(𝜋(i)) − v�(𝜋(j))|| =
||||
v(𝜋(i)) − v(𝜋(j)) +

𝜖

n22k
−

𝜖

n22�

||||
≤ ||v(𝜋(i)) − v(𝜋(j))|| +

𝜖

n2

||||
1

2k
−

1

2�

||||
< ||v(𝜋(i)) − v(𝜋(j))|| +

𝜖

n2
.

||v�(𝜋(i)) − v�(𝜋(j))|| =
||||
v(𝜋(i)) − v(𝜋(j)) +

𝜖

n22k
−

𝜖

n22�

||||
≥ ||v(𝜋(i)) − v(𝜋(j))|| −

𝜖

n2

||||
1

2k
−

1

2�

||||
> ||v(𝜋(i)) − v(𝜋(j))|| −

𝜖

n2
.

����v(G,𝜋
∗) − 𝜖 < ����v� (G,𝜋

∗) ≤ ����v� (G,𝜋
�) < ����v(G,𝜋

�) + 𝜖.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 35 of 47  42

(1)	 If r − s =∶ 2m is even, then the first and last m houses are allocated to the larger part,
and for all i ∈ [s] , the houses hm+2i−1 and hm+2i are allocated to different parts.

(2)	 If r − s =∶ 2m + 1 is odd, then the first m and last m + 1 houses are allocated to the
larger part. For all i ∈ [s] , the houses hm+2i−1 and hm+2i are allocated to the larger and
smaller parts respectively.

Moreover, all allocations which satisfy this property have the same (optimal) envy.
Proof  This proof is very similar to that of Theorem 4.5. Again, for notational ease, let the
graph have bipartition (L, R), with |L| = r > s = |R| . We refer to the properties in the theo-
rem statement when r − s is even and odd as the optimal even property and the optimal
odd property respectively. This proof will also use the notation n<

L,𝜋
(x) , n>

L,𝜋
(x), n<

R,𝜋
(x) and

n>
R,𝜋

(x) defined in Definition 2.3.
Case 1 r − s is even. We split the proof into two claims.

Claim B.1  Any optimal allocation allocates the first m houses to agents in L.

Proof of Claim B.1  Assume for contradiction that this is not true. That is, there is an optimal
allocation � such that:

Create an allocation �′ from � by swapping hk+l and hk+l+1 . We can now compare the aggre-
gate envy of � and �′ using arguments similar to those in Theorem 4.5.

The last inequality follows from the fact that l ≥ 1 and k < m = (r − s)∕2 . This contradicts
the optimality of � . 	� ◻

Claim B.2  In any optimal allocation, for any i ∈ [s], hm+2i−1 and hm+2i cannot be allocated
to the same part.

Proof of Claim B.2  Assume for contradiction that this is not true. Let � be an optimal allo-
cation that satisfies Claim B.1 but not Claim B.2. Choose j as the least i such that hm+2i−1
and hm+2i are allocated to the same part, say L. Let {hm+2j−1, hm+2j,… , hm+2j+k} be a set of
houses allocated to agents in L such that hm+2j+k+1 is allocated to some agent in R ( k ≥ 0 ).
Create an allocation �′ from � by swapping hm+2j+k and hm+2j+k+1 . We can compare the
envy between �′ and �.

𝜋(hj) ∈ L for all j ∈ [k] for some 0 ≤ k < m,

𝜋(hk+j) ∈ R for all j ∈ [l] for some l > 0,

𝜋(hk+l+1) ∈ L.

����(𝜋�,G) − ����(𝜋,G)

= [n<
L,𝜋

(v(hk+l+1)) − n>
L,𝜋

(v(hk+l+1))](v(hk+l+1) − v(hk+l))

+ [n>
R,𝜋

(v(hk+l)) − n<
R,𝜋

(v(hk+l))](v(hk+l+1) − v(hk+l))

= (v(hk+l+1) − v(hk+l))

[n<
L,𝜋

(v(hk+l+1)) − n>
L,𝜋

(v(hk+l+1)) + n>
R,𝜋

(v(hk+l)) − n<
R,𝜋

(v(hk+l))]

= [k − (r − (k + 1)) + (s − l) − (l − 1)](v(h2i) − v(h2i−1))

= [2k − (r − s) + 2 − 2l](v(h2i) − v(h2i−1))

< 0.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 36 of 47

The final inequality holds since k ≥ 0 . Again, we contradict the optimality of � . 	� ◻

Claim B.2 also implies that none of the final m = (r − s)∕2 houses are allocated to agents
in R; this is because all agents in R have already been assigned houses by Claim B.2. We
can therefore conclude that these houses must be allocated to agents in L in any optimal
allocation.

To show that any allocation that satisfies the optimal even property has the same
aggregate envy, we use a swapping based argument similar to Theorem 4.5. Let � be any
allocation that satisfies the optimal even property. Pick an arbitrary i ∈ [s] and let �′ be
the allocation that results from swapping hm+2i−1 and hm+2i in � . Assume that hm+2i−1 is
allocated to L in � . The proof for R flows similarly. Let us compare the envy of the two
allocations.

Case 2 r − s is odd. This is, unsurprisingly, very similar to the previous case. We similarly
split the proof into two claims.

Claim B.3  Any optimal allocation allocates the first m houses to agents in L.

The proof of this claim is exactly the same as the proof to the Claim B.1. The key differ-
ence in this case is that m = (r − s − 1)∕2 but this does not affect the proof as we can still use
the inequality k < (r − s)∕2 since k < m . So we move on to the second claim.

Claim B.4  In any optimal allocation, for any i ∈ [s], hm+2i−1 is allocated to some agent in L
and hm+2i is allocated to some agent in R.

����(𝜋�,G) − ����(𝜋,G)

= [n>
L,𝜋

(v(hm+2j+k)) − n<
L,𝜋

(v(hm+2j+k))](v(hm+2j+k+1) − v(hm+2j+k))

+ [n<
R,𝜋

(v(hm+2j+k+1)) − n>
R,𝜋

(v(hm+2j+k+1))](v(hm+2j+k+1) − v(hm+2j+k))

= (v(hm+2j+k+1) − v(hm+2j+k))[n
>
L,𝜋

(v(hm+2j+k)) − n<
L,𝜋

(v(hm+2j+k))

+ n<
R,𝜋

(v(hm+2j+k+1)) − n>
R,𝜋

(v(hm+2j+k+1))]

= (v(hm+2j+k+1) − v(hm+2j+k))[(r − (m + k + 2 + j − 1))

− (m + k + 1 + j − 1) + (j − 1) − (s − j)]

= [2j − 2(k + j) − 2](v(hm+2j+k+1) − v(hm+2j+k))

= [−2k − 2](v(hm+2j+k+1) − v(hm+2j+k))

< 0.

����(𝜋�,G) − ����(𝜋,G)

= [n>
L,𝜋

(v(hm+2i−1)) − n<
L,𝜋

(v(hm+2i−1))](v(hm+2i) − v(hm+2i−1))

+ [n<
R,𝜋

(v(hm+2i)) − n>
R,𝜋

(v(hm+2i))](v(hm+2i) − v(hm+2i−1))

= (v(hm+2i) − v(hm+2i−1))

[n>
L,𝜋

(v(hm+2i−1)) − n<
L,𝜋

(v(hm+2i−1)) + n<
R,𝜋

(v(hm+2i)) − n>
R,𝜋

(v(hm+2i))]

= [(r − (i + m)) − (m + i − 1) + (i − 1) − (s − i)](v(hm+2i) − v(hm+2i−1))

= 0.

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 37 of 47  42

Proof  This proof is again very similar to Claim B.2. However, there are some subtle
differences.

Assume for contradiction that the claim is not true. Let � be an optimal allocation that
satisfies Claim B.3 but not Claim B.4. Choose j as the least i where the claim is violated.
That is, either hm+2j−1 is allocated to R or hm+2j is allocated to L. In this proof, we assume
the latter has occured. The proof for the former is very similar. In other words, both hm+2j−1
and hm+2j are allocated to some agents in L. Let hm+2j−1, hm+2j,… , hm+2j+k be a set of
houses allocated to agents in L such that hm+2j+k+1 is allocated to some agent in R. Let �′ be
the allocation that results from swapping hm+2j+k and hm+2j+k+1 . We can compare the envy
between �′ and �:

The final inequality holds since k ≥ 0 . The optimality of � has been contradicted. 	� ◻

Claim B.4 also implies that none of the final m + 1 houses are allocated to agents in R.
We can therefore conclude that these houses must be allocated to agents in L in any optimal
allocation.

Note that the optimal odd property specifies exactly which houses must be allocated to L
and R in any optimal allocation. Any two allocations which satisfy the optimal odd property
can only differ over which agents in L and R houses are allocated to and not which houses are
allocated to L and R. It is easy to see that this difference cannot lead to a difference in envy
over the complete bipartite graph. 	� ◻

Appendix C: Technical Proofs from Section 5

Theorem 5.15  Let G be a disjoint union of cliques with arbitrary sizes, Kn1
+⋯ + Knr

 ,
where n1 ≥ … ≥ nr . Then, G is splittable (but not necessarily strongly splittable if the ni ’s
are not all equal). In particular, for all 1 ≤ i < j ≤ r , in every optimal allocation, Kni

 splits
Knj

.

Proof  Let � be any minimum envy allocation. Assume for contradiction that there exist
two cliques (say K and K′ ) such that |K| > |K′| and K does not receive a contiguous set

����(𝜋�,G) − ����(𝜋,G)

= [n>
L,𝜋

(v(hm+2j+k)) − n<
L,𝜋

(v(hm+2j+k))](v(hm+2j+k+1) − v(hm+2j+k))

+ [n<
R,𝜋

(v(hm+2j+k+1)) − n>
R,𝜋

(v(hm+2j+k+1))](v(hm+2j+k+1) − v(hm+2j+k))

= (v(hm+2j+k+1) − v(hm+2j+k))[n
>
L,𝜋

(v(hm+2j+k)) − n<
L,𝜋

(v(hm+2j+k))

+ n<
R,𝜋

(v(hm+2j+k+1)) − n>
R,𝜋

(v(hm+2j+k+1))]

= (v(hm+2j+k+1) − v(hm+2j+k))

[(r − (m + k + 2 + j − 1)) − (m + k + 1 + j − 1) + (j − 1) − (s − j)]

= [2j − 2(k + j) − 1](v(hm+2j+k+1) − v(hm+2j+k))

= [−2k − 1](v(hm+2j+k+1) − v(hm+2j+k))

< 0.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 38 of 47

of valuations with respect to the houses in K ∪ K� . The case where |K| = |K�| has been
shown in Theorem 5.13. Let the houses in K ∪ K� have values {a1, a2,… , a|K∪K�|} such that
a1 < a2 < … < a|K∪K�| . Since each house has a unique value, we refer to houses using their
values for the rest of this proof.

By our assumptions, the houses allocated to K must be split. Therefore there must be
some houses in K′ that are better than the houses allocated to some nodes in K and worse
than houses allocated to other nodes in K. This can be formalized as follows

We will frequently use the notation n<
K,𝜋

(x) and n>
K,𝜋

(x) (defined in Definition 2.3) for each
clique K.

Construct the allocation �′ starting at � and swapping the houses al+m+k and al+m+k+1 .
For any node in K whose value is less than al+m+k+1 under � , the total envy between them
and their neighbors increases by al+m+k+1 − al+m+k in �′ . For any node in K whose value is
greater than al+m+k+1 under � , the total envy between them and their neighbors decreases
by al+m+k+1 − al+m+k in �′ . We can show something similar for K′ . This gives us the total
change in envy as

Note that due to the optimality of � , we must have ����(��,G) − ����(�,G) ≥ 0 . Since
al+m+k+1 − al+m+k > 0 by construction, this implies |K| − |K�| + 2(l + k) − 2m − 2 ≥ 0 .
Removing the −2 , we get |K| − |K�| + 2(l + k) − 2m > 0 . This gives us the following
observation.

Observation C.1  |K�| − |K| − 2(l + k) + 2m < 0

Construct another allocation �′′ as follows: start at � and for every j ∈ [min{m, k}] ,
swap al+m+1−j with al+m+j . In each swap, we swap one house in K with one house in K′ .
Using a similar argument, we can compare the total envy of �′′ and �.

𝜋(aj) ∈ K� for all j ∈ [�] and some � ≥ 0

𝜋(al+j) ∈ K for all j ∈ [m] and some m > 0

𝜋(al+m+j) ∈ K� for all j ∈ [k] and some k > 0

𝜋(al+m+k+1) ∈ K

����(𝜋�,G) − ����(𝜋,G)

= ����(𝜋�,K ∪ K�) − ����(𝜋,K ∪ K�)

=
[
n<
K�,𝜋

(al+m+k) − n>
K� ,𝜋

(al+m+k)
](
al+m+k+1 − al+m+k

)

+
[
n>
K,𝜋

(al+m+k+1) − n<
K,𝜋

(al+m+l+1)
](
al+m+k+1 − al+m+k

)

=
(
al+m+k+1 − al+m+k

)
[
n<
K�,𝜋

(al+m+k) − n>
K� ,𝜋

(al+m+k) + n>
K,𝜋

(al+m+k+1) − n<
K,𝜋

(al+m+l+1)
]

=
[
(l + k − 1) − (|K�| − l − k) + (|K| − (m + 1)) − m

]
(al+m+k+1 − al+m+k)

=
[
|K| − |K�| + 2(l + k) − 2m − 2

]
(al+m+k+1 − al+m+k)

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 39 of 47  42

Note that the second term is always strictly positive since al+m+j > al+m+1−j for all
j ∈ min{m, k} . If we show that the first term |K�| − |K| + 2m − 2(min{m, k} + l) is nega-
tive, we contradict the optimality of � . We have two possible cases.

Case 1 k ≤ m . In this case, (C1) reduces to

From Observation C.1, the first term is negative.
Case 2 k > m . In this case, (C1) reduces to

Since |K| > |K′| and l ≥ 0 , the first term is negative.
To conclude, it cannot be the case that the houses in K are split. 	� ◻

Theorem 5.17  If G = Kr,s for any r, s ∈ ℕ , then G + G is strongly splittable.

Proof  Let (V = L ∪ R,E) and (V � = L� ∪ R�,E�) be the set of vertices and edges of each
copy of G. There exists a bijective mapping � ∶ V ↦ V � such that for every node v ∈ V  ,
�(v) ∈ L� if and only if v ∈ L.

(C1)

����(𝜋��,G) − ����(𝜋,G)

= ����(𝜋��,K ∪ K�) − ����(𝜋,K ∪ K�)

=
[
n<
K,𝜋

(al+m+1−min{m,k}) − n>
K,𝜋

(al+m) + n>
K�,𝜋

(al+m+min{m,k}) − n<
K� ,𝜋

(al+m+1)
]

[
∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

=
[
(m −min{m, k}) − (|K| − m) + (|K�| − (l +min{k,m})) − l

]
[

∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

=
[
|K�| − |K| + 2m − 2(min{m, k} + l)

]
[

∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

����(���,G) − ����(�,G)

=
[
|K�| − |K| + 2m − 2(k + l)

]
[

∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

����(���,G) − ����(�,G)

=
[
|K�| − |K| + 2m − 2(m + l)

]
[

∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

=
[
|K�| − |K| − 2l

]
[

∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

]

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 40 of 47

Let � be any allocation on G + G , we show that if � does not allocate contiguous inter-
vals to each component, we can create a better allocation �′.

Let a1 < a2 < … ar+s be the values allocated to the nodes in V and b1 < b2 < … br+s
be the values allocated to the nodes in V ′ in some optimal allocation � . We rearrange the
goods allocated to V ′ such that if node v ∈ V receives ai , then node �(v) receives br+s−i . If
the allocation of a values to V is optimal, then from our characterization of bipartite graphs
(Theorem 4.6), we know that this allocation of b houses to V ′ is optimal as well.

If each component is not allocated a contiguous interval, the least valued r + s houses
must have some a values and some b values. Let’s call the least valued r + s houses H′ and
let’s say there are k ai ’s in H′ . Therefore H′ contains a1, a2,… , ak and b1, b2,… , br+s−k.

We create a new allocation �′ starting at � and for all i ∈ [k] , we swap ai with br+s−i .
Note that for each house among the least-valued r + s houses, if ai is allocated to v ∈ V  , we
swap the houses given to v and �(v) , thereby creating �′ from �.

Let us now compute the change in envy between �′ and � . We do this by showing that,
for every edge (u, v) ∈ E , the total sum of the envies along the edges (u, v) and (�(u), �(v))
decreases. Before we go into the math, note that if (u, v) ∈ E , then (�(u), �(v)) ∈ E� by our
definition of �.

Case 1 u and v are unaffected by the swap. Then �(u) and �(v) are unaffected as well.
Therefore the total envy along these two edges does not change.

Case 2 u and v are both affected by the swap. Then, envy�� (u, v) = envy�(�(u), �(v))
and envy�(u, v) = envy�� (�(u), �(v)) . Therefore, the total envy along these two edges does
not change.

Case 3 Only u is affected by the swap. This means �(v) is not affected by the swap. The
total envy along these two edges under � is

where j > k > i . This can be re-written as

The total envy along these two edges under �′ is

The change in envy is

The inequality holds since j > k > i.
When k ≥ 1 , at least one edge belongs to Case 3 and so the total envy of �′ is strictly

less than the total envy of � . 	� ◻

Theorem 5.19  Let G be a disjoint union of symmetric complete bipartite graphs
Kn1,n1

+ Kn2,n2
+⋯ + Kn

𝓁
,n

𝓁

 , where n1 ≥ n2 ≥ … ≥ n
�
 . Then G is splittable (but not neces-

sarily strongly splittable if n1 > n
�
 ) and the order of splittability is Kn1,n1

,… ,Kn
�
,n

�

.

Proof  We prove complete symmetric bipartite graphs are not strongly splittable in Proposi-
tion 5.20, so we focus on proving splittability here. Consider two complete bipartite graphs
G1 = Kr,r and G2 = Ks,s such that r < s . Assume houses with values a1,… a2r+2s such that

envy�(u, v) + envy�(�(u), �(v)) = (aj − ai) + (br+s−i − br+s−j)

envy�(u, v) + envy�(�(u), �(v)) = 2min{aj, br+s−i} + |aj − br+s−i|
− 2max{ai, br+s−j} + |ai − br+s−j|

envy�� (u, v) + envy�� (�(u), �(v)) = |aj − br+s−i| + |ai − br+s−j|

2max{ai, br+s−j} − 2min{aj, br+s−i} < 0

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 41 of 47  42

a1 < … < a2r+2s are allocated to these two graphs. Since house values are unique, we will
say the value ai is allocated to a node j if the unique house with value ai is allocated to the
node j.

We need to show that Ks,s is allocated a contiguous interval of values in at least one opti-
mal allocation. Assume for contradiction that this is not true. Let � be an allocation where

Since we assumed no optimal allocation gives a contiguous set of values to G2 , all optimal
allocations must have the above structure for some �1,�2 and �3 . If there are multiple opti-
mal allocations, pick one such that �1 is maximized. Break any further ties by picking one
such that �2 is maximized. Finally, break ties by ensuring �1 + �2 + �3 is minimized. If
there are still multiple envy minimizing allocations, pick one arbitrarily.

Since G1 and G2 are complete bipartite graphs, we refer to the nodes in the ‘left’ part
of G1 and G2 using L1 and L2 respectively. Similarly, we refer to the ‘right’ part of nodes
using R1 and R2 . Since we assume � is optimal, the allocations to G1 and G2 must satisfy the
structural properties from Theorem 4.5. Specifically, if the values b1,… , b2y are allocated
to Gi for some i ∈ [2] , we assume b1, b3, b5,… , b2y−1 are allocated to Li.

Swap a
�1+�2+�3

 with a
�1+�2+�3+1

 in � to create a new allocation �′ . Let us compare the
envies of � and �′ . Observe that

where n<
Gi,𝜋

(x) and n>
Gi,𝜋

(x) are defined according to Definition 2.3.

An explanation for how this expression is computed is presented in Fig. 13. Note that
(C2) must be strictly positive by our choice of optimal allocation — �′ either has a big-
ger �2 or has a smaller �1 + �2 + �3 than � . The first term in (C2) is always positive, the
second term only contains integers, so it must be lower bounded by 1. This gives us the
following observation:

Observation C.2  2
⌈
�1+�3−1

2

⌉
− 2

⌈
�2

2

⌉
+ s − r ≥ 1.

Let us now construct a third allocation �′′ from � by swapping {a�1+�2−min{�2 ,�3}+1,… , a�1+�2
}

from G2 with {a
�1+�2+1

,… , a
�1+�2+min{�2,�3}

} from G1 . When we swap these two sets, we
ensure we swap them in order. That is,

a1,… , a
�1

is allocated to G1 for some �1 ≥ 0

a
�1+1

,… , a
�1+�2

is allocated to G2 for some �2 > 0

a
�1+�2+1

,… , a
�1+�2+�3

is allocated to G1 for some �3 > 0

a
�1+�2+�3+1

is allocated to G2 for some �3 > 0

(C2)

����(𝜋�,G1 + G2) − ����(𝜋,G1 + G2)

= (a
�1+�2+�3+1

− a
�1+�2+�3

)×

[⌈n<G1
(a

�1+�2+�3
)

2

⌉
−

(
r −

⌈n<G1
(a

�1+�2+�3
)

2

⌉
)

−
⌈n<G2

(a
�1+�2+�3+1

)

2

⌉
+

(
s −

⌈n<G2
(a

�1+�2+�3+1
)

2

⌉
)]

= (a
�1+�2+�3+1

− a
�1+�2+�3

) ×

[
2
⌈�1 + �3 − 1

2

⌉
− 2

⌈�2

2

⌉
+ s − r

]

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 42 of 47

and so on. Note that we swap exactly min{�2,�3} values and with this careful swap, the
edges between the values in each of these sets is preserved. That is, an edge between
a
�1+�2+1

 and a
�1+�2+2

 exists in �′′ if and only if it exists in � . Using an argument similar to
Fig. 13, we can find the difference in envy between �′′ and � as:

The only thing to keep in mind about c1 and c2 are that they are positive constants. The
above expression can be simplified as

Again, (C3) must be strictly positive due to our choice of optimal allocation. c1 and c2
are positive constants, so this comes down to the second term. Note immediately that the
second term cannot be positive if �2 ≤ �3 . Therefore, we can assume �2 > �3 , and using
the fact that all the terms inside the second term are integers, we can make the following
observation:

Observation C.3  max
{
2
⌈
�2−�3

2

⌉
− 2

⌈
�1

2

⌉
, 2
⌊
�2−�3

2

⌋
− 2

⌊
�1

2

⌋}
+ r − s ≥ 1.

a
�1+�2−min{�2,�3}+1

is swapped with a
�1+�2+1

,

a
�1+�2−min{�2,�3}+2

is swapped with a
�1+�2+2

,

����(𝜋��,G1 + G2) − ����(𝜋,G1 + G2)

= c1

[⌈n<G2
(a

�1+�2−min{�2,�3}+1
)

2

⌉
−

(
s −

⌊
min{�2,�3}

2

⌋
−
⌈n<G2

(a
�1+�2−min{�2,�3}+1

)

2

⌉
)

−
⌈n<G1

(a
�1+�2+1

)

2

⌉
+

(
r −

⌊
min{�2,�3}

2

⌋
−
⌈n<G1

(a
�1+�2+1

)

2

⌉
)]

+ c2

[⌊n<
G2
(a

�1+�2−min{�2,�3}+1
)

2

⌋
−

(
s −

⌈min{�2,�3}

2

⌉
−

⌊
n<
G2
(a

�1+�2−min{�2,�3}+1
)

2

⌋)

−

⌊
n<
G1
(a

�1+�2+1
)

2

⌋
+

(
r −

⌈min{�2,�3}

2

⌉
−

⌊
n<
G1
(a

�1+�2+1
)

2

⌋)]

where c1 =

⌈
min{�2,�3}

2

⌉
−1∑

j=0

(
a
�1+�2+2j+1

− a
�1+�2−min{�2,�3}+2j+1

)

and c2 =

⌊
min{�2,�3}

2

⌋
−1∑

j=0

(
a
�1+�2+2j+2

− a
�1+�2−min{�2,�3}+2j+2

)
.

(C3)

����(���,G1 + G2) − ����(�,G1 + G2)

= c1

[
2
⌈�2 −min{�2,�3}

2

⌉
− 2

⌈�1

2

⌉
+ r − s

]

+ c2

[
2

⌊
�2 −min{�2,�3}

2

⌋
− 2

⌊
�1

2

⌋
+ r − s

]

≤ (c1 + c2)[
max

{
2
⌈�2 −min{�2,�3}

2

⌉
− 2

⌈�1

2

⌉
, 2

⌊
�2 −min{�2,�3}

2

⌋
− 2

⌊
�1

2

⌋}
+ r − s

]

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 43 of 47  42

Adding up Observations C.2 and C.3, we get

It is easy to verify that the left hand side in the above inequality is upper bounded at 1; if
there were no ceilings or floors, the left hand side would equal −1 . The ceilings and floors,
adversarially set, can only increase this value by 2. Therefore, the above expression can
never be true and we have arrived at a glorious contradiction. 	� ◻

Proposition 5.23  There exists a 3-regular unsplittable graph.

Proof  The following lemma will prove to be useful.

Lemma C.4  For any wheel W2t+1, and any two non-rim vertices u1, u2 ∈ V(W2t+1), there are
three u1-u2 paths that are disjoint except at the endpoints.

max

{
2
⌈�2 − �3

2

⌉
− 2

⌈�1

2

⌉
+ 2

⌈�1 + �3 − 1

2

⌉
− 2

⌈�2

2

⌉
,

2

⌊
�2 − �3

2

⌋
− 2

⌊
�1

2

⌋
+ 2

⌈�1 + �3 − 1

2

⌉
− 2

⌈�2

2

⌉}
≥ 2

Fig. 13   Measuring the value ����(��,G1 + G2) − ����(�,G1 + G2) . We assume values are allocated in
increasing order from the top to the bottom with least valued nodes at the top of the graph and the highest
valued nodes at the bottom of the graph. Only the edges which see a change in envy are drawn. The exact
change in envy for the edges in Kr,r is described. A similar argument can be used to measure the exact
change in envy in Ks,s

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 44 of 47

Proof  The shortest path P0 along the outer cycle is one path from u1 to u2 . Call the remain-
der of the outer cycle the “longer u1-u2 path”. Now, consider the path P1 going from u1 to its
mate along its diagonal, and then to u2 along the longer u1-u2 path. Also consider the path
P2 that takes u1 to the mate of u2 along the cycle on the longer u1-u2 path, and then across
to u2 on the diagonal. Note that P0 , P1 , and P2 are all internally disjoint paths on this graph
from u1 to u2 . See Fig. 14 for an illustration. 	� ◻

We continue with the proof. Consider the instance shown in Fig. 11. Call the inter-clus-
ter gaps I1 , I2 , and I3 respectively. By analyzing the size of any minimum cut in the given
graph with exactly 401 vertices on one side, we can easily show that every allocation will
need to have at least one edge go over I1 (since there is no way to put 401 vertices of the
graph without having at least one edge across the cut). Using a similar argument on mini-
mum cuts with exactly 702 (resp. 903) vertices on one side, we can also show that at least
two (resp. one) edges must go over I2 (resp. I3 ) in every allocation. So, the optimal envy
must be at least |I1| + 2|I2| + |I3| . Furthermore, this is realizable by the obvious alloca-
tion that maps the cluster sizes to the corresponding wheels. Therefore, any allocation that
puts more than one edge on either I1 or I3 , or more than two edges on I2 , must be strictly
suboptimal.

Consider any optimal allocation. We first claim that W101 must be entirely inside the
fourth cluster. Otherwise, some other wheel W ′ has its vertices appearing in the last cluster.
If only the rim of W ′ appears in the last cluster, then its two neighbors in W ′ both appear
in other clusters, so that I3 has at least two edges passing over it, contradiction. So some
non-rim vertex of W ′ appears in the fourth cluster. The fourth cluster is not enough to fit
all of W ′ , and so some non-rim vertex from W ′ appears in a different cluster as well. By
Lemma C.4, this requires at least three edges over I3 , contradiction. Therefore, W101 fits
snugly inside the fourth cluster.

We now claim that W201 must be entirely inside the third cluster. Otherwise, either W301
or W401 has some presence in the third cluster, say W301 . If this is a non-rim vertex, then
again by Lemma C.4, we must have at least three edges over I2 , contradiction. So at best,
the third cluster can have a rim vertex from W301 . This vertex’s neighbors in W301 must be
on either the first or second cluster, accounting for two edges above the interval I2 . But
then, the third cluster must have some vertex from the bicycle B401,201 , but also does not
have enough space to fit the entire bicycle. Hence, there must also be at least one edge

Fig. 14   Illustrative example of
three disjoint paths between
non-rim vertices u1 and u2 , drawn
here in three different colors: red,
blue, and green

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 45 of 47  42

over the interval I2 from the bicycle B401,201 , accounting for a total of three or more edges
over I2 , contradiction. A similar argument holds when W401 has some presence in the third
cluster.

Finally, we claim that the copy of W401 must be entirely inside the first cluster. Other-
wise, there is at least one vertex from W301 in the first cluster, and therefore at least one ver-
tex from W401 in the second cluster. Of course, the second cluster cannot fit in at least 100
vertices from W401 , and so there is at least one non-rim W401-vertex in the second cluster
(otherwise its two neighbors correspond to two edges over I1 , contradiction), and at least
one non-rim W401 vertex in the first cluster, which by Lemma C.4 is a contradiction. 	� ◻

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10458-​024-​09672-7.

Acknowledgements  The authors thank Cameron Musco and Yair Zick for extremely helpful discus-
sions. Rohit Vaish acknowledges support from Science and Engineering Research Board (SERB) grant
no. CRG/2022/002621 and Department of Science & Technology (DST) INSPIRE grant no. DST/
INSPIRE/04/2020/000107. Andrew McGregor and Rik Sengupta acknowledge support from National Sci-
ence Foundation (NSF) grants CCF-1934846 and CCF-1908849. This work was done in part while Andrew
McGregor was visiting the Simons Institute for the Theory of Computing. Hadi Hosseini acknowledges
support from National Science Foundation (NSF) grants IIS-2144413 and IIS-2107173. Justin Payan and
Vignesh Viswanathan acknowledge support from National Science Foundation (NSF) grant IIS-2327057.

Author Contributions  All authors contributed equally to this work.

Funding  Rohit Vaish is funded by Science and Engineering Research Board (SERB) grant no.
CRG/2022/002621 and Department of Science & Technology (DST) INSPIRE grant no. DST/
INSPIRE/04/2020/000107. Andrew McGregor and Rik Sengupta are funded by National Science Founda-
tion (NSF) grants CCF-1934846 and CCF-1908849. Hadi Hosseini is funded by National Science Foun-
dation (NSF) grants IIS-2144413 and IIS-2107173. Justin Payan and Vignesh Viswanathan are funded by
National Science Foundation (NSF) grant IIS-2327057.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Consent for publication  All authors consent to publication.

References

	 1.	 Hosseini, H., Payan, J., Sengupta, R., Vaish, R., & Viswanathan, V. (2023). Graphical house allocation.
In Proceedings of the 22nd international conference on autonomous agents and multi-agent systems
(AAMAS) (pp. 161–169).

	 2.	 Massand, S., & Simon, S. (2019). Graphical one-sided markets. In Proceedings of the 28th interna-
tional joint conference on artificial intelligence (IJCAI) (pp. 492–498).

	 3.	 Beynier, A., Chevaleyre, Y., Gourvès, L., Harutyunyan, A., Lesca, J., Maudet, N., & Wilczynski, A.
(2019). Local envy-freeness in house allocation problems. Autonomous Agents and Multi-Agent Sys-
tems, 33, 591–627.

	 4.	 Doucette, J. A., Tsang, A., Hosseini, H., Larson, K., & Cohen, R. (2019). Inferring true voting out-
comes in homophilic social networks. Autonomous Agents and Multi-Agent Systems, 33(3), 298–329.

	 5.	 Tsang, A., Doucette, J. A., & Hosseini, H. (2015). Voting with social influence: Using arguments to
uncover ground truth. In Proceedings of the 14th international conference on autonomous agents and
multi-agent systems (AAMAS) (pp. 1841–1842).

	 6.	 Grandi, U. (2017). Social choice and social networks. In U. Endriss (Ed.), Trends in Computational
Social Choice (pp. 169–184). AI Access, open access.

https://doi.org/10.1007/s10458-024-09672-7
https://doi.org/10.1007/s10458-024-09672-7

	 Autonomous Agents and Multi-Agent Systems (2024) 38:4242  Page 46 of 47

	 7.	 Abebe, R., Kleinberg, J., & Parkes, D. C. (2017). Fair division via social comparison. In Proceedings
of the 16th international conference on autonomous agents and multi-agent systems (AAMAS) (pp.
281–289).

	 8.	 Bredereck, R., Kaczmarczyk, A., & Niedermeier, R. (2022). Envy-free allocations respecting social
networks. Artificial Intelligence,305.

	 9.	 Peters, D. (2016). Graphical hedonic games of bounded treewidth. In Proceedings of the 30th AAAI
conference on artificial intelligence (AAAI) (pp. 586–593).

	10.	 Igarashi, A., & Elkind, E. (2016). Hedonic games with graph-restricted communication. In Proceed-
ings of the 15th international conference on autonomous agents and multi-agent systems (AAMAS) (pp.
242–250).

	11.	 Hammer, P. L., & Maffray, F. (1990). Completely separable graphs. Discrete Applied Mathematics,
27(1), 85–99.

	12.	 Shapley, L., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical Economics, 1(1),
23–37.

	13.	 Abdulkadiroğlu, A., & Sönmez, T. (1999). House allocation with existing tenants. Journal of Eco-
nomic Theory, 88(2), 233–260.

	14.	 Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal of Econom-
ics, 119(2), 457–488.

	15.	 Svensson, L.-G. (1999). Strategy-proof allocation of indivisible goods. Social Choice and Welfare,
16(4), 557–567.

	16.	 Gan, J., Suksompong, W., & Voudouris, A. A. (2019). Envy-freeness in house allocation problems.
Mathematical Social Sciences, 101, 104–106.

	17.	 Kamiyama, N. (2021). The envy-free matching problem with pairwise preferences. Information Pro-
cessing Letters, 172, 106158.

	18.	 Kamiyama, N., Manurangsi, P., & Suksompong, W. (2021). On the complexity of fair house allocation.
Operations Research Letters, 49(4), 572–577.

	19.	 Madathil, J., Misra, N., & Sethia, A. (2023). The complexity of minimizing envy in house allocation.
In Proceedings of the 22nd international conference on autonomous agents and multi-agent systems
(AAMAS) (pp. 2673–2675).

	20.	 Aigner-Horev, E., & Segal-Halevi, E. (2022). Envy-free matchings in bipartite graphs and their appli-
cations to fair division. Information Sciences, 587, 164–187.

	21.	 Gross-Humbert, N., Benabbou, N., Beynier, A., & Maudet, N. (2023). On the notion of envy among
groups of agents in house allocation problems. In Proceedings of the 26th European conference on
artificial intelligence (ECAI) (pp. 924–931).

	22.	 Aziz, H., Iliffe, I., Li, B., Ritossa, A., Sun, A., & Suzuki, M. (2024). Envy-free house allocation under
uncertain preferences. In Proceedings of the 38th AAAI conference on artificial intelligence (AAAI)
(pp. 9477–9484).

	23.	 Choo, D., Ling, Y. H., Suksompong, W., Teh, N., & Zhang, J. (2024). Envy-free house allocation with
minimum subsidy. Operations Research Letters,54.

	24.	 Biswas, A., Payan, J., Sengupta, R., & Viswanathan, V. (2023). The theory of fair allocation under
structured set constraints. In A. Mukherjee, J. Kulshrestha, A. Chakraborty, & S. Kumar (Eds.), Ethics
in Artificial Intelligence: Bias, Fairness and Beyond (pp. 115–129). Springer.

	25.	 Hosseini, H., McGregor, A., Sengupta, R., Vaish, R., & Viswanathan, V. (2024). Tight approximations
for graphical house allocation. In Proceedings of the 23rd international conference on autonomous
agents and multi-agent systems (AAMAS) (pp. 825–833).

	26.	 Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2020). Parameterized complexity of envy-free
resource allocation in social networks. In Proceedings of the 34th AAAI conference on artificial intel-
ligence (AAAI) (pp. 7135–7142).

	27.	 Beynier, A., Maudet, N., & Damamme, A. (2018). Fairness in multiagent resource allocation with
dynamic and partial observations. In Proceedings of the 17th international conference on autonomous
agents and multi-agent systems (AAMAS) (pp. 1868–1870).

	28.	 Lange, P., & Rothe, J. (2019). Optimizing social welfare in social networks. In Proceedings of the 6th
international conference on algorithmic decision theory (ADT) (pp. 81–96).

	29.	 Gourvès, L., Lesca, J., & Wilczynski, A. (2017). Object allocation via swaps along a social network. In
Proceedings of the 26th international joint conference on artificial intelligence (IJCAI) (pp. 213–219).

	30.	 Ito, T., Iwamasa, Y., Kakimura, N., Kamiyama, N., Kobayashi, Y., Nozaki, Y., Okamoto, Y., & Ozeki,
K. (2022). Reforming an envy-free matching. In Proceedings of the 36th AAAI conference on artificial
intelligence (AAAI) (pp. 5084–5091).

	31.	 Elkind, E., Patel, N., Tsang, A., & Zick, Y. (2020). Keeping your friends close: Land allocation with friends.
In Proceedings of the 29th international joint conference on artificial intelligence (IJCAI) (pp. 318–324).

Autonomous Agents and Multi-Agent Systems (2024) 38:42	 Page 47 of 47  42

	32.	 Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applica-
tions. Prentice Hall.

	33.	 Chung, F. R. K. (1984). On optimal linear arrangements of trees. Computers & Mathematics with
Applications, 10(1), 43–60.

	34.	 Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1976). Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3), 237–267.

	35.	 Koren, Y., & Harel, D. (2002). A multi-scale algorithm for the linear arrangement problem. In Interna-
tional workshop on graph-theoretic concepts in computer science (pp. 296–309).

	36.	 Even, S., & Shiloach, Y. (1978). NP-completeness of several arrangements problems. Technical
Report, TR-43 The Technicon, 29.

	37.	 Seidvasser, M. A. (1970). The optimal number of the vertices of a tree. Diskref. Anal., 19, 56–74.
	38.	 Khot, S. (2006). Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique.

SIAM Journal on Computing, 36(4), 1025–1071.
	39.	 Bui, T. N., & Jones, C. (1992). Finding good approximate vertex and edge partitions is NP-hard. Infor-

mation Processing Letters, 42(3), 153–159.
	40.	 Garey, M. R., & Johnson, D. S. (1990). Computers and intractability; A guide to the theory of NP-

completeness. W. H. Freeman & Co.
	41.	 Papadimitriou, C. (1976). The NP-completeness of the bandwidth minimization problem. Computing,

16(3), 263–270.
	42.	 Blache, G., Karpiński, M., & Wirtgen, J. (1997). On approximation intractability of the bandwidth

problem. Inst. für Informatik.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Hadi Hosseini1 · Andrew McGregor2 · Justin Payan2 · Rik Sengupta2,3 · Rohit Vaish4 ·
Vignesh Viswanathan2

 *	 Vignesh Viswanathan
	 vviswanathan@umass.edu

	 Hadi Hosseini
	 hadi@psu.edu

	 Andrew McGregor
	 mcgregor@cs.umass.edu

	 Justin Payan
	 jpayan@umass.edu

	 Rik Sengupta
	 rik@ibm.com

	 Rohit Vaish
	 rvaish@iitd.ac.in

1	 Pennsylvania State University, University Park, PA, USA
2	 University of Massachusetts Amherst, Amherst, MA, USA
3	 MIT-IBM Watson AI Lab, Cambridge, MA, USA
4	 Indian Institute of Technology Delhi, New Delhi, India

	Graphical house allocation with identical valuations
	Abstract
	1 Introduction
	1.1 Overview and our contributions
	1.2 Related work

	2 Preliminaries
	3 Hardness and lower bounds
	3.1 Connection to the linear arrangement problem
	3.2 Connection to the minimum bisection problem
	3.3 Hardness of Graphical House Allocation with disconnected graphs

	4 Connected graphs
	4.1 Stars
	4.2 Paths and cycles
	4.3 Complete bipartite graphs
	4.4 Binary trees
	4.5 General trees

	5 Disconnected graphs
	5.1 A structural characterization
	5.2 Disjoint unions of paths, cycles, and stars
	5.3 Disjoint unions of cliques
	5.4 Disjoint unions of complete bipartite graphs
	5.5 Splittability and graph properties

	6 Conclusion and discussions
	7 Supplementary information
	Appendix A: Distinct valuations
	Appendix B: Technical Proofs from Section 4
	Appendix C: Technical Proofs from Section 5
	Acknowledgements
	References

