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SUMMARY
The complex functions of neuronal synapses depend on their tightly interconnected protein network, and
their dysregulation is implicated in the pathogenesis of autism spectrum disorders and schizophrenia.
However, it remains unclear how synaptic molecular networks are altered biochemically in these disorders.
Here, we apply multiplexed imaging to probe the effects of RNAi knockdown of 16 autism- and schizo-
phrenia-associated genes on the simultaneous joint distribution of 10 synaptic proteins, observing several
protein composition phenotypes associated with these risk genes. We apply Bayesian network analysis to
infer hierarchical dependencies among eight excitatory synaptic proteins, yielding predictive relationships
that can only be accessed with single-synapse, multiprotein measurements performed simultaneously in
situ. Finally, we find that central features of the network are affected similarly across several distinct gene
knockdowns. These results offer insight into the convergent molecular etiology of these widespread
disorders and provide a general framework to probe subcellular molecular networks.
INTRODUCTION

The functional complexity of the brain is enabled by trillions of

chemical synapses that form connections among its �1011

neurons. Each synapse is capable of analog computation that in-

tegrates its activity history, chemical environment, and the state

of its pre- and post-synaptic neurons to modulate communica-

tion through synaptic plasticity. This computation is achieved1

in large part by the synaptic molecular network, a dynamic, com-

partmentalized biomolecular system of hundreds of proteins2–4

that includes constantly varying levels and activity states of

receptors, scaffolding proteins, kinases, and other protein types.

This proteomic diversity likely underlies the remarkable cell- and

context-specific functional diversity even among synapses of

the same type.5,6 Numerous studies have revealed mechanistic

connections between two or three synaptic components at a

time, providing the foundation to integrate these connections

into a broader context of many-component networks. However,

because of the high complexity and interconnectedness of such

networks, this integration requires simultaneous single-synapse

measurement of numerous proteins, a technique we developed

and applied previously to analyze synapse compositions.7
This is an open access article under the CC BY-N
The synaptic molecular network is tightly connected to cogni-

tive disorders, with synaptogenesis and plasticity increasingly

appreciated as molecular targets for psychiatric treatments.8–10

Accumulating evidence also points to synaptic biochemistry as a

focal point of the pathophysiology of psychiatric, neurodevelop-

mental, and neurodegenerative diseases.11–17 Autism spectrum

disorder (ASD) and schizophrenia (SCZ) are two such conditions

that manifest in a range of specific higher cognitive symptoms

that range in intensity from healthy neurodiversity to debilitating

brain dysfunction. These latter conditions typically include

changes in social and communication behavior;18,19 altered

perception and sensory habituation, including self-stimulatory

behavior;19–22 adherence to patterns and focused interests;19

impaired language acquisition and use;18,23 as well as general in-

tellectual disability24,25 and psychosis.26 While divergent in

symptom presentation, they are often studied genetically in the

same context because of similarities in risk genes and possible

functional and pathological associations.27–29

ASD and SCZ are highly heritable30,31 and genetically hetero-

geneous,32–34 with many identified risk genes, including rare,

highly penetrant de novo mutations35 as well as many common

variants that contribute small increases in risk. Thus, a central
Cell Reports 42, 112430, May 30, 2023 ª 2023 The Author(s). 1
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question is whether the genetic variants that increase risk for

ASD or SCZ share similar downstream molecular etiologies

and, if so, what their mechanisms are. Genome-wide association

studies and rare-variant sequencing studies have revealed the

prevalence of synaptic genes,11,12,17,29,36–41 including adhesion,

scaffolding, ion channel, and local translation control proteins,

as well as transcription factors upstream of them, among those

associated with ASD and SCZ.42–46 Additional evidence points

to consistent changes in synaptic structural and functional

features, including dendritic spinemorphology,47 excitation/inhi-

bition ratios,48–51 and global features of gene expression and

protein interaction networks,11,17,52,53 which are common to

different genetic models. Research that implicates perturbations

in brain-wide connectivity patterns,54,55 possibly related to defi-

cits in predictive processing capacity,56 supports the notion that

a fundamental synaptopathology expressed variably throughout

the brain may contribute to these disorders.13 Physical protein-

protein interaction approaches, such as yeast two-hybrid (Y2H)

tests and co-immunoprecipitation (coIP),52,53 have established

interaction networks involving synaptic proteins and their

changes in vivo in autistic individuals and autism models,

demonstrating the promise of studying the synaptic molecular

network as a focal point of autism pathogenesis. However, these

studies fall short of measuring changes to joint distributions of

protein expression levels or identifying perturbed causal con-

nections between relevant proteins.

To characterize how synaptic molecular composition is

affected across genetic perturbations associated with ASD

and SCZ, we applied RNAi-mediated knockdown of 16 canoni-

cal, highly penetrant risk genes associated with either ASD,

SCZ, or both at the onset of synaptogenesis. When a mature

and stable synapse population was established in each genetic

context, we measured the amounts of each of 10 synaptic pro-

teins across individual synapses using probe-based imaging

for sequential multiplexing (PRISM).7,57,58 PRISM is a recently

introduced multiplexed imaging technique that uses single-

stranded DNA (ssDNA)-conjugated antibodies or peptides

against desired targets that are confocally imaged sequentially

using fluorescently labeled single-stranded locked nucleic acid

(ssLNA) imaging probes. The affinity of imaging probes for their

targets depends on ionic strength, allowing sequential rounds

of imaging of multiple proteins in the same sample and fields

of view by exchanging imaging strands using high- and low-

salt buffers. Thus, this imaging method provides a combination

of extensive multiplexing, moderate throughput, minimal disrup-

tion to delicate synapse structures, and single-synapse

resolution.

The PRISM imaging output consists of images of the same

synaptic puncta over numerous protein channels. Integrating

fluorescence intensity over individual puncta and assigning

puncta across channels to the same synapse yields individual

protein measurements per synapse.7,57 We refer to the total inte-

grated fluorescence intensity per protein at a given synapse as

the local synaptic protein level. With this approach, in a single

experiment, we can generate a type-resolved systematic view

of protein-level changes caused by different genetic knock-

downs as well changes to distinct, compositionally defined

synaptic populations, as performed previously in response to
2 Cell Reports 42, 112430, May 30, 2023
chemical perturbation.57 In the current study, these changes

included a global synaptic protein increase with knockdown of

Pten, differential changes in response to Cul1 knockdown, a

potentially compensatory increase in synaptic PSD95 with

knockdown of Grin2a, and several unique synaptic phenotypes

resulting from Dyrk1a knockdown.

Leveraging the unique ability of single-synapse, multiprotein

measurements from PRISM to provide a high-dimensional joint

probability distribution (PD) of synapses in composition space,

we additionally sought to infer the synaptic protein influence net-

works that generated the measured protein distributions. To-

ward this end, we used Bayesian network (BN) inference, a

tool used previously to reconstruct entire signaling pathways

from multiplexed single-cell data.59 BNs are a framework to fac-

tor a joint PD into a product of individual conditional PDs. This

can be represented by a directed acyclic graph between

measured nodes, in which graph edges represent direct condi-

tional dependencies between individual nodes (i.e., retaining

only those connections that cannot be explained by mutual

dependence on a third node) as well as the estimated causal

direction of the pairwise dependencies. In this study, each

node refers to the local synaptic level of a certain protein. Sub-

structures in the resulting model generated testable predictions

of causal connections (e.g., the hierarchy in which perturbing

A affects B and C) between protein levels, some of which were

consistent with known protein roles and interactions and others

that were discovered anew, to the best of our knowledge.

In particular, the causal chain by which F-actin determines

post-synaptic PSD95 levels, which, in turn, determines post-

synaptic SHANK3 levels, we validated independently via direct

perturbations, thereby establishing a new causal hypothesis

that shapes synaptic protein distributions and, by confirming a

novel prediction presented by the model, generating confidence

in the new model as a whole. Finally, we present evidence of

convergent changes in the inferred synaptic molecular network

that are caused by distinct genetic knockdowns, specifically in

the strengths of transsynaptic and intra-postsynaptic edges,

offering evidence of a convergent molecular etiology across

ASD/SCZ-associated genes.

RESULTS

Effects of ASD- and SCZ-associated gene knockdowns
on the synaptic molecular system
The following core synaptic proteins were characterized using

PRISM to provide snapshots of the synaptic molecular sub-

network (Figure 1A). Synapsin1 was used to define all synapses,

with vGluT1 and vGAT used to differentiate glutamatergic from

GABAergic synapses. Other proteins included Bassoon, a cen-

tral presynaptic scaffolding protein that served as a proxy for

active zone size,60 and the glutamate receptor subunit GluR2,

which served as an indicator of synapse strength.61 Filamentous

b-actin (F-actin), measured via phalloidin, was included as the

core of the dendritic spine cytoskeleton that is locally regulated

by several ASD/SCZ-associated genes (e.g., Trio, Pten, and

Dyrk1a) and whose dysregulation is implicated in various synap-

topathologies.62,63 Finally, four scaffolding proteins were

included that have crucial roles in shaping the post-synaptic



Figure 1. Genes and targets

(A) Schematic summarizing the approximate syn-

aptic context of the 10 imaged targets.

(B) Venn diagram of gene knockdowns.

(C) Representative images of the same neuronal

culture in different imaging rounds, showing colo-

calized puncta of each protein. Bottom right: auto-

matically identified and segmented excitatory (red)

and inhibitory (blue) synapses. Scale bars, 5 mm.
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density: PSD95, Homer1a, and SHANK3 in excitatory synapses

and Gephyrin in inhibitory synapses. MAP2 staining via conven-

tional immunofluorescence was also used to trace dendrites to

the degree feasible in dense cultures and constrain punctum as-

signments to synapses as well as to align images from different

imaging probe exchange rounds.7,57

For genetic perturbations, 10 autism genes (Figure 1B) were

chosen as the best-scoring targets in the Simons Foundation

Autism Research Initiative database64,65 (Simons Foundation

Autism Research Initiative [SFARI] score), half of which are impli-

cated in SCZ as well. Six additional SCZ-specific genes were

chosen from the highly penetrant de novo mutations identified

by Singh et al.35 A mixture of four small interfering RNA (siRNA)

reagents was used for each gene, and each siRNA treatment

was separately validated by qRT-PCR for reduction in mRNA

levels in cultured hippocampal neurons (Figures S1A–S1C).

The siRNA reagents appeared to act more similarly to a small-

molecule treatment than a transfected gene, with transfection

universal (>99% of cells) and concentration dependence occur-

ring even at low doses (Figures S1D–S1F). A non-targeting

siRNA mix (NonT) was included as a negative control and used

for treatment comparisons throughout results.

To measure the effect of each gene knockdown on synaptic

protein distribution, we treated hippocampal neuronal cultures

on day in vitro (DIV) 6 with one of the corresponding

siRNA reagent mixes and fixed the cultures at DIV 19 to image us-

ing PRISM (STAR Methods). We integrated an automated liquid-

handling platform for probe exchange to complete seven imaging

rounds of the same 60 cultures (3–4 per treatment group) in under

12 h. The resulting fluorescent images of the same synapses

across imaging rounds (Figures 1C and 2A) were automatically

segmented, classified, and quantified using CellProfiler66,67
(STAR Methods). We combined data

from 4 such experiments (plates),

where each used embryonic day 18

(E18) neurons from a different pregnant

rat for a total of 3.5 3 106 11-protein syn-

aptic measurements across 220 separate

neuronal cultures in 18 treatment groups.

To account for variability in staining and

imaging conditions between plates, fluo-

rescence intensity values of each protein

channel were normalized by the average

intensity of that channel in untreated cul-

tures of that plate.

Automatically segmentedpuncta, iden-

tified as above-threshold intensity peaks
within a size range (STAR Methods) in each protein channel,

were assigned to specific individual synapses based on overlap

withSynapsin1puncta (STARMethods). Theexistenceof apunc-

tum inaprotein channel assigned toa specific synapsewas taken

as the presence of that protein in the synapse, and the integrated

fluorescence intensity of a certain protein channel across its syn-

apse-associated punctum was assumed to be proportionate to

the total level of that protein in the synapse. Based on these

data, we first examined the individual effects of different siRNA

treatments on three global parameters: excitatory:inhibitory (E:I)

synapse ratio (Figure 2B), fraction of GluR2� excitatory synap-

ses68 (Figure 2C), and dendrite growth, measured as overall

area stained by MAP2 (Figure 2D). E:I synapse ratio, implicated

previously to be dysregulated in ASD and SCZ,48 was calculated

as the ratio of (+vGluT1, �vGAT) to (�vGluT1,+vGAT) synaptic

puncta. This ratio was, on average, �5:1 and was significantly

increased in knockdown of Dyrk1a, consistent with reports of in-

verse correlation ofDyrk1a expression to E:I ratio in vivo.49 It also

increased in knockdown of Grin2a, Shank3, and Chd8.

Next, by examining the average levels of each measured pro-

tein across synapse populations, we created a map of how the

synaptic levels of each protein were, on average, affected by

each treatment (Figure 2E). Beyond this overall characterization,

we observed several novel synaptic phenotypes, the strongest

of which included (1) a 2-fold increase in Homer1a under knock-

down of Setd1a, a nuclear regulatory lysine methyltransferase,

while knockdown ofSetd5, a gene of the same family, decreased

Homer1a; (2) an 80% increase in synaptic F-actin after knock-

down of Cul1 (other proteins including Synapsin1 are

decreased); (3) knockdown of Grin2a leading to an �70% in-

crease in PSD95 as well as increases in other proteins, including

Homer1a, GluR2, and Bassoon; (4) a 2-fold decrease in synaptic
Cell Reports 42, 112430, May 30, 2023 3



Figure 2. Synapse effects of siRNA knockdowns

(A) Representative images from medium-sized dendrites across 4 channels. Bottom left scale bar, 5 mm.

(B) Excitatory (Syn+, vGluT1+, vGAT�) to inhibitory (Syn+, vGluT1�, vGAT+) count ratios.

(C) Percentage of GluR2� synapses from all excitatory synapses.

(D) Estimates of total dendrite proliferation from MAP2 staining, normalized to NonT.

(B–D) Blue lines indicate mean and SEM of NonT measurements.

(E) Log fold change (relative to NonT) of mean levels of each protein in excitatory and inhibitory synapses. Coloring of genes in (B)–(E): red, only ASD; blue, only

SCZ; purple, both.

(F–I) Validation experiments with chronic treatments (DIV 6–19) measured by conventional immunofluorescence (IF). Mean synaptic protein levels or other

measurements are depicted as Log2 fold change from control-treated (for chemical treatment experiments) or NonT siRNA-treated (for RNAi) wells.

(F) Treatment with bpV(pic), a PTEN inhibitor.

(G) Treatment with harmine, a Dyrk1a inhibitor.

(H) SHANK and mGluR1/5 after knockdown of Shank3.

(I) PSD95, NR1, and density of NR1+ synapses after short and chronic NMDAR blockade with D-APV or chronic RNAi knockdown of Grin2a.

Error bars are mean ± SEM across wells. *p < 0.05, **p < 0.01, ***p < 0.001, two-sided t test.
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F-actin following knockdown of Dyrk1a, accompanied by de-

creases in other proteins, including Bassoon and Homer1a;

and (5) knockdown of Trio leading to a decrease in synaptic

F-actin and SHANK3. We did not identify significant differential

effects on the same protein in the context of excitatory versus

inhibitory synapses.
4 Cell Reports 42, 112430, May 30, 2023
The same images could also be used to assess changes in

global protein expression (Figures S2A–S2C), either somatic

(i.e., fluorescence in synapse-excluded neuronal bodies) or to-

tal (averaged fluorescence over the entire image). A few

notable differences from synapse-specific phenotypes ap-

peared. For example, Cul1 knockdown showed a significant



Figure 3. Synaptic multiprotein distribu-

tions

(A–C) Composition-defined synaptic subtypes.

(A) UMAP projection of scaled synaptic measure-

ments. Right: overall composition of the synapse

population by cluster.

(B) Row-normalized (across all clusters) mean

levels of each specific protein in specific clusters

identified in (A).

(C) Log fold change of excitatory cluster pop-

ulations under each treatment.

(D) Direct correlations between pairs of proteins in

excitatory synapses.

(E) Correlations in each pair, controlling for all

other 6 proteins.
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increase in synaptic F-actin, but not in global somatic levels, in

parallel with synaptic and (stronger) somatic reduction in other

proteins, raising the possibility of a compensatory connection,

in either direction, between an increase in F-actin and reduc-

tion in other postsynaptic proteins via an unknown mecha-

nism, possibly related to the role of Cul1 in regulating SPAR

turnover.69

Some treatment effects in Figure 2E have been reported pre-

viously or were expected based on pre-existing knowledge of

mechanisms involved. For example, we confirmed that siRNA

knockdown of Shank3 led to a marked reduction in SHANK3

levels at synapses. Knockdown of Pten led to a broad increase

in nearly all synaptic markers, consistent with its role as a nega-

tive regulator of phosphatidylinositol 3-kinase (PI3K)-dependent

neurite and synapse proliferation.70

To support the validity of RNAi with PRISM to reveal pheno-

types directly connected to gene function, we performed

chemical inhibition and knockdown experiments, measuring

the synaptic response using conventional immunofluores-

cence (Figures 2F–2I). These showed that (1) treatment with

bpV(pic), a PTEN phosphatase inhibitor, increased synaptic

F-actin and PSD95, mimicking Pten knockdown in a dose-

dependent manner (Figure 2F); (2) treatment with harmine, a

Dyrk1a inhibitor, decreased F-actin, mimicking Dyrk1a knock-

down in a dose-dependent manner (Figure 2G) and also

increased the fraction of GluR2+ synapses (Figures S2D–

S2F); (3) knockdown of Shank3 reduced synaptic SHANK as

well as mGluR1/5, as reported previously71 (Figure 2H); and

(4) knockdown of Grin2a increased PSD95 levels and density

of NMDAR-containing synapses (Figure 2I). We also noted

that the effects of Dyrk1a inhibition on synaptic F-actin and

the fraction of GluR2+ synapses were similar with and without

application of heat-induced antigen retrieval (Figures S2D and

S2E), suggesting that the observed phenotypes are likely due

to changes in protein content and not antigen accessibility.
Finally, we noted that the effect on the

GluR2+ fraction was similar whether

staining for total or only externalized

GluR2 (Figure S2F), indicating that,

although GluR2� synapses identified

in our screen are not necessarily silent68

and vice versa (because GluR2 may be
present but below the threshold or present but not external-

ized), they may act as a reasonable proxy for changes in silent

synapse populations.

To test the hypothesis that PSD95 levels respond to mitigate

decreased NMDAR presence or activity, we treated cultures

for either a short time (48 h) or chronically (DIV 6-19) with the

NMDAR blocker D-aminophosphovalerate (D-APV)72 (Figure 2I).

After the short treatment, NMDAR levels per synapse decreased

�30%. This effect disappeared after 2 weeks, accompanied by

an increase in PSD95 and excitatory synapse density that

mimics Grin2a knockdown, consistent with a compensatory

response.

Multiplexed imaging reveals clusters of hierarchical
synaptic protein compositions
We applied uniform manifold approximation and projection

(UMAP)73,74 to the 10-dimensional dataset of synapse protein

levels, yielding the 2D projection in Figure 3A of different synapse

compositions. The distribution of synapses shows distinct clus-

ters defined combinatorially by the presence or absence of

certain proteins, similar to our previous observations.57 These

included two inhibitory clusters and several excitatory clusters.

Protein absences that defined certain clustersmay have resulted

from ‘‘true’’ complete absences or merely from levels below

threshold. However, we observed similar distributions when

changing threshold levels for synapse identification (to 75%

and 133% of defined levels; Figure S3), indicating that the clus-

ters arose at least in part from qualitatively different synapse

compositions.

All treatment groups had synapses in all 9 clusters (Figure S4),

with some population changes between clusters observed as a

result of different gene knockdowns (Figures 3C and S4). These

changes were consistent with the changes observed in mean

protein levels in Figure 2E. For example, Pten knockdown, which

increased all excitatory proteins save for GluR2, was seen here
Cell Reports 42, 112430, May 30, 2023 5



Figure 4. BN inference on simulated networks

(A) Example BN used to simulate PRISM-like data.

(B) Network reconstructed from simulated data produced by the network in (A).

(C and D) Calculated edge strengths of the edges in (B) versus defined inter-

action coefficients in (A). (C) Edge strengths calculated by parent-controlled

correlations. (D) Total (uncorrected) correlations.

(E) Example non-Bayesian network with cycles (C-E-D and B-D-G-H) used to

simulate PRISM-like data.

(F) Reconstructed BN from simulated data produced by the network in (E).

Cycles cannot be represented, but the overall structure and relative edge

strengths are preserved.

Arrowhead sizes represent predefined interaction parameters aXY in (A) and

(E) and inferred edge strengths in (B) and (F) (see Methods).
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to enrich cluster 2 (GluR2�, positive for all others) at the expense

of clusters 1 (GluR2+) and 6 (F-actin�). Nevertheless, they pro-

videdmore detailed information about the specific synapse pop-

ulation changes that occurred as a result of gene knockdown.

In addition, we were able to use spatial information to aid in in-

terpreting protein combinations. A small fraction of puncta was

identified as vGluT1+, vGAT�, and Gephyrin+ (Figures S5A

and S5B), despite Gephyrin being well established as an inhibi-

tory synaptic protein.75 However, upon closer examination, we

observed that Gephyrin-Synapsin puncta distances in that sub-

set were 50% greater than expected (Figure S5C), leading us to

infer that these puncta were probably not associated physically

with the other excitatory markers and to exclude them from

future analyses.

Finally, we observed that not every combination of proteins

was present (Figure 3B). For example, synapses that were nega-

tive for Bassoon or b-actin typically lacked or had very low levels

of other post-synaptic proteins, indicating a hierarchy in protein
6 Cell Reports 42, 112430, May 30, 2023
dependencies on one another, which we sought to characterize

systematically using BN inference, as previously applied to

signaling networks.59

BN inference of the glutamatergic synapse
All excitatory synaptic proteins were positively correlated with

one another (Figure 3D). However, when we examined each

pair individually by measuring their correlation controlled via

stratification for all other six proteins (STARMethods), some cor-

relations disappeared (Figure 3E). This revealed protein pairs

that were not directly connected but only correlated through their

inter-dependence on a third protein, which could be either a

common effector (A)C/B) or an intermediate (A/C/B).

To systematically map which causal connections among excit-

atory synaptic proteins were direct versus indirect and to estab-

lish the directionality of their inter-dependence, we derived a BN

from the 8-dimensional distribution of protein levels in excitatory

synapses.

This approachwas first tested on simulated PRISM-like BNs—

high-dimensional distributions that mirrored real PRISM data but

with the distributions of variables conditional on one another in

predetermined ways (Figures 4A and 4E; see STAR Methods

for details on network simulation).

To derive the BNs (Figures 4B and 4F), we applied the ‘‘tabu’’

algorithm of the BNLEARN package76 in R that searches model

space in a Monte Carlo-like manner, maximizing an overall score

that is based on the likelihood of the data given the model.76–79

Additional costs to the score were imposed on each edge to pre-

fer simpler, more parsimonious models.76,79 To estimate confi-

dence levels on the presence of edges and their directions, we

applied a bootstrapping method that re-derived separate BNs

for 50 independent samplings of 10,000 points in the simulated

distribution. An edge was considered present (and is shown in

Figures 4B and 4F) when it appeared in more than 80% of boot-

strapped networks, and a direction was indicated (as a unidirec-

tional arrow in Figures 4B and 4F) when that direction appeared

inmore than 60%of bootstrapped networks where the edgewas

present. To derive edge strengths, shown as arrowhead sizes in

Figures 4B and 4F, we calculated the correlations between the

parent and child node when controlling by stratification for all

other parents of that node.79,80 In bidirectional edges, both no-

des were considered child nodes for this purpose.

This method reconstructed predefined networks with high

fidelity. Notably, even when a distribution was not generated

by a BN (i.e., it contained cycles, which cannot be reflected in

a directed acyclic graph but can occur in reality as feedback

loops), the inference algorithm still reconstructed the general

network structure and edge strengths with reasonable fidelity,

reversing some intra-cycle edges to avoid loops but preserving

extracyclical edges. Edge strength calculation recovered the

original interaction parameters (Figure 4E) better than using un-

controlled, total correlations (Figure 4F).

We applied the above approach to the entire 3.5-million syn-

apse dataset across all treatments, yielding the network shown

in Figure 5A. This network exhibited several features that were

anticipated given our knowledge of the function and connectivity

of these proteins. For example, the presynaptic proteins

Bassoon, Synapsin1, and vGluT1 (the latter two co-localized in



Figure 5. BN of eight excitatory synaptic proteins

(A) The inferred network. Presynaptic proteins are shown in blue and post-

synaptic proteins in green. Red arrows indicate the substructure probed in

(B) and (C).

(B) Log fold change in F-actin, PSD95, and SHANK3 after treatment with two

actin polymerization perturbations, total and controlled for each protein.

(C) Log fold change in PSD95 and Shank3 after treatment with 3 siRNAs: NonT,

against Dlg4 (PSD95), and against Shank3.

Error bars are mean ± SEM across wells.
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the same synaptic vesicles) appear tightly interconnected, and

their correlation was independent of the postsynaptic proteins.

Of the three presynaptic proteins, Bassoon levels were most

directly connected to those of the postsynaptic proteins,

possibly by acting as a proxy for the size of the active zone. Of

the postsynaptic proteins, GluR2 was directly downstream of

PSD95, in accordance with the latter’s role as a dynamic anchor

for the receptor whose levels dictate the number of sites that can

capture diffusing AMPARs on the postsynaptic density.81 Finally,

levels of synaptic F-actin were upstream determinants of all

other postsynaptic proteins, likely because of the cytoskeletal

protein acting as a proxy for the size of the dendritic spine, which

may limit other protein amounts. Additional, unanticipated fea-

tures included presynaptic Bassoon appearing to influence

levels of postsynaptic F-actin, PSD95, and Homer1 more than

the latter influenced one another, as inferred from network

edge strengths as defined above.

Importantly, our model also lends itself to testable hypotheses

of causal connections derived from sub-structures of the

network. For example, the position of SHANK3 downstream of

the other components predicted that they would not be affected

significantly by direct perturbation of SHANK3; e.g., by siRNA-

induced knockdown. Our screen confirmed this (Figures 2E,

Shank3 line, and 2H), consistent with a previous study that
used shRNA knockdown of Shank3 to show that mGluR5 levels

were reduced but other postsynaptic proteins were unaf-

fected.71 To prevent circular logic (i.e., the presence of the

Shank3 knockdown data in the network generating this predic-

tion), we derived the same BN when excluding the Shank3 treat-

ment group (Figure S6), showing that BN inference can predict

the effects of perturbations that are excluded from the

training data.

A more complex, predictive sub-structure of the network is

the inter-dependence chain: F-actin / PSD95 / SHANK3.

This structure predicts that (1) perturbing F-actin should affect

PSD95 and SHANK3, but the effect on SHANK3 should

decrease or disappear when controlling for PSD95, while the

effect on PSD95 should be relatively independent of

SHANK3, and (2) perturbing PSD95 should affect SHANK3

but not vice versa. To test the first prediction, we treated hippo-

campal cultures with jasplakinolide (Jasp) or latrunculin B (Lat)

at DIV 6, fixing at DIV 19 and staining for Synapsin1, F-actin,

PSD95, and SHANK3 (Figure 5B). Interestingly, although Jasp

and Lat B are generally inhibitors of F-actin depolymerization

and polymerization, respectively, their effects on synaptic

F-actin after chronic treatment were reversed. Effects on

PSD95 and SHANK3 were consistently in the same direction

as the effects on F-actin (decreased for Jasp and increased

for Lat) and completely disappeared or even reversed when

controlling for F-actin. In addition, controlling for PSD95 greatly

diminished or reversed the effect on SHANK3, as predicted,

while the reverse was not true. To test the second prediction,

we treated DIV 6 cultures with siRNA mixes against Shank3,

Dlg4 (the gene coding for PSD95), or NonT and fixed and

stained at DIV 21 for MAP2, Synapsin1, SHANK3, and PSD95

(Figure 5C). Synapsin-controlled SHANK3 levels were reduced

compared with NonT in Dlg4 and Shank3-treated synapses, but

PSD95 was reduced only in Dlg4-treated synapses, establish-

ing the PSD95 > SHANK3 hierarchy. Taken together, these ob-

servations support the conditional dependency chain predicted

by the network.

Network inference on real PRISM data may be sensitive to

experimental and image analysis artifacts, such as thresholding,

image quality, and rules for synapse identification, because

these may impose artifacts on correlations between protein

measurements. We therefore performed several quality controls

to ensure that our model did not result in such artifacts (Fig-

ure S6). In one, we limited network inference only to synapses

positive for all protein components. In another, we varied the

thresholds for punctum identification in CellProfiler to 75% or

133% of their values used in the primary analysis. In a third,

we used puncta of postsynaptic proteins (F-actin and PSD95)

to assign synapse identity instead of Synapsin1 and vGluT1.

All of these manipulations yielded network structures that were

largely similar to that in Figure 5A, especially in presence, relative

strengths, and directionalities of transsynaptic and intra-post-

synaptic edges. The few inconsistencies included interchanges

in the relative positions of Synapsin1 and vGluT1 in the network.

Finally, we derived a network based on different eight-protein

measurements in a previous study57 (Figure S6). Although that

dataset was smaller, with fewer perturbations than the current

one, and, thus, with reduced confidence in edge presence and
Cell Reports 42, 112430, May 30, 2023 7



Figure 6. Network-informed analysis of the genetic screen

(A) ‘‘Direct’’ effects of each treatment on each protein separately; as in Fig-

ure 2F but controlled for the parent nodes of each protein.

(B) Effect of each treatment on the strength of each network edge.

(C) Network from Figure 4A, with each edge colored by the average change in

strength across treatments. All colors are log2 fold change relative to the NonT

siRNA control.
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directionality, we observed that the six proteins common to both

studies exhibited similar connectivity patterns. That the network

features were robust against these manipulations, replicated

across experimental conditions, and include substructures that

were directly validated in perturbation experiments strengthened

our confidence that these features represent real underlying

biology.
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Convergent effects of siRNA treatments on network
structure
Next, we sought to use the causal network structure identified

above for a more in-depth exploration of gene knockdown ef-

fects on the synaptic molecular system as a whole, including

possible convergent phenotypes resulting from distinct genes.

First, we used the simultaneous measurements to isolate

direct treatment effects from secondary or downstream

ones, by measuring the log-fold change in each protein under

each siRNA treatment, when controlling for all parent nodes of

that protein in the network, thus distinguishing direct effects

from those mediated by a parent node (Figure 6A). Isolating

direct effects revealed that Pten knockdown affected all post-

synaptic protein levels that we examined nearly exclusively

through increased F-actin within dendritic spines, in accor-

dance with what is known of its regulatory role.70 This also al-

lowed us to discover direct effects that were hidden under

second-order effects in the opposite direction; for example,

that knockdown of Pten caused a strong specific decrease

in synaptic GluR2 in parallel to a general increase of all

post-synaptic proteins.

Finally, we looked for quantitative effects of siRNA gene

knockdowns on the BN structure itself, particularly on edge

strengths that indicate inter-dependencies of synaptic protein

components. We quantified the strengths of the 17 edges in

the network for each treatment group by treating each culture

as an individual joint PD (Figures 6B and 6C). We discovered

that some edges, particularly centered around PSD95 and

GluR2, were uniformly strengthened or weakened by nearly all

treatments, regardless of direct effects on the proteins them-

selves, even in treatments that had weak, if any, effects on the

protein levels. For example, Synapsin1-PSD95 and Synapsin-

GluR2 edges were strengthened in nearly all gene knockdowns

compared with the NonT groups and not weakened in any,

even though different treatments increased or decreased each

protein on its own. Conversely, the PSD95-Homer1, Homer1-

GluR2, or PSD95-GluR2 edges were weakened in most treat-

ments compared with NonT.

Independent treatment effects on different proteins were likely

to reduce edge strengths indiscriminately, indicating that that

there might be an underlying molecular process by which knock-

downs of many different genes all serve to, for example, weaken

the extent by which PSD95 determines GluR2 and strengthen

the extent by which PSD95 and Synapsin1 influence each other,

where these effects are superimposed on any direct effects they

may also have on these proteins.

To the best of our knowledge, this is the first time that a direct

measurement of synaptic protein networks has yielded molecu-

lar phenotypes common to many different ASD- and SCZ-asso-

ciated mutations, which may be reflective of shared synaptic

pathogenesis.

DISCUSSION

Detailed parallel phenotyping of synaptic biochemistry
in ASD and SCZ models
We used simultaneous measurement of multiple proteins at sin-

gle-synapse resolution to infer causality relationships among
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protein numbers in the synaptic molecular network and system-

atically map how it is affected by perturbation of ASD- and SCZ-

associated genes. PRISM, supported by automated probe

exchange, image analysis, and synapse segmentation and

quantification, can be used to measure multiple synapse-spe-

cific phenotypes across many treatment groups in a single

experiment as well as to identify synapse types and population

changes that are more intricate than bulk effects on a protein

because of its ability to resolve synapse-to-synapse heterogene-

ity in multiple protein levels.

We observed phenotypes that were anticipated based on pre-

vious studies or their known activity, such as Pten70 and

Shank3.71 We also observed phenotypes that, to the best of

our knowledge, have not been reported previously, such as

Cul1 on F-actin, Setd1a on Homer, and Grin2a on PSD95.

Follow-up on the latter yielded tentative evidence of a long-

term compensatory mechanism that responds to NMDAR defi-

ciency (by gene knockdown) or reduced activity (by APV

blockade, which also reduces NMDAR levels), with increased

excitatory synapse density and levels of the NMDAR anchoring

protein PSD95, possibly a compensatory effect. Of the overall

molecular signatures, Dyrk1a exhibited the most unusual

pattern, combining a markedly higher E:I ratio and lower levels

of F-actin and downstream postsynaptic proteins but not of

GluR2 (and generally a lower percentage of silent synapses).

This is congruent with reports of Dyrk1a-associated autism pre-

senting a unique neurological character.82,83

Another important consequence of the ability to measure

multiple proteins simultaneously is that it can facilitate decon-

volution of direct causal relationships from those mediated by

other processes. Instead of having to experimentally constrain

any possible confounding variables, multiplexed imaging allows

measuring them simultaneously, while moderate throughput of-

fers a large enough number of data points (>3 3 106 in this

study) to directly control for possible confounding variables

via stratification. The results of such intra-dataset controls

must be interpreted carefully because of potential artifacts

arising from comparing different synapse populations. Never-

theless, when using information about causal connections be-

tween variables, either from prior knowledge or, as in this

case, inferred directly from the PDs, such a controlled analysis

can help identify when a certain effect is entirely mediated by

other variables (as with Pten or Dyrk1a on postsynaptic pro-

teins, mediated by F-actin) or when a certain variable deviates

significantly because of a hidden direct effect from what is ex-

pected given its upstream network connections (as with Pten

on GluR2). The network-based prediction that Dyrk1a effects

are mediated via F-actin is supported by an in-depth investiga-

tion84 of changes to dendritic spine formation in heterozygous

Dyrk1a truncation mutants.

It is important to note that, although parallel measurements of

many proteins may serve as a hypothesis generator for synapse-

level molecular mechanisms, this study is fundamentally a

phenotypic assay and does not purport to definitively test or

establish any specific mechanism. Some gene perturbation ef-

fects may be the result of transcriptional changes in upstream

gene expression networks (for example, by histone-modifying

enzymes), to which our assay is agnostic.
Interpreting inter-protein dependencies from BN
structure and edge strengths
In the inferred BN, an edge from nodeA to B indicates that the PD

of B depends on A even after accounting for all other measured

components. This dependence can be direct or via a hidden (un-

measured) component. Conversely, lack of a direct edge

between two correlated nodes indicates that any correlation be-

tween them can be explained by the other known components.

Thus, while the overall structure is dependent on the set of pro-

teins measured, we expect ‘‘non-edges,’’ such as F-actin-

SHANK3, to be a conserved feature even as the network

expands to include more proteins. The structure we observed

hints at some general rules governing synaptic molecular

composition, which have also been observed in the literature:

relative independence of the presynaptic active zone assembly

and molecular composition85,86 and receptor levels driven by

scaffolding proteins rather than the reverse.81,87,88

The interpretation of changing edge strengths is not mecha-

nistically obvious. As a rule, injecting perturbative noise into a

system weakens correlations by default. Thus, a weakened

edge may correspond to a loss of correlation that can occur

when only one protein of a pair is perturbed or when they are per-

turbed in different directions. However, this is not always the

case; for example, knockdown of Cul1 reduces PSD95 and

GluR2 to a similar extent but also weakens the PSD95-GluR2

edge. In general, an edge from a parent node to a child node is

considered in the context of all the other parents of that node.

Thus, an effect that perturbs themechanism bywhich one parent

node affects the distribution of the child will weaken the corre-

sponding edge butmay strengthen the edge from another parent

and vice versa. It is thus interesting to observe that transsynaptic

edges are strengthened by the genetic knockdowns in this

study, while intra-postsynaptic edges are generally weakened.

Comparison with other protein network models
Our results add to a growing body of genomic and proteomic ob-

servations of convergent changes at the protein network level in

ASD. These are based on physical interaction networks derived

from Y2H tests52 or bulk quantitative multiplexed coimmunopre-

cipitation (QMI).53 It is important to note differences between

physical interaction networks as obtained from Y2H screens or

coIP and our network, which does not provide information about

direct biochemical protein-protein associations but rather pro-

vides constraints on themultiprotein joint PD that reports on syn-

aptic-level protein co-localizations. When many parallel

biochemical interaction pathways exist, the BN enables us to

infer those that causally determine synapse protein levels. For

example, the F-actin/ PSD95/ SHANK3 causal chain we es-

tablished implies that it is likely an interaction chain from actin to

PSD95 (possibly via ARPC489) that drives PSD95 (and therefore

SHANK3) levels. It must be noted that, for F-actin, our measure-

ment mixes together signal from pre- and post-synaptic b-actin

filaments. However, because postsynaptic F-actin is thought to

be more abundant, we believe that the observed conditional de-

pendencies are mostly due to postsynaptic F-actin levels.

Causal correlations may also show up when a certain target is

the best available proxy for a different measure that drives pro-

tein levels, such as Bassoon for the active zone or F-actin for
Cell Reports 42, 112430, May 30, 2023 9
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the dendritic spine. For example, knockdown of Bassoon itself

does not seem to affect postsynaptic protein localization and ul-

trastructure. Rather, we hypothesize that the edges from

Bassoon to F-actin, PSD95, and Homer represent different

paths, through unmeasured targets, by which the size of the

active zone affects levels of different post-synaptic proteins.

Finally, our network so far only measured protein abundances

and not phosphorylation activation or other modification

changes (or splice isoforms), which are often influenced by inter-

action partners.

The two frameworks thus complement each other. Physical

interaction networks provide mechanistic biochemical associa-

tions, albeit, in some cases, under unphysiological conditions,

such as in yeast, and, by casting a wider, less biased net, identify

new targets tomeasure,whereasBNanalysis integrates thesede-

tails into a global picture of what shapes the overall synapse pro-

tein composition. This, in turn, provides insight into possible

dynamical processes in the synaptic molecular network, which

are testedby again returning tomechanistic connectionsbetween

components. In the future,BNanalysiscouldbedirectly combined

with single-synapse-level knowledgeof physical protein organiza-

tion fromautomated,multiplexedsuperresolution imagingsuchas

maS3TORM.90

The steady state of the synaptic molecular network in
ASD and SCZ
We propose a theoretical framework for future exploration of the

convergence of phenotypes of different disease-associated mu-

tations at the level of the synaptic molecular network. A dynamic

system like the synapse, with many components, generally ex-

ists in a high-dimensional space of component abundances

and activation states. However, with sufficient interactions and

feedback loops, such systems invariably settle into a much

lower-dimensional space of allowable stable or metastable

states. In the case of the synapse, these are guaranteed by the

high interconnectivity among synaptic proteins and feedback

constraints such as homeostatic plasticity. In other words,

because synaptic structural dynamics (e.g., LTP and LTD) occur

at longer timescales than the biochemical feedback interactions

that establish the allowed states, the former navigate a compar-

atively narrow landscape of only those states that the dynamical

system can consistently sustain, and the synapse population

distribution reflects this landscape.

A similar constraint-induced dimensionality reduction is

considered to stabilize symmetric phenotypes in genotype-

phenotype maps.91 In the context of ASD- and SCZ-associated

genotypesmapping to a synaptic phenotype spacewith reduced

dimensionality caused by interaction-based constraints, this

means that a multitude of seemingly unrelated disease-associ-

ated mutations can drive similar perturbations to the lower-

dimensional stable/allowed-state landscape, as measured in

synaptic protein networks.

Thorough investigation of such a mechanism in ASD and SCZ

will require characterization of this space of allowed synaptic

states and how it changes under different mutations, a charac-

terization for which this work and others provide initial outlines.

This characterization should also provide additional starting

points to investigate the downstream effects of convergent syn-
10 Cell Reports 42, 112430, May 30, 2023
apse structure phenotypes on the architecture of the synaptome

and specific neuronal circuits.

Given the potential of PRISM with automated probe exchange

for increasingly higher throughput, along with the theoretically un-

limited multiplexing capacity, our method of multiplexed imaging

with single-synapse analysis is well poised to investigate such hy-

potheses aswell as any other processes in the synapticmolecular

network. Specifically, the properties of BN inference mean that

additional measured nodes would increase the scope of and con-

fidence in network structures as well as help establish differences

in network structure underlying qualitatively different functionality

in excitatory synapses connecting different neuron types.6 Finally,

the tool presented here does not need to be limited to synapses

and can be applied to any subcellular structure that can be iden-

tified individually in fluorescencemicroscopy, includingmitochon-

dria, phagosomes, nuclear compartments, etc. Thus, PRISM,

supported by BN analysis, may come to serve as a general hy-

pothesis-generating tool for understanding complex protein net-

works in situ in cells, organelles, and subcellular structures.

Limitations of the study
The objective of this study was to perform high-dimensional in

situ synaptic protein phenotyping in an ASD- and SCZ-associ-

ated genetic screen and search for similarities in synaptic protein

compositions and convergent synapse phenotypes across dis-

ease-associated genes. One major limitation of this study was

the use of self-transfecting siRNA knockdown in 2D rodent

neuronal culture as a model for ASD and SCZ genotypes. While

this model system often reproduces qualitative effects of hap-

loinsufficiency or partial loss of function (PLOF), they may be

fundamentally different from, for example, complete knockout

or gain-of-function models, some of which have observed

different synaptic phenotypes.92,93 Even for the former, gene

dosage differences may produce qualitatively different results,

with our treatments variably reducing mRNA levels by 40%–

80%, which may be different from the gene dosage produced

by heterozygous mutants or PLOF. Therefore, this study should

be treated as a starting point to investigate convergent gene-

proteome connections rather than a definitive description of

protein changes in the disease itself.

Another potential limitation is the exclusive use of immunoflu-

orescence for protein quantification, which offers the possibility

of artifacts because of variability in epitope accessibility as well

as non-specific binding that may confound results. While we

have performed extensive validations in this and previous

studies to establish the quantitative validity of PRISM, the possi-

bility of such artifacts remains. Finally, the network inference

approach presented is based on one imaging dataset and may

additionally contain artifactual edges and substructures despite

care to account for possible statistical artifacts. Future work that

incorporates additional protein nodes and a larger variety of

cellular conditions will help to further establish the biological

validity of the present work.
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Antibodies

anti-MAP2, chicken polyclonal Novus Biologicals Cat#NB300-213 RRID:AB_2138178

anti-PSD95, rabbit monoclonal Cell Signaling Technology Cat#3450 Clone: D27E11

RRID:AB_2292883

anti-Gephyrin, rat monoclonal IgG1 Synaptic Systems Cat#147208 Clone: rtmAb7a

RRID:AB_2619836

anti-GluR2, N-terminus, guinea pig polyclonal Synaptic Systems Cat#182105 RRID:AB_2619875

anti-NR2A, mouse monoclonal IgG2a Neuromab Cat#75-288 Clone: N327/95 RRID:AB_2315842

anti-Shank3, mouse monoclonal IgG1 Synaptic Systems Cat#162311 Clone: 144b12 RRID:AB_2713972

anti-vGAT, mouse monoclonal IgG3 Synaptic Systems Cat#131011 Clone: 117G4 RRID:AB_887872

anti-Synapsin1, mouse monoclonal IgG1 Synaptic Systems Cat#106011 Clone: 46.1 RRID:AB_2619772

anti-Homer1, mouse monoclonal IgG1 Synaptic Systems Cat#160011 Clone: 2G8 RRID:AB_2120992

anti-vGluT1, camelid sdAb, FluoTag X2 Synaptic Systems Cat#N1602-AF568, RRID:AB_2737074

anti-mGluR5, rabbit polyclonal Sigma Aldrich Cat#AB5675 RRID:AB_2295173

anti-Shank1/2/3, mouse monoclonal IgG2a Synaptic Systems Cat#162111 Clone: 151E3 RRID:AB_2636900

anti-NR1, mouse monoclonal IgG2a Millipore Cat#MAB363 Clone: 54.1 RRID:AB_94946

anti-GluR2, C-terminus, mouse monoclonal IgG2a Millipore Cat#MAB397 Clone: 6C4 RRID:AB_2113875

anti-Synapsin1, goat polyclonal Santa Cruz biotechnologies Cat#sc-7379 RRID:AB_677474

anti-Rabbit, goat polyclonal Invitrogen Cat#A16126

anti-Mouse IgG1, goat polyclonal Abcam Cat#ab98689

anti-Mouse IgG2, goat polyclonal Novus Biologicals Cat#NB7513

anti-Guinea Pig, goat polyclonal Invitrogen Cat#A18777

anti-Rat, goat polyclonal Invitrogen Cat#A18873

anti-Goat 405, donkey polyclonal Abcam ab175665

anti-Goat 488, donkey polyclonal Invitrogen A-11055

anti-Chicken 405, goat polyclonal Abcam ab175674

anti-Chicken 488, goat polyclonal Invitrogen A-11039

anti-Mouse 488, goat polyclonal Abcam ab150113

anti-Mouse 568, donkey polyclonal Invitrogen A10037

anti-Mouse 647, donkey polyclonal Abcam ab150107

anti-Rabbit 488, goat polyclonal Abcam ab150077

anti-Rabbit 568, donkey polyclonal Abcam ab175470

anti-Rabbit 647, donkey polyclonal Invitrogen A-31573

Biological samples

E18 Rat Hippocampal Neurons Privately sourced at the Broad Institute

Chemicals, peptides, and recombinant proteins

4-(N-Maleimidomethyl)cyclohexane-1-

carboxylic acid N-hydroxysuccinimide

(SMCC)

Sigma Aldrich Cat#573115 CAS 92921-24-9

Phalloidin 7-Ornithine Bachem Cat#H7643

Harmine Tocris Cat#5075 CAS 442-51-3

bpV(pic) Sigma Aldrich Cat#SML0885 CAS 148556-27-8

D-AP5 Alomone Labs Cat#D-145 CAS 79055-68-8

RNase A Invitrogen Cat#EN0531

RNase T1 Invitrogen Cat#EN0542
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Hibernate E Thermo Fisher Cat#A1247601

NbActiv1 Brainbits LLC (now Transnetyx) Cat#NB1

NbActiv4 Brainbits LLC (now Transnetyx) Cat#NB4

B27 Supplement Thermo Fisher Cat#17504044

Arabinofuranosyl Cytidine (AraC) Sigma Aldrich Cat#C6645 CAS 69-74-9

Atto 565 NHS Atto-Tec GmbH Cat#AD 565-31

Atto 655 NHS Atto-Tec GmbH Cat#AD 655-31

Critical commercial assays

LightCycler 480 Probes Master Roche Cat#04707494001

TaqManTM Gene Expression Assays Life Technologies See Table S3

SiteClick Azido Antibody Modification Kit Thermo Fisher Cat#S10900

Experimental models: Organisms/strains

Rattus Norvegicus, Sprague-Dawley, wild-type Broad Institute

Oligonucleotides

Thiol-modified ssDNA docking strands Integrated DNA Techologies See Table S2

DBCO-modified ssDNA docking strands Qiagen See Table S2

Amine-modified LNA imaging strands Qiagen See Table S2

Software and algorithms

CellProfiler version 3.0 McQuin, C. et al. CellProfiler 3.0:

Next-generation image processing

for biology. PLoS Biol. 16, (2018).

R package: umap, version 0.2.7.0 Tomasz Konopka. umap: Uniform

Manifold Approximation and

Projection. R package version

0.2.7.0 https://CRAN.R-project.org/

package=umap. (2020).

R package: bnlearn, version 4.7 Scutari, M. Learning Bayesian

networks with the bnlearn

R Package. J. Stat. Softw.

35, 1–22 (2010).

CellProfiler Synapse Analysis Pipeline This study https://doi.org/10.5281/zenodo.7753915

R markdown document: Workup and

analysis of PRISM data

This study https://doi.org/10.5281/zenodo.7753915

R markdown document: Network

simulation and inference

This study https://doi.org/10.5281/zenodo.7753915

Dataset, CSV file: Normalized single-

synapse multiprotein measurements

extracted by CellProfiler

This study https://doi.org/10.17632/cjyzby7z82.1

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Mark Bathe

(mbathe@mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-synapse measurements as processing output of CellProfiler applied on imaging data have been deposited to Mendeley

Data as a CSV file under the paper title. https://doi.org/10.17632/cjyzby7z82.1. Raw and processed imaging data are locally

stored due to excessive file sizes and will be delivered upon request.
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d Original code for data analysis, network simulation, and network inference, as well as original CellProfiler pipelines, have been

deposited to github.com/lcbb and on Zenodo. https://doi.org/10.5281/zenodo.7753915

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed on dissociated hippocampal neurons of embryonic day 18 Sprague-Dawley rats. Each experiment

included neuronal cultures of pooled neurons from 1-3 embryos of a single pregnant rat, and each experiment used a separate preg-

nant rat. Embryos were not sexed prior to dissection and culturing.

Culturing conditions (for detailed conditions see method details section): Embryo hippocampi were dissected in 4�C Hibernate E

supplemented with B27. Hippocampal tissues were digested in Hibernate E using papain at 37�C. Neurons were plated at 15,000

cells/well in NbActiv1 supplemented with 25mM glutamate on poly-d-lysine coated 96-well-plates, treated at DIV 2 with AraC and

at DIV 6 with the siRNA/chemical treatment and left to develop in NbActiv4 until fixation and staining at DIV 19.

Procedures for rat neuronal culture were reviewed and approved for use by the Broad Institutional Animal Care and Use Commit-

tee, in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

Antibody details
Table S1 details the antibodies used for multiplexed imaging, including the conjugation strategy used for each. The key resources

table provides additional details, and information on all other antibodies used for follow-up validation experiments.

Antibody-docking strand conjugation – SMCC
Most antibodies (see Table S1) were conjugated using 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid N-hydroxysuccinimide

(SMCC), a heterobifunctional molecule which binds exposed amines on the antibody via an N-hydroxysuccinimide (NHS) moiety on

one end and binds thiol-oligonucleotides via amaleimide on the other end. Antibodies were purchased as formulations without serum

proteins as listed below (Table S1), 0.1-1 mg of antibody were purified into PBS using Zeba spin columns (7 kDa, Thermo Fisher Sci-

entific). Subsequently, antibodies were concentrated to 1 mg/ml using Amicon Ultra centrifugal filters (100 kDa, 4000 g, EMD Milli-

pore). The initial concentration of anti-vGAT was 2mg/ml. From a freshly prepared stock at 2 mM in DMF, SMCC (Sigma Aldrich) was

added to the antibody at 7.5x molar excess. The reaction mixture was protected from light and incubated for 3 h at 4�C on a shaker.

Excess SMCCwas removed by purification into PBS using Zeba spin columns (7 kDa, Thermo Fisher Scientific). In parallel, 25 nmol 5’

thiol-modified ssDNA (Integrated DNA Technologies, modification catalog no. /5-ThioMC6-D/) was dissolved in 25 ul water and 55 ul

PBS with 2 mM EDTA at pH 8.0 (Table S2). After the addition of 20 ul of a freshly prepared stock of 500 mM DTT in PBS with 2 mM

EDTA at pH 8.0, the reaction mixture was protected from light and incubated for 2 h at 25�C on shaker. The reduced 50 thiol-modified

ssDNA was purified into water using NAP-5 columns (GE Life Sciences). Fractions containing ssDNA were identified using absor-

bance measurements at 260 nm and DTT was monitored calorimetrically using bicinchoninic acid. The reduced 5’ thiol-modified

ssDNA was immediately added to the antibody-SMCC conjugate at 15x molar excess, the reaction mixture was protected from light

and incubated overnight at 4�C on a shaker. Antibody-ssDNA conjugates were purified into PBS using Amicon Ultra centrifugal filters

(50 kDa, 4000 g, EMDMillipore). Amino-modified phalloidin (Bachem) was conjugated using the procedure described above, but with

the following changes: the molar excess of SMCC was 10x and the molar excess of reduced 5’ thiol-modified ssDNA was 1x. HPLC

purification was employed to remove unreacted SMCC and 5’ thiol-modified ssDNA, respectively (Waters, BEH C18 column,

gradient for phalloidin-SMCC: from 80% TFA in water and 20% acetonitrile to 20% TFA in water and 80% acetonitrile over

10 min, gradient for phalloidin-ssDNA: from 90% 0.1 M TEAA in water and 10% acetonitrile to 60% 0.1 M TEAA in water and

40% acetonitrile over 10 min). Antibody concentration were determined by absorbance measurements at 280 nm. Conjugation

efficiency was estimated by MALDI-TOF mass spectrometry and ranged from 1 to 3, depending on the antibody. Antibody-

ssDNA conjugates were stored at -20 C in PBS with 50% glycerol.

Antibody-docking strand conjugation - SiteClick
For Homer1, ssDNA-antibody conjugates were synthesized using the SiteClickTM (Invitrogen) conjugation technique following the

manufacturer’s protocol. This technique replaces the Fc galactoses on the antibody with azide-modified sugars, which then react

with a DBCO-modified oligonucleotide. 200 mg of the anti-Homer 1 was concentrated to 2 mg/ml in 1x Tris buffer and incubated

with b-galactosidase. Azide-modified, terminal galactosides were attached using b-galactosyltransferase. Azide-modified antibody

was purified into 1x Tris buffer using Amicon Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). 5’ DBCO-modified ssDNA (In-

tegrated DNA Technologies, modification catalog no. /5-DBCON/) was dissolved in water, added to azide-modified antibody at a

molar excess of 30 and incubated overnight at 25�C (Table S2). Antibody-ssDNA conjugates were purified into PBS using Amicon

Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). Antibody concentrations were determined by absorbance measurements
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at 280 nm. Conjugation efficiency was estimated by MALDI-TOF mass spectrometry and ranged from 1 to 2, depending on the anti-

body batch. Antibody-ssDNA conjugates were stored at -20�C in PBS with 50% glycerol.

Imager strands
25 nmol of 5’/3’ diamino-modified ssLNA (Qiagen) was dissolved in 500 ul PBS with 10%DMSO at pH 8.3 and 250 nmol of NHS-Atto

565 or NHS-Atto 655 (Sigma Aldrich) were added from a 15 mM stock in DMSO (Table S2). Following immediate vortexing, the re-

actionmixture was protected from light and incubated overnight at 25�Con a shaker. Excess dyewas removed usingNAP-5 columns

(GE Life Sciences). Fractions containing ssDNA were identified using absorbance measurements at 260 nm. Subsequently, 0.1 M

TEAA was added ssLNA-dye conjugates and conjugates bearing two dyes were purified by HPLC (Waters, BEH C18 column,

gradient for Atto 565: from 80% 0.1 M TEAA in water and 20% acetonitrile to 70% 0.1 M TEAA and 30% acetonitrile over 10 min,

gradient for Atto 655: from 90% 0.1 M TEAA in water and 10% acetonitrile to 75% 0.1 M TEAA in water and 25% acetonitrile over

10 min). Peaks corresponding to ssLNA conjugates bearing two, one or no dye were assigned based on absorbance spectra.

Solvents were removed in vacuo and ssLNA-dye conjugates were dissolved in water at 10 to 100 mM, depending on the yield. Yields

were determined by absorbance measurements using 565 nm or 655 nm wavelengths.

Neuronal culture and treatment
Procedures for rat neuronal culture were reviewed and approved for use by the Broad Institutional Animal Care and Use Committee,

in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. In each of N=4 biological re-

peats, 1-2 Embryonic Day 18 embryos were collected from a separate pregnant Sprague Dawley rat killed by CO2 (Taconic). Embryo

hippocampi were dissected in 4�C Hibernate E supplemented with 2% B27 supplements and 100 U/ml penicillin/strep (Thermo

Fisher Scientific). Hippocampal tissues were digested in Hibernate E containing 20 U/ml papain, 1 mm L-cysteine, 0.5 mm EDTA

(Worthington Biochem), and 0.01% DNase (Sigma-Aldrich) for 8 min. Neurons were centrifugated at 1000rpm by 5min, pellet with

cells were then resuspended into NbActiv1 (BrainBits LLC, now TransnetYX) supplemented with 25mM glutamate, and plated at

a density of 15,000 cells/well onto poly-d-lysine-coated, black-walled, thin-bottomed 96-well plates (Corning BioCoat). After 48

hours, AraC was added to each culture at a concentration of 1uM, to suppress glia proliferation and minimize well-to-well variability

resulting from it. At DIV 5, the media was entirely replaced with warm NbActiv4. At DIV 6, each culture was treated with Accell

SMARTpool (Dharmacon/Horizon from Perkin Elmer), a mix of four chemically modified self-transfecting siRNAs, against the relevant

gene (Table S3) to a total siRNA concentration of 1uM in NbActiv4. Cultures were then left undisturbed until fixation on DIV 21.

Each plate included 60 wells/separate cultures, 3-4 in each treatment group. Across 4 plates, one for each biological repeat, this re-

sults in a total of n=11-18 technical repeats in each treatment group. For validation experiments, cultures were treated at DIV 6 with

0.1uM/0.5uM bpV(pic), 0.2uM/2uM Harmine, 20uM/50uM D-AP5, and Nontargeting, Shank3 or Grin2a Accell SMARTpool siRNA,

and left undisturbed until fixation on DIV 8 or 19 as described.

RTqPCR knockdown validation
RTqPCRwas performed using Fast Advanced Cells-to-CT kit (Ambion) according to the manufacturer’s protocol. In short, cells were

prepared for lysis bywashing themwith cold PBS 1x, then Stop solution was added following lysis buffer with DNAse I. RTMasterMix

using Cells-to-Ct lysate was prepared and reverse transcription was done on a thermal cycler. Lastly, qPCR was done using

LightCycler� 480 Probes Master (Roche) with TaqManTM Gene Expression Assays designed for each target (see Table S3 for cat-

alog numbers) and performed on a LightCycler� 480 Instrument. Two TaqManTMGene Expression Assays (Life Technologies). Actb

was used as a reference gene to normalize the results (Life Technologies). For relative quantification of gene expression, the 2�DDCt

method was used.

Staining and imaging
Cells were fixed and stained as described previously.7,57,58 Cells were fixed in fixation solution (4% paraformaldehyde and 4%

sucrose in PBS) for 20 min at RT, then permeabilized with 0.25% Triton X-100 in PBS for 10. They were then incubated in a mixture

of RNases A and T1 to reduce the fluorescent background caused by ssLNA-RNA binding and blocked with 5% Bovine Serum Al-

bumin (BSA). The first round of primary staining was performed using unconjugated primary antibodies (Table S1 rows 1-6) diluted in

the regular blocking buffer. Cells were blocked with nuclear blocking buffer [5% BSA and 1 mg/mL salmon sperm DNA (Sigma-

Aldrich) in PBS] and then incubated with conjugated secondary antibodies (Table S1 rows 7-11) diluted in the nuclear blocking buffer.

After post-fixation, cells were stained in the third round with conjugated primary antibodies (Table S1 rows 12-16) in nuclear blocking

buffer and then with DAPI.

High-throughput spinning disk confocal LNA-PRISM imaging was performed using the Opera Phenix High-Content Screening

System (PerkinElmer) as described before7,57,66 with the followingmain changes: first, two colors were used for PRISM in each round,

and second, probe introduction, wash and exchange was performed automatically using a Bravo automated liquid handling system.

In each round, a pair of imaging probes in two colors (see Table S2 for sequences) was freshly diluted to 10 nM in imaging buffer

(500 mm NaCl in PBS, pH 8) immediately before imaging. Neurons were incubated with imaging probes for 5 min and then washed

twice with imaging buffer to remove unbound probe. The plates were then imaged in 4 wavelengths: 405nm (DAPI), 488nm (MAP2),

561nm (orange probe) and 647nm (red probe). For each field of view, a stack of five images was acquired with an axial step-size of
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1 mm. Either four (in one plate) or nine (in the other three plates) lateral fields of viewwere imaged in each culture. Following each round

of imaging, cells were washed two times with wash buffer (0.01 3 PBS) for 3 min per round, and then re-imaged to ensure that all

PRISM fluorescent signal was removed before introducing the next probe pair. After all imaging rounds, neurons were stained

with a 568nm fluorescent nanobody against vGlut1 (Table S1 row 17) for 1 hour and imaged again. Although the combined staining

with multiple antibodies simultaneously may reduce primary PRISM signal due to crowding, we observed this reduction to be less

than 15%, and should be identical across all treatment groups.

For staining externalized GluR2 (Figure S2), an N-terminal-specific Guinea Pig anti-GluR2 antibody (see Table S1) was used before

permeabilization, and a C-terminal-specific Mouse anti-GluR2 antibody was used after permeabilization, along with a labeled anti-

vGluT1 nanobody and a chicken anti-MAP2 antibody. For heat-induced antigen retrieval, wells were incubated after permeabilization

with pre-heated antigen retrieval buffer (10mM Citric Acid, 0.05% Tween 20, pH 6.0) at 95�C for 30min, and then stained as usually.

We also attempted proteolysis-induced epitope retrieval (0.05% Trypsin, 20min at 37�C) which completely abolished Synapsin1 and

F-actin signals.

Automated image analysis using CellProfiler
CellProfiler was used to automatically correct images for uneven illumination, align images across channels, and segment and quan-

tify synapses in images. This tool allows formodular construction of pipelines for image analysis.66,67 The pipeline used here is similar

to a previous study57 and is available on github.com/lcbb/PRISM-CellProfiler-Analysis-Pipelines. The main steps in the image

analysis pipeline are as follows:

1) By-pixel maximumprojections of confocal Z-stacks of all images in each round are calculated separately and loaded into Cell-

Profiler.

2) MAP2 (488nm) images in each round are used to align images of other channels between rounds.

3) An illumination profile correction is applied to all images based on background averages across all wells.

4) For each round and wavelength, the average intensity in untreated wells of a plate is calculated and used to normalize the

images in all other wells. This is used to account for between-plate differences in exogenous brightness (staining strength,

laser strength, exposure time etc.)

5) The DAPI image is used to identify nuclei objects. All other images of the same field are then masked by the nuclei to prevent

artifacts from non-specific nuclear localization of the antibodies.

6) The MAP2 image is used to identify dendrite objects.

7) A white top hat filter with a radius of 4px is applied to all synaptic protein images across all rounds to enhance puncta.

8) For synapse counting analysis (Figures 2B–2D), synaptic objects were segmented and identified in images of each channel by

applying the RobustBackground tool, which calculates an optimal threshold value for each window individually based on the

intensity histogram. For all other analyses, we calculated a per-channel global threshold from the average threshold calcu-

lated by RobustBackground across all imaged fields in untreated wells. We then applied this value as a uniform threshold

to all images of that channel to ensure that all images are segmented identically.

9) Synapsin1 puncta are then masked using the dendrites previously identified, to retain only puncta which are within 12px of a

dendrite. These are then defined as synapses.

10) Puncta in all other channels are assigned to synapses if they overlapped with Synapsin1 puncta more than 6.25% (for post-

synaptic proteins) or more than 50% (for presynaptic proteins).

11) Finally, levels of each protein per synapse are calculated as the intensity integral of that protein’s image across its punctum. If

a certain protein did not have an identified puncta associated with a synapse, its level was marked as 0.

Synapses were identified as excitatory if they contained only vGlut, inhibitory if they contained only vGAT, and otherwise excluded

from further analysis (positive or negative for both vGlut and vGAT). Excluded synapses were 20-30% of all identified synapses. We

also performed the same analysis with uniform threshold values of 75%and 133%of the calculated average, which yieldedmore and

less synaptic puncta, respectively, but similar observations in treatment effects, clusters, Bayesian networks and edge strengths. In

controls for network inference by alternative synapse identification, instead of Synapsin1 puncta for synapse definition and assign-

ment of all other proteins, we used postsynaptic puncta defined by merging of F-actin, PSD95 and Shank3 puncta.

Network simulation
Data points for simulated networks were sampled from a modified gamma distribution, which contains a separate probability for a

value of 0 (see Equation 1). To simulate dependency of one variable on others, the distribution from which the child variable is

sampled has p0 and scale parameter q modified based on the values of the parent variables according to Equation 2.

PðX = xÞ = �
p0
X ; x = 0 GXðk; qÞ; x >0

B/A)C
(Equation 1)
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p0
A;modified = p0

A;base$
~b
�aAB

$~c
�aAC

q0A;modified = q0A;base$
~b
�aAB

$~c
�aAC

(Equation 2)

Where X, A, B, C are variable names, p0
X is the probability for node X to be 0, Gðxjk; qÞfxk� 1$e�

x
q is the gamma distribution with shape

parameter k and scale parameter q, ~b = b
medianðBÞ and ~c = c

medianðCÞ are the values of B and C for a specific datapoint relative to their

median, and aAB and aAC are the predefined interaction coefficients of A with B and C, respectively (edge strengths in the B / A

) C subgraph).

20 such networks with 6-12 nodes were generated, sampled, and reconstructed to determine the optimal Bayesian network

inference algorithm. To simulate a network with a cyclic dependence, e.g. A/B/C/A, A is separated into two variables

A1 and A2 to create a directed acyclic graph which is sampled as above, and the final value of A is A1 + A2.

Bayesian network analysis and controlled edge calculation
Bayesian network inference was performed on a pooled random sample of synapses from each well, while limiting only to excitatory-

labeled synapses and 8 excitatory synaptic proteins. Measurements in each protein were discretized into 51 bins in the followingway:

all measurements of 0 (no puncta of that protein associated with the synapse) were assigned to bin 0, and bins 1-50were assigned by

equal-frequency discretization.

The discretized dataset was then sampled for 3000 points which were used to construct a Bayesian network using the likelihood-

score-maximizing ‘tabu’ algorithm.76 50 such samplings and rederivations of the network were used to establish confidence in the

presence and direction of edges. Network derivation was done using the tabu and boot.strength functions in the R package

bnlearn,76 A similar procedure was applied to simulated datasets, data from a previous synaptic scaling study,57 and adversarially

modified datasets.

Given a network, we define the strength of an edge between two nodes as the average correlation of the two variables across strata

where the other parents of the daughter node are held constant.79,80 That is, the strength of an edge from A to B, where B also has

edges leading to it from n other variables, for example C and D with n = 2, as the correlation between A and B when controlling for C

andD. To estimate that, we repeated the following algorithm to calculate average correlations between A andB across strata of equal

C and D:

- Sample a point (A0, B0, C0, D0)

- Find set of all points (A, B, C, D) such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC � C0Þ2 + ðD � D0Þ2

q
< ε$

ffiffiffi
n

p
where n is the number of variables to control for (2 in

this example) and ε is a predetermined tolerance level set at 0.5 (smaller tolerances did not yield significantly different measures)

- If the set contains more than 5 points, calculate Pearson’s correlation coefficient corðA;BÞ across that set.

- Average the resulting correlation measure across 20$2n such samplings.

A similar stratification procedure was done to assess the conditional effect of a certain treatment on protein A when controlling for

proteins B and C. The treatment and NonT groups were pooled together, a point was sampled at random and a set of all points with

similar B andCwas found, and the log2-fold difference between themean levels of A in treated vs NonT synapseswas calculated and

averaged across many samplings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software
All statistical analysis was performed in R (versions 4.0.0-4.3.0), using the base, stats, umap (version 0.2.7.0), and bnlearn (version

4.7) packages.

Biological and technical repeats
Each experiment includes pooled neurons from 1-3 embryos of one pregnant rat, split into wells of a 96-well-plate. The wells consti-

tute separately grown, treated and stained cultures. Each well is subsequently considered a technical repeat. All images in different

wells from a single experiment are analyzed using the same CellProfiler pipeline for consistency in synapse determination and quan-

tification. The main RNAi screen pools 4 experiments into one dataset by dividing all synaptic protein values of a certain experiment

by the average values for untreated wells in that experiment.

Nature of repeats and values per repeat
For statistical analysis, relevant values are calculated for synapses in individual wells: (i) Average protein intensity integral over syn-

aptic puncta. (ii) Total number of synapses or synapses conforming to a certain condition, (iii) Fraction of synapses conforming to a

certain condition, (iv) Total area of identified dendrites, (v) Average protein intensity over whole image, (vi) Average protein intensity

integral over soma, (vii) Network edge strengths (i.e., controlled correlation between nodes). By-well values are then used for calcu-

lating standard error and significance testing. Significance testing was done using a two-tailed Student’s t test. The number of wells
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per treatment group is 11-18 for the main RNAi screen and 4-7 for each validation experiment. All heatmaps and bar graphs present

average values across wells, all error bars are standard error of mean across wells.

Data exclusion
The following subsets of images from the main RNAi screen were excluded from subsequent analysis:

- One row in plate #1, for which one of the imaging rounds was out of focus.

- All images of NR2A, for which staining was very diffuse and very few puncta could be identified.

- All images of cultures treated with siRNA against Xpo7, which exhibited highly irregular staining patterns for Homer1 that could

not be reproduced with other batches of that siRNA. We attributed the effect to an issue with the specific siRNA batch used.

UMAP and clustering
Uniform Manifold Approximation and Projection (UMAP) was performed using the umap R package (version 0.2.7.0). A combined

sample was used with 200 points randomly sampled from each well. Each variable was scaled to a standard deviation of 1, and

UMAP was applied with min_dist=0. Density-based clustering on the 2D layout was done automatically using HDBSCAN94,95 with

parameters that yielded 14 clusters, after which small clusters that accounted for <1% of all points were manually merged into

the nearest (by centroid distance) large cluster, resulting in the 9 main clusters shown in Figure 3.

Icons in graphical abstract adapted from templates by BioRender.com (2023). Retrieved from app.biorender.com/biorender-

templates.
20 Cell Reports 42, 112430, May 30, 2023

http://BioRender.com

	A synaptic molecular dependency network in knockdown of autism- and schizophrenia-associated genes revealed by multiplexed  ...
	Introduction
	Results
	Effects of ASD- and SCZ-associated gene knockdowns on the synaptic molecular system
	Multiplexed imaging reveals clusters of hierarchical synaptic protein compositions
	BN inference of the glutamatergic synapse
	Convergent effects of siRNA treatments on network structure

	Discussion
	Detailed parallel phenotyping of synaptic biochemistry in ASD and SCZ models
	Interpreting inter-protein dependencies from BN structure and edge strengths
	Comparison with other protein network models
	The steady state of the synaptic molecular network in ASD and SCZ
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resourcces table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Antibody details
	Antibody-docking strand conjugation – SMCC
	Antibody-docking strand conjugation - SiteClick
	Imager strands
	Neuronal culture and treatment
	RTqPCR knockdown validation
	Staining and imaging
	Automated image analysis using CellProfiler
	Network simulation
	Bayesian network analysis and controlled edge calculation

	Quantification and statistical analysis
	Software
	Biological and technical repeats
	Nature of repeats and values per repeat
	Data exclusion
	UMAP and clustering




