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SUMMARY

The complex functions of neuronal synapses depend on their tightly interconnected protein network, and
their dysregulation is implicated in the pathogenesis of autism spectrum disorders and schizophrenia.
However, it remains unclear how synaptic molecular networks are altered biochemically in these disorders.
Here, we apply multiplexed imaging to probe the effects of RNAi knockdown of 16 autism- and schizo-
phrenia-associated genes on the simultaneous joint distribution of 10 synaptic proteins, observing several
protein composition phenotypes associated with these risk genes. We apply Bayesian network analysis to
infer hierarchical dependencies among eight excitatory synaptic proteins, yielding predictive relationships
that can only be accessed with single-synapse, multiprotein measurements performed simultaneously in
situ. Finally, we find that central features of the network are affected similarly across several distinct gene
knockdowns. These results offer insight into the convergent molecular etiology of these widespread

disorders and provide a general framework to probe subcellular molecular networks.

INTRODUCTION

The functional complexity of the brain is enabled by trillions of
chemical synapses that form connections among its ~10'
neurons. Each synapse is capable of analog computation that in-
tegrates its activity history, chemical environment, and the state
of its pre- and post-synaptic neurons to modulate communica-
tion through synaptic plasticity. This computation is achieved'
in large part by the synaptic molecular network, a dynamic, com-
partmentalized biomolecular system of hundreds of proteins®™
that includes constantly varying levels and activity states of
receptors, scaffolding proteins, kinases, and other protein types.
This proteomic diversity likely underlies the remarkable cell- and
context-specific functional diversity even among synapses of
the same type.®® Numerous studies have revealed mechanistic
connections between two or three synaptic components at a
time, providing the foundation to integrate these connections
into a broader context of many-component networks. However,
because of the high complexity and interconnectedness of such
networks, this integration requires simultaneous single-synapse
measurement of numerous proteins, a technique we developed
and applied previously to analyze synapse compositions.”

aaaaaaa

The synaptic molecular network is tightly connected to cogni-
tive disorders, with synaptogenesis and plasticity increasingly
appreciated as molecular targets for psychiatric treatments.®'°
Accumulating evidence also points to synaptic biochemistry as a
focal point of the pathophysiology of psychiatric, neurodevelop-
mental, and neurodegenerative diseases.’'™'” Autism spectrum
disorder (ASD) and schizophrenia (SCZ) are two such conditions
that manifest in a range of specific higher cognitive symptoms
that range in intensity from healthy neurodiversity to debilitating
brain dysfunction. These latter conditions typically include
changes in social and communication behavior;'®'® altered
perception and sensory habituation, including self-stimulatory
behavior;'®? adherence to patterns and focused interests;'®
impaired language acquisition and use;'®?° as well as general in-
tellectual disability>**> and psychosis.?® While divergent in
symptom presentation, they are often studied genetically in the
same context because of similarities in risk genes and possible
functional and pathological associations.?’2°

ASD and SCZ are highly heritable®**' and genetically hetero-
geneous,*** with many identified risk genes, including rare,
highly penetrant de novo mutations®® as well as many common
variants that contribute small increases in risk. Thus, a central
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question is whether the genetic variants that increase risk for
ASD or SCZ share similar downstream molecular etiologies
and, if so, what their mechanisms are. Genome-wide association
studies and rare-variant sequencing studies have revealed the
prevalence of synaptic genes, 1217293641 including adhesion,
scaffolding, ion channel, and local translation control proteins,
as well as transcription factors upstream of them, among those
associated with ASD and SCZ.%?~*¢ Additional evidence points
to consistent changes in synaptic structural and functional
features, including dendritic spine morphology,*” excitation/inhi-
bition ratios,** " and global features of gene expression and
protein interaction networks,'"'”-°2°® which are common to
different genetic models. Research that implicates perturbations
in brain-wide connectivity patterns,®*°® possibly related to defi-
cits in predictive processing capacity,® supports the notion that
a fundamental synaptopathology expressed variably throughout
the brain may contribute to these disorders.'® Physical protein-
protein interaction approaches, such as yeast two-hybrid (Y2H)
tests and co-immunoprecipitation (colP),°>° have established
interaction networks involving synaptic proteins and their
changes in vivo in autistic individuals and autism models,
demonstrating the promise of studying the synaptic molecular
network as a focal point of autism pathogenesis. However, these
studies fall short of measuring changes to joint distributions of
protein expression levels or identifying perturbed causal con-
nections between relevant proteins.

To characterize how synaptic molecular composition is
affected across genetic perturbations associated with ASD
and SCZ, we applied RNAi-mediated knockdown of 16 canoni-
cal, highly penetrant risk genes associated with either ASD,
SCZ, or both at the onset of synaptogenesis. When a mature
and stable synapse population was established in each genetic
context, we measured the amounts of each of 10 synaptic pro-
teins across individual synapses using probe-based imaging
for sequential multiplexing (PRISM).”°"°8 PRISM is a recently
introduced multiplexed imaging technique that uses single-
stranded DNA (ssDNA)-conjugated antibodies or peptides
against desired targets that are confocally imaged sequentially
using fluorescently labeled single-stranded locked nucleic acid
(ssLNA) imaging probes. The affinity of imaging probes for their
targets depends on ionic strength, allowing sequential rounds
of imaging of multiple proteins in the same sample and fields
of view by exchanging imaging strands using high- and low-
salt buffers. Thus, this imaging method provides a combination
of extensive multiplexing, moderate throughput, minimal disrup-
tion to delicate synapse structures, and single-synapse
resolution.

The PRISM imaging output consists of images of the same
synaptic puncta over numerous protein channels. Integrating
fluorescence intensity over individual puncta and assigning
puncta across channels to the same synapse yields individual
protein measurements per synapse.”°” We refer to the total inte-
grated fluorescence intensity per protein at a given synapse as
the local synaptic protein level. With this approach, in a single
experiment, we can generate a type-resolved systematic view
of protein-level changes caused by different genetic knock-
downs as well changes to distinct, compositionally defined
synaptic populations, as performed previously in response to
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chemical perturbation.®” In the current study, these changes
included a global synaptic protein increase with knockdown of
Pten, differential changes in response to Cul1 knockdown, a
potentially compensatory increase in synaptic PSD95 with
knockdown of Grin2a, and several unique synaptic phenotypes
resulting from Dyrk1a knockdown.

Leveraging the unique ability of single-synapse, multiprotein
measurements from PRISM to provide a high-dimensional joint
probability distribution (PD) of synapses in composition space,
we additionally sought to infer the synaptic protein influence net-
works that generated the measured protein distributions. To-
ward this end, we used Bayesian network (BN) inference, a
tool used previously to reconstruct entire signaling pathways
from multiplexed single-cell data.®® BNs are a framework to fac-
tor a joint PD into a product of individual conditional PDs. This
can be represented by a directed acyclic graph between
measured nodes, in which graph edges represent direct condi-
tional dependencies between individual nodes (i.e., retaining
only those connections that cannot be explained by mutual
dependence on a third node) as well as the estimated causal
direction of the pairwise dependencies. In this study, each
node refers to the local synaptic level of a certain protein. Sub-
structures in the resulting model generated testable predictions
of causal connections (e.g., the hierarchy in which perturbing
A affects B and C) between protein levels, some of which were
consistent with known protein roles and interactions and others
that were discovered anew, to the best of our knowledge.

In particular, the causal chain by which F-actin determines
post-synaptic PSD95 levels, which, in turn, determines post-
synaptic SHANKS levels, we validated independently via direct
perturbations, thereby establishing a new causal hypothesis
that shapes synaptic protein distributions and, by confirming a
novel prediction presented by the model, generating confidence
in the new model as a whole. Finally, we present evidence of
convergent changes in the inferred synaptic molecular network
that are caused by distinct genetic knockdowns, specifically in
the strengths of transsynaptic and intra-postsynaptic edges,
offering evidence of a convergent molecular etiology across
ASD/SCZ-associated genes.

RESULTS

Effects of ASD- and SCZ-associated gene knockdowns
on the synaptic molecular system

The following core synaptic proteins were characterized using
PRISM to provide snapshots of the synaptic molecular sub-
network (Figure 1A). Synapsin1 was used to define all synapses,
with vGIuT1 and vGAT used to differentiate glutamatergic from
GABAergic synapses. Other proteins included Bassoon, a cen-
tral presynaptic scaffolding protein that served as a proxy for
active zone size,®® and the glutamate receptor subunit GIuR2,
which served as an indicator of synapse strength.®’ Filamentous
B-actin (F-actin), measured via phalloidin, was included as the
core of the dendritic spine cytoskeleton that is locally regulated
by several ASD/SCZ-associated genes (e.g., Trio, Pten, and
Dyrk1a) and whose dysregulation is implicated in various synap-
topathologies.®”®® Finally, four scaffolding proteins were
included that have crucial roles in shaping the post-synaptic
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density: PSD95, Homer1a, and SHANKS in excitatory synapses
and Gephyrin in inhibitory synapses. MAP2 staining via conven-
tional immunofluorescence was also used to trace dendrites to
the degree feasible in dense cultures and constrain punctum as-
signments to synapses as well as to align images from different
imaging probe exchange rounds.”>’

For genetic perturbations, 10 autism genes (Figure 1B) were
chosen as the best-scoring targets in the Simons Foundation
Autism Research Initiative database®"°® (Simons Foundation
Autism Research Initiative [SFARI] score), half of which are impli-
cated in SCZ as well. Six additional SCZ-specific genes were
chosen from the highly penetrant de novo mutations identified
by Singh et al.®® A mixture of four small interfering RNA (siRNA)
reagents was used for each gene, and each siRNA treatment
was separately validated by qRT-PCR for reduction in mRNA
levels in cultured hippocampal neurons (Figures S1A-S1C).
The siRNA reagents appeared to act more similarly to a small-
molecule treatment than a transfected gene, with transfection
universal (>99% of cells) and concentration dependence occur-
ring even at low doses (Figures S1D-S1F). A non-targeting
siRNA mix (NonT) was included as a negative control and used
for treatment comparisons throughout results.

To measure the effect of each gene knockdown on synaptic
protein distribution, we treated hippocampal neuronal cultures
on day in vitro (DIV) 6 with one of the corresponding
siRNA reagent mixes and fixed the cultures at DIV 19 to image us-
ing PRISM (STAR Methods). We integrated an automated liquid-
handling platform for probe exchange to complete seven imaging
rounds of the same 60 cultures (3—-4 per treatment group) in under
12 h. The resulting fluorescent images of the same synapses
across imaging rounds (Figures 1C and 2A) were automatically
segmented, classified, and quantified using CellProfiler®®®’
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Figure 1. Genes and targets

(A) Schematic summarizing the approximate syn-
aptic context of the 10 imaged targets.

(B) Venn diagram of gene knockdowns.

(C) Representative images of the same neuronal
culture in different imaging rounds, showing colo-
calized puncta of each protein. Bottom right: auto-
matically identified and segmented excitatory (red)
and inhibitory (blue) synapses. Scale bars, 5 um.

Bassoon

(STAR Methods). We combined data
from 4 such experiments (plates),
where each used embryonic day 18
(E18) neurons from a different pregnant
rat for a total of 3.5 x 10° 11-protein syn-
aptic measurements across 220 separate
neuronal cultures in 18 treatment groups.
To account for variability in staining and
imaging conditions between plates, fluo-
rescence intensity values of each protein
channel were normalized by the average
intensity of that channel in untreated cul-
tures of that plate.

Automatically segmented puncta, iden-
tified as above-threshold intensity peaks
within a size range (STAR Methods) in each protein channel,
were assigned to specific individual synapses based on overlap
with Synapsin1 puncta (STAR Methods). The existence of a punc-
tumin a protein channel assigned to a specific synapse was taken
as the presence of that protein in the synapse, and the integrated
fluorescence intensity of a certain protein channel across its syn-
apse-associated punctum was assumed to be proportionate to
the total level of that protein in the synapse. Based on these
data, we first examined the individual effects of different siRNA
treatments on three global parameters: excitatory:inhibitory (E:l)
synapse ratio (Figure 2B), fraction of GIuR2— excitatory synap-
ses®® (Figure 2C), and dendrite growth, measured as overall
area stained by MAP2 (Figure 2D). E:l synapse ratio, implicated
previously to be dysregulated in ASD and SCZ,*® was calculated
as the ratio of (+vGIuT1, —vGAT) to (—vGIuT1,+vGAT) synaptic
puncta. This ratio was, on average, ~5:1 and was significantly
increased in knockdown of Dyrk1a, consistent with reports of in-
verse correlation of Dyrk1a expression to E:l ratio in vivo.*° It also
increased in knockdown of Grin2a, Shank3, and Chd8.

Next, by examining the average levels of each measured pro-
tein across synapse populations, we created a map of how the
synaptic levels of each protein were, on average, affected by
each treatment (Figure 2E). Beyond this overall characterization,
we observed several novel synaptic phenotypes, the strongest
of which included (1) a 2-fold increase in Homer1a under knock-
down of Setd7a, a nuclear regulatory lysine methyltransferase,
while knockdown of Setd5, a gene of the same family, decreased
Homer1a; (2) an 80% increase in synaptic F-actin after knock-
down of Cull (other proteins including Synapsin1 are
decreased); (3) knockdown of Grin2a leading to an ~70% in-
crease in PSD95 as well as increases in other proteins, including
Homer1a, GIuR2, and Bassoon; (4) a 2-fold decrease in synaptic
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Figure 2. Synapse effects of siRNA knockdowns

(A) Representative images from medium-sized dendrites across 4 channels. Bottom left scale bar, 5 um.
(B) Excitatory (Syn+, vGluT1+, vGAT—) to inhibitory (Syn+, vGluT1—, vGAT+) count ratios.

(C) Percentage of GluR2— synapses from all excitatory synapses.

(D) Estimates of total dendrite proliferation from MAP2 staining, normalized to NonT.

(B-D) Blue lines indicate mean and SEM of NonT measurements.

(E) Log fold change (relative to NonT) of mean levels of each protein in excitatory and inhibitory synapses. Coloring of genes in (B)-(E): red, only ASD; blue, only

SCZ; purple, both.

(F-1) Validation experiments with chronic treatments (DIV 6-19) measured by conventional immunofluorescence (IF). Mean synaptic protein levels or other
measurements are depicted as Log, fold change from control-treated (for chemical treatment experiments) or NonT siRNA-treated (for RNAi) wells.

(F) Treatment with bpV(pic), a PTEN inhibitor.
(G) Treatment with harmine, a Dyrk1a inhibitor.
(H) SHANK and mGIuR1/5 after knockdown of Shank3.

() PSD95, NR1, and density of NR1+ synapses after short and chronic NMDAR blockade with D-APV or chronic RNAi knockdown of Grin2a.
Error bars are mean + SEM across wells. *p < 0.05, **p < 0.01, **p < 0.001, two-sided t test.

F-actin following knockdown of Dyrk1a, accompanied by de-
creases in other proteins, including Bassoon and Homer1a;
and (5) knockdown of Trio leading to a decrease in synaptic
F-actin and SHANKS. We did not identify significant differential
effects on the same protein in the context of excitatory versus
inhibitory synapses.
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The same images could also be used to assess changes in
global protein expression (Figures S2A-S2C), either somatic
(i.e., fluorescence in synapse-excluded neuronal bodies) or to-
tal (averaged fluorescence over the entire image). A few
notable differences from synapse-specific phenotypes ap-
peared. For example, Cul1 knockdown showed a significant
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increase in synaptic F-actin, but not in global somatic levels, in
parallel with synaptic and (stronger) somatic reduction in other
proteins, raising the possibility of a compensatory connection,
in either direction, between an increase in F-actin and reduc-
tion in other postsynaptic proteins via an unknown mecha-
nism, possibly related to the role of Cull in regulating SPAR
turnover.®°

Some treatment effects in Figure 2E have been reported pre-
viously or were expected based on pre-existing knowledge of
mechanisms involved. For example, we confirmed that siRNA
knockdown of Shank3 led to a marked reduction in SHANK3
levels at synapses. Knockdown of Pten led to a broad increase
in nearly all synaptic markers, consistent with its role as a nega-
tive regulator of phosphatidylinositol 3-kinase (PI3K)-dependent
neurite and synapse proliferation.”®

To support the validity of RNAi with PRISM to reveal pheno-
types directly connected to gene function, we performed
chemical inhibition and knockdown experiments, measuring
the synaptic response using conventional immunofluores-
cence (Figures 2F-2l). These showed that (1) treatment with
bpV(pic), a PTEN phosphatase inhibitor, increased synaptic
F-actin and PSD95, mimicking Pten knockdown in a dose-
dependent manner (Figure 2F); (2) treatment with harmine, a
Dyrk1a inhibitor, decreased F-actin, mimicking Dyrk71a knock-
down in a dose-dependent manner (Figure 2G) and also
increased the fraction of GIuR2+ synapses (Figures S2D-
S2F); (3) knockdown of Shank3 reduced synaptic SHANK as
well as mGIuR1/5, as reported previously’' (Figure 2H); and
(4) knockdown of Grin2a increased PSD95 levels and density
of NMDAR-containing synapses (Figure 2l). We also noted
that the effects of Dyrk1a inhibition on synaptic F-actin and
the fraction of GIuR2+ synapses were similar with and without
application of heat-induced antigen retrieval (Figures S2D and
S2E), suggesting that the observed phenotypes are likely due
to changes in protein content and not antigen accessibility.
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I sHANKS Finally, we noted that the effect on the
GluR2 GluR2+ fraction was similar whether

staining for total or only externalized

GIuR2 (Figure S2F), indicating that,

although GIluR2— synapses identified

in our screen are not necessarily silent®®

and vice versa (because GluR2 may be
present but below the threshold or present but not external-
ized), they may act as a reasonable proxy for changes in silent
synapse populations.

To test the hypothesis that PSD95 levels respond to mitigate
decreased NMDAR presence or activity, we treated cultures
for either a short time (48 h) or chronically (DIV 6-19) with the
NMDAR blocker D-aminophosphovalerate (D-APV)"? (Figure 2l).
After the short treatment, NMDAR levels per synapse decreased
~30%. This effect disappeared after 2 weeks, accompanied by
an increase in PSD95 and excitatory synapse density that
mimics Grin2a knockdown, consistent with a compensatory
response.

Multiplexed imaging reveals clusters of hierarchical
synaptic protein compositions

We applied uniform manifold approximation and projection
(UMAP)"®7* to the 10-dimensional dataset of synapse protein
levels, yielding the 2D projection in Figure 3A of different synapse
compositions. The distribution of synapses shows distinct clus-
ters defined combinatorially by the presence or absence of
certain proteins, similar to our previous observations.®” These
included two inhibitory clusters and several excitatory clusters.
Protein absences that defined certain clusters may have resulted
from “true” complete absences or merely from levels below
threshold. However, we observed similar distributions when
changing threshold levels for synapse identification (to 75%
and 133% of defined levels; Figure S3), indicating that the clus-
ters arose at least in part from qualitatively different synapse
compositions.

All treatment groups had synapses in all 9 clusters (Figure S4),
with some population changes between clusters observed as a
result of different gene knockdowns (Figures 3C and S4). These
changes were consistent with the changes observed in mean
protein levels in Figure 2E. For example, Pten knockdown, which
increased all excitatory proteins save for GluR2, was seen here
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Figure 4. BN inference on simulated networks

(A) Example BN used to simulate PRISM-like data.

(B) Network reconstructed from simulated data produced by the network in (A).
(C and D) Calculated edge strengths of the edges in (B) versus defined inter-
action coefficients in (A). (C) Edge strengths calculated by parent-controlled
correlations. (D) Total (uncorrected) correlations.

(E) Example non-Bayesian network with cycles (C-E-D and B-D-G-H) used to
simulate PRISM-like data.

(F) Reconstructed BN from simulated data produced by the network in (E).
Cycles cannot be represented, but the overall structure and relative edge
strengths are preserved.

Arrowhead sizes represent predefined interaction parameters axy in (A) and
(E) and inferred edge strengths in (B) and (F) (see Methods).
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to enrich cluster 2 (GluR2—, positive for all others) at the expense
of clusters 1 (GluR2+) and 6 (F-actin—). Nevertheless, they pro-
vided more detailed information about the specific synapse pop-
ulation changes that occurred as a result of gene knockdown.

In addition, we were able to use spatial information to aid in in-
terpreting protein combinations. A small fraction of puncta was
identified as vGIuT1+, vVGAT—, and Gephyrin+ (Figures S5A
and S5B), despite Gephyrin being well established as an inhibi-
tory synaptic protein.”® However, upon closer examination, we
observed that Gephyrin-Synapsin puncta distances in that sub-
set were 50% greater than expected (Figure S5C), leading us to
infer that these puncta were probably not associated physically
with the other excitatory markers and to exclude them from
future analyses.

Finally, we observed that not every combination of proteins
was present (Figure 3B). For example, synapses that were nega-
tive for Bassoon or B-actin typically lacked or had very low levels
of other post-synaptic proteins, indicating a hierarchy in protein
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dependencies on one another, which we sought to characterize
systematically using BN inference, as previously applied to
signaling networks.>®

BN inference of the glutamatergic synapse

All excitatory synaptic proteins were positively correlated with
one another (Figure 3D). However, when we examined each
pair individually by measuring their correlation controlled via
stratification for all other six proteins (STAR Methods), some cor-
relations disappeared (Figure 3E). This revealed protein pairs
that were not directly connected but only correlated through their
inter-dependence on a third protein, which could be either a
common effector (A<~C—B) or an intermediate (A—C— B).
To systematically map which causal connections among excit-
atory synaptic proteins were direct versus indirect and to estab-
lish the directionality of their inter-dependence, we derived a BN
from the 8-dimensional distribution of protein levels in excitatory
synapses.

This approach was first tested on simulated PRISM-like BNs —
high-dimensional distributions that mirrored real PRISM data but
with the distributions of variables conditional on one another in
predetermined ways (Figures 4A and 4E; see STAR Methods
for details on network simulation).

To derive the BNs (Figures 4B and 4F), we applied the “tabu”
algorithm of the BNLEARN package’® in R that searches model
space in a Monte Carlo-like manner, maximizing an overall score
that is based on the likelihood of the data given the model.”%~"®
Additional costs to the score were imposed on each edge to pre-
fer simpler, more parsimonious models.”®”® To estimate confi-
dence levels on the presence of edges and their directions, we
applied a bootstrapping method that re-derived separate BNs
for 50 independent samplings of 10,000 points in the simulated
distribution. An edge was considered present (and is shown in
Figures 4B and 4F) when it appeared in more than 80% of boot-
strapped networks, and a direction was indicated (as a unidirec-
tional arrow in Figures 4B and 4F) when that direction appeared
in more than 60% of bootstrapped networks where the edge was
present. To derive edge strengths, shown as arrowhead sizes in
Figures 4B and 4F, we calculated the correlations between the
parent and child node when controlling by stratification for all
other parents of that node.”%° In bidirectional edges, both no-
des were considered child nodes for this purpose.

This method reconstructed predefined networks with high
fidelity. Notably, even when a distribution was not generated
by a BN (i.e., it contained cycles, which cannot be reflected in
a directed acyclic graph but can occur in reality as feedback
loops), the inference algorithm still reconstructed the general
network structure and edge strengths with reasonable fidelity,
reversing some intra-cycle edges to avoid loops but preserving
extracyclical edges. Edge strength calculation recovered the
original interaction parameters (Figure 4E) better than using un-
controlled, total correlations (Figure 4F).

We applied the above approach to the entire 3.5-million syn-
apse dataset across all treatments, yielding the network shown
in Figure 5A. This network exhibited several features that were
anticipated given our knowledge of the function and connectivity
of these proteins. For example, the presynaptic proteins
Bassoon, Synapsin1, and vGIuT1 (the latter two co-localized in
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Figure 5. BN of eight excitatory synaptic proteins

(A) The inferred network. Presynaptic proteins are shown in blue and post-
synaptic proteins in green. Red arrows indicate the substructure probed in
(B) and (C).

(B) Log fold change in F-actin, PSD95, and SHANKS after treatment with two
actin polymerization perturbations, total and controlled for each protein.

(C) Log fold change in PSD95 and Shanka3 after treatment with 3 siRNAs: NonT,
against Dig4 (PSD95), and against Shank3.

Error bars are mean + SEM across wells.

the same synaptic vesicles) appear tightly interconnected, and
their correlation was independent of the postsynaptic proteins.
Of the three presynaptic proteins, Bassoon levels were most
directly connected to those of the postsynaptic proteins,
possibly by acting as a proxy for the size of the active zone. Of
the postsynaptic proteins, GIUR2 was directly downstream of
PSD95, in accordance with the latter’s role as a dynamic anchor
for the receptor whose levels dictate the number of sites that can
capture diffusing AMPARSs on the postsynaptic density.®' Finally,
levels of synaptic F-actin were upstream determinants of all
other postsynaptic proteins, likely because of the cytoskeletal
protein acting as a proxy for the size of the dendritic spine, which
may limit other protein amounts. Additional, unanticipated fea-
tures included presynaptic Bassoon appearing to influence
levels of postsynaptic F-actin, PSD95, and Homer1 more than
the latter influenced one another, as inferred from network
edge strengths as defined above.

Importantly, our model also lends itself to testable hypotheses
of causal connections derived from sub-structures of the
network. For example, the position of SHANK3 downstream of
the other components predicted that they would not be affected
significantly by direct perturbation of SHANKS; e.g., by siRNA-
induced knockdown. Our screen confirmed this (Figures 2E,
Shank3 line, and 2H), consistent with a previous study that
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used shRNA knockdown of Shank3 to show that mGIuR5 levels
were reduced but other postsynaptic proteins were unaf-
fected.”' To prevent circular logic (i.e., the presence of the
Shank3 knockdown data in the network generating this predic-
tion), we derived the same BN when excluding the Shank3 treat-
ment group (Figure S6), showing that BN inference can predict
the effects of perturbations that are excluded from the
training data.

A more complex, predictive sub-structure of the network is
the inter-dependence chain: F-actin — PSD95 — SHANKS.
This structure predicts that (1) perturbing F-actin should affect
PSD95 and SHANKS, but the effect on SHANKS3 should
decrease or disappear when controlling for PSD95, while the
effect on PSD95 should be relatively independent of
SHANKS3, and (2) perturbing PSD95 should affect SHANK3
but not vice versa. To test the first prediction, we treated hippo-
campal cultures with jasplakinolide (Jasp) or latrunculin B (Lat)
at DIV 6, fixing at DIV 19 and staining for Synapsin1, F-actin,
PSD95, and SHANKS (Figure 5B). Interestingly, although Jasp
and Lat B are generally inhibitors of F-actin depolymerization
and polymerization, respectively, their effects on synaptic
F-actin after chronic treatment were reversed. Effects on
PSD95 and SHANK3 were consistently in the same direction
as the effects on F-actin (decreased for Jasp and increased
for Lat) and completely disappeared or even reversed when
controlling for F-actin. In addition, controlling for PSD95 greatly
diminished or reversed the effect on SHANKS, as predicted,
while the reverse was not true. To test the second prediction,
we treated DIV 6 cultures with siRNA mixes against Shank3,
Dig4 (the gene coding for PSD95), or NonT and fixed and
stained at DIV 21 for MAP2, Synapsin1, SHANKS3, and PSD95
(Figure 5C). Synapsin-controlled SHANKS levels were reduced
compared with NonT in Dig4 and Shank3-treated synapses, but
PSD95 was reduced only in Dig4-treated synapses, establish-
ing the PSD95 > SHANKS hierarchy. Taken together, these ob-
servations support the conditional dependency chain predicted
by the network.

Network inference on real PRISM data may be sensitive to
experimental and image analysis artifacts, such as thresholding,
image quality, and rules for synapse identification, because
these may impose artifacts on correlations between protein
measurements. We therefore performed several quality controls
to ensure that our model did not result in such artifacts (Fig-
ure S6). In one, we limited network inference only to synapses
positive for all protein components. In another, we varied the
thresholds for punctum identification in CellProfiler to 75% or
133% of their values used in the primary analysis. In a third,
we used puncta of postsynaptic proteins (F-actin and PSD95)
to assign synapse identity instead of Synapsin1 and vGIuT1.
All of these manipulations yielded network structures that were
largely similar to that in Figure 5A, especially in presence, relative
strengths, and directionalities of transsynaptic and intra-post-
synaptic edges. The few inconsistencies included interchanges
in the relative positions of Synapsin1 and vGIuT1 in the network.
Finally, we derived a network based on different eight-protein
measurements in a previous study®’ (Figure S6). Although that
dataset was smaller, with fewer perturbations than the current
one, and, thus, with reduced confidence in edge presence and
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Figure 6. Network-informed analysis of the genetic screen

(A) “Direct” effects of each treatment on each protein separately; as in Fig-
ure 2F but controlled for the parent nodes of each protein.

(B) Effect of each treatment on the strength of each network edge.

(C) Network from Figure 4A, with each edge colored by the average change in
strength across treatments. All colors are log, fold change relative to the NonT
siRNA control.

directionality, we observed that the six proteins common to both
studies exhibited similar connectivity patterns. That the network
features were robust against these manipulations, replicated
across experimental conditions, and include substructures that
were directly validated in perturbation experiments strengthened
our confidence that these features represent real underlying
biology.
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Convergent effects of siRNA treatments on network
structure

Next, we sought to use the causal network structure identified
above for a more in-depth exploration of gene knockdown ef-
fects on the synaptic molecular system as a whole, including
possible convergent phenotypes resulting from distinct genes.
First, we used the simultaneous measurements to isolate
direct treatment effects from secondary or downstream
ones, by measuring the log-fold change in each protein under
each siRNA treatment, when controlling for all parent nodes of
that protein in the network, thus distinguishing direct effects
from those mediated by a parent node (Figure 6A). Isolating
direct effects revealed that Pten knockdown affected all post-
synaptic protein levels that we examined nearly exclusively
through increased F-actin within dendritic spines, in accor-
dance with what is known of its regulatory role.”® This also al-
lowed us to discover direct effects that were hidden under
second-order effects in the opposite direction; for example,
that knockdown of Pten caused a strong specific decrease
in synaptic GIuR2 in parallel to a general increase of all
post-synaptic proteins.

Finally, we looked for quantitative effects of siRNA gene
knockdowns on the BN structure itself, particularly on edge
strengths that indicate inter-dependencies of synaptic protein
components. We quantified the strengths of the 17 edges in
the network for each treatment group by treating each culture
as an individual joint PD (Figures 6B and 6C). We discovered
that some edges, particularly centered around PSD95 and
GlIuR2, were uniformly strengthened or weakened by nearly all
treatments, regardless of direct effects on the proteins them-
selves, even in treatments that had weak, if any, effects on the
protein levels. For example, Synapsin1-PSD95 and Synapsin-
GlIuR2 edges were strengthened in nearly all gene knockdowns
compared with the NonT groups and not weakened in any,
even though different treatments increased or decreased each
protein on its own. Conversely, the PSD95-Homer1, Homer1-
GlIuR2, or PSD95-GIuR2 edges were weakened in most treat-
ments compared with NonT.

Independent treatment effects on different proteins were likely
to reduce edge strengths indiscriminately, indicating that that
there might be an underlying molecular process by which knock-
downs of many different genes all serve to, for example, weaken
the extent by which PSD95 determines GIuR2 and strengthen
the extent by which PSD95 and Synapsin1 influence each other,
where these effects are superimposed on any direct effects they
may also have on these proteins.

To the best of our knowledge, this is the first time that a direct
measurement of synaptic protein networks has yielded molecu-
lar phenotypes common to many different ASD- and SCZ-asso-
ciated mutations, which may be reflective of shared synaptic
pathogenesis.

DISCUSSION

Detailed parallel phenotyping of synaptic biochemistry
in ASD and SCZ models

We used simultaneous measurement of multiple proteins at sin-
gle-synapse resolution to infer causality relationships among
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protein numbers in the synaptic molecular network and system-
atically map how it is affected by perturbation of ASD- and SCZ-
associated genes. PRISM, supported by automated probe
exchange, image analysis, and synapse segmentation and
quantification, can be used to measure multiple synapse-spe-
cific phenotypes across many treatment groups in a single
experiment as well as to identify synapse types and population
changes that are more intricate than bulk effects on a protein
because of its ability to resolve synapse-to-synapse heterogene-
ity in multiple protein levels.

We observed phenotypes that were anticipated based on pre-
vious studies or their known activity, such as Pten’® and
Shank3.”' We also observed phenotypes that, to the best of
our knowledge, have not been reported previously, such as
Cul1 on F-actin, Setd1a on Homer, and Grin2a on PSD95.
Follow-up on the latter yielded tentative evidence of a long-
term compensatory mechanism that responds to NMDAR defi-
ciency (by gene knockdown) or reduced activity (by APV
blockade, which also reduces NMDAR levels), with increased
excitatory synapse density and levels of the NMDAR anchoring
protein PSD95, possibly a compensatory effect. Of the overall
molecular signatures, Dyrk1a exhibited the most unusual
pattern, combining a markedly higher E:| ratio and lower levels
of F-actin and downstream postsynaptic proteins but not of
GIuR2 (and generally a lower percentage of silent synapses).
This is congruent with reports of Dyrk1a-associated autism pre-
senting a unique neurological character.®%*

Another important consequence of the ability to measure
multiple proteins simultaneously is that it can facilitate decon-
volution of direct causal relationships from those mediated by
other processes. Instead of having to experimentally constrain
any possible confounding variables, multiplexed imaging allows
measuring them simultaneously, while moderate throughput of-
fers a large enough number of data points (>3 x 10° in this
study) to directly control for possible confounding variables
via stratification. The results of such intra-dataset controls
must be interpreted carefully because of potential artifacts
arising from comparing different synapse populations. Never-
theless, when using information about causal connections be-
tween variables, either from prior knowledge or, as in this
case, inferred directly from the PDs, such a controlled analysis
can help identify when a certain effect is entirely mediated by
other variables (as with Pten or Dyrk1a on postsynaptic pro-
teins, mediated by F-actin) or when a certain variable deviates
significantly because of a hidden direct effect from what is ex-
pected given its upstream network connections (as with Pten
on GIuR2). The network-based prediction that Dyrk1a effects
are mediated via F-actin is supported by an in-depth investiga-
tion®* of changes to dendritic spine formation in heterozygous
Dyrk1a truncation mutants.

It is important to note that, although parallel measurements of
many proteins may serve as a hypothesis generator for synapse-
level molecular mechanisms, this study is fundamentally a
phenotypic assay and does not purport to definitively test or
establish any specific mechanism. Some gene perturbation ef-
fects may be the result of transcriptional changes in upstream
gene expression networks (for example, by histone-modifying
enzymes), to which our assay is agnostic.
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Interpreting inter-protein dependencies from BN
structure and edge strengths
In the inferred BN, an edge from node A to B indicates that the PD
of B depends on A even after accounting for all other measured
components. This dependence can be direct or via a hidden (un-
measured) component. Conversely, lack of a direct edge
between two correlated nodes indicates that any correlation be-
tween them can be explained by the other known components.
Thus, while the overall structure is dependent on the set of pro-
teins measured, we expect “non-edges,” such as F-actin-
SHANKS3, to be a conserved feature even as the network
expands to include more proteins. The structure we observed
hints at some general rules governing synaptic molecular
composition, which have also been observed in the literature:
relative independence of the presynaptic active zone assembly
and molecular composition®>®° and receptor levels driven by
scaffolding proteins rather than the reverse.®'¢7:%8

The interpretation of changing edge strengths is not mecha-
nistically obvious. As a rule, injecting perturbative noise into a
system weakens correlations by default. Thus, a weakened
edge may correspond to a loss of correlation that can occur
when only one protein of a pair is perturbed or when they are per-
turbed in different directions. However, this is not always the
case; for example, knockdown of Cul1 reduces PSD95 and
GIuR2 to a similar extent but also weakens the PSD95-GIluR2
edge. In general, an edge from a parent node to a child node is
considered in the context of all the other parents of that node.
Thus, an effect that perturbs the mechanism by which one parent
node affects the distribution of the child will weaken the corre-
sponding edge but may strengthen the edge from another parent
and vice versa. It is thus interesting to observe that transsynaptic
edges are strengthened by the genetic knockdowns in this
study, while intra-postsynaptic edges are generally weakened.

Comparison with other protein network models
Our results add to a growing body of genomic and proteomic ob-
servations of convergent changes at the protein network level in
ASD. These are based on physical interaction networks derived
from Y2H tests®? or bulk quantitative multiplexed coimmunopre-
cipitation (QMI).>® It is important to note differences between
physical interaction networks as obtained from Y2H screens or
colP and our network, which does not provide information about
direct biochemical protein-protein associations but rather pro-
vides constraints on the multiprotein joint PD that reports on syn-
aptic-level protein co-localizations. When many parallel
biochemical interaction pathways exist, the BN enables us to
infer those that causally determine synapse protein levels. For
example, the F-actin — PSD95 — SHANK® causal chain we es-
tablished implies that it is likely an interaction chain from actin to
PSD95 (possibly via ARPC4%°) that drives PSD95 (and therefore
SHANKS) levels. It must be noted that, for F-actin, our measure-
ment mixes together signal from pre- and post-synaptic B-actin
filaments. However, because postsynaptic F-actin is thought to
be more abundant, we believe that the observed conditional de-
pendencies are mostly due to postsynaptic F-actin levels.
Causal correlations may also show up when a certain target is
the best available proxy for a different measure that drives pro-
tein levels, such as Bassoon for the active zone or F-actin for
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the dendritic spine. For example, knockdown of Bassoon itself
does not seem to affect postsynaptic protein localization and ul-
trastructure. Rather, we hypothesize that the edges from
Bassoon to F-actin, PSD95, and Homer represent different
paths, through unmeasured targets, by which the size of the
active zone affects levels of different post-synaptic proteins.
Finally, our network so far only measured protein abundances
and not phosphorylation activation or other modification
changes (or splice isoforms), which are often influenced by inter-
action partners.

The two frameworks thus complement each other. Physical
interaction networks provide mechanistic biochemical associa-
tions, albeit, in some cases, under unphysiological conditions,
such as in yeast, and, by casting a wider, less biased net, identify
new targets to measure, whereas BN analysis integrates these de-
tails into a global picture of what shapes the overall synapse pro-
tein composition. This, in turn, provides insight into possible
dynamical processes in the synaptic molecular network, which
are tested by again returning to mechanistic connections between
components. Inthe future, BN analysis could be directly combined
with single-synapse-level knowledge of physical protein organiza-
tion from automated, multiplexed superresolution imaging such as
maS*TORM.*°

The steady state of the synaptic molecular network in
ASD and SCZ

We propose a theoretical framework for future exploration of the
convergence of phenotypes of different disease-associated mu-
tations at the level of the synaptic molecular network. A dynamic
system like the synapse, with many components, generally ex-
ists in a high-dimensional space of component abundances
and activation states. However, with sufficient interactions and
feedback loops, such systems invariably settle into a much
lower-dimensional space of allowable stable or metastable
states. In the case of the synapse, these are guaranteed by the
high interconnectivity among synaptic proteins and feedback
constraints such as homeostatic plasticity. In other words,
because synaptic structural dynamics (e.g., LTP and LTD) occur
at longer timescales than the biochemical feedback interactions
that establish the allowed states, the former navigate a compar-
atively narrow landscape of only those states that the dynamical
system can consistently sustain, and the synapse population
distribution reflects this landscape.

A similar constraint-induced dimensionality reduction is
considered to stabilize symmetric phenotypes in genotype-
phenotype maps.®' In the context of ASD- and SCZ-associated
genotypes mapping to a synaptic phenotype space with reduced
dimensionality caused by interaction-based constraints, this
means that a multitude of seemingly unrelated disease-associ-
ated mutations can drive similar perturbations to the lower-
dimensional stable/allowed-state landscape, as measured in
synaptic protein networks.

Thorough investigation of such a mechanism in ASD and SCZ
will require characterization of this space of allowed synaptic
states and how it changes under different mutations, a charac-
terization for which this work and others provide initial outlines.
This characterization should also provide additional starting
points to investigate the downstream effects of convergent syn-
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apse structure phenotypes on the architecture of the synaptome
and specific neuronal circuits.

Given the potential of PRISM with automated probe exchange
for increasingly higher throughput, along with the theoretically un-
limited multiplexing capacity, our method of multiplexed imaging
with single-synapse analysis is well poised to investigate such hy-
potheses as well as any other processes in the synaptic molecular
network. Specifically, the properties of BN inference mean that
additional measured nodes would increase the scope of and con-
fidence in network structures as well as help establish differences
in network structure underlying qualitatively different functionality
in excitatory synapses connecting different neuron types.© Finally,
the tool presented here does not need to be limited to synapses
and can be applied to any subcellular structure that can be iden-
tified individually in fluorescence microscopy, including mitochon-
dria, phagosomes, nuclear compartments, etc. Thus, PRISM,
supported by BN analysis, may come to serve as a general hy-
pothesis-generating tool for understanding complex protein net-
works in situ in cells, organelles, and subcellular structures.

Limitations of the study

The objective of this study was to perform high-dimensional in
situ synaptic protein phenotyping in an ASD- and SCZ-associ-
ated genetic screen and search for similarities in synaptic protein
compositions and convergent synapse phenotypes across dis-
ease-associated genes. One major limitation of this study was
the use of self-transfecting siRNA knockdown in 2D rodent
neuronal culture as a model for ASD and SCZ genotypes. While
this model system often reproduces qualitative effects of hap-
loinsufficiency or partial loss of function (PLOF), they may be
fundamentally different from, for example, complete knockout
or gain-of-function models, some of which have observed
different synaptic phenotypes.®”°® Even for the former, gene
dosage differences may produce qualitatively different results,
with our treatments variably reducing mRNA levels by 40%-
80%, which may be different from the gene dosage produced
by heterozygous mutants or PLOF. Therefore, this study should
be treated as a starting point to investigate convergent gene-
proteome connections rather than a definitive description of
protein changes in the disease itself.

Another potential limitation is the exclusive use of immunoflu-
orescence for protein quantification, which offers the possibility
of artifacts because of variability in epitope accessibility as well
as non-specific binding that may confound results. While we
have performed extensive validations in this and previous
studies to establish the quantitative validity of PRISM, the possi-
bility of such artifacts remains. Finally, the network inference
approach presented is based on one imaging dataset and may
additionally contain artifactual edges and substructures despite
care to account for possible statistical artifacts. Future work that
incorporates additional protein nodes and a larger variety of
cellular conditions will help to further establish the biological
validity of the present work.
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STARXMETHODS
KEY RESOURCCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
anti-MAP2, chicken polyclonal Novus Biologicals Cat#NB300-213 RRID:AB_2138178
anti-PSD95, rabbit monoclonal Cell Signaling Technology Cat#3450 Clone: D27E11
RRID:AB_2292883
anti-Gephyrin, rat monoclonal IgG1 Synaptic Systems Cat#147208 Clone: tmAb7a
RRID:AB_2619836
anti-GluR2, N-terminus, guinea pig polyclonal Synaptic Systems Cat#182105 RRID:AB_2619875
anti-NR2A, mouse monoclonal IgG2a Neuromab Cat#75-288 Clone: N327/95 RRID:AB_2315842
anti-Shank3, mouse monoclonal IgG1 Synaptic Systems Cat#162311 Clone: 144b12 RRID:AB_2713972
anti-vGAT, mouse monoclonal IgG3 Synaptic Systems Cat#131011 Clone: 117G4 RRID:AB_887872
anti-Synapsin1, mouse monoclonal IgG1 Synaptic Systems Cat#106011 Clone: 46.1 RRID:AB_2619772
anti-Homer1, mouse monoclonal IgG1 Synaptic Systems Cat#160011 Clone: 2G8 RRID:AB_2120992
anti-vGIluT1, camelid sdAb, FluoTag X2 Synaptic Systems Cat#N1602-AF568, RRID:AB_2737074
anti-mGIuR5, rabbit polyclonal Sigma Aldrich Cat#AB5675 RRID:AB_2295173
anti-Shank1/2/3, mouse monoclonal IgG2a Synaptic Systems Cat#162111 Clone: 151E3 RRID:AB_2636900
anti-NR1, mouse monoclonal IgG2a Millipore Cat#MAB363 Clone: 54.1 RRID:AB_94946
anti-GluR2, C-terminus, mouse monoclonal IgG2a  Millipore Cat#MAB397 Clone: 6C4 RRID:AB_2113875
anti-Synapsin1, goat polyclonal Santa Cruz biotechnologies Cat#sc-7379 RRID:AB_677474
anti-Rabbit, goat polyclonal Invitrogen Cat#A16126
anti-Mouse IgG1, goat polyclonal Abcam Cat#ab98689
anti-Mouse IgG2, goat polyclonal Novus Biologicals Cat#NB7513
anti-Guinea Pig, goat polyclonal Invitrogen Cat#A18777
anti-Rat, goat polyclonal Invitrogen Cat#A18873
anti-Goat 405, donkey polyclonal Abcam ab175665
anti-Goat 488, donkey polyclonal Invitrogen A-11055
anti-Chicken 405, goat polyclonal Abcam ab175674
anti-Chicken 488, goat polyclonal Invitrogen A-11039
anti-Mouse 488, goat polyclonal Abcam ab150113
anti-Mouse 568, donkey polyclonal Invitrogen A10037
anti-Mouse 647, donkey polyclonal Abcam ab150107
anti-Rabbit 488, goat polyclonal Abcam ab150077
anti-Rabbit 568, donkey polyclonal Abcam ab175470
anti-Rabbit 647, donkey polyclonal Invitrogen A-31573
Biological samples
E18 Rat Hippocampal Neurons Privately sourced at the Broad Institute
Chemicals, peptides, and recombinant proteins
4-(N-Maleimidomethyl)cyclohexane-1- Sigma Aldrich Cat#573115 CAS 92921-24-9
carboxylic acid N-hydroxysuccinimide
(SMCC)
Phalloidin 7-Ornithine Bachem Cat#H7643
Harmine Tocris Cat#5075 CAS 442-51-3
bpV(pic) Sigma Aldrich Cat#SML0885 CAS 148556-27-8
D-AP5 Alomone Labs Cat#D-145 CAS 79055-68-8
RNase A Invitrogen Cat#EN0531
RNase T1 Invitrogen Cat#EN0542

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Hibernate E Thermo Fisher Cat#A1247601
NbActiv1 Brainbits LLC (now Transnetyx) Cat#NB1
NbActiv4 Brainbits LLC (now Transnetyx) Cat#NB4

B27 Supplement Thermo Fisher Cat#17504044

Arabinofuranosyl Cytidine (AraC)
Atto 565 NHS
Atto 655 NHS

Sigma Aldrich
Atto-Tec GmbH
Atto-Tec GmbH

Cat#C6645 CAS 69-74-9
Cat#AD 565-31
Cat#AD 655-31

Critical commercial assays

LightCycler 480 Probes Master Roche Cat#04707494001
TagManTM Gene Expression Assays Life Technologies See Table S3
SiteClick Azido Antibody Modification Kit Thermo Fisher Cat#S10900
Experimental models: Organisms/strains

Rattus Norvegicus, Sprague-Dawley, wild-type Broad Institute

Oligonucleotides

Thiol-modified ssDNA docking strands Integrated DNA Techologies See Table S2
DBCO-modified ssDNA docking strands Qiagen See Table S2
Amine-modified LNA imaging strands Qiagen See Table S2

Software and algorithms

CellProfiler version 3.0

R package: umap, version 0.2.7.0

R package: bnlearn, version 4.7

CellProfiler Synapse Analysis Pipeline
R markdown document: Workup and
analysis of PRISM data

R markdown document: Network
simulation and inference

Dataset, CSV file: Normalized single-
synapse multiprotein measurements
extracted by CellProfiler

McQuin, C. et al. CellProfiler 3.0:
Next-generation image processing
for biology. PLoS Biol. 16, (2018).
Tomasz Konopka. umap: Uniform
Manifold Approximation and
Projection. R package version
0.2.7.0 https://CRAN.R-project.org/
package=umap. (2020).

Scutari, M. Learning Bayesian
networks with the bnlearn

R Package. J. Stat. Softw.

35, 1-22 (2010).

This study

This study

This study

This study

https://doi.org/10.5281/zenodo.7753915
https://doi.org/10.5281/zenodo.7753915

https://doi.org/10.5281/zenodo.7753915

https://doi.org/10.17632/cjyzby7z82.1

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mark Bathe

(mbathe@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

® Single-synapse measurements as processing output of CellProfiler applied on imaging data have been deposited to Mendeley
Data as a CSV file under the paper title. https://doi.org/10.17632/cjyzby7z82.1. Raw and processed imaging data are locally
stored due to excessive file sizes and will be delivered upon request.
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e Original code for data analysis, network simulation, and network inference, as well as original CellProfiler pipelines, have been
deposited to github.com/Icbb and on Zenodo. https://doi.org/10.5281/zenodo.7753915

® Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed on dissociated hippocampal neurons of embryonic day 18 Sprague-Dawley rats. Each experiment
included neuronal cultures of pooled neurons from 1-3 embryos of a single pregnant rat, and each experiment used a separate preg-
nant rat. Embryos were not sexed prior to dissection and culturing.

Culturing conditions (for detailed conditions see method details section): Embryo hippocampi were dissected in 4°C Hibernate E
supplemented with B27. Hippocampal tissues were digested in Hibernate E using papain at 37°C. Neurons were plated at 15,000
cells/well in NbActiv1 supplemented with 25mM glutamate on poly-d-lysine coated 96-well-plates, treated at DIV 2 with AraC and
at DIV 6 with the siRNA/chemical treatment and left to develop in NbActiv4 until fixation and staining at DIV 19.

Procedures for rat neuronal culture were reviewed and approved for use by the Broad Institutional Animal Care and Use Commit-
tee, in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

Antibody details
Table S1 details the antibodies used for multiplexed imaging, including the conjugation strategy used for each. The key resources
table provides additional details, and information on all other antibodies used for follow-up validation experiments.

Antibody-docking strand conjugation - SMCC

Most antibodies (see Table S1) were conjugated using 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid N-hydroxysuccinimide
(SMCC), a heterobifunctional molecule which binds exposed amines on the antibody via an N-hydroxysuccinimide (NHS) moiety on
one end and binds thiol-oligonucleotides via a maleimide on the other end. Antibodies were purchased as formulations without serum
proteins as listed below (Table S1), 0.1-1 mg of antibody were purified into PBS using Zeba spin columns (7 kDa, Thermo Fisher Sci-
entific). Subsequently, antibodies were concentrated to 1 mg/ml using Amicon Ultra centrifugal filters (100 kDa, 4000 g, EMD Milli-
pore). The initial concentration of anti-vGAT was 2 mg/ml. From a freshly prepared stock at 2 mM in DMF, SMCC (Sigma Aldrich) was
added to the antibody at 7.5x molar excess. The reaction mixture was protected from light and incubated for 3 h at 4°C on a shaker.
Excess SMCC was removed by purification into PBS using Zeba spin columns (7 kDa, Thermo Fisher Scientific). In parallel, 25 nmol 5’
thiol-modified ssDNA (Integrated DNA Technologies, modification catalog no. /5-ThioMC6-D/) was dissolved in 25 ul water and 55 ul
PBS with 2 mM EDTA at pH 8.0 (Table S2). After the addition of 20 ul of a freshly prepared stock of 500 mM DTT in PBS with 2 mM
EDTA at pH 8.0, the reaction mixture was protected from light and incubated for 2 h at 25°C on shaker. The reduced 5’ thiol-modified
ssDNA was purified into water using NAP-5 columns (GE Life Sciences). Fractions containing ssDNA were identified using absor-
bance measurements at 260 nm and DTT was monitored calorimetrically using bicinchoninic acid. The reduced 5’ thiol-modified
ssDNA was immediately added to the antibody-SMCC conjugate at 15x molar excess, the reaction mixture was protected from light
and incubated overnight at 4°C on a shaker. Antibody-ssDNA conjugates were purified into PBS using Amicon Ultra centrifugal filters
(50 kDa, 4000 g, EMD Millipore). Amino-modified phalloidin (Bachem) was conjugated using the procedure described above, but with
the following changes: the molar excess of SMCC was 10x and the molar excess of reduced 5’ thiol-modified ssDNA was 1x. HPLC
purification was employed to remove unreacted SMCC and 5’ thiol-modified ssDNA, respectively (Waters, BEH C18 column,
gradient for phalloidin-SMCC: from 80% TFA in water and 20% acetonitrile to 20% TFA in water and 80% acetonitrile over
10 min, gradient for phalloidin-ssDNA: from 90% 0.1 M TEAA in water and 10% acetonitrile to 60% 0.1 M TEAA in water and
40% acetonitrile over 10 min). Antibody concentration were determined by absorbance measurements at 280 nm. Conjugation
efficiency was estimated by MALDI-TOF mass spectrometry and ranged from 1 to 3, depending on the antibody. Antibody-
ssDNA conjugates were stored at -20 C in PBS with 50% glycerol.

Antibody-docking strand conjugation - SiteClick

For Homer1, ssDNA-antibody conjugates were synthesized using the SiteClick™ (Invitrogen) conjugation technique following the
manufacturer’s protocol. This technique replaces the Fc galactoses on the antibody with azide-modified sugars, which then react
with a DBCO-modified oligonucleotide. 200 pg of the anti-Homer 1 was concentrated to 2 mg/ml in 1x Tris buffer and incubated
with B-galactosidase. Azide-modified, terminal galactosides were attached using B-galactosyltransferase. Azide-modified antibody
was purified into 1x Tris buffer using Amicon Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). 5° DBCO-modified ssDNA (In-
tegrated DNA Technologies, modification catalog no. /5-DBCON/) was dissolved in water, added to azide-modified antibody at a
molar excess of 30 and incubated overnight at 25°C (Table S2). Antibody-ssDNA conjugates were purified into PBS using Amicon
Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). Antibody concentrations were determined by absorbance measurements
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at 280 nm. Conjugation efficiency was estimated by MALDI-TOF mass spectrometry and ranged from 1 to 2, depending on the anti-
body batch. Antibody-ssDNA conjugates were stored at -20°C in PBS with 50% glycerol.

Imager strands

25 nmol of 5°/3’ diamino-modified ssLNA (Qiagen) was dissolved in 500 ul PBS with 10% DMSO at pH 8.3 and 250 nmol of NHS-Atto
565 or NHS-Atto 655 (Sigma Aldrich) were added from a 15 mM stock in DMSO (Table S2). Following immediate vortexing, the re-
action mixture was protected from light and incubated overnight at 25°C on a shaker. Excess dye was removed using NAP-5 columns
(GE Life Sciences). Fractions containing ssDNA were identified using absorbance measurements at 260 nm. Subsequently, 0.1 M
TEAA was added ssLNA-dye conjugates and conjugates bearing two dyes were purified by HPLC (Waters, BEH C18 column,
gradient for Atto 565: from 80% 0.1 M TEAA in water and 20% acetonitrile to 70% 0.1 M TEAA and 30% acetonitrile over 10 min,
gradient for Atto 655: from 90% 0.1 M TEAA in water and 10% acetonitrile to 75% 0.1 M TEAA in water and 25% acetonitrile over
10 min). Peaks corresponding to ssLNA conjugates bearing two, one or no dye were assigned based on absorbance spectra.
Solvents were removed in vacuo and ssLNA-dye conjugates were dissolved in water at 10 to 100 uM, depending on the yield. Yields
were determined by absorbance measurements using 565 nm or 655 nm wavelengths.

Neuronal culture and treatment

Procedures for rat neuronal culture were reviewed and approved for use by the Broad Institutional Animal Care and Use Committee,
in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. In each of N=4 biological re-
peats, 1-2 Embryonic Day 18 embryos were collected from a separate pregnant Sprague Dawley rat killed by CO, (Taconic). Embryo
hippocampi were dissected in 4°C Hibernate E supplemented with 2% B27 supplements and 100 U/ml penicillin/strep (Thermo
Fisher Scientific). Hippocampal tissues were digested in Hibernate E containing 20 U/ml papain, 1 mm L-cysteine, 0.5 mm EDTA
(Worthington Biochem), and 0.01% DNase (Sigma-Aldrich) for 8 min. Neurons were centrifugated at 1000rpm by 5min, pellet with
cells were then resuspended into NbActiv1 (BrainBits LLC, now TransnetYX) supplemented with 25mM glutamate, and plated at
a density of 15,000 cells/well onto poly-d-lysine-coated, black-walled, thin-bottomed 96-well plates (Corning BioCoat). After 48
hours, AraC was added to each culture at a concentration of 1uM, to suppress glia proliferation and minimize well-to-well variability
resulting from it. At DIV 5, the media was entirely replaced with warm NbActiv4. At DIV 6, each culture was treated with Accell
SMARTpool (Dharmacon/Horizon from Perkin Elmer), a mix of four chemically modified self-transfecting siRNAs, against the relevant
gene (Table S3) to a total siRNA concentration of 1uM in NbActiv4. Cultures were then left undisturbed until fixation on DIV 21.
Each plate included 60 wells/separate cultures, 3-4 in each treatment group. Across 4 plates, one for each biological repeat, this re-
sults in a total of n=11-18 technical repeats in each treatment group. For validation experiments, cultures were treated at DIV 6 with
0.1uM/0.5uM bpV(pic), 0.2uM/2uM Harmine, 20uM/50uM D-AP5, and Nontargeting, Shank3 or Grin2a Accell SMARTpool siRNA,
and left undisturbed until fixation on DIV 8 or 19 as described.

RTgPCR knockdown validation

RTgPCR was performed using Fast Advanced Cells-to-CT kit (Ambion) according to the manufacturer’s protocol. In short, cells were
prepared for lysis by washing them with cold PBS 1x, then Stop solution was added following lysis buffer with DNAse |. RT Master Mix
using Cells-to-Ct lysate was prepared and reverse transcription was done on a thermal cycler. Lastly, gPCR was done using
LightCycler® 480 Probes Master (Roche) with TagManTM Gene Expression Assays designed for each target (see Table S3 for cat-
alog numbers) and performed on a LightCycler® 480 Instrument. Two TagManTM Gene Expression Assays (Life Technologies). Actb
was used as a reference gene to normalize the results (Life Technologies). For relative quantification of gene expression, the 2— AACt
method was used.

Staining and imaging

Cells were fixed and stained as described previously.”*”-°® Cells were fixed in fixation solution (4% paraformaldehyde and 4%
sucrose in PBS) for 20 min at RT, then permeabilized with 0.25% Triton X-100 in PBS for 10. They were then incubated in a mixture
of RNases A and T1 to reduce the fluorescent background caused by ssLNA-RNA binding and blocked with 5% Bovine Serum Al-
bumin (BSA). The first round of primary staining was performed using unconjugated primary antibodies (Table S1 rows 1-6) diluted in
the regular blocking buffer. Cells were blocked with nuclear blocking buffer [5% BSA and 1 mg/mL salmon sperm DNA (Sigma-
Aldrich) in PBS] and then incubated with conjugated secondary antibodies (Table S1 rows 7-11) diluted in the nuclear blocking buffer.
After post-fixation, cells were stained in the third round with conjugated primary antibodies (Table S1 rows 12-16) in nuclear blocking
buffer and then with DAPI.

High-throughput spinning disk confocal LNA-PRISM imaging was performed using the Opera Phenix High-Content Screening
System (PerkinElmer) as described before”->"+%° with the following main changes: first, two colors were used for PRISM in each round,
and second, probe introduction, wash and exchange was performed automatically using a Bravo automated liquid handling system.
In each round, a pair of imaging probes in two colors (see Table S2 for sequences) was freshly diluted to 10 nM in imaging buffer
(500 mm NaCl in PBS, pH 8) immediately before imaging. Neurons were incubated with imaging probes for 5 min and then washed
twice with imaging buffer to remove unbound probe. The plates were then imaged in 4 wavelengths: 405nm (DAPI), 488nm (MAP2),
561nm (orange probe) and 647nm (red probe). For each field of view, a stack of five images was acquired with an axial step-size of
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1 um. Either four (in one plate) or nine (in the other three plates) lateral fields of view were imaged in each culture. Following each round
of imaging, cells were washed two times with wash buffer (0.01 x PBS) for 3 min per round, and then re-imaged to ensure that all
PRISM fluorescent signal was removed before introducing the next probe pair. After all imaging rounds, neurons were stained
with a 568nm fluorescent nanobody against vGlut1 (Table S1 row 17) for 1 hour and imaged again. Although the combined staining
with multiple antibodies simultaneously may reduce primary PRISM signal due to crowding, we observed this reduction to be less
than 15%, and should be identical across all treatment groups.

For staining externalized GIuR2 (Figure S2), an N-terminal-specific Guinea Pig anti-GIuR2 antibody (see Table S1) was used before
permeabilization, and a C-terminal-specific Mouse anti-GIuR2 antibody was used after permeabilization, along with a labeled anti-
vGIuT1 nanobody and a chicken anti-MAP2 antibody. For heat-induced antigen retrieval, wells were incubated after permeabilization
with pre-heated antigen retrieval buffer (10mM Citric Acid, 0.05% Tween 20, pH 6.0) at 95°C for 30min, and then stained as usually.
We also attempted proteolysis-induced epitope retrieval (0.05% Trypsin, 20min at 37°C) which completely abolished Synapsin1 and
F-actin signals.

Automated image analysis using CellProfiler

CellProfiler was used to automatically correct images for uneven illumination, align images across channels, and segment and quan-
tify synapses in images. This tool allows for modular construction of pipelines for image analysis.®®®” The pipeline used here is similar
to a previous study®’ and is available on github.com/Icbb/PRISM-CellProfiler-Analysis-Pipelines. The main steps in the image
analysis pipeline are as follows:

1) By-pixel maximum projections of confocal Z-stacks of all images in each round are calculated separately and loaded into Cell-
Profiler.

2) MAP2 (488nm) images in each round are used to align images of other channels between rounds.

3) An illumination profile correction is applied to all images based on background averages across all wells.

4) For each round and wavelength, the average intensity in untreated wells of a plate is calculated and used to normalize the
images in all other wells. This is used to account for between-plate differences in exogenous brightness (staining strength,
laser strength, exposure time etc.)

5) The DAPI image is used to identify nuclei objects. All other images of the same field are then masked by the nuclei to prevent
artifacts from non-specific nuclear localization of the antibodies.

6) The MAP2 image is used to identify dendrite objects.

7) A white top hat filter with a radius of 4px is applied to all synaptic protein images across all rounds to enhance puncta.

8) For synapse counting analysis (Figures 2B-2D), synaptic objects were segmented and identified in images of each channel by
applying the RobustBackground tool, which calculates an optimal threshold value for each window individually based on the
intensity histogram. For all other analyses, we calculated a per-channel global threshold from the average threshold calcu-
lated by RobustBackground across all imaged fields in untreated wells. We then applied this value as a uniform threshold
to all images of that channel to ensure that all images are segmented identically.

9) Synapsini puncta are then masked using the dendrites previously identified, to retain only puncta which are within 12px of a
dendrite. These are then defined as synapses.

10) Puncta in all other channels are assigned to synapses if they overlapped with Synapsin1 puncta more than 6.25% (for post-
synaptic proteins) or more than 50% (for presynaptic proteins).

11) Finally, levels of each protein per synapse are calculated as the intensity integral of that protein’s image across its punctum. If
a certain protein did not have an identified puncta associated with a synapse, its level was marked as 0.

Synapses were identified as excitatory if they contained only vGlut, inhibitory if they contained only vGAT, and otherwise excluded
from further analysis (positive or negative for both vGlut and vGAT). Excluded synapses were 20-30% of all identified synapses. We
also performed the same analysis with uniform threshold values of 75% and 133% of the calculated average, which yielded more and
less synaptic puncta, respectively, but similar observations in treatment effects, clusters, Bayesian networks and edge strengths. In
controls for network inference by alternative synapse identification, instead of Synapsin1 puncta for synapse definition and assign-
ment of all other proteins, we used postsynaptic puncta defined by merging of F-actin, PSD95 and Shank3 puncta.

Network simulation

Data points for simulated networks were sampled from a modified gamma distribution, which contains a separate probability for a
value of 0 (see Equation 1). To simulate dependency of one variable on others, the distribution from which the child variable is
sampled has py and scale parameter 6 modified based on the values of the parent variables according to Equation 2.

P(X =x) = {p%,x = 0 I'x(k,0),x>0

Equation 1
B A G (Eq )
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0 _ 0 FMB x—ap
P modified = PApase P c (Equation 2)
0 _ 0 p B x—aac a
O modified = O pase "0 c

Where X, A, B, C are variable names, p is the probability for node X to be 0, I'(x|k, 6) «cxk 1 -e~ 1 is the gamma distribution with shape

parameter k and scale parameter 0, b = WH(B) and ¢ = & are the values of B and C for a specific datapoint relative to their

median, and aag and aac are the predefined interaction coefficients of A with B and C, respectively (edge strengths inthe B — A
« C subgraph).

20 such networks with 6-12 nodes were generated, sampled, and reconstructed to determine the optimal Bayesian network
inference algorithm. To simulate a network with a cyclic dependence, e.g. A—>B—C— A, A is separated into two variables
A4 and A; to create a directed acyclic graph which is sampled as above, and the final value of A is Ay + As.

Bayesian network analysis and controlled edge calculation

Bayesian network inference was performed on a pooled random sample of synapses from each well, while limiting only to excitatory-
labeled synapses and 8 excitatory synaptic proteins. Measurements in each protein were discretized into 51 bins in the following way:
all measurements of 0 (no puncta of that protein associated with the synapse) were assigned to bin 0, and bins 1-50 were assigned by
equal-frequency discretization.

The discretized dataset was then sampled for 3000 points which were used to construct a Bayesian network using the likelihood-
score-maximizing ‘“tabu’ algorithm.”® 50 such samplings and rederivations of the network were used to establish confidence in the
presence and direction of edges. Network derivation was done using the tabu and boot.strength functions in the R package
bnlearn,”® A similar procedure was applied to simulated datasets, data from a previous synaptic scaling study,’” and adversarially
modified datasets.

Given a network, we define the strength of an edge between two nodes as the average correlation of the two variables across strata
where the other parents of the daughter node are held constant.”®?° That is, the strength of an edge from A to B, where B also has
edges leading to it from n other variables, for example C and D with n = 2, as the correlation between A and B when controlling for C
and D. To estimate that, we repeated the following algorithm to calculate average correlations between A and B across strata of equal
C and D:

- Sample a point (Ag, Bg, Co, Do)

- Find set of all points (A, B, C, D) such that \/(C — Co)?+ (D — Dp)® <&-+/n where n is the number of variables to control for (2 in
this example) and ¢ is a predetermined tolerance level set at 0.5 (smaller tolerances did not yield significantly different measures)

- If the set contains more than 5 points, calculate Pearson’s correlation coefficient cor(A, B) across that set.

- Average the resulting correlation measure across 20-2" such samplings.

A similar stratification procedure was done to assess the conditional effect of a certain treatment on protein A when controlling for
proteins B and C. The treatment and NonT groups were pooled together, a point was sampled at random and a set of all points with
similar B and C was found, and the log,-fold difference between the mean levels of A in treated vs NonT synapses was calculated and
averaged across many samplings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software
All statistical analysis was performed in R (versions 4.0.0-4.3.0), using the base, stats, umap (version 0.2.7.0), and bnlearn (version
4.7) packages.

Biological and technical repeats

Each experiment includes pooled neurons from 1-3 embryos of one pregnant rat, split into wells of a 96-well-plate. The wells consti-
tute separately grown, treated and stained cultures. Each well is subsequently considered a technical repeat. All images in different
wells from a single experiment are analyzed using the same CellProfiler pipeline for consistency in synapse determination and quan-
tification. The main RNAI screen pools 4 experiments into one dataset by dividing all synaptic protein values of a certain experiment
by the average values for untreated wells in that experiment.

Nature of repeats and values per repeat

For statistical analysis, relevant values are calculated for synapses in individual wells: (i) Average protein intensity integral over syn-
aptic puncta. (i) Total number of synapses or synapses conforming to a certain condition, (i) Fraction of synapses conforming to a
certain condition, (iv) Total area of identified dendrites, (v) Average protein intensity over whole image, (vi) Average protein intensity
integral over soma, (vii) Network edge strengths (i.e., controlled correlation between nodes). By-well values are then used for calcu-
lating standard error and significance testing. Significance testing was done using a two-tailed Student’s t test. The number of wells
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per treatment group is 11-18 for the main RNAi screen and 4-7 for each validation experiment. All heatmaps and bar graphs present
average values across wells, all error bars are standard error of mean across wells.

Data exclusion
The following subsets of images from the main RNAi screen were excluded from subsequent analysis:

- One row in plate #1, for which one of the imaging rounds was out of focus.

- All images of NR2A, for which staining was very diffuse and very few puncta could be identified.

- Allimages of cultures treated with siRNA against Xpo7, which exhibited highly irregular staining patterns for Homer1 that could
not be reproduced with other batches of that siRNA. We attributed the effect to an issue with the specific siRNA batch used.

UMAP and clustering
Uniform Manifold Approximation and Projection (UMAP) was performed using the umap R package (version 0.2.7.0). A combined
sample was used with 200 points randomly sampled from each well. Each variable was scaled to a standard deviation of 1, and
UMAP was applied with min_dist=0. Density-based clustering on the 2D layout was done automatically using HDBSCAN®*° with
parameters that yielded 14 clusters, after which small clusters that accounted for <1% of all points were manually merged into
the nearest (by centroid distance) large cluster, resulting in the 9 main clusters shown in Figure 3.

Icons in graphical abstract adapted from templates by BioRender.com (2023). Retrieved from app.biorender.com/biorender-
templates.
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