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Abstract: Glaciers are important indictors of climate change as changes in glaciers physical features such as 

their area is in response to measurable evidence of fluctuating climate factors such as temperature, 

precipitation, and CO2. Although a general retreat of mountain glacier systems has been identified in relation 

to centennial trends toward warmer temperatures, there is the potential to extract a great deal more 

information regarding regional variations in climate from the mapping of the time history of the terminus 

position or surface area of the glaciers. The remote nature of glaciers renders direct measurement impractical 

on anything other than a local scale. Considering the sheer number of mountain glaciers around the globe, 

ground measurements of terminus position are only available for a small percentage of glaciers and ground 

measurements of glacier area are rare. In this project, changes in the terminal point and area of Franz Josef 

and Gorner glaciers were quantified in response to climate factors using satellite imagery taken by Landsat at 

regular intervals. Two supervised learning methods including a parametric method (multiple regression) and 

a nonparametric method (generalized additive model) were implemented to identify climate factors that 

impact glacier changes. Local temperature, CO2, and precipitation were identified as significant factors for 

predicting changes in both Franz Josef and Gorner glaciers. Spatiotemporal quantification of glacier change is 

an essential task to model glacier variations in response to global and local climate factors. This work provided 

valuable insights on quantification of surface area of glaciers using satellite imagery with potential 

implementation of a generic approach. 

Keywords: mountain glaciers; supervised learning; generalized additive models; cryosphere; Landsat satellite 

imagery; climate change; terminus; Gorner glacier; Franz Josef glacier 
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level [3]. The recognition of these contingencies has spurred increased interest and research into 

the study of the mountain cryosphere and the health of the glacier it contains. 

Stepping into the issue of glacier recession one quickly realizes the enormity of the 

undertaking this problem set. The first roadblock is the substantial number of glaciers that can be 

found around the globe (Figure 1). The Global Land Ice Measurements from Space (GLIMS) Glacier 

Database currently has 604,986 unique glacier outline entries [4,5]. Investigation of the spatial 

 
1 . Introduction 

The mountain cryosphere and the glaciers found around the globe have a non-trivial impact on humanity. On a 

fundamental level, the glaciers scattered throughout the globe, provide a large segment of the world’s residents with a 

source of freshwater. Populations residing in arid regions, typically near mountains often depend on run off from melting 

glaciers for their water during the drier and warmer parts of the year. River systems meandering through portions of 

Asia are sustained from ice and snowmelt located in the Himalayas and the glaciers within the mountain range, this is 

particularly true in late summer when a predominant factor contributing to river flow comes from melting glaciers [1] 

provides a supplementary source of water during the sustained dry periods experienced in this urban region [2]. The 

socio-political impacts due to the loss of mountain glaciers have the potential to be significant on both the ecological 

and global political 
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data demonstrates that many individual glaciers are but one component of a complex subsection 

of a larger glacier network (Figure 1). Additionally, the remote, and in some cases, denied locations, 

coupled with austere conditions found in the vicinity of glaciers places emphasis on finding 

alternatives to the in-situ measurements of changes taken on the ground. An example would be 

the country of North Korea, obtaining access to glaciers here may prove challenging or impossible. 

  
Figure 1. Regional Glacier Network Overview. 

One candidate for a collection method which finds extensive use in the existing literature is 

remote sensing, and more specifically the use of satellite imagery. Remote sensing is a broad-based 

term that encompasses a diverse number of platforms which include both spaceborne platforms 

on orbit and air breathing aerial platforms which include assets like drones or aircraft equipped 

with different sensor technology. The existing datasets and databases contain multiple decades of 

useful images from which to extract information. Within these images the features of principal 

interest are the location of the glacier’s terminal point (Figure 2) and its change through time. The 

proper identification of which allows for the estimation of the recession velocity along with the 

changing area of the glacier or glaciers of interest. Found within the extant literature, are numerous 

methods for estimating changes in the location of a glacier’s terminus using optical based image 

data and for estimating changes in glacial area [6–9]. 

 

Figure 2. (Left panel) Illustrative Terminal point identification methods. Top: (left) Center-Line method; 

(middle) Bow method (right) Rectilinear Box method. Bottom: (left) Curvilinear Box method; (right) 

Extrapolated Center-Line method. (Right panel) Illustrative Terminal point tracking method. 
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Previous research on methods of glacial recession and on the identification of glacial termini 

are vast. The work has produced numerous methodological processes using a variety of diverse 

techniques (Figure 2). Surveying these efforts, one can glean that while some of the methods will 

work well on single efforts or one-off projects, for instance a study of one particular glacier, others 

are more suitable for larger scale analysis and have the potential to be easily automated and 

generalizable. Given the size of the global glacier inventory is a desirable quality for global scale of 

modeling. Previous research using commonly employed methods to track changes in the termini 

of glaciers has shown a common theme. This commonality is the reduction of what is in the final 

analysis, a three- dimensional (3-D) spatial phenomena being projected down to a zero-

dimensional (0-D) spatial value for the terminus location to evaluate the distance the glacier has 

advanced/retreated along its path of motion. This dimensionality reduction provides a level of 

efficiency in the analysis of the glacier motion and is a useful model simplification when it is 

appropriate. A comparison of standard methods including the center-line, bow, rectilinear-box, 

curvilinear-box, and extrapolated is provided by Lea et al. 2014. Each of the above-mentioned 

methodologies is subject to its own advantages and weaknesses and the use of any one of the 

methods involves considerations of glacial geometry along with the aim of the study being 

undertaken [10]. 

Other work applies a more general approach to terminus estimation which relies heavily on 

optical imagery. An advantage of which is to avoid specific geometric dependencies of a particular 

glacier. The method exploits the properties of the multiband attributes of satellite imagery and the 

flexibility of Nonparametric Regression [7]. Taking advantage of the return times of the LANDSAT 

satellite platform, this method uses selected spectral bands of the images to identify which regions 

of the spectrum produce the largest intensity changes along the path of the glacier. This intensity 

change is indicative of the transition from soil, vegetation, and debris of the mountain landscape 

to the ice of the glacier. These intensity changes are collected through time as this process is 

repeated on a series of images. On each image a glacier path is manually drawn, this path is simply 

a hand drawn curve. Then along the length of this path the intensity of each pixel is collected. Using 

the derivatives and the inflection points of the collected intensity values to identify the terminal 

points of the glacier, the method can capture the glacier movement against a ground truth, based 

on direct measurements. 

A major drawback to this method is its dependency on an investigator drawing the path of 

the glacier manually. As was mentioned previously this would make the method problematic in 

large scale glacier networks, or global glacier studies. It would also prevent, in its current state, an 

automated implementation given the dependency on a human drawn path to derive the intensity 

profile. It is with the final goal of limiting or eliminating manual input that this papers current 

methodology was developed. In addition to increasing ease of automation, robust and flexible 

models for estimating glacier variations in response to global and local climate factors is 

developed by either detection of the glacier terminal point or quantification of the glacier area. 

The objectives of this research are to implement a generic method for quantifying glacier area 

and locating its terminus and model their variations in response to climate factors using both 

parametric and nonparametric supervised techniques. The geometry of individual glaciers has 

been estimated using remote sensing techniques to include various semi-automated image 

analysis techniques such as supervised classification, edge detection, and region segmentation in 

an attempt to develop a pipeline for quantification of glacier changes that could be potentially 

applicable to a large set of glaciers around the globe. 

2. Data Collection and Preprocessing 

Two distinct types of data were employed to study the glacier recession by quantifying 

changes in the terminal point and area of Gorner and Franz Josef glaciers (Figure 3). These are two 

similar but spatially distant mountain glaciers. One set of data consists of satellite imagery, multiple 

images of spatial locations taken over time. The other data type is a univariate time series of 

environmental sensor recordings of multiple climate factors collected by various international 

agencies. Each of the data sets presents its own challenges from a data wrangling perspective given 

the diversity of values, measurement scales, and potential usefulness of the attributes unique to 

each data type. 
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Figure 3. Glaciers of Interest. Left: Gorner. Right: Franz Josef. 

2.1. Landsat Imagery 

The main source of imagery used in this study is satellite imagery of the glaciers of interest 

gathered exclusively via the Landsat program publicly available through the National Aeronautics 

and Space Administration’s (NASA) [11]. The Landsat data is stored in online databases and is freely 

accessible and downloadable via the web. The Landsat images along with the metadata (and much 

more) are available via the United States Geological Survey’s Earth Explorer webpage found at 

https://earthexplorer.usgs.gov/ 

(accessed on 16 February 2021). It must be pointed out that, Sentinel program sponsored by 

European Space Agency provides satellite imagery with better resolution (in some spectral bands) 

taken by Sentinel-2 satellite. However, the Sentinel program began in 2015 and an inventory of 

only about 8 years of satellite imagery is available through this program. In contrast, the Landsat 

program started in 1972, provides more than 5 decades of data available. Moreover, satellite 

imagery with better resolutions is only available commercially for a much shorter period than a 

decade. 

The images of each glacier are captured at specific dates based on the glacier’s geographic 

coordinates. Landsat has a 16-day return time, and the data is collected over several decades. 

The data has been publicly available since 2008 which has made it an attractive database of 

satellite imagery for scientists performing multidecade studies. In the preprocessing step of this 

study, we removed those scenes where the glaciers were obscured by clouds or mountain 

shades, and scenes with degraded imaging due to sensor malfunctioning. An example of image 

degradation can be found in the Landsat 7 (one of the multiple Landsat platforms with available 

data) image products. After launch, the Scan Line Corrector (SLC) went off line and due to this 

malfunction images will contain a zig-zag pattern. This becomes an issue when the pattern 

intersects with the object of interest as it is depicted in Figure 4. 

  

Figure 4. Example of Landsat images removed from dataset shown in false colors. Cloudy and invisible (Left); 

Covered by mountain shadow (Middle); Sensor malfunction (Right). 

The Landsat images are collected with a multispectral sensor. This capability implies that each 

of the images contains several spectral bands. Each of these spectral bands has its own wavelength 

https://earthexplorer.usgs.gov/
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range of the electromagnetic spectrum. Multispectral imaging capability enables different views 

of the same scene highlighting features of interest that could be better viewed in created image in 

a specific band. 

Figure 5 shows the specific breakdown of a typical multispectral Landsat 7 image into its 

spectral bands as well as band specific images in false color along with terminus localization 

process. In this analysis the dataset was created from a collection of Landsat 7 and 8 images for 

both glaciers under consideration. The initial data pull consisted of 511 images in total for both 

glaciers, 263 for Franz Josef and 248 for Gorner. All of the original images fall in the date range 

January 2000 through November 2021. After cleaning the data for images where the glacier was 

obscured by clouds or shadows the final data sets for each glacier were as follows: Franz Josef data 

range is August 2000 through August 2021 and in this time frame 93 useful images were retained, 

while for Gorner the date range is May 2000 through October 2021 with 97 useful images retained. 

 

Figure 5. (Left) Multispectral band information for images taken by Landsat 7. (Middle) Top Franz Josef; 

Bottom: Gorner; from left to right: Band 1, Band 5, Band 6 shown in false colors. (Right) Terminal Identification 

process. 

2.2. Climate Factor Data 

The climate factor data, which is used extensively in the modeling and prediction of the 

glacier variations, is time series data collected by several different sensors. The specific factors 

selected for the analysis were temperature in degrees Celsius, Carbon Dioxide (CO2) concentration 

in parts per million (ppm) and Precipitation in millimeters (mm). Each of these factors were 

collected by the appropriate national agencies with daily sampling frequency in the regions 

containing the glaciers in this study. 

Daily climate data was collected from the weather station closest to Franz Josef and Gorner 

glaciers from the National Oceanic and Atmospheric Administration Climate Data Online platform 

available at https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/ 

stations/GHCND:NZ000936150/detail (accessed on 7 July 2022). The data for Franz Josef was taken 

from the Hokitika Aerodrome weather station in New Zealand and spans the two decades from 

1989 to 2009. For the Gorner glacier, the dataset was from the Sion weather station in Switzerland 

spanning from 1985 to 2009. The dataset contains daily information on minimum, maximum, and 

average temperate, and precipitation. To attain comparable resolution for the response, i.e., glacier 

variations estimated using spatiotemporal satellite imagery, and the predictors, i.e., climate 

factors, monthly data was calculated by averaging observed daily climate factors in the data 

preprocessing phase. 

To assess the predictive viability of CO2 on glacier variations in the modeling process, the 

monthly Mauna Loa CO2 average data was sourced from NOAA. The sourced data contains monthly 

average CO2 levels from March 1958 to May 2021 recorded at the Mauna Loa station in Hawaii. 

The data is a proxy for many other human activities that contribute to climate change and the 

warming temperatures on the globe. Local temperature for each glacier was sourced from the 

closest regional station. An overall monthly global average temperature was also calculated in 

order to assess the overall temperature variations. A monthly data set was utilized from NOAA 

which contains samples of the monthly average temperature from January 1880 to December 

2021. The result is a data set which contains a total of six predictors measured at both the global 

and local levels. Next, glacier variations (estimated either by detected terminus or by quantified 

area) will be modeled in response to monthly measurements of the predictors of interest 

  

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:NZ000936150/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:NZ000936150/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:NZ000936150/detail
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(aforementioned data) for identification of potential relationship between temporal glacier 

variations and climate factors. 

3. Methods 

Due to the limitations of the previous methods for identification of glacier terminal points, 

along with the estimation of area, different techniques are required to improve the analytical 

process [10]. This work is a combination of image processing techniques with parametric and 

nonparametric statistical methods to model glacier change. In this section, a novel method, both 

in its breadth of analysis (area and terminal point) and generalizability (not designed for a specific 

glacier), will be discussed. First the investigative processes for quantifying changes in the terminal 

point and area variation of mountain glaciers will be developed, followed by the results of a 

preliminary application on two similar but spatially distant mountain glaciers (Figure 3). While both 

glaciers namely Franz Josef in New Zealand and Gorner in Switzerland share the characteristic of 

being mountain glaciers, they differ by being thousands of miles apart and in opposite hemispheres 

of the globe. This selection was deliberate in order to prevent the development of a model or a 

method that would rely on the characteristics of one specific glacier or geographical and 

climatological conditions found in one specific region. 

The glacier termini are manually marked in the satellite imagery using a graphical user 

interface (GUI) developed in MATLAB R 2021b. After the identification of the terminal point the 

glacier area will be estimated via the application of several standard image processing techniques. 

This process is replicated over a time series of Landsat images. The results of both the terminal 

point locations and the estimated areas are stored for use as dependent variables in a model using 

climate factors as predictors to describe the variation in the glaciers attributes of interest (area and 

terminal point change). The overall intent of the modeling process is to construct a predictive and 

interpretable model for the variations of mountain glaciers due to global climate change and its 

effects. The schematics of the analytical process are displayed In Figure 6. The first step is data 

collection and preprocessing where Landsat imagery and climate data are collected, cleaned up, 

and preprocessed. This step also includes quantification of glacier area and localization of glacier 

terminus. Next, two different statistical approaches are taken, a parametric technique (multiple 

regression), and a nonparametric method (GAM). Both statistical approaches are applied to model 

glacier change. The glacier variation is once modeled using changes in spatiotemporal location of 

glacier terminus, and again by quantification of changes in glacier area over time. 

 

Figure 6. Schematic of Proposed Method. 

3.1. Quantification of Glacier Area and Terminus 

Terminal point was located using a suit of image processing techniques over temporal 

sequence of images collected for each glacier. A graphical user interface was developed to zoom 

on the glacier’s geographical location on the image using glacier’s latitude and longitude. A 

bonding box as region of interest (ROI) encompassing the glacier’s area was drawn. The ROI was 

used to crop the glacier through entire sequence of original Landsat images. Terminal point 

location was then marked in each cropped image of the sequence. 

Because only two glaciers were studied in this project, the manual terminus detection was an 

effective and rapid approach to locate the terminus and mark it by a single pixel on the glacier 

image. This manual detection method allowed a swift process of a large sequence of images for 

each glacier by avoiding issues such as partial obstruction of the glacier in the image. 

Although an expedient method was developed for the identification of the terminus location, 

segmentation of glacier area proved to be a more challenging problem. This difficulty stem from 

the fact that finding the entire outline of the glacier is a two-dimensional problem in contrast with 

the detection of the terminal point that is a zero-dimensional task. The segmentation of cropped 



Algorithms 2023, 16, 486 7 of 29 

image to glacier and non-glacier segments with sharp boundaries is rather challenging due mainly 

to debris and mud blending into the ice near glacier’s boundaries. 

Region growing and edge detection methods were preliminary attempted to segment the 

area of the glacier. Each of these methods were slightly successful to segment the glacier area. 

Region growing method creates homogenous regions based upon a specific threshold, while edge 

detection looks for abrupt changes in pixel intensity to identify an edge. A mutual challenge among 

both segmentation methods is to find the threshold for optimal segmentation of glacier boundary 

in each image in the sequence, one by one. Hence, a hybrid method was implemented by 

combination of region growing and edge detection techniques. Figure 7 shows some partially 

successful application of this hybrid Region Growing-Edge Detection approach to both glaciers in 

this study. Some regions containing both glacier and non-glacier areas can be observed in Figure 

7(Left). 

  

Figure 7. (Left) Two scenes of the Franz Josef glacier superimposed (green, 1990; purple, 2009); (Right) Two 

scenes of the Gorner glacier superimposed (green, 1984; purple, 2009). Red arrows highlight the recession. 

To further improve the segmentation results, a multi-level thresholding technique 

(Otsu’s method) was applied. Otsu’s method finds the optimum global threshold for the image 

segmentation by maximizing the between-class variance of the pixel intensities in the partitioned 

regions, here glacier vs. non-glacier. It demonstrated limited success in producing somewhat 

detailed depictions of the glacier in some images, but often could not produce sufficient separation 

between glacier and neighboring non-glacier areas. 

The final approach contained three steps and outperformed the previous methods that were 

used for glacier segmentation in this study. In the first step, the images were cropped to remove 

as much of the glacier’s surroundings as possible. This cropping process has the virtue of reducing 

the surrounding non-glacier features to improve the segmentation results. The second step was to 

binarize the cropped image for preliminary segmentation of image to glacier and non-glacier 

partitions. The final step was the application of Otsu’s method for a detailed segmentation by 

finding the optimal global threshold. Different glacial regions in the binarized image were 

compared (by counting the number of pixels in each) to choose the region comprising the largest 

connected glacier area. The selective cropping in the first step greatly facilitated the performance. 

The main advantage of this technique was the combination of initial and final elimination of non-

glacier areas. 

3.2. Statistical Modeling 

Beyond trying to identify glacier terminal points and glacial areas, the central point of the 

analysis is to identify the association between glacier terminus variation (as well as glacier area 

variation) and larger global dynamics specifically global warming driven by climate change. To this 

end, several potential models were developed to assess and analyze the potential association 

between the response and predictors. 

3.2.1. Multiple Regression 

First, multiple regression was implemented for modeling glacier variation using climate 

factors. For each glacier two separate models were constructed, one for each of the measured 

response variables, i.e., terminal point and glacier area. The general form of multiple regression 

model is: 

 y = B0 + B1x1 + B2x2 + ··· + BKxK + ε (1) 
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where Bi0s are the unknown coefficients, xi0s are the observed values of the predictors, and ε is 

the Gaussian error term. The multiple regression to model terminus location is: 

 d = B0 + B1·CO2 + B2·TMIN + B3·TMAX + B4·PRCP + B5·Global_Temp + ε (2) 

where d is temporal change of terminus (distance), TMIN is minimum local temperature, TMAX is 

maximum local temperature, Global_Temp is average global temperature, and PRCP is average 

precipitation. In a similar way, the multiple regression to model glacier area is: 

 a = B0 + B1·CO2 + B2·TMIN + B3·TMAX + B4·PRCP + B5·Global_Temp + ε (3) 

where a is glacier area. 

3.2.2. Generalized Additive Model (GAM) 

Because of the observed non-linear trends in glacier variations, the more advanced method 

of generalized additive models (GAMs) was implemented. GAM is a powerful nonparametric 

method that can potentially discover the complex nonlinear trends in the glacier variations. 

GAMs are more flexible than linear models and more interpretable than deep learning methods. 

GAM is essentially an additive model of nonparametric smooth functions [12–14] 

 g  fj xj
 (4) 

where f(x) is a smooth function of predictor X, and Y is the response variable with a distribution 

belongs to the exponential family (ex. Gaussian, Binomial, Gamma, etc.). The main advantage of 

GAM is its capability to model highly complex and nonlinear relationships. The consideration and 

the associated tradeoff between the simplicity of a model and its interpretability. GAMs relax the 

restriction that the relationship must be a simple weighted sum, like in the multiple regression 

model, and instead assume that the outcome can be modeled by a sum of arbitrary smooth 

functions of each predictor variable. The function g( ) in the GAM model (Equation (4)) is known 

as the link function. The GAM links the sum of the smoothed predictors with the mean value of 

the assumed distribution using the link function g( ), which can be chosen flexibly depending on 

the problem under consideration. In addition to the Exponential family of distributions and the link 

functions, the third essential component to the GAM is the smoothing functions fj xj
 for the 

predictor variables in the model. This implies that the predictor variables become smooth curves 

by some function f. This is achieved for each of the functions fj xj
 in the GAM by using a basis of 

splines to create the nonparametric smooths using the Restricted Maximum likelihood method 

[14–16]. The GAM method employed in the current research regresses the terminus change by: 

d = f(CO2) + f(TMIN) + f(TMAX) + f(PRCP) + f(Global_Temp) + ε 

and the area change in the glaciers against the climate factors: 

(5) 

a = f(CO2) + f(TMIN) + f(TMAX) + f(PRCP) + f(Global_Temp) + ε (6) 

In both GAM models in Equations (5) and (6), the distribution selected from the exponential 

family is the Gaussian. This distributional assumption leads to the link function being the identity 

function. The basis functions for the nonparametric smoothing are ThinPlate Splines where the 

dimension of the basis is varied from two to four basis functions over selected permutations of 

predictors in the model. The smoothing selection method REML is applied for smoothness 

selection. This leads to the functional form of the applied GAM for the glacier recession analysis. 

Subsets and permutations of the smoothed predictors will be evaluated against the full model 

using the Akaike Information Criterion (AIC) for model selection. The top performing GAM for each 

independent variable, terminal point distance, and area will be the model with lowest AIC value. 

4. Results 

After quantification of glacier area and locating its terminus, a univariate time series for the 

changes in Franz Josef and Gorner glacier’s terminal point and area were created from the 

collected Landsat image sequences. The climate data provides the independent variables for both 



Algorithms 2023, 16, 486 9 of 29 

the multiple regression and the GAM while the area, and location data are used as the response 

variable. Multiple regression and GAM were used for modeling the glacier variations. As depicted 

in Figure 8, it can be observed that the two glaciers have differing behaviors over the time. Franz 

Josef having a period where the glacier was advancing while Gorner was in a continuous state of 

retreat during the same period (1985–2010). The optimal multiple regression based on AIC for 

modeling Franz Josef variations was a combination of local temperature, global temperature, CO2, 

and average precipitation for terminal point as response, and only local temperature and average 

precipitation for area as response (Table 1). Local temperature and CO2 were identified as the 

impactful factors by multiple regression to model Gorner glacier variations using terminal point, 

while with glacier area as response, local temperature and global temperature were only impactful 

predictors identified by the model (Table 1). The optimal GAM for modeling Franz Josef variations 

was a combination of local temperature, CO2, and average precipitation using either terminal point 

or glacier area as response (Table 2). Local temperature, average precipitation, and CO2 were 

identified as the impactful factors by GAM to model Gorner glacier variations using terminal point, 

while with glacier area as response the global temperature was also included in the model (Table 

2). 

 

Figure 8. (Top) Time Series for the terminus variations 2000 to 2021 (pixel resolution is 30 meters). (Bottom) 

Time series for the area variations 2000 to 2021. 
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Table 1. Multiple Regression Models. (a) Terminal Point of Franz Josef as Response. (b) Area of Franz Josef as 

Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response. 

 (a)     

 Franz Josef Terminal Point     

 Model Index Predictors     

1 CO2      

2 CO2 Global_Mean      

3 CO2 Average_TMAX Global_Mean      

4 Average_PRCP CO2 Average_TMAX Global_Mean      

Subsets Regression           

R- 
Model 

Square 

Adj. 

RSquare 
Pred. 

RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC 

 1 0.58 0.57 0.56 19.07 599 338 607 3495 38.82 0.43 0.44 

 2 0.64 0.63 0.61 1.93 577 319 587 2871 32.59 0.36 0.39 

 3 0.65 0.63 0.61 2.21 577 319 590 2847 32.65 0.36 0.39 

 4 0.65 0.64 0.61 5.00 555 308 569 2779 33.77 0.39 0.39 

    (b)      

    Franz Josef Area      

 Model Index Predictors     

1 Global_Mean     

2 Average_TMAX Global_Mean     

3 Average_PRCP Average_TMAX Global_Mean     

4 Average_PRCP CO2 Average_TMAX Global_Mean     

Subsets Regression          

R- 
Model 

Square 

Adj. 

RSquare 
Pred. 

RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC 

 1 0.34 0.31 0.24 4.74 389  315 393 4,213,050 174,460 7043 0.77 

 2 0.43 0.38 0.27 3.02 387  314 392 3,792,603 162,351 6616 0.72 

 3 0.47 0.40 0.26 3.25 387  315 393 3,667,008 62,052 6687 0.72 

 4 0.48 0.38 0.20 5.00 389  317 396 3,805,281 173,374 7270 0.77 

     (c)     

  Gorner Terminal Point     



Algorithms 2023, 16, 486 11 of 29 

  Model Index Predictors     

1 CO2      

2 CO2 Average_TMAX      

3 Average_PRCP CO2 Average_TMAX     

4 Average_PRCP CO2 Average_TMAX Global_Mean     

Subsets Regression      

R- 
Model 

Square 

Adj. R- Pred. R- 
 C(p) AIC SBIC SBC 
Square Square 

MSEP FPE HSP APC 

 

 
Table 1. Cont. 

 (d) 

 Gorner Area 

 Model Index Predictors 

1 CO2 

2 CO2 Average_TMAX 

3 Average_PRCP CO2 Average_TMAX 

4 Average_PRCP CO2 Average_TMAX Global_Mean 

Subsets Regression            

Model 
R- 

Square 
Adj. 

RSquare 
Pred. 

RSquare C(p) AIC SBIC SBC MSEP FPE HSP APC 

1 0.88 0.88 0.88 10.5 1798 1562 1805 11,904,380,369 146,881,258 1,792,815 0.12 

2 0.89 0.89 0.88 6.0 1794 1558 1803 11,200,129,510 139,795,855 1,707,838 0.12 

3 0.89 0.89 0.88 6.7 1794 1559 1806 11,145,284,672 140,706,326 1,720,988 0.12 

4 0.89 0.89 0.88 5.0 1706 1483 1721 10,264,439,570 138,078,149 1,778,893 0.12 

Table 2. Generalized Additive: Models. (a) Terminal Point of Franz Josef as Response. (b) Area of Franz Josef 

as Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response. Find the complete 

set of models in Appendix A. 

(a)  

Franz Josef Terminal Point Distance GAM  

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr 

(>|T|) 
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Intercept −5.4894 0.3898 −14.1 2 × 

10−16 

Smooth 

Terms 
EDF REF DEF F p-

Value 

 

 

   

Model AIC Deviance Adj R2  

 

 

   

 Franz Josef Area GAM   

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr 

(>|T|) 

Intercept 3211.96 58.77 54.65 2 × 
10−16 

Smooth 

Terms 
EDF REF DEF F p-

Value 

 

 

   

Model AIC Deviance Adj R2  

 380.5743 71.9 61.8  

Table 2. Cont. 

(c)  

Gorner Terminal Point Distance GAM  

Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMAX)  

Parametri

c 

coefficient

s: 

Estimate Std Error T 

valu

e 

Pr 

(>|T|

) 

Intercept −7.3318 0.1289 −56.

87 
2 × 

10−16 

Smooth 

Terms 
EDF REF DEF F p-

Valu

e 

  

 

  

s(Average

_PRCP) 
1 1 0.1

32 
0.7

17 

Model AIC Deviance Adj 

R2 
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 324.23 94 93

.7 
 

  (d)   

 Gorner Area GAM   

 Area ~ s(CO2) + s(Average_PRCP) + s(Average_ TAVG

) 
 

Parametri

c 

coefficient

s: 

Estimate Std Error T 

valu

e 

Pr 

(>|T|

) 

Intercept 223,144 1262 17

6.8 
2 × 

10−16 

Smooth 

Terms 
EDF REF DEF F p-

Valu

e 

 

 

   

s(Average

_TAVG) 
1 1 4.3

56 
0.0

401 

Model AIC Deviance Adj 

R2 
 

 1794.759 89.4 88

.9 
 

Figure 8(Top) displays a time series for the changes to the terminal point for Franz Josef 

(left) and Gorner (right) glaciers from the years 2000 to 2021. According to the left-hand side of 

Figure 8(Top), the time series for Franz Josef’s shows that the terminal point has oscillated between 

advancing and receding in the beginning years of 2000–2010. However, after the year 2000, it has 

been continuously receding; by 2021, the terminal point had receded close to 800 m by 2021 in 

comparison to its starting point in 2000. For Gorner glacier on the right-hand side of Figure 8(Top), 

the time series displays a continuous pattern of decline over the years from 2000 to 2021. By 2021, 

the terminal point has receded close to 500 m in comparison to its starting point in 2000. 

When trying to measure the physical variations to both glaciers through their terminal point 

location, the data reflects that both glaciers have been receding significantly. As for the changes 

in area, for Franz Josef, the time series in Figure 8(Bottom) displays a similar oscillating behavior 

show in the corresponding one for terminal point, but overall, the area has decreased in 2009 

when compared to 1989. The time series for Gorner glacier on the right-hand side of Figure 

8(Bottom) continues to display a more straightforward receding effect as the area has been 

continuously decreasing from 1985 to 2009. 

4.1. Modeling Variations in Franz Josef Terminal Point and Area Using Multiple Regression Model 

Multiple regressions and generalized additive models introduced within the methods 

sections were explored to find which model could best explain the variations of both glacier’s 

terminal point and area presented above using climate factors. The best performing multiple 

regression to model Franz Josef’s terminus variations was a linear combination of precipitation, 

monthly average maximum temperature, global temperature, and CO2 with highest adjusted R2 of 

0.64, the lowest Akaike information criterion (AIC) of 555, and the lowest Singular Bayesian 

Information Criteria (SBIC) of 308 (Table 1a). The best multiple regression to model the variations 

in the area of Franz Josef could only achieve R2 of 0.40 (Table 1b). 
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4.2. Modeling Franz Josef Terminal Point’s Variations Using Generalized Additive Model 

Next, generalized additive models were implemented to address the shortcomings of 

multiple regression to model nonlinear trends. General additive models using different 

combinations of predictors were implemented and compared to find the significant predictors that 

could explain the variations in Franz Josef’s terminus. The best overall model was the linear 

combination of the smooth functions of average global mean, monthly average local minimum 

temperature, precipitation, and CO2 depicted in Figure 9(Left). The GAM had the highest adjusted 

R2 of 0.85 and the lowest AIC of 481 (Table 2a), while the multiple regression only had the highest 

adjusted R2 of 0.64 (Table 1a). As mentioned in the Methods section general additive models are 

the linear combination of nonparametric smooth functions. A visual representation of the 

smoothed function of the climate variables used within the model can be seen in Appendix B. The 

dashed lines within the figure represent the confidence intervals for each smoothed function. 

Model’s predicted output for the variation of Franz Josef’s area based on measured data is depicted 

in Figure 9(Left) and Figure 10(Left). When looking at how the model performed in terms of 

explaining the variations, it seemed to perform adequately, as the model shows a trend of 

recession followed by an advancement. Therefore, the observation of Franz Josef’s terminal point 

demonstrates that in overall Franz Josef has advanced between 2000 and 2009. 

 

Figure 9. (Left) Generalized Additive Model for Franz Josef Terminus 2000 to 2009 (pixel resolution is 30 

meters). (Right) Generalized Additive Model for Franz Josef Area 2000 to 2009. Measured (circles), trend 

(blue), and confidence interval (gray shade). 

4.3. Modeling Variations in Area of Franz Josef Using Generalized Additive Model 

To understand more about the behavior of Franz Josef glacier during this decade, variations 

of its area were also investigated. The best multiple regression model was able to only explain 

below half of variations with adjusted R2 of 0.4. However, the best GAM was able to explain about 

62% of the variability using average global mean, monthly average local maximum temperature, 

precipitation, and CO2 depicted in Figure 9(Right) and Figure 10(Right). A visual representation of 

the 4 smoothed functions contained with the GAM are displayed in Appendix B. 
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Figure 10. (Left) Generalized Additive Model for Franz Josef Terminus 2000 to 2021 (pixel resolution is 30 

meters). (Right) Generalized Additive Model for Franz Josef Area 2000 to 2021. Measured (circles) and trend 

(yellow). 

While the general shape of the local temperature and CO2 predictors have change, the 

precipitation and global temperature functions still remain liner. When comparing the model’s 

predicted outputs to the measured data (Figure 10(Right)), the model is shown to accurately 

capture the general trend of the data. In addition, when comparing this graph to the graph of Franz 

Josef’s model outputs for terminal point measurements (Figure 10(Left)), they look very similar. 

Both graphs seem to decrease from 2000–2004, and then increase right afterwards, which indicate 

that Franz Josef was actually advancing from 2004–2009 as shown by the increase in area and 

terminal point position. 

This is abnormal behavior as the majority of glaciers around the globe were retreating during 

this time period. However, for exceptional cases such as the glaciers in New Zealand, there were 

periods of advancement in terms of both the area and terminal point as a result of the increased 

precipitation. As we can see in the Figure 10, the trend marked in orange is the smoothed function 

of the model’s predicted values, while the points are the measured data. From 2000 to 2009. The 

advancement that was observed in the Figure 9 can be seen in Figure 10 as well, however after the 

advancement, there is continuous recession. The model was able to generally explain the 

variations within the terminal point and area for Franz Josef glacier for the past two decades. 

4.4. Variations in Gorner’s Terminal Point 

Now that Franz Josef physical variations have been explained using general additive models, 

the following procedure will be done for Gorner glacier. The adjusted R2 for the best multiple 

regression was 0.93 (Table 1c). Several general additive models were created taking into account 

different combination of climate factors. The best performing additive model was the linear 

combination of the smoothed function of monthly average maximum local temperature, 

precipitation and CO2 (Figure 11(Left)) with an adjusted R2 of 0.94 and an AIC of 324 (Table 2c). A 

visual representation of the shapes of the smoothed function of the climate factors in the model 

can be seen in Appendix B. The confidence intervals for these three smoothed functions are 

narrow and closely follow the functions themselves, which indicate that the current function is 

performing accurately. 
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Figure 11. (Left) Generalized Additive Model for Gorner Terminus 2000 to 2021 (pixel resolution is 30 meters). 

(Right) Generalized Additive Model for Gorner Area 2000 to 2021. Measured (circles) and trend (yellow). 

Both visual observation of predicted trend in Figure 11 and the adjusted R2 for this model 

indicate that this model can robustly explain the variations of Gorner’s terminal point. To further 

confirm this, a comparison of the model’s output (yellow) for the variations of Gorner terminal 

point to the measured data (circles) is shown in Figure 11. As seen by a close look at the predicted 

trend in comparison with the measured data points, evidently the model performs well in 

explaining the glacier variation. Overall, the general additive model produced robust results for 

explaining the temporal glacier variations. 

4.5. Variations in Gorner’s Area 

Finally, we modeled the variations in the area of Gorner glacier. The best performing multiple 

regression model achieved an adjusted R2 of 0.89. In comparison, the best performing generalized 

additive model for the changes in the area of Gorner glacier was a linear combination of the 

smoothed functions of monthly average of local temperature, precipitation, and CO2 (Figure 

11(Right)). This model achieved an adjusted R2 of 0.89 and an AIC of 1794 (Table 1d). It did not 

demonstrate an improvement in comparison with the best multiple regression model with the 

same adjusted R2 of 0.89. However, GAM could better decipher the relation between the glacier 

variations and climate factors. The general additive model was comprised of three different 

smoothed function of climate factors, which can be seen in Appendix B. The smoothed functions 

provided robust model as seen by how close the confidence intervals (dashed lines) are to the 

actual smoothed functions. The model did have an adjusted R2 of 0.89, so it can be indicated that 

the model produced promising results to explain the glacier variations. 

By investigating different models in this study, it was concluded that GAM outperformed 

multiple regression in modeling temporal variations of the glacier’s terminal point and area. The 

proposed general additive models in this research were able to explain the variations fairly 

accurately using climate factors. Smoothed functions of temperature, local precipitation, and CO2 

were identified as significant predictors in all implemented GAMs in this study, and it can be 

concluded that there is a strong relationship between the glacier’s temporal physical variations 

(for both Franz Josef and Gorner) and the climate factors. 

5. Discussion 

Two separate response variables representing glacier changes were quantified using Landsat 

imagery. First, spatial location of glacier terminus was traced over time as a proxy to glacier change. 

Second, glacier area was measured over time to quantify glacier variations. Response variables 

modeled using multiple regression and GAM. GAM could better model the nonlinear glacier 
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variations. Global CO2 level, temperature (both local and global), and precipitation were identified 

as significant factors to model glacier variations. The results of this study agree with the previous 

research emphasizing the importance of local climate factors [17,18]. These finding are in line with 

what is currently known about the physics of glacier motion. The interaction between the climate 

factors could impact the glacier changes and potentially may help to better understand the 

complex dynamics of global climate subtleties. 

As a proxy, spatiotemporal variation of glacier’s terminal point, offers valuable insights about 

glacier change. However, terminus variations do not provide sensible quantification of changes in 

the glacier’s size. Hence, quantification of glacier surface area by the proposed approach in this 

paper, provides essential insights about glacier’s size by measuring its surface area, in comparison 

with the previous works measuring terminus variations such as [19–26]. 

Moreover, due to the non-linear trends in the glacier variations, GAM could substantially 

improve the modeling of glacier’s variation using climate factors. The relation between glacier 

change and climate factors cannot be deciphered by linear models such as multiple regression. 

Hence, by the additional flexibility of a nonparametric approach, GAM could discover the nonlinear 

trends in the glacier variations that could not be inferred using linear models in the previous works 

[7–9]. 

Although the proposed semi-automated image segmentation pipeline is a promising 

approach, it still requires user’s input to customize it for different glaciers as distribution of pixel 

intensities changes in different scenes and over different spectral bands. This can prevent broad 

application to a large number of glaciers. Nevertheless, this study provides some proof of concept 

and valuable insights about complexity of this challenging problem. The segmentation can possibly 

be improved by the inclusion of processed bands using fusion of multiple Landsat spectral bands. 

Moreover, the computational cost of the entire process demands for an efficient data cleaning 

process in the preprocessing phase. Considering the scale and coverage of Landsat imagery along 

with the large number of glaciers around the globe, the clean-up process is not a trivial task. 

6. Conclusions 

Human communities rely on glaciers for water supply, agriculture, and drinking water. Rising 

temperatures due to the climate change cause mountain glaciers to melt and changes the water 

availability. Hence, modeling glacier variations in response to climate change is a pressing issue. 

Given that each glacier system is likely to be distinct both in the climate variations that it has 

experienced and in its response to these variations, a generic model may not be pertinent to model 

spatiotemporal variations of different glaciers. Moreover, historical measures of surface area or 

terminus location is essential to predict future spatiotemporal variations of glaciers. However, 

direct ground measurement is not feasible due to the remote nature of glaciers. Satellite imagery 

provides a practical approach to measure glacier area or to locate glacier terminus over time 

through remote sensing. 

This work is in continuation of our previous works and is motivated by expedited recession of 

many glaciers around the globe while there is not a readily automated or semi-automated system 

available to quantify variations of a large number of mountain glaciers. In this work, a semi-

automated pipeline was introduced to quantify glaciers in multispectral Landsat imagery. Data are 

gathered as a time sequence of spatially registered multispectral satellite imagery. The geometry 

of individual glaciers has been obtained using various image processing techniques including 

supervised classification, edge detection, and region segmentation. Then, two supervised learning 

methods including a parametric method (multiple regression) and a nonparametric method 

(generalized additive model) were implemented to identify climate factors that can impact glacier 

changes. This model can be customized for individual glaciers as the terminus position or surface 

area of individual glacier systems depend strongly on local basin geometry and local variations in 

temperature and precipitation. There are limiting factors to the accuracy of the predicted response 

including the resolution of satellite imagery, the visibility of the glacier in the images, the frequency 

of imaging, and the signal to noise ratio of satellite sensors. Several factors contribute to partial 

loss of contrast and variability in the quantified response value. Among them, some can be visually 
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recognized such as the clouds and mountain shades. But some others are more intangible such as 

debris atop glacial ice, snow, and variations in humidity. 
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Appendix A GAM Summary Tables 

Gorner Area GAM  

Area ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 225,484 1279 176.3 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TAVG) 1 1 3.114 0.0817 

s(CO2) 1.186 1.347 96.1 2.00 × 10−16 

s(Average_PRCP) 1 1 0.419 0.5194 

s(Global_Mean) 1 1 4.944 0.0292 

Model AIC Deviance Adj R2  

 1706.996 89.3 88.7  

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 225,484 1279 176.3 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMAX) 1 1 2.866 0.0935 

s(CO2) 1.295 1.525 83.051 2.00 × 10−16 

s(Average_PRCP) 1 1 0.562 0.4555 

s(Global_Mean) 1 1 5.084 0.0271 

Model AIC Deviance Adj R2  

 1707.223 89.3 88.7  

 

Area ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  
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Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 225,484 1285 175.5 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMIN) 1 1 2.094 0.1521 

s(CO2) 1.327 1.576 78.722 2.00 × 10−16 

s(Average_PRCP) 1 1 0.347 0.5578 

s(Global_Mean) 1 1 5.353 0.0235 

Model AIC Deviance Adj R2  

 1708.029 89.2 88.6  

Area ~ s(Average_TAVG) + s(CO2) + s(Global_Mean)   

Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 225,484 1273 177.2 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TAVG) 1 1 3.73 0.0572 

s(CO2) 1.267 1.463 87.025 2.00 × 10−16 

s(Global_Mean) 1 1 5.292 0.0241 

Model AIC Deviance Adj R2  

 1705.029 89.2 88.8  

Area ~ s(CO2) + s(Global_Mean)    

 Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

 Intercept 225,484 1287 175.3 2.00 × 10−16 

 Smooth Terms edf ref def F p-Value 

 s(CO2) 1.648 1.876 68.22 2.00 × 10−16 

 s(Global_Mean) 1 1 9.24 0.00324 

 Model AIC Deviance Adj R2  

1706.643 88.9 88.5  

Area ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)   

Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 225,484 1286 175.4 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_PRCP) 1.118 1.222 1.093 0.35734 

s(CO2) 1.615 1.852 69.493 2.00 × 10−16 

s(Global_Mean) 1 1 8.022 0.00591 

Model AIC Deviance Adj R2  
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 1707.759 89.1 88.5  

Gorner Area GAM     

Area ~ s(CO2) + s(Average_P RCP) + s(Average_T AVG)   

Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

Intercept 223,144 1262 176.8 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_PRCP) 1 1 0.989 0.3232 

s(CO2) 1.492 1.742 364.248 2.00 × 10−16 

s(Average_TAVG) 1 1 4.356 0.0401 

 

 Model AIC Deviance Adj R2  

1794.759 89.4 88.9  

Area ~ s(Global_Mean) + s(Average_PRCP) + s(Average_TAVG)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 225,485 3150 104.9 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

  

 

  

s(Average_TAVG) 1 1 1.125 0.292 

Model AIC Deviance Adj R2  

 1787.65 69.2 68  

     

Gorner Terminal Point Distance 

GAM 
   

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.1306 −52.96 2.00 × 
10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMIN) 1.485 1.818 0.623 0.616 

s(CO2) 2.503 2.823 111.873 2.00 × 
10−16 

s(Average_PRCP) 1 1 0.037 0.848 

s(Global_Mean) 2.21 2.598 0.879 0.535 

Model AIC Deviance Adj R2  
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 310.1617 93.9 93.4  

Distance ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.1306 −52.98 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMAX) 1 1 1.542 0.218 

s(CO2) 2.532 2.842 114.937 2.00 × 

10−16 

s(Average_PRCP) 1 1.001 0.043 0.838 

s(Global_Mean) 2.055 2.456 0.661 0.67 

Model AIC Deviance Adj R2  

 308.9078 93.4 93.9  

Distance ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.1308 −52.9 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TAVG) 1.001 1.002 1.173 0.282 

s(CO2) 2.528 2.84 113.304 2.00 × 

10−16 

s(Average_PRCP) 1 1 0.027 0.871 

s(Global_Mean) 2.097 2.96 0.721 0.635 

Model AIC Deviance Adj R2  

 309.2165 93.9 93.4  

 

Distance ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.1308 −52.9 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TAVG) 1.001 1.002 1.173 0.282 

s(CO2) 2.528 2.84 113.304 2.00 × 

10−16 

s(Average_PRCP) 1 1 0.027 0.871 

s(Global_Mean) 2.097 2.96 0.721 0.635 

Model AIC Deviance Adj R2  

 309.2165 93.9 93.4  
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Distance ~ s(CO2) + 

s(Global_Mean) 
   

 Parametric coefficients: Estimate Std Error T value Pr (>|T|) 

 Intercept -6.9179 0.1319 −52.44 2.00 × 

10−16 

 Smooth Terms edf ref def F p-Value 

 s(CO2) 1.938 1.996 190.109 2.00 × 
10−16 

 s(Global_Mean) 1 1 0.878 0.351 

 Model AIC Deviance Adj R2  

306.0558 93.5 93.3  

Distance ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.1325 −52.2 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(CO2) 1.938 1.996 185.669 2.00 × 
10−16 

s(Average_PRCP) 1 1 0.182 0.67 

s(Global_Mean) 1 1 0.713 0.401 

Model AIC Deviance Adj R2  

 307.846 93.5 93.2  

Gorner Terminal Point Distance 

GAM 
   

Distance ~ s(CO2) + 

s(Average_PRCP) + s(Average 
_TMAX)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −7.3318 0.1289 −56.87 2.00 × 
10−16 

Smooth Terms edf ref def F p-Value 

  

 

  

s(Average_PRCP) 1 1 0.132 0.717 

Model AIC Deviance Adj R2  

 324.23 94 93.7  

Distance ~ s(Global_Mean,) + s(Average_PRCP) + s(Average_TMAX)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept −6.9179 0.2971 −23.29 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 
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s(Average_TMAX) 1 1 5.18 0.0253 

  

 

  

Model AIC Deviance Adj R2  

 453.7315 67 65.9  

Franz Josef Area GAM  

Area ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3212 64 50.19 2.00 × 
10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMIN) 1 1 0.295 0.5929 

s(CO2) 2.442 2.77 4 2.55 × 
10−2 

s(Average_PRCP) 1 1 3.604 0.0721 

s(Global_Mean) 1 1 2.508 0.1289 

Model AIC Deviance Adj R2  

 382.8962 64.5 54.7  

Franz Josef Area GAM     

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean) 

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3211.96 58.77 54.65 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMAX) 1.988 2.4 1.671 0.186 

s(CO2) 2.311 2.654 4 6.33 × 10−2 

s(Average_PRCP) 1.363 1.607 1.167 0.2345 

s(Global_Mean) 1 1 6.232 0.0224 

Model AIC Deviance Adj R2  

 380.5743 71.9 61.8  

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)  

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3211.96 64.33 49.93 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 
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s(Average_PRCP) 1 1 3.363 0.0816 

s(Global_Mean) 1 1 2.264 0.148 

Model AIC Deviance Adj R2  

 383.1614 64.1 54.2  

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3211.96 70.71 45.42 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMAX) 1 1 0.049 0.82713 

s(CO2) 1.922 1.994 10 1.08 × 10−3 

s(Average_PRCP) 1 1 1.466 0.23938 

Model AIC Deviance Adj R2  

 386.475 53.3 44.6  

Area ~ s(CO2) + s(Average_PRCP)    

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3211.96 69.14 46.45 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(CO2) 1.927 1.995 11 7.85 × 104 

s(Average_PRCP) 1 1 1.77 0.196995 

Model AIC Deviance Adj R2  

 384.5096 53.3 47.1  

Area ~ s(Global_Mean) + s(CO2) + s(Average_PRCP)   

Parametric 

coefficients: 
Estimate Std Error T value Pr (>|T|) 

Intercept 3211.96 64.58 49.73 2.00 × 10−16 

Smooth Terms edf ref def F p-Value 

s(Global_Mean) 1 1 4.496 0.046 

s(CO2) 1.905 1.991 5 1.92 × 10−2 

s(Average_PRCP) 1.209 1.374 2.941 0.1213 

Model AIC Deviance Adj R2  

 382.2663 61.4 53.8  

     

Franz Josef Terminal Point 

Distance GAM 
   

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean) 
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Parametric 

coefficients: 
Estimate Std Error T value Pr 

(>|T|) 

Intercept -5.4894 0.3898 −14.1 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMIN) 1.274 1.49 3.456 0.073 

s(CO2) 2.868 2.987 47.024 2.00 × 

10−16 

s(Average_PRCP) 1 1 0.046 0.8303 

s(Global_Mean) 1 1 5.429 0.0223 

Model AIC Deviance Adj R2  

 480.799 86.1 85  

Distance ~ s(CO2) + s(Global_Mean)    

Parametric coefficients: Estimate Std Error T value Pr 

(>|T|) 

Intercept −5.2672 0.3834 −13.74 2.00 × 
10−16 

Smooth Terms edf ref def F p-Value 

s(CO2) 1.991 2 74.292 2.00 × 

10−16 

s(Global_Mean) 1.25 1.437 3.905 0.0283 

Model AIC Deviance Adj R2  

500.766 84.9 84.3  

Distance ~ s(Average_TMIN) + s(CO2) + s(Global_Mean)   

Parametric coefficients: Estimate Std Error T value Pr 

(>|T|) 

Intercept −5.2672 0.3738 −14.09 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

 

 

  

s(Global_Mean) 1 1 5.575 0.0204 

Model AIC Deviance Adj R2  

497.0568 85.8 85.1  

Distance ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)   

Parametric 

coefficients: 
Estimate Std Error T value Pr 

(>|T|) 

Intercept −5.4894 0.3984 −13.78 2.00 × 
10−16 

Smooth Terms edf ref def F p-Value 

s(CO2) 1.99 1.999 70.418 2.00 × 

10−16 
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s(Average_PRCP) 1 1 0.086 0.7705 

s(Global_Mean) 1.354 1.582 2.68 0.0608 

Model AIC Deviance Adj R2  

 482.9369 85.1 84.3  

Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMIN)   

Parametric 

coefficients: 
Estimate Std Error T value Pr 

(>|T|) 

Intercept −5.7241 0.3942 −14.52 2.00 × 

10−16 

Smooth Terms edf ref def F p-Value 

s(Average_TMIN) 1.471 1.721 2.972 0.0414 

s(CO2) 2 2 225.629 2.00 × 

10−16 

s(Average_PRCP) 1 1 0.001 0.9839 

Model AIC Deviance Adj R2  

 487.6997 85.9 85.1  

Appendix B Modeling Franz Josef 

Terminus 
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Modeling Franz Josef Area 

 

Modeling Gorner Terminus 
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Modeling Gorner Area 
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