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Abstract: Glaciers have experienced a global trend of recession within the past century. Quantification of 

glacier variations using satellite imagery has been of great interest due to the importance of glaciers as 

freshwater resources and as indicators of climate change. Spatiotemporal glacier dynamics must be 

monitored to quantify glacier variations. The potential methods to quantify spatiotemporal glacier dynamics 

with increasing complexity levels include detecting the terminus location, measuring the length of the 

glacier from the accumulation zone to the terminus, quantifying the glacier surface area, and measuring 

glacier volume. Although some deep learning methods designed purposefully for glacier boundary 

segmentation have achieved acceptable results, these models are often localized to the region where their 

training data were acquired and further rely on the training sets that were often curated manually to 

highlight glacial regions. Due to the very large number of glaciers, it is practically impossible to perform a 

worldwide study of glacier dynamics using manual methods. As a result, an automated or semi-automated 

method is highly desirable. The current study has built upon our previous works moving towards 

identification methods of the 2D glacier profile for glacier area segmentation. In this study, a deep learning 

method is proposed for segmentation of temporal Landsat images to quantify the glacial region within the 

Mount Cook/Aoraki massif located in the Southern Alps/Ka Tiritiri o te Moana of New Zealand/Aotearoa. 

Segmented glacial regions can be¯ further utilized to determine the relationship of their variations due to 

climate change. This model has demonstrated promising performance while trained on a relatively small 

dataset. The permanent ice and snow class was accurately segmented at a 92% rate by the proposed model. 

Keywords: glacier variation; deep learning; U-net; satellite imagery; segmentation; land cover 
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ocean and air temperatures that create more frequent and intense coastal storms. Melting 

glaciers have been shown to impact oceanic currents, which can alter the global climate and lead 

to more extreme weather events [12,13]. For example, melting glaciers in the Arctic have led to 

an ocean current becoming faster and more turbulent [12]. However, increased Antarctic ice melt 

is predicted to cause the cold-water current cell of the global overturning circulation to slow 

down within a few decades [13]. 

 
1 . Introduction 

Glaciers are highly sensitive to climatic conditions, serving as a key indicator of climate change. Global glacial mass and the 

conditions of specific regional glaciers are often used as a proxy of the climate in global and regional areas as past quantitative data 

have shown that glacier variation is associated with climate change [1–5]. Over the past century, glaciers have exhibited a general 

trend of recession [6–8]. Rising CO2 levels increase global temperatures, which melt glaciers faster, but precipitation patterns also 

change with the climate, making the exact relationship between climate change and glacial variation unclear. 

Melting glaciers have been one of the main contributors to sea level change during the last century [8–10]. The mass loss of 

Greenland and Antarctic ice sheets and Arctic glaciers has been proven to contribute to global sea level rise [11]. Increasing sea 

levels can lead to increased coastal erosion and storm surge, which can be exacerbated by warming 
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Glaciers are home to many animals, both aquatic and terrestrial, and their melting can lead 

to the extinction of many species [14]. For example, glacier-fed freshwater ecosystems are 

expected to lose 11–38% of macroinvertebrate species following the disappearance of glaciers. In 

addition, glaciers are important as a water resource for downstream communities, and their 

decline with anthropogenic climate change is causing concern for the health and security of 

communities [15–18]. Therefore, it is a necessity to not only monitor glaciers to better 

understand global climate but to also study them to understand their changes in a shifting 

climate. 

Understanding glacier variation is a challenging spatiotemporal problem for several reasons. 

One reason is that there is an abundance of climate and environmental factors that contribute to 

glacier behavior, such as elevation, temperature, and precipitation [19]. Another reason is that 

glacier variations are quantified by temporal dynamics of the glacier through the location of the 

glacier’s terminus or the boundary of the glacier’s surface area. For example, glacier’s variations 

can be quantified by measuring the location of its terminus or the boundary of its surface area 

across many years; however, many glaciers are in remote locations, which means that quantifying 

glacier variation in the terminus point, surface area, volume, or mass is difficult with limited access 

on the ground. An alternative to ground measurement that has been widely used in the literature 

is remote sensing. Remote sensing by satellite is often the only feasible way of collecting large 

amounts of glacier data [20–22]. 

1.1. Glacial Surface Area Segmentation 

Remote sensing is the acquiring of information from a distance, most frequently through 

aircraft and satellites. Remote sensing platforms employ multispectral sensors that collect data 

such as spectral wavelength bands. These bands can be combined to produce imagery of the data 

to study different characteristics of the landscape. A significant source of data used in the analysis 

of glacier change is the satellite imagery of glaciers. There are several satellites that have existing 

datasets and databases that contain decades of imagery available to download, such as the 

NASA/USGS Landsat series and the Copernicus Sentinel series. For this project, Landsat data were 

used because of its public availability and because the Landsat series is the longest continuous 

space-based record of satellite imagery. Other satellites, such as the Sentinel series, collect 

imagery at a better resolution and quality than Landsat but they have not collected data for the 

same duration as the Landsat program. 

Collecting data by these satellites are useful but not perfect as clouds and mountain shadows 

may obscure the glaciers [23]. Various image processing techniques have been developed to detect 

clouds and remove their shadows to ensure that these imperfect images can be corrected to create 

a dataset of high-quality images. These techniques often use the physical properties of clouds such 

as their relatively brighter color and low temperatures, or a reference to a clear sky image, to 

detect clouds. Shadows can be detected in similar fashion by observing relatively darker colors and 

lower temperatures. However, as clouds are common over most glaciers, the number of images 

removed is large, resulting in a significantly diminished dataset [23]. 

This dataset is then further processed to highlight the glaciers, allowing for their size— and 

therefore approximate health—to be determined. This process is often complicated by snow and 

debris cover, making it unclear where the glacier terminates and rock or seasonal snow begins. A 

general model for the detection of all types of glaciers is sought after but very difficult to achieve 

[24]. 

1.2. Previous Work 

Quantification of glacier changes using satellite imagery has been of great interest. 

Spatiotemporal glacier dynamics must be monitored to quantify glacier variations. The potential 

methods to quantify glacier dynamics with different complexity levels include detecting the 

terminus location over time, measuring the length of the glacier from the accumulation zone to 

the terminus over time, quantifying the glacier surface area over time, and measuring glacier 

volume over time. In our previous work, Kachouie et al., 2013 [25], inflection points were identified 

along smoothed glacier intensity profiles to locate the terminus points of a glacier and recover the 

pattern of terminus change over time. A constrained bandwidth selection method in local 

polynomial regression was developed for locating inflection points, which allows for flexibility in 

estimating change point locations when the underlying regression function has a single change 

point. Then, we extended that method in Kachouie et al., 2015 [26] by improving the estimation 
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of the first derivative of the intensity profile using nonparametric local polynomial regression, 

including inflection points as potential terminus candidates to track the pool of candidates over 

time. The technique was applied to the Franz Josef glacier/Ka Roimata o Hine Hukatere of New¯ 

Zealand/Aotearoa and the Gorner glacier of Switzerland, and then extrapolated to the 

Viedma glacier in Patagonia. In our work in Onyejekwe et al., 2017 [27], we further developed the 

methodology of the previous papers by using multivariate regression to predict the glacier 

terminus location over time based on observed climatic factors. The terminus location was 

calculated as the distance from a previous reference point, and then converted into a cumulative 

terminus change time-series dataset. The terminus change was modeled against climate factors 

such as the global and local average annual temperature, and annual average atmospheric carbon 

dioxide concentration. Most recently, in Robbins et al., 2023 [28], we continued our previous work 

to develop a semiautomated method for the identification of the glacier terminus and area [28]. 

This method used a manually drawn glacier path/area to find the intensity of the pixel values along 

the paths or the binarized region that is considered the largest connected glacier area. The glacier 

variation was also modeled against climate factors using parametric and nonparametric regression. 

Oerlemans 2005 used glacier length change records to reconstruct temperature histories for 

different parts of the world using a first-order theory of glacier dynamics [29]. The temperature 

data and reprocessed glacier data were able to show the magnitude of current global warming, 

the time that this warming started, and highlighted that the warming appears to be independent 

of elevation in the lower troposphere. Cullen et al., 2006 is a case study on the glacial recession of 

Kilimanjaro glaciers [30]. Images of Kilimanjaro glaciers from Quickbird satellite imagery, a 

georeferenced image, and aerial photography of Kilimanjaro were compared to track glacier 

change through time. First, transient snow was masked from the images and then the boundary 

between transient snow and glacial ice was delineated to find the change between glaciers. The 

results suggest glaciers on Kilimanjaro are merely remnants of past climate conditions rather than 

indicators of 20th-century climate change. Bhattacharya et al., 2021 found—using a satellite-based 

time-series of glacier mass balance for seven climatically different regions across High Mountain 

Asia since the 1960s—that glacier mass loss rates have persistently increased at most sites [31]. 

This was achieved through calculating glacier mass budgets from satellite imagery and digital 

elevation models. It was found that an increase in summer temperature explains the long-term 

trend in mass loss. 

The current study has built upon our previous works moving toward identification methods 

of the 2D glacier profile for glacier area segmentation. Terminus points provide insights into glacial 

variation, but as a zero-dimensional (0D) representation, do not supply an encompassing view of 

glacial variations. Quantification of glacier dynamics with higher dimensionality is more 

informative but requires more complex methods. The 2D representation, i.e., quantification of the 

glacier surface area, is preferred over 0D and 1D as it quantifies glacier dynamics at a higher 

dimension. Hence, as a natural extension of our previous work, a 2D quantification method using 

deep learning is proposed here. 

In this study, image segmentation methods will be used to segment glacier regions in temporal 

satellite imagery. Segmented glacial regions can be further utilized to determine the relationship 

of their variations due to the climate change. 

Deep learning has shown promise in improving image segmentation algorithms [32]. Deep 

learning has significant applications in various fields of environmental science, such as climate 

modeling, water monitoring, and glacier area segmentation. Convolutional neural network (CNN) 

has been broadly used for image segmentation. CNN belongs to the category of feed-forward 

neural networks that is designed to process grid data, such as image and visual data, using 

convolutional layers to form kernels and create feature maps of the input data [33]. CNN excels in 

classification and computer vision tasks, such as image classification and segmentation. 

The U-net (an extension of CNN) has demonstrated high performance in the field of image 

segmentation [34]. The U-net was introduced by Ronneberger et al. based on the fully 

convolutional network developed by Long et al. [35,36]. Importantly, U-net can be trained on a 

relatively small dataset and intensive augmentation methods. U-net has outperformed other 

popular CNNs. Further, CNNs have been used in the literature for glacier segmentation. For 

example, Xie et al. utilized a CNN called GlacierNet on Landsat imagery combined with a digital 
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elevation model to identify glaciers with decent accuracy [36]. However, this work was limited in 

its generalizability and ease of use because of the complex dataset required to train the network. 

Although there are existing neural network architectures created and trained purposefully for 

glaciers—such as GlacierNet—that achieve acceptable results, these models are often localized to 

where their training data were acquired. Further, these training sets were often curated by hand 

to highlight glacial features and represent high-quality data. However, there are too many glaciers 

and glacial regions in the world for similar training sets to be created. Therefore, an effective 

computer image processing pipeline needs to be established to turn low-quality data into higher 

quality comparable to labeled datasets. 

This paper intends to quantify variations in the glaciers within the Mount Cook/Aoraki massif 

located in the Southern Alps/Ka Tiritiri o te Moana of New Zealand/Aotearoa using¯ Landsat 

satellite imagery and image processing methods. In particular, the goal of this paper is to apply 

image segmentation methods through deep learning to quantify glacier variation using satellite 

imagery. 

2. Data 

The Mount Cook/Aoraki massif in the South Island/Te Waipounamu of New Zealand/ 

Aotearoa was chosen as the study area as this work is a continuation of our previous work focused 

on the Franz Josef glacier/Ka Roimata o Hine Hukatere on the northwest flank of¯ Mount 

Cook/Aoraki. Particularly, the Franz Josef Glacier/Ka Roimata o Hine Hukatere¯ is unique in how it 

fluctuates between retreat and advancement in contrast with general retreating trends among 

mountain glaciers [37,38]. Further, the mountain range possesses an abundance of glaciers flowing 

off its sides in both a continental (eastern) and maritime (western) setting, expanding the variance 

in the data. In order to quantify the glacier area using image segmentation, satellite imagery and 

annotated/labeled data are required. The areas of interest in this study are visualized in Figure 1. 

2.1. Landsat 

The Landsat satellite project is the longest continuous space-based record of satellite 

imagery, run by both NASA and USGS. The first Landsat satellite was launched in 1972, and 

currently, satellites 7, 8, and 9 remain in orbit. Landsat 7, launched in April of 1999, was drawn on 

for images prior to the launch of Landsat 8 in February of 2013. Both satellites have a repeat cycle 

of 16 days and complete an orbit around the Earth in 99 min (USGS, 2023, Landsat 7 Satellite Orbit 

Facts section) [39]. Landsat 7 has an Enhanced Thematic Mapper Plus (ETM+) instrument that 

contains eight spectral bands, as seen in Table 1 (USGS, 2023, Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) Instrument section). Landsat 8 and 9 hold two sensors—the Operational Land 

Imager sensor and the Thermal Infrared Sensor—comprising nine and two spectral bands, 

respectively, as seen in Table 2 (USGS, 2023, Landsat 8 Instruments section). To produce the color 

image using Landsat 7, bands 3, 2, and 1 are composited together as they are the red, green, and 

blue bands, respectively; bands 4, 3, and 2 are employed with Landsat 8 and 9. In addition to 

representing the same information, these bands were also selected for their consistent resolution 

of 30 m. This ensures each band contains the same amount of information and can be composited 

together seamlessly. 
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Figure 1. Glacier of interest for this study, with cropped satellite scenes superimposed onto a world map. The 

Franz Josef glacier/Ka Roimata o Hine Hukatere is located at [¯ −43.467, 170.192]. Red arrows point to the 

zoomed-in region of Franz Josef glacier. 

Table 1. Landsat 7 band wavelengths and resolutions. Note: adapted from USGS (USGS, 2023, Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) section). 

Bands Wavelength (µm) Resolution (m) 

Band 1—Blue 0.45–0.52 30 

Band 2—Green 0.52–0.60 30 

Band 3—Red 0.63–0.69 30 

Band 4—Near Infrared 0.77–0.90 30 

Band 5—Shortwave Infrared 1 1.55–1.75 30 

Band 6—Thermal 10.40–12.50 60 

Band 7—Shortwave Infrared 2 2.09–2.35 30 

Band 8—Panchromatic (entire visible) 0.52–0.90 15 

In May of 2003, Landsat 7’s scan line corrector failed, creating gaps in its images with only 78 

percent of the total pixels remaining (USGS, 2023, Landsat 7 Scan Line Corrector (SLC) Failure 

section). Therefore, the Landsat 7 images utilized in this study were processed by interpolation of 

the missing data to create complete images for the model input. 

To download a package of scenes from the USGS Earth Explorer website, the Mount 

Cook/Aoraki massif is first selected using the map coordinates feature. The date range and cloud 

cover ramifications are then specified. Scenes from 1 January to 30 May of the relevant years were 

collected, with a preferred cloud cover range under 30 percent. Satellites of interest were then 

selected as datasets, with Landsat 7 Collection 2 Levels 1 and 2 for scenes prior to 2013. For the 

remaining years up to 2023, the same Landsat 7 selection was performed, with the addition of 

Landsat 8 and 9 Collection 2 Level-2. Landsat 8 and 9 Collection 2 Level-2 scenes were 

preprocessed and thus contain regions where imperfect images were removed, leaving areas of no 

data. As the labels are built from the Landsat images, these areas are correspondingly marked as 

containing no data and thus do not disrupt the model. 

Table 2. Landsat 8–9 band wavelengths and resolutions. Note: adapted from USGS (USGS, 2023, Landsat 8–9 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) section). 
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Bands Wavelength (µm) Resolution (m) 

Band 1—Visible Coastal Aerosol 0.43–0.45 30 

Band 2—Visible Blue 0.45–0.51 30 

Band 3—Visible Green 0.53–0.59 30 

Band 4—Red 0.64–0.67 30 

Band 5—Near Infrared 0.85–0.88 30 

Band 6—Shortwave Infrared 1 1.57–1.65 60 

Band 7—Shortwave Infrared 2 2.11–2.29 30 

Band 8—Panchromatic (entire visible) 0.50–0.68 15 

Band 9—Cirrus 1.36–1.38 30 

Band 10—Thermal Infrared Sensor 1 10.60–11.19 100 

Band 11—Thermal Infrared Sensor 2 11.50–12.51 100 

Landsat satellites have different paths and alignments, which can make collecting scenes of a 

particular location difficult, visualized in Figure 2 (left). There are many types of issues with 

collecting Landsat scenes of an exact location. A glacier can be obscured by mountain shadow due 

to the time of day or year the image was taken, as seen in Figure 2 (middle). The terminus of the 

Franz Josef glacier/Ka Roimata o Hine Hukatere, as¯ seen in Figure 2 (middle), is contained within 

a mountain valley and is often obscured by surrounding mountains. Also, glaciers can be covered 

by clouds in satellite images, as seen in Figure 2 (left). 

 

Figure 2. (left) Two overlapping Landsat tiles (purple and green) with different Landsat paths and alignments; 

(middle) Cropped Landsat scene of Franz Josef glacier/Ka Roimata o Hine Hukatere¯ with shadows; (right) 

Cropped Landsat scene of Franz Josef glacier/Ka Roimata o Hine Hukatere¯ with cloud cover. The snout of 

Franz Josef glacier/Ka Roimata o Hine Hukatere is located at¯ 

[−43.458, 170.185]. 

2.2. Land Cover Database 

To provide a truth for the model to reference as it trained, land cover masks of the study area 

were created from the New Zealand Landcover Database (LCDB) from the Manaaki Whenau 

Landcare Research (2021) [40]. This database was developed for the nation of New 

Zealand/Aotearoa from classified SPOT satellite imagery, Landsat 7 imagery, ETM+ satellite 

imagery, aerial photography, and ancillary data such as digital topographical data and published 

topographical maps. The land classifications developed using imagery were also hand corrected. 

The database contained land classifications for the years 2001, 2008, 2012, and 2018 in the form 

of shapefiles containing polygons demarcating various classifications. Figure 3 gives an example of 

one of the rasterized masks created using the land cover database alongside the corresponding 

Landsat scene. 
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Figure 3. Comparison of Landsat scene of the Mount Cook/Aoraki massif (left) and New Zealand land cover 

database rasterized mask (right). The center of the scenes of the Mount Cook/Aoraki massif is located at 

[−43.611, 170.367]. 

The land cover database’s shapefiles contained 47 Vegetative Cover classes and we 

combined them to a single vegetation class. The total number of classes was reduced to four, 

including vegetation, snow, water, and barren land/ground classes. This new shape file was then 

employed for the land cover masks for training. 

3. Methods 

The methodology used in this study is visualized in Figure 4. The satellite imagery and the 

labeled land cover masks are preprocessed and then augmented before training the deep learning 

segmentation model. 

 

Figure 4. Flow diagram of the proposed methods in this study. 

Preprocessing methods were applied to the collected Landsat scenes in QGIS for the 

correction of post-2003 Landsat 7 images and the production of composite imagery. Land cover 

masks were generated from the New Zealand land cover database. The land cover shapefiles were 

clipped to the extent of their relevant band images, and the clipped mask was rasterized with a 

resolution of 10,000 by 10,000 pixels. Symbology properties were then applied to provide each 

class with a distinct color, and the mask was exported as a rendered image. The rasterized masks 

were then fine-tuned using an ensemble of four machine learning and statistical classification 

algorithms—random forest, maximum likelihood estimation (MLE), k-nearest neighbor, and 

support vector machine (SVM). The results of those methods were combined with maximum 

voting. These rasterized land cover masks are considered the “ground truth” for this study. 

However, it is important to note that these land cover masks are generated from derived data, not 

direct in situ measurements from either ground level or a remote sensing platform. The derived 

data were validated and corrected by hand. The derived data are considered “ground truth” 

because in situ labeled data for glaciers are sparse. 

For each of the years that the land cover database had data, Landsat scenes were acquired 

for the year of interest and years directly before and after. For example, the land cover data for 
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2012 was applied to scenes from 2011, 2012, and 2013. To generate a sufficient number of 

readable inputs for the model, various preprocessing techniques were performed. Landsat 7 

scenes were adjusted to account for missing data points and cropped to focus on more relevant 

(glacial) areas. The land cover of these scenes was then estimated utilizing an ensemble of various 

other models. Composite images were procured for color. These composites along with the land 

cover masks were then divided into segments of 256 by 256 pixels. 

To adjust for the malfunction of Landsat 7’s scan line corrector, the USGS provides gap mask 

information with the download of their satellite packages. Each band has a corresponding gap 

mask that relays the location of pixels affected by the scan line corrector that in turn contains no 

data. These gap mask files were employed through QGIS’s “Fill nodata” function as validity masks 

for the corresponding input band layer to replace the sections of the scene without data (and 

visible striations). 

Complete Landsat 7 and 8/9 RGB bands were composed together to create a singular input 

for the model. The input size was limited to three bands to reduce the necessary number of 

computational resources needed for model training. The three optical bands were chosen because 

they possessed the highest resolution with multiple bands (30 m) and the alternative, the infrared 

bands, do not offer any significant advantages over optical. Both band types face problems with 

shadows; therefore, to make the model more familiar to the human eye, optical was chosen. Then, 

as Landsat scenes are significantly larger than required and cover significantly more non-ice areas 

than permanent ice, the images were cropped to the mountains around Mount Cook/Aoraki. A 

total of 16 Landsat scenes were used for training the neural network. 

The model used to segment the glacier images was derived from the U-net convolutional 

neural network [34]. The U-net is a neural network architecture that was designed for image 

segmentation, originally being applied to the segmentation of human cells. The U-net 

architecture is known for its U-shaped structure, which consists of a contracting path 

(left side) and an expansive path (right side). The contracting path captures context and extracts 

features, while the expansive path allows precise localization. The contracting path, also known as 

the encoder, starts with multiple convolutional layers followed by rectified linear unit (ReLU) 

activations. Then, max-pooling layers are used to down-sample the spatial dimensions, reducing 

the size of feature maps while increasing the receptive field. Skip connections (or shortcuts) are 

established between the contracting and expansive paths to facilitate the transfer of low-level 

information and gradients. Skip connections are a crucial component of the U-Net architecture. 

They help preserve fine-grained details by allowing low-level features from the contracting path to 

be directly combined with high-level features in the expansive path. The expansive path, also 

known as the decoder, gradually up-samples the feature maps to the original input size. Each up-

sampling step involves a combination of up-sampling layers and concatenation with feature maps 

from the contracting path. These concatenated feature maps are then processed with 

convolutional layers. The expansive path ends with a final convolutional layer to produce the 

segmentation mask. 

The U-Net architecture has proven to be effective for a wide range of image segmentation 

tasks, and its adaptability and ability to preserve spatial information through skip connections 

make it a popular choice in the computer vision and medical imaging communities. The U-net 

architecture was used in this study as it has been proven to provide detailed segmentations on a 

few training images. 

The model generally followed a U-net architecture in that it had five encoder layers, one 

bridge layer, and five decoder layers, as shown in Figure 5; however, the convolutional layers of the 

encoder were replaced with the convolutional layers from the VGG16 model trained on ImageNet. 

VGG16 is another CNN designed for image classification, while ImageNet is an image dataset 

purposefully created for image classification training [41]. The pre-trained VGG16 convolutional 

layers used were already tuned to break down an image into structure-identifying features. By 

using convolutional layers from the already trained VGG16 network, the performance of the U-net 

used for this study can be improved through transfer learning. Transfer learning is a machine 

learning method where a model for one domain/task can be improved by transferring information 

from a related domain/task [42,43]. This would allow for the model to improve its accuracy or 

reduce the time of training, as the model would no longer need to learn such techniques 

independently. In the bridge layer, there was simply a 3 by 3 convolutional layer. In the decoder 
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paths, the inputs were upscaled with data from the encoder layers of appropriate size filling in gaps 

in the data. Then, two 3 by 3 convolutional layers were applied to each decoder layer. 

 

Figure 5. U-net architecture (created using LaTeX package TikZ v2). The blue-green boxes in the encoder (left 

half) are the VGG16 convolutional layers. The light orange banded boxes in the bottleneck and the decoder 

(right half) are 3 (standard) convolutional layers. The yellow-green boxes between the convolutions are 

dropout layers. The dark blue boxes in the decoder are the up-convolutional layers. The final purple layer is 

the softmax layer. The arrows connecting the encoder layers to the decoder layers (above the boxes) are the 

skip connections. 

To reduce model complexity, and therefore required training time and resources, each input 

image and its associated labels were split into 256-by-256 patches for the model to read. Each 

patch was initially 256 pixels horizontally and vertically apart from the surrounding patches. 

Intermediary patches starting and ending in-between the initial patches were then added to 

increase the diversity of patches from the original images to increase the size of the dataset and 

reduce overfitting. Then, to further help reduce overfitting, the patches were supplemented with 

random rotations and flips. Each patch had a one-third chance for either its horizontal flip, vertical 

flip, or rotation to be added to the inputs. If a patch was being rotated, it had a one-third chance 

of either being rotated 90◦, 180◦, or 270◦. After patchification and data augmentation, 20% of the 

data—1494 patches— was allocated randomly to a testing/validation dataset and the rest to a 

training dataset comprising 5976 patches. 

All optimizers and loss functions available in Keras were tested on a diminished dataset to 

evaluate their impact on and performance with the established model. The Adam optimizer was 

found to be the most effective, and the accessible loss functions were run on a version of the model 

with this optimizer. After that round of testing, a custom total loss function was found to be the 

optimal loss function. This loss function was defined as the combination of dice loss and focal loss 

and was implemented with the Adam optimizer for all future explorations. 

Certain parameters like epochs, dropouts, class weights, and learning rate were also tuned. 

The final model was trained for 400 epochs. A dropout of 10 percent was found to be ideal, with 

higher dropouts causing the model to learn too little while lower dropouts saw the model’s 

training and validation results diverge. The study area saw a roughly even mix of all classes, thus, 

each class was given the same weight. Initially, the learning rate was set high, but as the model 

plateaued, the learning rate was lowered to help the model make fine adjustments. 

The model was evaluated based on the Jaccard coefficient, otherwise known as Intersection 

over Union (IoU). Predicted pixels that matched the truth were counted and divided by the sum of 

pixels in the input image and predicted pixels that did not match the truth. As the model was tasked 

to classify 4 classes to balance the distribution of pixels but only the classification ability of ice and 

snow was of interest, an imperfect IoU was acceptable if the bulk of the error was from non-

snow/ice pixels. 

4. Results 

In this study, the performance of the neural network was assessed using IoU during training 

and validation and a confusion matrix with all of the classes. As seen in Figure 6, the training and 

validation loss and IoU reached a value of 0.65 at 25 epochs. As the number of epochs increased, 
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the loss function dropped and reached to 0.84 and the IoU value increased to 0.65, while the 

validation curve (in red) closely followed the training curve (in yellow). This implies that the model 

did not overfit or underfit to the data and was generalized. Loss and IoU were computed to 

quantify the performance of the model. Next, the prediction performance of the model is 

computed and compared to the land-cover ground truth and satellite scenes. 

 

Figure 6. Loss and IoU curve for the U-net over 25 epochs. The red curve represents the validation values, 

and the yellow curve represents the training values. 

A visual inspection of Figure 7 reveals that the trained model makes predictions that are very 

close to the ensemble-generated ground truth land cover masks. The ice–snow region 

representing the glacier is preserved by the model, as seen in Figure 7 (left). However, there are 

noticeable differences between the ground truth land cover masks and the prediction on the 

Landsat scene. This difference is visualized in Figure 8, which shows the pixels that are different by 

comparing the predicted scene with the ground truth land cover mask. While the primary regions 

are preserved by the model, there are some small groups of pixels that were not classified correctly 

by the model. 

 

Figure 7. Comparison of input patch (left), rasterized land cover mask (middle), and prediction from the U-

net (right) using the rasterized land cover mask. The center of these patches is located at [−43.508, 170.478]. 
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Figure 8. Difference between ground truth land cover mask and prediction from the U-net. 

As shown by Figure 9, the model correctly identifies ice and snow with a classification rate of 

92% of the pixels that truly were ice and snow. The greatest error of ice and snow was the 

misclassification of it as water, which occurred at a rate of 4.4%. Water naturally exists around ice 

and snow and, during the summer, within the ice and snow regions as they melt, providing long 

borders between the two classes. The barren land class was classified correctly at a rate of 81%; 

barren land pixels were misclassified most frequently as vegetation pixels at a rate of 11%. This 

could be due to having vegetation regions adjacent to deforested areas that are classified as barren 

land. The vegetation class was classified correctly at a rate of 78%; vegetation pixels were 

misclassified primarily as barren land pixels at a rate of 20%. This could be due to vegetation color 

being similar to their surrounding environment. The time of year also could have an impact, as all 

the Landsat scenes used were taken during summer months. The vegetation class is wide, as it 

includes many different types of vegetated areas, such as agricultural areas and wild forests. Some 

of these vegetation subclasses could be mistaken for barren land, for example, an agricultural 

region that was recently harvested would appear to be similar to a barren area. The water class 

had the lowest correct classification rate at 57%, which means that water pixels were misclassified 

the most out of all classes. This is likely because water bodies are often small and thus have a 

relatively large perimeter bounding other regions relative to the total area. These boundaries are 

where misclassifications occur in general. Water pixels were misclassified as barren land pixels at 

a rate of 27%. A reason why water is misclassified the most often, especially as barren land, is that 

all Landsat scenes were taken during the summer months when erosion is the strongest and the 

runoff discolors the water bodies to be more similar to barren land. 
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Figure 9. Confusion matrix of the U-net. True vs. predicted counts are scaled between zero and one. 

5. Discussion and Conclusions 

Automated or semi-automated methods for the quantification of glacier dynamics at higher 

dimensions are desirable and essential to further study the impact of climate change on glacier 

dynamics. A 2D quantification method using deep learning was proposed here. In this paper, the 

mountain glacial region within the Mount Cook/Aoraki massif located in the Southern Alps/Ka 

Tiritiri o te Moana of New Zealand/Aotearoa was segmented¯ through Landsat satellite imagery. A 

deep learning neural network was implemented for glacier segmentation to quantify glacier 

variation. Segmented glacial regions can be further utilized to determine the relationship of glacier 

variations with climate change. The contributions of this study are summarized below: 

• Proposing an automated method: there is an immense number of glaciers over the globe and 

an automated or semi-automated method for the quantification of glacier dynamics is crucial; 

• A multiclass land cover classification: The proposed model demonstrated great capability in 

the classification of ice and snow from its surrounding features. The multiclass approach 

broadens the applicability of the methodology to other related problems, such as the 

classification of water quality of different water bodies, classification of different landscapes, 

and land surveying; 

• This method was trained on several glaciers contained within the Mount Cook/Aoraki massif 

in New Zealand/Aotearoa. By training the model on a glacial region, rather than just a single 

glacier, the model is better trained to generalize and avoid overfitting. Including data from 

various mountain glacial regions will allow the model to generalize even further during the 

training phase. The model in this study can be potentially applied to the other glacial regions 

across the world. 

The model in this study has the potential to be applied to any glacial region and is not limited 

by the availability of external ground truths. Many glaciers have very limited ground truth, no 

ground truth, or the available ground truth does not have sufficient quality. Detecting snow at a 

rate of 92% demonstrates promising results and encourages further application of the proposed 

method to other glacial regions. Most notably, the model ran on a relatively small dataset of 

patches generated from 16 cropped Landsat scenes and performed up to par with other image 

segmentation CNNs. 

Our future work is focusing on addressing the challenges that yet to be addressed to further 

improve the model and listed below: 

• The model was able to classify the snow/ice class with satisfactory accuracy. The water class 

has the highest misclassification rate compared to other classes, as seen in Figure 9. The 

model was able to correctly identify certain bodies of water, depicted by the dark blue 

regions, while some other water bodies were misclassified. Further exploration of the 

cropped input images displayed that patch boundaries may impact the misclassification rate; 

• The amount of data available for training and validation is limited by the New 

Zealand/Aotearoa land cover database. The model ran on a relatively small dataset of patches 

generated from 16 cropped Landsat scenes and performed up to par with other image 

segmentation CNNs. Increasing the number of Landsat scenes used for training and validation 

will improve the performance of the model. The model can be trained on multiple glacial 

regions, such as extending the study area beyond the Mount Cook/Aoraki massif in the South 

Island/Te Waipounamu of New Zealand/Aotearoa to the rest of the country. For example, 

previous work studied glaciers such as the Gorner and Rhone glaciers in Switzerland, the 

Viedma glacier in Patagonia, the White Glacier in the northwest USA, and the Zemu Glacier 

in the Himalayas [25–27]; 

• The collected annotated data were limited to the temporal availability of the land cover 

database. For a broader multi-decadal study of mountain glacial dynamics, annotated data 

over an extended time are required. Glaciers do not have a substantial daily/weekly/monthly 

variation, rather noticeable changes happen over longer time frames (annual/decadal). 

Hence, to monitor and quantify glacial dynamics, multidecadal annotated data are required; 

• The model performance can be potentially improved by changing the model architecture by 

supplementing it with additional layers or by changing to a more powerful architecture, such 

as a transformer. However, one issue is that these architectures require a large amount of 
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training data. This can be a potential issue, as many glaciers lack sufficient ground truth data. 

To use the more complex neural network architectures, additional labeled data will be crucial. 

A particularly well-suited dataset for investigating glacier change is the Global Land Ice 

Measurements from Space (GLIMS) [44]. GLIMS is an international initiative and a database 

system used for monitoring and studying changes in Earth’s glaciers and ice sheets. The GLIMS 

Glacier Database currently has 604,986 entries for individual glaciers. However, it does not 

provide multi-class land cover annotation and can only be used for binary classification; 

• An issue caused by the patchification of the original image is imperfections and 

misclassifications along the stitching lines when segmented patches will be stitched to form 

the segmented scene. Future research will be conducted to address the segmented 

inconsistencies along the stitched patches to reduce the occurrence of misclassification due 

to sharp cut-offs and edges. 
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