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Abstract: Glaciers are important indictors of climate change as changes in glaciers physical features such as
their area is in response to measurable evidence of fluctuating climate factors such as temperature,
precipitation, and CO,. Although a general retreat of mountain glacier systems has been identified in relation
to centennial trends toward warmer temperatures, there is the potential to extract a great deal more
information regarding regional variations in climate from the mapping of the time history of the terminus
position or surface area of the glaciers. The remote nature of glaciers renders direct measurement impractical
on anything other than a local scale. Considering the sheer number of mountain glaciers around the globe,
ground measurements of terminus position are only available for a small percentage of glaciers and ground
measurements of glacier area are rare. In this project, changes in the terminal point and area of Franz Josef
and Gorner glaciers were quantified in response to climate factors using satellite imagery taken by Landsat at
regular intervals. Two supervised learning methods including a parametric method (multiple regression) and
a nonparametric method (generalized additive model) were implemented to identify climate factors that
impact glacier changes. Local temperature, CO,, and precipitation were identified as significant factors for
predicting changes in both Franz Josef and Gorner glaciers. Spatiotemporal quantification of glacier change is
an essential task to model glacier variations in response to global and local climate factors. This work provided
valuable insights on quantification of surface area of glaciers using satellite imagery with potential
implementation of a generic approach.

Keywords: mountain glaciers; supervised learning; generalized additive models; cryosphere; Landsat satellite
imagery; climate change; terminus; Gorner glacier; Franz Josef glacier
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level [3]. The recognition of these contingencies has spurred increased interest and research into
the study of the mountain cryosphere and the health of the glacier it contains.

Stepping into the issue of glacier recession one quickly realizes the enormity of the
undertaking this problem set. The first roadblock is the substantial number of glaciers that can be
found around the globe (Figure 1). The Global Land Ice Measurements from Space (GLIMS) Glacier
Database currently has 604,986 unique glacier outline entries [4,5]. Investigation of the spatial

1. Introduction

The mountain cryosphere and the glaciers found around the globe have a non-trivial impact on humanity. On a
fundamental level, the glaciers scattered throughout the globe, provide a large segment of the world’s residents with a
source of freshwater. Populations residing in arid regions, typically near mountains often depend on run off from melting
glaciers for their water during the drier and warmer parts of the year. River systems meandering through portions of
Asia are sustained from ice and snowmelt located in the Himalayas and the glaciers within the mountain range, this is
particularly true in late summer when a predominant factor contributing to river flow comes from melting glaciers [1]
provides a supplementary source of water during the sustained dry periods experienced in this urban region [2]. The
socio-political impacts due to the loss of mountain glaciers have the potential to be significant on both the ecological

and global political
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data demonstrates that many individual glaciers are but one component of a complex subsection
of a larger glacier network (Figure 1). Additionally, the remote, and in some cases, denied locations,
coupled with austere conditions found in the vicinity of glaciers places emphasis on finding
alternatives to the in-situ measurements of changes taken on the ground. An example would be
the country of North Korea, obtaining access to glaciers here may prove challenging or impossible.

@

' New Zealand Glaciers

Legend

lglims_polygons |
S JGoogle satelite

Figure 1. Regional Glacier Network Overview.

One candidate for a collection method which finds extensive use in the existing literature is
remote sensing, and more specifically the use of satellite imagery. Remote sensing is a broad-based
term that encompasses a diverse number of platforms which include both spaceborne platforms
on orbit and air breathing aerial platforms which include assets like drones or aircraft equipped
with different sensor technology. The existing datasets and databases contain multiple decades of
useful images from which to extract information. Within these images the features of principal
interest are the location of the glacier’s terminal point (Figure 2) and its change through time. The
proper identification of which allows for the estimation of the recession velocity along with the
changing area of the glacier or glaciers of interest. Found within the extant literature, are numerous
methods for estimating changes in the location of a glacier’s terminus using optical based image
data and for estimating changes in glacial area [6-9].

Terminus Identification Techniques gy Glacier Terminus Tracking

lllustraion of Standard

Figure 2. (Left panel) lllustrative Terminal point identification methods. Top: (left) Center-Line method;
(middle) Bow method (right) Rectilinear Box method. Bottom: (left) Curvilinear Box method; (right)
Extrapolated Center-Line method. (Right panel) Illustrative Terminal point tracking method.
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Previous research on methods of glacial recession and on the identification of glacial termini
are vast. The work has produced numerous methodological processes using a variety of diverse
techniques (Figure 2). Surveying these efforts, one can glean that while some of the methods will
work well on single efforts or one-off projects, for instance a study of one particular glacier, others
are more suitable for larger scale analysis and have the potential to be easily automated and
generalizable. Given the size of the global glacier inventory is a desirable quality for global scale of
modeling. Previous research using commonly employed methods to track changes in the termini
of glaciers has shown a common theme. This commonality is the reduction of what is in the final
analysis, a three- dimensional (3-D) spatial phenomena being projected down to a zero-
dimensional (0-D) spatial value for the terminus location to evaluate the distance the glacier has
advanced/retreated along its path of motion. This dimensionality reduction provides a level of
efficiency in the analysis of the glacier motion and is a useful model simplification when it is
appropriate. A comparison of standard methods including the center-line, bow, rectilinear-box,
curvilinear-box, and extrapolated is provided by Lea et al. 2014. Each of the above-mentioned
methodologies is subject to its own advantages and weaknesses and the use of any one of the
methods involves considerations of glacial geometry along with the aim of the study being
undertaken [10].

Other work applies a more general approach to terminus estimation which relies heavily on
optical imagery. An advantage of which is to avoid specific geometric dependencies of a particular
glacier. The method exploits the properties of the multiband attributes of satellite imagery and the
flexibility of Nonparametric Regression [7]. Taking advantage of the return times of the LANDSAT
satellite platform, this method uses selected spectral bands of the images to identify which regions
of the spectrum produce the largest intensity changes along the path of the glacier. This intensity
change is indicative of the transition from soil, vegetation, and debris of the mountain landscape
to the ice of the glacier. These intensity changes are collected through time as this process is
repeated on a series of images. On each image a glacier path is manually drawn, this path is simply
a hand drawn curve. Then along the length of this path the intensity of each pixel is collected. Using
the derivatives and the inflection points of the collected intensity values to identify the terminal
points of the glacier, the method can capture the glacier movement against a ground truth, based
on direct measurements.

A major drawback to this method is its dependency on an investigator drawing the path of
the glacier manually. As was mentioned previously this would make the method problematic in
large scale glacier networks, or global glacier studies. It would also prevent, in its current state, an
automated implementation given the dependency on a human drawn path to derive the intensity
profile. It is with the final goal of limiting or eliminating manual input that this papers current
methodology was developed. In addition to increasing ease of automation, robust and flexible
models for estimating glacier variations in response to global and local climate factors is
developed by either detection of the glacier terminal point or quantification of the glacier area.

The objectives of this research are to implement a generic method for quantifying glacier area
and locating its terminus and model their variations in response to climate factors using both
parametric and nonparametric supervised techniques. The geometry of individual glaciers has
been estimated using remote sensing techniques to include various semi-automated image
analysis techniques such as supervised classification, edge detection, and region segmentation in
an attempt to develop a pipeline for quantification of glacier changes that could be potentially
applicable to a large set of glaciers around the globe.

2. Data Collection and Preprocessing

Two distinct types of data were employed to study the glacier recession by quantifying
changes in the terminal point and area of Gorner and Franz Josef glaciers (Figure 3). These are two
similar but spatially distant mountain glaciers. One set of data consists of satellite imagery, multiple
images of spatial locations taken over time. The other data type is a univariate time series of
environmental sensor recordings of multiple climate factors collected by various international
agencies. Each of the data sets presents its own challenges from a data wrangling perspective given
the diversity of values, measurement scales, and potential usefulness of the attributes unique to
each data type.
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Figure 3. Glaciers of Interest. Left: Gorner. Right: Franz Josef.

2.1. Landsat Imagery

The main source of imagery used in this study is satellite imagery of the glaciers of interest

gathered exclusively via the Landsat program publicly available through the National Aeronautics
and Space Administration’s (NASA) [11]. The Landsat data is stored in online databases and is freely
accessible and downloadable via the web. The Landsat images along with the metadata (and much
more) are available via the United States Geological Survey’s Earth Explorer webpage found at
https://earthexplorer.usgs.gov/
(accessed on 16 February 2021). It must be pointed out that, Sentinel program sponsored by
European Space Agency provides satellite imagery with better resolution (in some spectral bands)
taken by Sentinel-2 satellite. However, the Sentinel program began in 2015 and an inventory of
only about 8 years of satellite imagery is available through this program. In contrast, the Landsat
program started in 1972, provides more than 5 decades of data available. Moreover, satellite
imagery with better resolutions is only available commercially for a much shorter period than a
decade.

The images of each glacier are captured at specific dates based on the glacier’s geographic
coordinates. Landsat has a 16-day return time, and the data is collected over several decades.
The data has been publicly available since 2008 which has made it an attractive database of
satellite imagery for scientists performing multidecade studies. In the preprocessing step of this
study, we removed those scenes where the glaciers were obscured by clouds or mountain
shades, and scenes with degraded imaging due to sensor malfunctioning. An example of image
degradation can be found in the Landsat 7 (one of the multiple Landsat platforms with available
data) image products. After launch, the Scan Line Corrector (SLC) went off line and due to this
malfunction images will contain a zig-zag pattern. This becomes an issue when the pattern
intersects with the object of interest as it is depicted in Figure 4.

Figure 4. Example of Landsat images removed from dataset shown in false colors. Cloudy and invisible (Left);
Covered by mountain shadow (Middle); Sensor malfunction (Right).

The Landsat images are collected with a multispectral sensor. This capability implies that each
of the images contains several spectral bands. Each of these spectral bands has its own wavelength
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range of the electromagnetic spectrum. Multispectral imaging capability enables different views
of the same scene highlighting features of interest that could be better viewed in created image in
a specific band.

Figure 5 shows the specific breakdown of a typical multispectral Landsat 7 image into its
spectral bands as well as band specific images in false color along with terminus localization
process. In this analysis the dataset was created from a collection of Landsat 7 and 8 images for
both glaciers under consideration. The initial data pull consisted of 511 images in total for both
glaciers, 263 for Franz Josef and 248 for Gorner. All of the original images fall in the date range
January 2000 through November 2021. After cleaning the data for images where the glacier was
obscured by clouds or shadows the final data sets for each glacier were as follows: Franz Josef data
range is August 2000 through August 2021 and in this time frame 93 useful images were retained,
while for Gorner the date range is May 2000 through October 2021 with 97 useful images retained.

Band Wavelengths (1m) Color Pixel Size I
(approximate) . Identification

1 0.45 - 0.52 Blue 30 meter (Y 5
2 0.52 - 0.60 Green 30 meter
3 0.63 - 0.69 Red 30 meter
4 0.76 - 0.90 Near Infra-red 30 meter
5 1.55-1.75 Short-wave 30 meter

Infra-red
6 104 -12.5 Thermal Infra- 60 meter

red

7 2.08-235 Short-wave 30 meter

Infrared
8 0.52-0.90 Gray-scale of 15 meter

entire visual
spectrum

Figure 5. (Left) Multispectral band information for images taken by Landsat 7. (Middle) Top Franz Josef;
Bottom: Gorner; from left to right: Band 1, Band 5, Band 6 shown in false colors. (Right) Terminal Identification
process.

2.2. Climate Factor Data

The climate factor data, which is used extensively in the modeling and prediction of the
glacier variations, is time series data collected by several different sensors. The specific factors
selected for the analysis were temperature in degrees Celsius, Carbon Dioxide (CO2) concentration
in parts per million (ppm) and Precipitation in millimeters (mm). Each of these factors were
collected by the appropriate national agencies with daily sampling frequency in the regions
containing the glaciers in this study.

Daily climate data was collected from the weather station closest to Franz Josef and Gorner
glaciers from the National Oceanic and Atmospheric Administration Climate Data Online platform
available at https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/
stations/GHCND:NZ000936150/detail (accessed on 7 July 2022). The data for Franz Josef was taken
from the Hokitika Aerodrome weather station in New Zealand and spans the two decades from
1989 to 2009. For the Gorner glacier, the dataset was from the Sion weather station in Switzerland
spanning from 1985 to 2009. The dataset contains daily information on minimum, maximum, and
average temperate, and precipitation. To attain comparable resolution for the response, i.e., glacier
variations estimated using spatiotemporal satellite imagery, and the predictors, i.e., climate
factors, monthly data was calculated by averaging observed daily climate factors in the data
preprocessing phase.

To assess the predictive viability of CO2 on glacier variations in the modeling process, the
monthly Mauna Loa CO2average data was sourced from NOAA. The sourced data contains monthly
average CO2 levels from March 1958 to May 2021 recorded at the Mauna Loa station in Hawaii.
The data is a proxy for many other human activities that contribute to climate change and the
warming temperatures on the globe. Local temperature for each glacier was sourced from the
closest regional station. An overall monthly global average temperature was also calculated in
order to assess the overall temperature variations. A monthly data set was utilized from NOAA
which contains samples of the monthly average temperature from January 1880 to December
2021. The result is a data set which contains a total of six predictors measured at both the global
and local levels. Next, glacier variations (estimated either by detected terminus or by quantified
area) will be modeled in response to monthly measurements of the predictors of interest
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Data Collection
- Landsat Imagery

- Climate Factors

(aforementioned data) for identification of potential relationship between temporal glacier
variations and climate factors.

3. Methods

Due to the limitations of the previous methods for identification of glacier terminal points,
along with the estimation of area, different techniques are required to improve the analytical
process [10]. This work is a combination of image processing techniques with parametric and
nonparametric statistical methods to model glacier change. In this section, a novel method, both
in its breadth of analysis (area and terminal point) and generalizability (not designed for a specific
glacier), will be discussed. First the investigative processes for quantifying changes in the terminal
point and area variation of mountain glaciers will be developed, followed by the results of a
preliminary application on two similar but spatially distant mountain glaciers (Figure 3). While both
glaciers namely Franz Josef in New Zealand and Gorner in Switzerland share the characteristic of
being mountain glaciers, they differ by being thousands of miles apart and in opposite hemispheres
of the globe. This selection was deliberate in order to prevent the development of a model or a
method that would rely on the characteristics of one specific glacier or geographical and
climatological conditions found in one specific region.

The glacier termini are manually marked in the satellite imagery using a graphical user
interface (GUI) developed in MATLAB R 2021b. After the identification of the terminal point the
glacier area will be estimated via the application of several standard image processing techniques.
This process is replicated over a time series of Landsat images. The results of both the terminal
point locations and the estimated areas are stored for use as dependent variables in a model using
climate factors as predictors to describe the variation in the glaciers attributes of interest (area and
terminal point change). The overall intent of the modeling process is to construct a predictive and
interpretable model for the variations of mountain glaciers due to global climate change and its
effects. The schematics of the analytical process are displayed In Figure 6. The first step is data
collection and preprocessing where Landsat imagery and climate data are collected, cleaned up,
and preprocessed. This step also includes quantification of glacier area and localization of glacier
terminus. Next, two different statistical approaches are taken, a parametric technique (multiple
regression), and a nonparametric method (GAM). Both statistical approaches are applied to model
glacier change. The glacier variation is once modeled using changes in spatiotemporal location of
glacier terminus, and again by quantification of changes in glacier area over time.

[ Glacier Measurement | : ‘ ‘
Modeling Prediction of

Preprocessing
- Cleanup - Quan}t:fy Surface - Multiple Regression GlacierVariation
rea
- Resolution . - GAM by Climate Factors
Matching - lLocate Terminus

Figure 6. Schematic of Proposed Method.

3.1. Quantification of Glacier Area and Terminus

Terminal point was located using a suit of image processing techniques over temporal
sequence of images collected for each glacier. A graphical user interface was developed to zoom
on the glacier’s geographical location on the image using glacier’s latitude and longitude. A
bonding box as region of interest (ROI) encompassing the glacier’s area was drawn. The ROl was
used to crop the glacier through entire sequence of original Landsat images. Terminal point
location was then marked in each cropped image of the sequence.

Because only two glaciers were studied in this project, the manual terminus detection was an
effective and rapid approach to locate the terminus and mark it by a single pixel on the glacier
image. This manual detection method allowed a swift process of a large sequence of images for
each glacier by avoiding issues such as partial obstruction of the glacier in the image.

Although an expedient method was developed for the identification of the terminus location,
segmentation of glacier area proved to be a more challenging problem. This difficulty stem from
the fact that finding the entire outline of the glacier is a two-dimensional problem in contrast with
the detection of the terminal point that is a zero-dimensional task. The segmentation of cropped



Algorithms 2023, 16, 486

7 of 29

image to glacier and non-glacier segments with sharp boundaries is rather challenging due mainly
to debris and mud blending into the ice near glacier’s boundaries.

Region growing and edge detection methods were preliminary attempted to segment the
area of the glacier. Each of these methods were slightly successful to segment the glacier area.
Region growing method creates homogenous regions based upon a specific threshold, while edge
detection looks for abrupt changes in pixel intensity to identify an edge. A mutual challenge among
both segmentation methods is to find the threshold for optimal segmentation of glacier boundary
in each image in the sequence, one by one. Hence, a hybrid method was implemented by
combination of region growing and edge detection techniques. Figure 7 shows some partially
successful application of this hybrid Region Growing-Edge Detection approach to both glaciers in
this study. Some regions containing both glacier and non-glacier areas can be observed in Figure
7(Left).

Figure 7. (Left) Two scenes of the Franz Josef glacier superimposed (green, 1990; purple, 2009); (Right) Two
scenes of the Gorner glacier superimposed (green, 1984; purple, 2009). Red arrows highlight the recession.

To further improve the segmentation results, a multi-level thresholding technique
(Otsu’s method) was applied. Otsu’s method finds the optimum global threshold for the image
segmentation by maximizing the between-class variance of the pixel intensities in the partitioned
regions, here glacier vs. non-glacier. It demonstrated limited success in producing somewhat
detailed depictions of the glacier in some images, but often could not produce sufficient separation
between glacier and neighboring non-glacier areas.

The final approach contained three steps and outperformed the previous methods that were
used for glacier segmentation in this study. In the first step, the images were cropped to remove
as much of the glacier’s surroundings as possible. This cropping process has the virtue of reducing
the surrounding non-glacier features to improve the segmentation results. The second step was to
binarize the cropped image for preliminary segmentation of image to glacier and non-glacier
partitions. The final step was the application of Otsu’s method for a detailed segmentation by
finding the optimal global threshold. Different glacial regions in the binarized image were
compared (by counting the number of pixels in each) to choose the region comprising the largest
connected glacier area. The selective cropping in the first step greatly facilitated the performance.
The main advantage of this technique was the combination of initial and final elimination of non-
glacier areas.

3.2. Statistical Modeling

Beyond trying to identify glacier terminal points and glacial areas, the central point of the
analysis is to identify the association between glacier terminus variation (as well as glacier area
variation) and larger global dynamics specifically global warming driven by climate change. To this
end, several potential models were developed to assess and analyze the potential association
between the response and predictors.

3.2.1. Multiple Regression

First, multiple regression was implemented for modeling glacier variation using climate
factors. For each glacier two separate models were constructed, one for each of the measured
response variables, i.e., terminal point and glacier area. The general form of multiple regression
model is:

y =Bo+ Bix1+ Baxa+ -+ + Buxk + € (1)
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where B?% are the unknown coefficients, xi’s are the observed values of the predictors, and ¢ is
the Gaussian error term. The multiple regression to model terminus location is:

d = Bo+ B1-:COs + BoTMIN + B3 TMAX + Ba-PRCP + Bs-Global_Temp + & (2)

where d is temporal change of terminus (distance), TMIN is minimum local temperature, TMAX is
maximum local temperature, Global_Temp is average global temperature, and PRCP is average
precipitation. In a similar way, the multiple regression to model glacier area is:

a = Bo+ B1:COz + B> TMIN + B3 TMAX + Ba-PRCP + Bs-Global_Temp + & (3)

where a is glacier area.

3.2.2. Generalized Additive Model (GAM)

Because of the observed non-linear trends in glacier variations, the more advanced method
of generalized additive models (GAMs) was implemented. GAM is a powerful nonparametric
method that can potentially discover the complex nonlinear trends in the glacier variations.
GAMs are more flexible than linear models and more interpretable than deep learning methods.
GAM is essentially an additive model of nonparametric smooth functions [12—-14]

K
SLEIXD) :f0+2,-:1ﬁ.xj (4)

where f(x) is a smooth function of predictor X, and Y is the response variable with a distribution
belongs to the exponential family (ex. Gaussian, Binomial, Gamma, etc.). The main advantage of
GAM is its capability to model highly complex and nonlinear relationships. The consideration and
the associated tradeoff between the simplicity of a model and its interpretability. GAMs relax the
restriction that the relationship must be a simple weighted sum, like in the multiple regression
model, and instead assume that the outcome can be modeled by a sum of arbitrary smooth
functions of each predictor variable. The function g( ) in the GAM model (Equation (4)) is known
as the link function. The GAM links the sum of the smoothed predictors with the mean value of
the assumed distribution using the link function g( ), which can be chosen flexibly depending on
the problem under consideration. In addition to the Exponential family of distributions and the link
functions, the third essential component to the GAM is the smoothing functions f; x; for the
predictor variables in the model. This implies that the predictor variables become smooth curves
by some function f. This is achieved for each of the functions f;x; in the GAM by using a basis of
splines to create the nonparametric smooths using the Restricted Maximum likelihood method
[14-16]. The GAM method employed in the current research regresses the terminus change by:

d = f(CO2) + f(TMIN) + f(TMAX) + f(PRCP) + f(Global_Temp) + ¢ (3)
and the area change in the glaciers against the climate factors:

a = f(C02) + f(TMIN) + f(TMAX) + f(PRCP) + f(Global_Temp) + ¢ (6)
In both GAM models in Equations (5) and (6), the distribution selected from the exponential
family is the Gaussian. This distributional assumption leads to the link function being the identity
function. The basis functions for the nonparametric smoothing are ThinPlate Splines where the
dimension of the basis is varied from two to four basis functions over selected permutations of
predictors in the model. The smoothing selection method REML is applied for smoothness
selection. This leads to the functional form of the applied GAM for the glacier recession analysis.
Subsets and permutations of the smoothed predictors will be evaluated against the full model
using the Akaike Information Criterion (AIC) for model selection. The top performing GAM for each
independent variable, terminal point distance, and area will be the model with lowest AIC value.

4. Results

After quantification of glacier area and locating its terminus, a univariate time series for the
changes in Franz Josef and Gorner glacier’s terminal point and area were created from the
collected Landsat image sequences. The climate data provides the independent variables for both
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Terminal Point Distances (Pixels)

Area (Sq Meters)

Franz Josef Tarminal Point Since 2000

Franz Josef Area Since 2000

the multiple regression and the GAM while the area, and location data are used as the response
variable. Multiple regression and GAM were used for modeling the glacier variations. As depicted
in Figure 8, it can be observed that the two glaciers have differing behaviors over the time. Franz
Josef having a period where the glacier was advancing while Gorner was in a continuous state of
retreat during the same period (1985-2010). The optimal multiple regression based on AIC for
modeling Franz Josef variations was a combination of local temperature, global temperature, CO.,
and average precipitation for terminal point as response, and only local temperature and average
precipitation for area as response (Table 1). Local temperature and CO2 were identified as the
impactful factors by multiple regression to model Gorner glacier variations using terminal point,
while with glacier area as response, local temperature and global temperature were only impactful
predictors identified by the model (Table 1). The optimal GAM for modeling Franz Josef variations
was a combination of local temperature, CO2, and average precipitation using either terminal point
or glacier area as response (Table 2). Local temperature, average precipitation, and CO2 were
identified as the impactful factors by GAM to model Gorner glacier variations using terminal point,
while with glacier area as response the global temperature was also included in the model (Table
2).

Gomar Tarminal Point Sinca 2000

.

Terminal Point Distances (Pixels)

Year Year

Gomer Area Since 2000

Area (Sq Meters)

2010 2015 2000 2005 2010
Year Year

Figure 8. (Top) Time Series for the terminus variations 2000 to 2021 (pixel resolution is 30 meters). (Bottom)
Time series for the area variations 2000 to 2021.
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Table 1. Multiple Regression Models. (a) Terminal Point of Franz Josef as Response. (b) Area of Franz Josef as

Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response.

(a)

Franz Josef Terminal Point

Model Index Predictors

1 co2

2 CO2 Global_Mean

3 CO2 Average_TMAX Global_Mean

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

R- Adj. Pred.
Model RSquare RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC
Square
1 0.58 0.57 0.56 19.07 599 338 607 3495 38.82 0.43 0.44
2 0.64 0.63 0.61 1.93 577 319 587 2871 32.59 0.36 0.39
3 0.65 0.63 0.61 2.21 577 319 590 2847 32.65 0.36 0.39
4 0.65 0.64 0.61 5.00 555 308 569 2779 33.77 0.39 0.39
(b)
Franz Josef Area
Model Index Predictors
1 Global_Mean
2 Average_TMAX Global_Mean
3 Average_PRCP Average_TMAX Global_Mean
4 Average_PRCP CO2 Average_TMAX Global_Mean
Subsets Regression
R- Adj. Pred.
Model RSquare RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC
Square
1 0.34 0.31 0.24 4.74 389 315 393 4,213,050 174,460 7043 0.77
2 0.43 0.38 0.27 3.02 387 314 392 3,792,603 162,351 6616 0.72
3 0.47 0.40 0.26 3.25 387 315 393 3,667,008 62,052 6687 0.72
4 0.48 0.38 0.20 5.00 389 317 396 3,805,281 173,374 7270 0.77

(c)

Gorner Terminal Point
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Model Index Predictors

1 Cco2

2 CO2 Average_TMAX

3 Average_PRCP CO2 Average_ TMAX

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

R- Adj. R- Pred. R-
Model C(p) AIC SBIC SBC MSEP FPE HSP APC
Square Square Square
1 0.93 0.93 0.93 —2.00 333 61 341 174 1.85 0.0195 0.07
2 0.93 0.93 0.93 —0.82 334 62 344 174 1.87 0.0197 0.07
3 0.93 0.93 0.93 1.18 336 64 349 176 191 0.0202 0.08
4 0.92 0.92 0.91 5.00 323 65 338 172 2.00 0.0223 0.09
Table 1. Cont.
(d)
Gorner Area
Model Index Predictors

1 Cco2

2 CO2 Average_TMAX

3 Average_PRCP CO2 Average_ TMAX

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

R- Adj. Pred.
Model Square RSquare RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC

1 0.88 0.88 0.88 10.5 1798 1562 1805 11,904,380,369 146,881,258 1,792,815 0.12
2 0.89 0.89 0.88 6.0 1794 1558 1803 11,200,129,510 139,795,855 1,707,838 0.12
3 0.89 0.89 0.88 6.7 1794 1559 1806 11,145,284,672 140,706,326 1,720,988 0.12
4 0.89 0.89 0.88 5.0 1706 1483 1721 10,264,439,570 138,078,149 1,778,893 0.12

Table 2. Generalized Additive: Models. (a) Terminal Point of Franz Josef as Response. (b) Area of Franz Josef
as Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response. Find the complete

set of models in Appendix A.

(a)

Franz Josef Terminal Point Distance GAM

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric Estimate
coefficients:

Std Error T value Pr

1T
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Intercept -5.4894

0.3898 -14.1 2 x

10-16
Smooth EDF REF DEF F p-
Terms Value
1.274 1.49 3.456 0.073
2.868 2.987 47.024 2 x 1071
1 1 0.046 0.8303
1 1 5.429 0.0223
Model AlC Deviance AdjR?
480.799 86.1 85

(b)

Franz Josef Area GAM

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric Estimate

Std Error T value Pr

coefficients: (>ITI)
Intercept 3211.96 58.77 54.652 x
10-16
Smooth EDF REF DEF F p-
Terms Value
1.988 24 1.671 0.186
2311 2.654 4 6.33 x 1072
1.363 1.607 1.167 0.2345
1 1 6.232 0.0224
Model AlC Deviance AdjR?
380.5743 71.9 61.8
Table 2. Cont.
(c)
Gorner Terminal Point Distance GAM
Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMAX)
Parametri Estimate Std Error T Pr
c valu (>|T|
coefficient e )
s:
Intercept -7.3318 0.1289 -56.2 x
87 10-16
Smooth EDF REF DEF F p-
Terms Valu
e
1 1.908
1.995 701.255 2
s(Average 1 1 0.1 0.7
_PRCP) 32 17
Model AIC Deviance Adj

Rz
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324.23 94 93

(d)

Gorner Area GAM

Area ~ s(CO2) + s(Average_PRCP) + s(Average_ AVG
Parametri Estimate Std Error T Pr
c valu (>|T|
coefficient e )
s:
Intercept 223,144 1262 17 2 x
6.8 10-16
Smooth EDF REF DEF F p-
Terms Valu
e
1 1 0.98¢
1.492 1.742 364.24
s(Average 1 1 43 0.0
_TAVG) 56 401
Model AIC Deviance Adj
RZ
1794.759 89.4 88
9

Figure 8(Top) displays a time series for the changes to the terminal point for Franz Josef
(left) and Gorner (right) glaciers from the years 2000 to 2021. According to the left-hand side of
Figure 8(Top), the time series for Franz Josef’s shows that the terminal point has oscillated between
advancing and receding in the beginning years of 2000—2010. However, after the year 2000, it has
been continuously receding; by 2021, the terminal point had receded close to 800 m by 2021 in
comparison to its starting point in 2000. For Gorner glacier on the right-hand side of Figure 8(Top),
the time series displays a continuous pattern of decline over the years from 2000 to 2021. By 2021,
the terminal point has receded close to 500 m in comparison to its starting point in 2000.

When trying to measure the physical variations to both glaciers through their terminal point
location, the data reflects that both glaciers have been receding significantly. As for the changes
in area, for Franz Josef, the time series in Figure 8(Bottom) displays a similar oscillating behavior
show in the corresponding one for terminal point, but overall, the area has decreased in 2009
when compared to 1989. The time series for Gorner glacier on the right-hand side of Figure
8(Bottom) continues to display a more straightforward receding effect as the area has been
continuously decreasing from 1985 to 2009.

4.1. Modeling Variations in Franz Josef Terminal Point and Area Using Multiple Regression Model

Multiple regressions and generalized additive models introduced within the methods
sections were explored to find which model could best explain the variations of both glacier’s
terminal point and area presented above using climate factors. The best performing multiple
regression to model Franz Josef’s terminus variations was a linear combination of precipitation,
monthly average maximum temperature, global temperature, and CO2 with highest adjusted R? of
0.64, the lowest Akaike information criterion (AIC) of 555, and the lowest Singular Bayesian
Information Criteria (SBIC) of 308 (Table 1a). The best multiple regression to model the variations
in the area of Franz Josef could only achieve R? of 0.40 (Table 1b).
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4.2. Modeling Franz Josef Terminal Point’s Variations Using Generalized Additive Model

Next, generalized additive models were implemented to address the shortcomings of
multiple regression to model nonlinear trends. General additive models using different
combinations of predictors were implemented and compared to find the significant predictors that
could explain the variations in Franz Josef’s terminus. The best overall model was the linear
combination of the smooth functions of average global mean, monthly average local minimum
temperature, precipitation, and CO2 depicted in Figure 9(Left). The GAM had the highest adjusted
R?of 0.85 and the lowest AIC of 481 (Table 2a), while the multiple regression only had the highest
adjusted R?of 0.64 (Table 1a). As mentioned in the Methods section general additive models are
the linear combination of nonparametric smooth functions. A visual representation of the
smoothed function of the climate variables used within the model can be seen in Appendix B. The
dashed lines within the figure represent the confidence intervals for each smoothed function.
Model’s predicted output for the variation of Franz Josef’s area based on measured data is depicted
in Figure 9(Left) and Figure 10(Left). When looking at how the model performed in terms of
explaining the variations, it seemed to perform adequately, as the model shows a trend of
recession followed by an advancement. Therefore, the observation of Franz Josef’s terminal point
demonstrates that in overall Franz Josef has advanced between 2000 and 2009.

Model Predicted Values vs Real Terminal Point Distances for Franz Josef Franz Josef Area 2000 To 2009

Terminal Point Distances (Pixels)

Area (Sq Meters)

07.5 00 002 2004 06
Year

Yea‘r

Figure 9. (Left) Generalized Additive Model for Franz Josef Terminus 2000 to 2009 (pixel resolution is 30
meters). (Right) Generalized Additive Model for Franz Josef Area 2000 to 2009. Measured (circles), trend
(blue), and confidence interval (gray shade).

4.3. Modeling Variations in Area of Franz Josef Using Generalized Additive Model

To understand more about the behavior of Franz Josef glacier during this decade, variations
of its area were also investigated. The best multiple regression model was able to only explain
below half of variations with adjusted R? of 0.4. However, the best GAM was able to explain about
62% of the variability using average global mean, monthly average local maximum temperature,
precipitation, and CO2 depicted in Figure 9(Right) and Figure 10(Right). A visual representation of
the 4 smoothed functions contained with the GAM are displayed in Appendix B.
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Terminal Point Distances (Pixels)

o

Model Predicted Values vs Real Terminal Point Distances for Franz Josef

2000

2005

Franz Josef Area Since 2000

40004

3500+

Area (Sq Meters)

2500

2000 2005 2010 2015

2010 2015 2020
Year

Year
Figure 10. (Left) Generalized Additive Model for Franz Josef Terminus 2000 to 2021 (pixel resolution is 30
meters). (Right) Generalized Additive Model for Franz Josef Area 2000 to 2021. Measured (circles) and trend
(yellow).

While the general shape of the local temperature and CO: predictors have change, the
precipitation and global temperature functions still remain liner. When comparing the model’s
predicted outputs to the measured data (Figure 10(Right)), the model is shown to accurately
capture the general trend of the data. In addition, when comparing this graph to the graph of Franz
Josef’s model outputs for terminal point measurements (Figure 10(Left)), they look very similar.
Both graphs seem to decrease from 2000-2004, and then increase right afterwards, which indicate
that Franz Josef was actually advancing from 2004-2009 as shown by the increase in area and
terminal point position.

This is abnormal behavior as the majority of glaciers around the globe were retreating during
this time period. However, for exceptional cases such as the glaciers in New Zealand, there were
periods of advancement in terms of both the area and terminal point as a result of the increased
precipitation. As we can see in the Figure 10, the trend marked in orange is the smoothed function
of the model’s predicted values, while the points are the measured data. From 2000 to 2009. The
advancement that was observed in the Figure 9 can be seen in Figure 10 as well, however after the
advancement, there is continuous recession. The model was able to generally explain the
variations within the terminal point and area for Franz Josef glacier for the past two decades.

4.4. Variations in Gorner’s Terminal Point

Now that Franz Josef physical variations have been explained using general additive models,
the following procedure will be done for Gorner glacier. The adjusted R?for the best multiple
regression was 0.93 (Table 1c). Several general additive models were created taking into account
different combination of climate factors. The best performing additive model was the linear
combination of the smoothed function of monthly average maximum local temperature,
precipitation and COz (Figure 11(Left)) with an adjusted R? of 0.94 and an AIC of 324 (Table 2c). A
visual representation of the shapes of the smoothed function of the climate factors in the model
can be seen in Appendix B. The confidence intervals for these three smoothed functions are
narrow and closely follow the functions themselves, which indicate that the current function is
performing accurately.
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Terminal Point Distances (Pixels)

04

Mode| Predicted Values vs Real Terminal Point Distances for Gomner

..

2000

2005

Gomer Area Since 2000
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Figure 11. (Left) Generalized Additive Model for Gorner Terminus 2000 to 2021 (pixel resolution is 30 meters).
(Right) Generalized Additive Model for Gorner Area 2000 to 2021. Measured (circles) and trend (yellow).

Both visual observation of predicted trend in Figure 11 and the adjusted R?for this model
indicate that this model can robustly explain the variations of Gorner’s terminal point. To further
confirm this, a comparison of the model’s output (yellow) for the variations of Gorner terminal
point to the measured data (circles) is shown in Figure 11. As seen by a close look at the predicted
trend in comparison with the measured data points, evidently the model performs well in
explaining the glacier variation. Overall, the general additive model produced robust results for
explaining the temporal glacier variations.

4.5. Variations in Gorner’s Area

Finally, we modeled the variations in the area of Gorner glacier. The best performing multiple
regression model achieved an adjusted R? of 0.89. In comparison, the best performing generalized
additive model for the changes in the area of Gorner glacier was a linear combination of the
smoothed functions of monthly average of local temperature, precipitation, and CO: (Figure
11(Right)). This model achieved an adjusted R? of 0.89 and an AIC of 1794 (Table 1d). It did not
demonstrate an improvement in comparison with the best multiple regression model with the
same adjusted R? of 0.89. However, GAM could better decipher the relation between the glacier
variations and climate factors. The general additive model was comprised of three different
smoothed function of climate factors, which can be seen in Appendix B. The smoothed functions
provided robust model as seen by how close the confidence intervals (dashed lines) are to the
actual smoothed functions. The model did have an adjusted R? of 0.89, so it can be indicated that
the model produced promising results to explain the glacier variations.

By investigating different models in this study, it was concluded that GAM outperformed
multiple regression in modeling temporal variations of the glacier’s terminal point and area. The
proposed general additive models in this research were able to explain the variations fairly
accurately using climate factors. Smoothed functions of temperature, local precipitation, and CO>
were identified as significant predictors in all implemented GAMs in this study, and it can be
concluded that there is a strong relationship between the glacier’s temporal physical variations
(for both Franz Josef and Gorner) and the climate factors.

5. Discussion

Two separate response variables representing glacier changes were quantified using Landsat
imagery. First, spatial location of glacier terminus was traced over time as a proxy to glacier change.
Second, glacier area was measured over time to quantify glacier variations. Response variables
modeled using multiple regression and GAM. GAM could better model the nonlinear glacier
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variations. Global COz level, temperature (both local and global), and precipitation were identified
as significant factors to model glacier variations. The results of this study agree with the previous
research emphasizing the importance of local climate factors [17,18]. These finding are in line with
what is currently known about the physics of glacier motion. The interaction between the climate
factors could impact the glacier changes and potentially may help to better understand the
complex dynamics of global climate subtleties.

As a proxy, spatiotemporal variation of glacier’s terminal point, offers valuable insights about
glacier change. However, terminus variations do not provide sensible quantification of changes in
the glacier’s size. Hence, quantification of glacier surface area by the proposed approach in this
paper, provides essential insights about glacier’s size by measuring its surface area, in comparison
with the previous works measuring terminus variations such as [19-26].

Moreover, due to the non-linear trends in the glacier variations, GAM could substantially
improve the modeling of glacier’s variation using climate factors. The relation between glacier
change and climate factors cannot be deciphered by linear models such as multiple regression.
Hence, by the additional flexibility of a nonparametric approach, GAM could discover the nonlinear
trends in the glacier variations that could not be inferred using linear models in the previous works
[7-9].

Although the proposed semi-automated image segmentation pipeline is a promising
approach, it still requires user’s input to customize it for different glaciers as distribution of pixel
intensities changes in different scenes and over different spectral bands. This can prevent broad
application to a large number of glaciers. Nevertheless, this study provides some proof of concept
and valuable insights about complexity of this challenging problem. The segmentation can possibly
be improved by the inclusion of processed bands using fusion of multiple Landsat spectral bands.
Moreover, the computational cost of the entire process demands for an efficient data cleaning
process in the preprocessing phase. Considering the scale and coverage of Landsat imagery along
with the large number of glaciers around the globe, the clean-up process is not a trivial task.

6. Conclusions

Human communities rely on glaciers for water supply, agriculture, and drinking water. Rising
temperatures due to the climate change cause mountain glaciers to melt and changes the water
availability. Hence, modeling glacier variations in response to climate change is a pressing issue.
Given that each glacier system is likely to be distinct both in the climate variations that it has
experienced and in its response to these variations, a generic model may not be pertinent to model
spatiotemporal variations of different glaciers. Moreover, historical measures of surface area or
terminus location is essential to predict future spatiotemporal variations of glaciers. However,
direct ground measurement is not feasible due to the remote nature of glaciers. Satellite imagery
provides a practical approach to measure glacier area or to locate glacier terminus over time
through remote sensing.

This work is in continuation of our previous works and is motivated by expedited recession of
many glaciers around the globe while there is not a readily automated or semi-automated system
available to quantify variations of a large number of mountain glaciers. In this work, a semi-
automated pipeline was introduced to quantify glaciers in multispectral Landsat imagery. Data are
gathered as a time sequence of spatially registered multispectral satellite imagery. The geometry
of individual glaciers has been obtained using various image processing techniques including
supervised classification, edge detection, and region segmentation. Then, two supervised learning
methods including a parametric method (multiple regression) and a nonparametric method
(generalized additive model) were implemented to identify climate factors that can impact glacier
changes. This model can be customized for individual glaciers as the terminus position or surface
area of individual glacier systems depend strongly on local basin geometry and local variations in
temperature and precipitation. There are limiting factors to the accuracy of the predicted response
including the resolution of satellite imagery, the visibility of the glacier in the images, the frequency
of imaging, and the signal to noise ratio of satellite sensors. Several factors contribute to partial
loss of contrast and variability in the quantified response value. Among them, some can be visually
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recognized such as the clouds and mountain shades. But some others are more intangible such as

debris atop glacial ice, snow, and variations in humidity.

Author Contributions: Conceptualization, E.R., TT.H., JW. and N.N.K.; methodology, E.R., TT.H.,
JW. and N.N.K.; software, E.R., TT.H., JW. and N.N.K.; validation, E.R. and N.N.K.; formal analysis, E.R., TT.H.

and N.N.K.; investigation, E.R., TT.H., JW. and N.N.K.; resources, N.N.K.; data curation,
E.R., TT.H., JW. and N.N.K.; writing—original draft preparation, E.R., TT.H., JW. and N.N.K.; writing—review
and editing, E.R. and N.N.K.; visualization, E.R., TT.H., JW. and N.N.K.; supervision, N.N.K.; project
administration, N.N.K.; funding acquisition, N.N.K. All authors have read and agreed to the published version

of the manuscript.

Funding: This work was done as part of a REU (Research Experiences for Undergraduates) Statistical Models

with Applications to Geoscience awarded by NSF (Grant # 1950768).

Data Availability Statement: MATLAB and R code is available upon reasonable request.

Conflicts of Interest: Authors declare no competing interest.

Appendix A GAM Summary Tables

Gorner Area GAM

Area ~ s(Average_TAVG) + s(CO;) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1279 176.3 2.00 x 10-%
Smooth Terms edf ref def F p-Value
s(Average_TAVG) 1 1 3.114 0.0817
s(CO2) 1.186 1.347 96.1 2.00 x 107
s(Average_PRCP) 1 1 0.419 0.5194
s(Global_Mean) 1 1 4.944 0.0292
Model AIC Deviance Adj R?

1706.996 89.3 88.7
Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)
Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1279 176.3 2.00 x 106
Smooth Terms edf ref def F p-Value
s(Average_TMAX) 1 1 2.866 0.0935
s(CO2) 1.295 1.525 83.051 2.00 x 106
s(Average_PRCP) 1 1 0.562 0.4555
s(Global_Mean) 1 1 5.084 0.0271
Model AIC Deviance Adj R?

1707.223 89.3 88.7

Area ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)
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Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1285 175.5 2.00 x 1016
Smooth Terms edf ref def F p-Value
s(Average_TMIN) 1 1 2.094 0.1521
s(CO2) 1.327 1.576 78.722 2.00 x 1016
s(Average_PRCP) 1 1 0.347 0.5578
s(Global_Mean) 1 1 5.353 0.0235
Model AIC Deviance Adj R?

1708.029 89.2 88.6
Area ~ s(Average_TAVG) + s(CO.) + s(Global_Mean)
Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1273 177.2 2.00 x 10-16
Smooth Terms edf ref def F p-Value
s(Average_TAVG) 1 1 3.73 0.0572
s(CO2) 1.267 1.463 87.025 2.00 x 1016
s(Global_Mean) 1 1 5.292 0.0241
Model AIC Deviance Adj R?

1705.029 89.2 88.8
Area ~ s(CO2) + s(Global_Mean)
Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1287 175.3 2.00 x 10-¢
Smooth Terms edf ref def F p-Value
s(CO2) 1.648 1.876 68.22 2.00 x 10-16
s(Global_Mean) 1 1 9.24 0.00324
Model AIC Deviance Adj R?

1706.643 88.9 88.5
Area ~ s(CO) + s(Average_PRCP) + s(Global_Mean)
Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 225,484 1286 175.4 2.00 x 1016
Smooth Terms edf ref def F p-Value
s(Average_PRCP) 1.118 1.222 1.093 0.35734
s(CO2) 1.615 1.852 69.493 2.00 x 10-16
s(Global_Mean) 1 1 8.022 0.00591
Model AIC Deviance Adj R?
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1707.759 89.1 88.5
Gorner Area GAM
Area ~ s(CO;) + s(Average_P CP) + s(Average_ T  VG)
Parametric coefficients: Estimate Std Error T value Pr(>|T])
Intercept 223,144 1262 176.8 2.00 x 1016
Smooth Terms edf ref def F p-Value
s(Average_PRCP) 1 1 0.989 0.3232
s(CO2) 1.492 1.742 364.248 2.00 x 1016
s(Average_TAVG) 1 1 4.356 0.0401
Model AlCDeviance Adj R?
1794.759 89.4 88.9
Area ~ s(Global_Mean) + s(Average_PRCP) + s(Average_TAVG)
Parametric Estimate  Std Error Tvalue  Pr(>|T|)
coefficients:
Intercept 225,485 3150 104.9 2.00 x
10-
Smooth Terms edf ref def F p-Value
1 0.065 0.8
1 165.523 2.00 x 10716
s(Average_TAVG) 1 1 1.125 0.292
Model AlC Deviance Adj R?
1787.65 69.2 68

Gorner Terminal Point Distance
GAM

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric Estimate  Std Error Tvalue  Pr(>|T|)
coefficients:
Intercept -6.9179 0.1306 -52.96 2.00 x
10-16
Smooth Terms edf ref def F p-Value
s(Average_TMIN) 1.485 1.818 0.623 0.616
s(CO2) 2.503 2.823 111.873  2.00 x
10-16
s(Average_PRCP) 1 1 0.037 0.848
s(Global_Mean) 2.21 2.598 0.879 0.535
Model AlC Deviance Adj R?
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310.1617 93.9 93.4
Distance ~ s(Average_TMAX) + s(COz) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue  Pr(>|T|)
coefficients:
Intercept -6.9179 0.1306 -52.98 2.00 x
10—16
Smooth Terms edf ref def F p-Value
s(Average_TMAX) 1 1 1.542 0.218
s(CO2) 2.532 2.842 114.937 2.00 x
10-16
s(Average_PRCP) 1 1.001 0.043 0.838
s(Global_Mean) 2.055 2.456 0.661 0.67
Model AlC Deviance Adj R?
308.9078 93.4 93.9
Distance ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue  Pr(>|T|)
coefficients:
Intercept -6.9179 0.1308 -52.9 2.00 x
10-
Smooth Terms edf ref def F p-Value
s(Average_TAVG) 1.001 1.002 1.173 0.282
s(CO2) 2.528 2.84 113.304 2.00 x
10-
s(Average_PRCP) 1 1 0.027 0.871
s(Global_Mean) 2.097 2.96 0.721 0.635
Model AlC Deviance Adj R?
309.2165 93.9 93.4
Distance ~ s(Average_TAVG) + s(COz) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept -6.9179  0.1308 -52.9 2.00 x
10-1
Smooth Terms edf ref def F p-Value
s(Average_TAVG) 1.001 1.002 1.173 0.282
s(CO2) 2.528 2.84 113.304 2.00 x
10-1
s(Average_PRCP) 1 1 0.027 0.871
s(Global_Mean) 2.097 2.96 0.721 0.635
Model AlC Deviance Adj R?
309.2165 93.9 93.4
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Distance ~ s(CO;) +
s(Global_Mean)
Parametric coefficients: EstimateStd Error Tvalue Pr(>|T])
Intercept -6.91790.1319 -52.44  2.00 x
1016
Smooth Terms edfref def F p-Value
s(CO2) 1.9381.996 190.109 2.00 x
10—16
s(Global_Mean) 11 0.878 0.351
Model AlCDeviance Adj R?
306.0558 93.5 93.3
Distance ~ s(CO.) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept -6.9179 0.1325 -52.2 2.00 x
1016
Smooth Terms edf ref def F p-Value
s(CO2) 1.938 1.996 185.669 2.00 x
10-16
s(Average_PRCP) 1 1 0.182 0.67
s(Global_Mean) 1 1 0.713 0.401
Model AlC Deviance Adj R?
307.846  93.5 93.2
Gorner Terminal Point Distance
GAM
Distance ~ s(CO.) + _TMAX)
s(Average_PRCP) + s(Average
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept -7.3318 0.1289 -56.87 2.00 x
10-1
Smooth Terms edf ref def F p-Value
1 1.908 0.17
1.995 701.255 2.00 x 1071
s(Average_PRCP) 1 1 0.132 0.717
Model AlC Deviance Adj R?
324.23 94 93.7
Distance ~ s(Global_Mean,) + s(Average_PRCP) + s(Average_TMAX)
Parametric Estimate  Std Error Tvalue  Pr(>|T])
coefficients:
Intercept -6.9179 0.2971 -23.29  2.00 x
1016
Smooth Terms edf ref def F p-Value
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s(Average_TMAX) 1 1 5.18 0.0253
1 0.542 0.4636
1 176.089 2.00 x 10716
Model AlC Deviance Adj R?
453.7315 67 65.9
Franz Josef Area GAM
Area ~ s(Average_TMIN) + s(CO.) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3212 64 50.19 2.00 x
10-%
Smooth Terms edf ref def F p-Value
s(Average_TMIN) 1 1 0.295 0.5929
s(CO2) 2.442 2.77 4 2.55 x
102
s(Average_PRCP) 1 1 3.604 0.0721
s(Global_Mean) 1 1 2.508 0.1289
Model AlC Deviance Adj R?
382.8962 64.5 54.7
Franz Josef Area GAM
Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3211.96 58.77 54.65 2.00 x 10~
Smooth Terms edf ref def F p-Value
s(Average_TMAX) 1.988 2.4 1.671 0.186
s(CO2) 2.311 2.654 4 6.33 x 102
s(Average_PRCP) 1.363 1.607 1.167 0.2345
s(Global_Mean) 1 1 6.232  0.0224
Model AlC Deviance Adj R?
380.5743 71.9 61.8
Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3211.96  64.33 49.93  2.00 x 10-1¢
Smooth Terms edf ref def F p-Value
1 0.11 0.7441
2.763 4 2.94 x 102
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s(Average_PRCP) 1 1 3.363  0.0816
s(Global_Mean) 1 1 2.264 0.148
Model AlC Deviance Adj R?

383.1614 64.1 54.2
Area ~ s(Average_TMAX) + s(CO.) + s(Average_PRCP)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3211.96 70.71 45.42  2.00 x 10-1¢
Smooth Terms edf ref def F p-Value
s(Average_TMAX) 1 1 0.049 0.82713
s(CO2) 1.922 1.994 10 1.08 x 10-3
s(Average_PRCP) 1 1 1.466  0.23938
Model AlC Deviance Adj R?

386.475 53.3 44.6
Area ~ s(CO;) + s(Average_PRCP)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3211.96  69.14 46.45  2.00 x 10-1¢
Smooth Terms edf ref def F p-Value
s(CO2) 1.927 1.995 11 7.85 x 10*
s(Average_PRCP) 1 1 1.77 0.196995
Model AlC Deviance Adj R?

384.5096 53.3 47.1
Area ~ s(Global_Mean) + s(CO2) + s(Average_PRCP)
Parametric Estimate  Std Error Tvalue Pr(>|T])
coefficients:
Intercept 3211.96  64.58 49.73  2.00 x 10-1¢
Smooth Terms edf ref def F p-Value
s(Global_Mean) 1 1 4.496 0.046
s(CO2) 1.905 1.991 5 1.92 x 102
s(Average_PRCP) 1.209 1.374 2.941 0.1213
Model AIC Deviance Adj R?

382.2663 61.4 53.8

Franz Josef Terminal Point
Distance GAM

Distance ~ s(Average_TMIN) + s(CO:) + s(Average_PRCP) + s(Global_Mean)
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Parametric Estimate  Std Error Tvalue Pr
coefficients: (>1T|)
Intercept -5.4894 0.3898 -14.1 2.00 x
10—16
Smooth Terms edf ref def F p-Value
s(Average_TMIN) 1.274 1.49 3.456 0.073
s(CO2) 2.868 2.987 47.024  2.00 x
10—16
s(Average_PRCP) 1 1 0.046 0.8303
s(Global_Mean) 1 1 5.429 0.0223
Model AIC Deviance Adj R?
480.799 86.1 85
Distance ~ s(CO) + s(Global_Mean)
Parametric coefficients: EstimateStd Error Tvalue Pr
>1T1)
Intercept -5.26720.3834 -13.74 2.00 x
10-%
Smooth Terms edfref def F p-Value
s(CO2) 1.9912 74.292  2.00 x
10-%6
s(Global_Mean) 1.251.437 3.905 0.0283
Model AlCDeviance Adj R?
500.766 84.9 84.3
Distance ~ s(Average_TMIN) + s(CO.) + s(Global_Mean)
Parametric coefficients: EstimateStd Error Tvalue Pr
>1T1)
Intercept -5.26720.3738 -14.09 2.00 x
10-%6
Smooth Terms edfref def F p-Value
1.372
2
s(Global_Mean) 11 5.575 0.0204
Model AlCDeviance Adj R?
497.0568 85.8 85.1
Distance ~ s(CO.) + s(Average_PRCP) + s(Global_Mean)
Parametric Estimate  Std Error Tvalue Pr
coefficients: >1T|)
Intercept —-5.4894 0.3984 -13.78 2.00 x
10—16
Smooth Terms edf ref def F p-Value
s(CO2) 1.99 1.999 70.418 2.00 x

10-16
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s(Average_PRCP) 1 1 0.086 0.7705
s(Global_Mean) 1.354 1.582 2.68 0.0608
Model AIC Deviance Adj R?

482.9369 85.1 84.3

Distance ~ s(CO.) + s(Average_PRCP) + s(Average_TMIN)

Parametric Estimate  Std Error Tvalue Pr
coefficients: (>1T|)
Intercept -5.7241  0.3942 -14.52  2.00 x
10-16
Smooth Terms edf ref def F p-Value
s(Average_TMIN) 1.471 1.721 2.972 0.0414
s(CO2) 2 2 225.629 2.00 x
10-16
s(Average_PRCP) 1 1 0.001 0.9839
Model AIC Deviance Adj R?
487.6997 85.9 85.1

Appendix B Modeling Franz Josef
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Modeling Franz Josef Area
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Modeling Gorner Area
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