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Abstract: Within the last century, the global sea level has risen between 16 and 21 cm and will likely accelerate 

into the future. Projections from the Intergovernmental Panel on Climate Change (IPCC) show the global 

mean sea level (GMSL) rise may increase to up to 1 m (1000 mm) by 2100. The primary cause of the sea level 

rise can be attributed to climate change through the thermal expansion of seawater and the recession of 

glaciers from melting. Because of the complexity of the climate and environmental systems, it is very difficult 

to accurately predict the increase in sea level. The latest estimate of GMSL rise is about 3 mm/year, but as 

GMSL is a global measure, it may not represent local sea level changes. It is essential to obtain tailored 

estimates of sea level rise in coastline Florida, as the state is strongly impacted by the global sea level rise. 

The goal of this study is to model the sea level in coastal Florida using climate factors. Hence, water 

temperature, water salinity, sea surface height anomalies (SSHA), and El Niño southern oscillation (ENSO) 3.4 

index were considered to predict coastal Florida sea level. The sea level changes across coastal Florida were 

modeled using both multiple regression as a broadly used parametric model and the generalized additive 

model (GAM), which is a nonparametric method. The local rates and variances of sea surface height 

anomalies (SSHA) were analyzed and compared to regional and global measurements. The identified optimal 

model to explain and predict sea level was a GAM with the year, global and regional (adjacent basins) SSHA, 

local water temperature and salinity, and ENSO as predictors. All predictors including global SSHA, regional 

SSHA, water temperature, water salinity, ENSO, and the year were identified to have a positive impact on the 

sea level and can help to explain the variations in the sea level in coastal Florida. Particularly, the global and 

regional SSHA and the year are important factors to predict sea level changes. 

Keywords: climate change; sea level rise; Florida coast; statistical modeling; nonparametric methods; 

generalized additive models 

 

Geosciences 2023, 13, 310. https://doi.org/10.3390/geosciences13100310 https://www.mdpi.com/journal/geosciences 

variations in localized areas. In Florida, there are 8436 miles of coastline, all of which are directly 

affected by sea level rise. Displacement, infrastructure, and city planning, along with rapid 

population growth, make it imperative to gain a better understanding of sea level rise in this area. 

GMSL, Global Surface Temperature Changes (GSTC) relative to 1850–1900, and the 

September Arctic Sea Ice Area (SASIA) are depicted in Figure 1. GMSL has risen between 

16 and 21 cm within the last century [1,2] and will likely accelerate in the future. For example, 

projections by the IPCC depicted in Figure 1 indicate that the global mean sea level may increase 

up to 1 m by 2100 [3–5]. The projections represent five different scenarios of Shared Socio-

 
1 . Introduction 

The global sea level has risen about 20 cm in the last century [1,2], and Intergovernmental Panel on Climate Change 

(IPCC) projections show an expedited increase in the global mean sea level (GMSL) [3–5]. The accelerated sea level rise is 

mainly due to the thermal expansion of seawater and the recession of glaciers from melting attributed to climate change. The 

modeling and prediction of sea level rise is a challenging problem due to the complexity of climate and environmental factors 

impacting sea level changes. The latest GMSL rise estimate is about 3 mm/year, which does not represent the sea level 
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economic Pathways (SSPs) based on four factors including sustainable development, regional 

competition, inequality, and fossil-fuel consumption [4]. 

 

Figure 1. Selected indicators of global climate change under five models/scenarios used in IPCC 2021 [4]. 

The primary cause of the global increase in sea level can be attributed to climate change 

through the thermal expansion of seawater and the recession of glaciers from melting [6,7]. 

However, estimating local and regional sea level rise is a difficult task because of the complexity of 

climate and environmental factors that influence its change. The latest global mean sea level rise 

estimate indicates that it has increased to about 3.7 mm/year (for the period 2006–2018, Figure 

1) [8,9]. However, this rate has considerable local and regional variability that depends on both 

environmental and climate factors [8,10]. 

Given its extensive shoreline and large coastal population, Florida is of particular concern with 

respect to SLR. Hence, it is essential to discern whether or not SLR trends in Florida are consistent 

with the global rates. The Florida coastline comprises two ocean basins, the Atlantic and the Gulf 

of Mexico (GOM). In addition, the landmass of Florida is sinking, which increases the threat of local 

flooding especially during high impact events such as tropical cyclones. GMSL is projected to rise 

between 0.3 and 0.7 m by 2060 relative to 1850–1900, depending on the SSP [3,4]. Approximately 

two-thirds of the global coastline is projected to have regional SLR within +/−20% of the global 

mean increase 

(Figure 1). Hence, even for midrange GMSL projections (i.e., on the order of 0.75 m by 
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2100) this represents a substantial difference of about 30 cm. The localization of projected SLR is 

an active and challenging area of research [11–17]. This process typically involves observations 

from in situ tide gauges and satellite altimetry, which can be used to evaluate and/or calibrate 

GCM projections. 

Previous sea level studies in Southeastern United States suggest that temperature, salinity, 

and El Niño are relevant factors in this region [18]. Large-scale weather patterns (winds) can also 

help to explain some of the observed (decadal) variability in coastal sea level. Furthermore, a 

number of recent studies indicate that global SLR has accelerated during the past several decades 

[19–21]. The implications of SLR on the region and the direct threat that it poses to populated 

coastal areas are significant. In particular, there are 8436 miles of vulnerable coastline that is 

susceptible to flooding in Florida while, according to the US Census, 16 million Floridians—or 

three-quarters of the state’s population—live in coastal counties. Florida’s population growth 

ranked second in the nation—adding almost a quarter of a million residents in 2021. However, 

despite the increasing threat to coastal infrastructure and population, Florida sea level studies are 

a decade old [3,18,22–24]. 

The objectives of this study are to (1) compare estimates of local sea level rise along the 

Florida coastline with the global estimates of sea level rise and to (2) model the sea level in coastal 

Florida using climate factors. A schematic of the proposed work is depicted in Figure 2, 

demonstrating the required tasks from data collection to modeling. Satellite altimetry and climate 

factors including water temperature, water salinity, El Niño southern oscillation, and basin-scale 

sea level trends are collected to implement a predictive model of sea level at selected tide gauge 

locations along the Florida coast. The local rates of sea surface height were compared to regional 

and global measurements, and the sea level changes across coastal Florida were then modeled 

using both parametric and nonparametric methods. 

 

Figure 2. Schematic of the required steps of the proposed approach for modeling and prediction of sea level 

in coastal Florida. 

2. Data Description 

The focus of this study corresponds to the altimetry record that extends about three decades 

beginning in 1992 and comprises a series of four satellites (TOPEX/Poseidon, Jason1, Jason-2, and 

Jason-3) [25]. For this study, gridded SSHA data on a 1/6th degree grid and 5-day intervals were 

extracted from the NASA PODAAC server [26]. The anomalies are derived from a spatiotemporal 

mean map of SSH, which is computed using the average of the grids from all available years (1992–

2019), then subtracted from individual grid values (the new data) to estimate the sea surface 

height anomalies. The SSHA (Figure 3) are corrected for an inverse barometer effect [27] but are 

not adjusted for isostasy effects (ocean deepening), which increase global rates of sea level change 

on the order of 0.3 mm/year [28]. Also, altimeter data near the coast are prone to error from land 

contamination of the radiometer, tidal impacts, and data interpolation issues [26]. Hence, direct 

comparison with the tide gauges is important. The tide gauge data were obtained from the 

Permanent 

Service for Mean Sea Level (PSMSL) web interface (Holgate et al., 2013; PSMSL, 2023). Based on 

the analysis of sea-level pressure data, atmospheric pressure changes have been reported to not 

have any significant trend [29], and numerous studies of GMSL using tide gauges applied no 

corrections for the inverted barometer effect as this correction is small on century time scales [30]. 
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Figure 3. Globally averaged SSHA (mm) from altimetry (1992−2019). 

Two environmental factors, water temperature and salinity (Practical Salinity Units, PSU), 

were obtained from the Estimating the Circulation and Climate of the Ocean (ECCO) Version 4 

Release 4 (R4) providing the latest ocean state estimate product [31–33]. The simulations were 

performed using the Massachusetts Institute of Technology general circulation model (MITgcm). 

When available, the model output has been fit to in situ and satellite observations (sea level, sea 

ice, temperature/salinity profiles, SST, dynamic topography) using linear regression [34]. The 

gridded output is available at depth (50 levels) to about 6000 m. However, only the uppermost 

model level (5 m depth) is used here. Temperature and salinity are important as they impact both 

sea level and ocean circulation. The horizontal resolution varies spatially from 22 to 110 km, with 

the resolution increasing in high latitudes. The ECCO temperature and salinity data depict 

variability along the Florida coastline (Figure 4). 

El Niño has both global and regional impacts on sea level. El Niño or La Niña events are 

defined when the El Niño 3.4 SST anomalies exceed +/−0.5C for a period of 5 months or more. At 

large scales, precipitation is reduced over land, and there is less evaporation over the ocean, which 

increases the GMSL. El Niño can also have a significant impact on the regional weather. For 

example, in the SE US, it affects the genesis region and path of extratropical cyclones over the 

eastern GOM by shifting the Northern Hemisphere storm tracks toward the equator and 

downstream [35–37]. As a result, coastal sea level variability in the northern and eastern GOM 

tends to increase (October to March) with extreme sea level anomalies occurring during the ENSO 

warm phase [38]. Factors responsible for the variability include increased runoff from landbased 

precipitation, sea level pressure anomalies, and winds [36]. Here, the ENSO 3.4 index is used to 

account for the effects of El Niño events in the statistical modeling. The data (available at 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data (accessed on 26 June 2021)) 

comprise a monthly timeseries from 1870 to 2020, based on sea surface temperature anomalies 

over the equatorial Pacific from 5N to 5S and 120 to 170W. 

  

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
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(a) (b)  

 Figure 4. ECCO model output. (a) Water temperature from 15 ◦C (dark blue) to 25 ◦C (red). 

(b) Salinity from 35.3 PSU (dark blue) 

to 36.3 PSU (red) at 5 m depth at 

18 UTC on 16 January 1992 (from 

the MITgcm and observations, see 

text for details). Graphics 

generated using the Integrated 

Data Viewer software package 

(www.unidata.ucar.edu/software/i

dv (accessed on 26 January 

2023)). Legends on top. 

Tide Gauges Versus Altimetry 

Using the SSHA at the nearest altimetry grid point, the SLR trends (1993–2019) were 

calculated and compared with in situ tide gauges at 15 Florida locations (Figure 5). Altimetry and 

tide gauge values for 15 Florida locations in this study along with the absolute percentage error 

are listed in Table 1. Due to the satellite land mask, the two are not co-located with nearest 

neighbor distances varying from 4 km to 40 km (with an average separation of approximately 16 

km). In order to compare with the PSMSL data, the SSHA were upscaled to monthly averages. In 

general, the trends are higher for the tide gauges at all but three locations (Apalachicola, Naples, 

and Fernandina Beach). The differences are small at both Naples and Apalachicola (0.1 and 0.3 

mm/yr, respectively), while the altimeter rates are substantially higher with respect to Fernandina 

Beach (2.2 mm/yr). The tide gauge trends at both Fernandina and Mayport (located close to each 

other) are relatively low (2.8 and 3.5 mm yr−1, respectively). However, the SLR rates are quite high 

for the Lake Worth tide gauge (7.2 mm yr−1, beginning in 2010) and the altimetry (8.8 mm yr−1) for 

the overlapping period of 2010–2019. Because of the relatively short time series, Lake Worth was 

excluded from the linear regression. Fernandina Beach was an outlier and hence was excluded (the 

tide gauge is tucked inside an inlet near the confluence of the St. Mary’s and Amelia rivers). The 

regression yields an R2 value of 0.49, an intercept of 2.55 mm yr−1, and a slope of 0.55. The 

discrepancy between the gauge and altimeter decreases by increasing trends. 

Because tide gauges actually record the sea level in situ, they are generally considered as 

more accurate for sea level measurements [39]. However, a drawback of tide gauge measurements 

is that the changes in the sea surface are recorded relative to the land. Hence, in order to obtain a 

true sea level signal, vertical movements must be estimated to adjust the tide gauge 

measurements [40]. 

http://www.unidata.ucar.edu/software/idv
http://www.unidata.ucar.edu/software/idv
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Figure 5. (Left) Corresponding scatter plot of tide gauge measures regarding altimeter values (black disks) 

with superimposed linear regression of the trends (dashed line) in comparison with perfect one-to-one match 

(solid line). (Right) Tide gauge locations used in this study. The SLR trends (1993–2019) for both the altimeter 

and tide gauge (respectively) are shown in parentheses. 

Table 1. Comparison between altimetry and tide gauge values, including their average, standard deviation, 

and absolute percent error. 

Location (FL) Altimetry Tide Gauge Average Std. Deviation Abs. Percent Error 

Pensacola 4.5 5.6 5.05 0.778 0.218 

Panama City 4.3 5.0 4.65 0.500 0.150 

Panama City Beach 4.7 4.8 4.75 0.071 0.021 

Apalachicola 4.7 4.4 4.55 0.212 0.066 

Cedar Key 3.1 5.0 4.05 1.344 0.469 

Clearwater Beach 5.3 6.0 5.65 0.495 0.124 

St. Petersburg 4.3 4.8 4.55 0.354 0.110 

Fort Meyers 4.5 5.1 4.8 0.424 0.125 

Naples 4.6 4.5 4.55 0.071 0.022 

Key West 3.4 4.2 3.8 0.566 0.211 

Vaca Key 4.4 5.2 4.8 0.566 0.167 

Virginia Key 4.1 4.9 4.5 0.566 0.178 

Lake Worth Pier 8.8 7.2 8.0 1.130 0.200 

Mayport 2.3 3.5 2.9 0.849 0.414 

Fernandina Beach 5.0 2.8 3.9 1.556 0.564 

3. Methods 

Initially, multiple linear regression was used to model the sea level variations. Multiple 

regression is a parametric method that can be used to model a response (here, sea level rise) based 

on various predictors (and their potential interactions). The standard multiple regression assumes 

a simple form for the following: 

 E , ..., Xp pXp (1) 

where Y is the response, X1, X2, ..., Xp are p predictors, and β0, β1, β2, ···, βp are the coefficients of 

the predictors [41]. Six factors, including the year, global SSHA, regional SSHA, water 
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temperature, water salinity, ENSO, and each of their interactions were considered to model sea 

level rise. 

Generalized additive model (GAM) was also used to model the sea level variations. GAM is a 

nonparametric model in which the response is modeled as the sum of the smoothed functions of 

the predictors [42–44]. This adds substantial flexibility over multiple regression in modeling sea 

level variations because the trend of each predictor is separately modeled and added to discover 

the trend of the response. GAM is a generalization of the additive model defined with the 

following: 

p 

 E , ..., Xp  (2) 
j=1 

where f0 is the intercept, and fj(·), j ∈ [1, p] are smoothing functions [43]. In the case of a single 

predictor, the model becomes the following: 

 E[Y |X] = f(X) (3) 

where the constant term f0 is suppressed and placed into the function. The smoothing function 

f(X) can be estimated from the data using a reasonable estimate of E[Y |X = x]. One way of 

estimating the expectation is by using nonparametric local average estimates: 

 ˆ(xi) = yi = ∑j∈nNi yj (4) 

f 

where fˆ(xi) is the estimator of the smoothing function, xi is the ith realization of X out of a total of 

n realizations, Ni is the neighborhood of xi, |Ni| is the number of points in the neighborhood Ni of 

span w, and yi is the average of yj’s for j ∈ Ni. The type of neighborhood considered here is the 

symmetric nearest neighborhood: 

 Ni 1, i, i  

where Ni has wn points, and it is assumed that wn is odd. The neighborhood becomes truncated 

at the endpoints if there are not at least ((wn) − 1)/2 points available. This truncation is shown in 

the smoothing matrix in Figure 6 where span w = 0.5 and n = 10. In the first row, each of the points 

included only have a neighborhood of 3 points available. When the smoothing function is 

estimated using local averaging, large bias occurs at the endpoints. This bias is because of the 

truncation at the endpoints, as seen in Figure 6. To address this, a parametric local linear regression 

can be used in place of the local averaging: 

 fˆ
(xi) = β

ˆ
0i + β

ˆ
1ixi (6) 

where βˆ0i and βˆ1i are the least-squares estimates for the points within Ni: 

∑j∈Ni xj yj 

 βˆ1i =  (7) 

∑j∈Ni xj  

and 

 βˆ0i = yi − βˆ1ixi (8) 

where xi and yi are the following: 
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 ∑j∈Ni xj ∑j∈Ni yj 

 xi = n , yi = n (9) 

  

Figure 6. Smoothing matrix with span w = 0.5 and n = 10. 

The local linear regression estimate of the smoothing function is dependent on the 

neighborhood Ni. Shrinking the neighborhood causes the systemic or bias component of the 

estimation error to decrease, and increasing the neighborhood sample size will decrease the 

variance component of the error [45]. The span size w of Ni has a large impact on the estimate. The 

value of the span should be between 1/|Ni| and 2 to trade off the bias and variability of the 

estimate [43,44]. The neighborhood contains only xi for w = 1/n and fˆ(xi) = yˆj = yi. This means the 

estimate will have a high variance, as each smoothed 

point will be equal to its corresponding yj value and no smoothing will have occurred. 

When w = 2, fˆ(xi) becomes the global least-squares regression line, which means that the 

estimate may be biased. This is because Ni will contain all points. The estimate will be too 

smooth, as any curvature of the underlying function will not be included. A data-based criterion 

can be used to select the span of Ni if the estimates of E[Y|X] are considered as local minimizers 

of the integrated prediction squared error (PSE): 

 PSE = E[(Y − f(X))2] (10) 

where PSE is the squared error between the true response values and the smoothed predictor 

values. 

Generalized additive models (GAM) draw from both the generalized linear model 

(GLM) and the additive model [42,44]. GAM generalizes the linear predictor, Y, as the following: 
p 

η = g(µ) = f0 + ∑fj Xj 

j=1 

(11) 

where η is the systematic component of the model, g(·) is the link function, and fj(·), for j ∈ [1, p], 

are the smoot functions. The estimates for each fj(·) are found using nonparametric smoothers 

such as cubic splines or local (nonparametric) linear regression. The measurements used to analyze 

GAM in this study were the adjusted R2 (R2
Adj) and Akaike Information Criterion (AIC). The R2

Adj is 

calculated with the following: 

 R2Adj  (12) 

where n is the total sample size, and p is the number of independent variables. The AIC is calculated 

with the following: 

 AIC m (13) 

where L   is the maximum likelihood value for the model, and m is the number of estimated 

variables [32,46]. Both R2
Adj and AIC quantify goodness of fit, with a high (R2

Adj) or low AIC signifying 

a model that fits the data well. 
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To provide visualizations for the GAM, graphical representations of the GAM were smoothed 

using loess. Loess is a type of smoothing function based on locally weighted polynomial regression 

in which the dependent variable is smoothed as a function of the independent variable(s). The 

estimate, gˆ(x), provided by the loess smoother is a linear combination of the yi : 
n 

 gˆ(x) = ∑li(x)yi (14) 

i=1 

where li(x) depends on the predictors xk, k ∈ {1, 2, ··· , n} [47,48]. 

Given the six potential predictors, there are 57 possible combinations to use in GAM. All of 

model variations were run separately at each of the 15 locations. For each of the 57 variations, 

both the adjusted R-squared and AIC values were averaged across all tested locations. The models 

were ranked from the highest to lowest average adjusted R-squared and then from the lowest to 

highest average AIC to identify the optimal model for all locations. After determining that the 

optimal model included the year as a predictor, the model was modified to exclude year as a factor 

for all locations to check if a less ambiguous model would fit the data just as well, since year is 

often considered a proxy variable for many environmental and climate factors. 

4. Results 

Examining the trend and variance of the SSSHA data in the initial analysis led to the 

confirmation that the global mean sea level (GMSL) rate is about 3 mm/year (not adjusted for 

isostacy), as seen in Figure 7. Local sea level rise in Florida exceeds GMSL at 14 out of 15 of the 

selected locations and ranges from about 2.5 mm/year (Mayport) to about 5 mm/year 

(Apalachicola). Local variability ranges from about 2000 (Lake Worth) to about 6200 (Apalachicola) 

mm2 and is greater than both regional and global variances. 

 

 (a)  (b)  

Figure 7. Sea surface height anomaly rate of change (trend) in mm/yr (a) and variance mm2 (b) across the 15 

selected Florida locations, as compared to the Gulf of Mexico (green line), North Atlantic Ocean (orange 

line), and global mean sea level (red line). 

First, multiple regression was used to model the sea level rise for the selected locations along 

the Florida coast. The full multiple regression model with all predictors is as follows: 

 E[Local SSHA] = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 (15) 

where x1 is year, x2 is regional SSHA, x3 is global SSHA, x4 is ENSO, x5 is water temperature, and x6 is 

water salinity. The multiple regression model for Pensacola is depicted in Figure 8 (top). The 

multiple regression model with the lowest average BIC of about −67 is as follows: 

 E[Local SSHA] = β0 + β1x1x2 + β2x1x3 + β3x3x4 + β4x2x4 + β5x5x6 (16) 
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where the values x1, x2, ··· , x6 are the factors of the model. As seen in Figure 8 (middle), the sea 

level data are fairly normal, and the multiple regression model provides a satisfactory fit. However, 

a nonlinear trend is visible in the residual plot (Figure 8 (bottom)). Additionally, the model 

consisted only of interaction terms between variables. Hence, a nonparametric model, such as 

GAM, is more relevant to fit sea level data and was used for modeling the nonlinear trends in sea 

level changes. The best model is selected based on two goodness of fit criteria, R2
Adj and AIC. All 

six predictors including year, global average, adjacent basin anomalies, water temperature, water 

salinity, and ENSO 3.4 Index were identified as significant predictors in the selected GAM. This 

model will be abbreviated as SLR-M1 (sea level rise model 1), standing for year, adjacent basin 

SSHA, global SSHA, ENSO, salinity, and temperature. 

 

Figure 8. (Top) Fitted multiple regression model (blue) for the sea level rise at Pensacola in Florida; (Middle) 

Normal Q—Q Plot; (Bottom) and heteroscedasticity of the sea level data (residuals vs. fitted values). 

The average R2
Adj value for the selected locations was 0.86, with the lowest value of 

0.70 for Mayport and the highest value of 0.95 for Pensacola (Table 2). The average AIC value for 

the SLR-M1 model at each selected location was −137.61, with the highest being −115.62 for 

Mayport and the lowest value of −159.05 for Pensacola (Table 2). The fitted model using GAM 

from Lake Worth, FL with R2
Adj of 0.85 and AIC of −139.09 is depicted in Figure 9 (Top Left). The 
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assumptions for whether or not the conditions for this model are met at that particular location 

are shown in Figure 9 (Top Right) and (Bottom). 

Table 2. R2
Adj and AIC values obtained at different locations using the SLR-M1 Model. 

Location (FL) R2Adj AIC 

Apalachicola 0.86 127.40 

Cedar Key 0.77 133.49 

Clearwater Beach 0.92 144.21 

Fernandina Beach 0.95 153.74 

Fort Myers 0.93 146.24 

Key West 0.71 116.77 

Lake Worth 0.85 139.09 

Mayport 0.70 155.62 

Naples 0.91 146.35 

Panama City 0.90 141.47 

Panama City Beach 0.92 150.77 

Pensacola 0.95 159.05 

St. Petersburg 0.89 132.59 

Vaca Key 0.80 118.43 

Virginia Key 0.87 138.86 

 

Figure 9. (Top Left) The optimal GAM (SLR-M1) fitted at Lake Worth, FL; the predicted values using GAM (black 

dots); and the smoothed loess fit (blue line). Verifying the GAM assumptions for the model at Lake Worth, 

FL: (Top Right) Normal Q—Q Plot; (Bottom) Residuals vs. fitted values. 

The fitted SLR-M1 GAM model to sea level data at Lake Worth, FL versus each predictor is 

depicted in Figure 10 (black diamonds). The smoothed trend of each predictor is obtained using 

loess (blue line). While the year does partially represent time, it is mostly a proxy variable that 

includes other factors that may influence sea level change. Due to this, we looked at a GAM that 

did not include year as a predictor. This new model will be abbreviated as SLR-M2 (sea level rise 

model 2), standing for adjacent basin SSHA, global SSHA, ENSO, salinity, and temperature. The 

adjusted R-squared values were lower (on average) for all tested locations, with an average of 0.83, 

and the AIC values were on average higher for all tested locations, with an average of −134.07 
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(Table 3). However, this model is less ambiguous due to the omission of year as a predictor. The 

smoothed predictor functions for this model fitted at Lake Worth, FL are shown in Figure 11. 

 

Figure 10. Predicted SSHA using the SLR-M1 GAM vs. individual predictors at Lake Worth, FL. Predicted values 

using GAM (black dots) and smoothed trends obtained using loess (blue lines) along with the associated 

confidence intervals (gray shading). Starting from top left and moving in clockwise direction, predictors are 

year, North Atlantic (regional) SSHA (m), global SSHA (m), water temperature (◦C), water salinity (PSU), and 

ENSO 3.4 Index. 

Table 3. R2
Adj and AIC values obtained at different locations using the SLR-M2 Model. 

Location (FL) R2Adj AIC 

Apalachicola 0.85 127.43 

Cedar Key 0.75 151.50 

Clearwater Beach 0.88 136.15 

Fernandina Beach 0.95 155.60 

Fort Myers 0.87 132.53 

Key West 0.66 113.51 

Lake Worth 0.85 139.81 

Mayport 0.71 117.27 

Naples 0.87 128.57 

Panama City 0.88 139.89 

Panama City Beach 0.93 152.31 

Pensacola 0.95 161.07 

St. Petersburg 0.80 119.58 

Vaca Key 0.74 115.49 

Virginia Key 0.88 140.37 
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Figure 11. Predicted sea level trends using the SLR-M2 GAM vs. individual predictors at Lake 
Worth, FL. Predicted values using GAM (black dots) and smoothed trends obtained using loess (blue lines) 

along with the associated confidence intervals (gray shading). Predictors starting from top left and moving in 

clockwise direction are North Atlantic (regional) SSHA (m), global SSHA (m), water temperature (◦C), water 

salinity (PSU), and ENSO 3.4 Index. 

Figure 12 shows a matrix of the response of the SLR-M2 model at every tested Florida location 

in which the sea surface height anomalies (m) are modeled using the sum of functions of the 

predictors. It is important to note that all but four of the locations show an increasing trend for 

SSHA. Due to the sparseness of data points on the right side of the plots, the gray confidence 

intervals widen, and some prediction clarity is lost. Hence, predictions with a relatively high sum 

of predictions should be made with caution. Since the SLR-M2 model does not account for time, 

this is indicative of the fact that while sea level is increasing in Florida over time, time is not the 

only factor contributing to sea level rise. 

  
Figure 12. A matrix of the predicted SSHA (m) using the SLR-M2 model for the Florida locations in this study. 

Figure 13 shows a comparison between the SLR-M2 GAM predicted SSHA and the observed 

SSHA plotted as a function of time. For some of the locations, such as Pensacola, FL in Figure 13a, 

the trend was very different for each of these two plots. This validates the fact that the 

increasing/decreasing trends of SSHA are due to predictors other than year in the SLR-M2 GAM. 

For other locations, such as Virginia Key, FL in Figure 13b, the trends for both plots were similar. 

This shows that sea level increases due to the other predictors having a similar pattern to sea 

level rise over time. 
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 (a)  (b)  

Figure 13. The predicted SSHA (m) using the SLR—M2 GAM (top row) and the observed SSHA time series 

(bottom row) for Pensacola, FL (a) and Virginia Key, FL (b). 

A matrix where the SSHA for each of the Florida locations was plotted as a function of time 

is depicted in Figure 14. All of these plots in the matrix show an increasing trend in sea level rise. 

This is a good indicator that there is an overall increasing trend of rising sea levels in Florida. 

However, both the SLR-M1 GAM and the SSHA time series depicted in Figure 14 seem to show 

that the increase in sea levels in coastal Florida becomes more severe as time progresses. 

Figure 15 shows the altimetry data from three tide gauge stations. These stations were 

compared to each other to demonstrate the difference in sea level rise trends in Florida and in 

Texas. The decompose () function in R was used to decompose the altimetry data into trend, 

seasonal, and random components. An additive model is used to construct the different 

components from the altimetry data. The trend component is constructed using a moving average 

of the observed data. The seasonal component was constructed by averaging the data. The random 

component is what is left over after removing the trend and seasonal components from the 

observed data. The locations chosen for this comparison were Pensacola, FL (Figure 15 (top)), Key 

West, FL (Figure 15 (middle)), and Corpus Christi, TX (Figure 15 (bottom)). Pensacola is the closest 

tide gauge station to Corpus Christi, and Key West is another Florida location used to compare to 

Corpus Christi. 
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Figure 14. A matrix of the observed SSHA (m) time series for the coastal Florida locations in this study. The 

observed annual SSHA (black dots) and the smoothed trends using loess (blue line). 

 

Figure 15. Decomposition of altimetry data for Pensacola, FL (top), Key West, FL (middle), and Corpus Christi, 

TX (bottom). 

For each of the tide gauge locations, there is an increasing trend over time. It can be seen 

that the Pensacola and Corpus Christi trends are similar, whereas the Key West trend has less 

fluctuations with an overall increasing trend. Pensacola and Corpus Christi show increasing trends 
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after 2010, but this is not visible in Key West. However, all locations show similar trends from 

2010. 

5. Discussion 

The global sea level has risen between 16 and 21 cm within the last century. It is predicted 

that this rate will be accelerated into the future due to climate change. The primary causes of this 

increase in sea level can be attributed to the thermal expansion of seawater and the recession of 

glaciers from melting. Projections from the IPCC show the global mean sea level rise may increase 

up to 1 m by 2100. Yet, obtaining accurate estimation of sea level rise is challenging because of the 

complexity of climate and environmental factors. The latest GMSL rise estimate is about 3 mm/year 

that sums up to 231 mm by 2100. However, this estimate does not represent changes in local areas. 

In Florida, there are 8436 miles of coastline, all of which is directly affected by sea level rise. 

Displacement, infrastructure, and city planning, along with rapid population growth, make it 

imperative to gain a better understanding of sea level rise in this area. 

In this study, a model of sea level rise that takes into account altimetry, water temperature, 

water salinity, and El Niño southern oscillation (ENSO) 3.4 index for coastal Florida was proposed. 

The local rates and variances of sea surface height anomalies (SSHA) were analyzed and compared 

to regional and global measurements. The sea level changes across coastal Florida were modeled 

using both multiple regression and GAM. Both the SLR-M1 GAM and the SLR-M2 GAM show that 

water temperature, salinity, and ENSO 3.4 are all relevant factors for predicting sea level change in 

Florida. Alongside the significance of the climate and environmental factors, all of the Florida 

stations have an increasing trend in sea level rise (Figure 14). This suggests that the Florida coast 

has a greater rate of sea level rise than the global mean sea level rise. The climate and 

environmental factors in the model signify a relationship between local sea level rise and climate 

change. Due to the accelerating climate change effects, the SLR-M1 GAM suggests that the local 

sea level rise will also accelerate. The SLR-M2 GAM also suggests that time is not the driving factor 

behind sea level rise. As seen in Figure 12, most of the GAMs for the coastal Florida locations have 

an increasing trend in sea level rise. This indicates that the climate and environmental factors are 

contributing to the increasing rate of sea level rise. 

The SLR—M1 GAM and SLR—M2 GAM also show that regional and global SSHA contribute to 

local sea level changes. Sea level changes in larger-scale systems are reflected in the sea level 

changes in smaller-scale systems and can be used to improve predictions for those smaller systems. 

Although local variations are comparable across coasts, the local sea level variations are higher 

than both regional and global variations (Figure 7). This indicates that there is more variability in 

sea level rise on the local level than there is on a larger scale. 

6. Conclusions 

While global estimates for sea level rise provide a general trend that can be used in planning 

and policy making [4], local estimates would provide more accurate estimates to prepare and plan. 

Additionally, there is a noticeable jump in the trend across all Florida locations in 2011 (Figure 14) 

that is not present in other nearby geographical locations (for example, Corpus Christi, TX, Figure 

15 (bottom)). Due to its relative recency, this jump has not been extensively covered by previous 

climate change reports in the region. Further investigation of the sea level change in this period in 

the Florida region would be helpful for understanding additional factors that could lead to rising 

sea levels in the state and would contribute to the body of knowledge on sea level rise in the 

general southeastern region of the United States. 

Factors such as average monthly winds, atmospheric pressures, and coastal currents have 

been found to be significant in sea level changes based on previous studies [41]. Hence, to improve 

the proposed models in this study, additional climate and environmental factors 

will be considered in our future work. Moreover, using tide gauge data as “ground truth”, in 

addition to the altimetry data, would provide a more accurate SSHA model [46,49]. The 15 

locations along the Florida coast were selected specifically so that this study can be replicated with 

tide gauge data. Repeating this study with tide gauges would also align the results with previous 

sea level reports from Florida. 



Geosciences 2023, 13, 310 17 of 18 

Author Contributions: Conceptualization, R.D.B., H.N.V., M.M., S.L. and N.N.K.; methodology, R.D.B., H.N.V., 

S.L. and N.N.K.; software, R.D.B., H.N.V., M.M., S.L. and N.N.K.; validation, R.D.B., H.N.V., S.L. and N.N.K.; 

formal analysis, R.D.B., H.N.V. and N.N.K.; investigation, R.D.B., H.N.V., 
M.M., S.L. and N.N.K.; resources, S.L. and N.N.K.; data curation, R.D.B., H.N.V., M.M., S.L. and N.N.K.; writing—

original draft preparation, R.D.B., H.N.V., M.M., S.L. and N.N.K.; writing—review and editing, R.D.B. and 

N.N.K.; visualization, R.D.B., H.N.V., M.M., S.L. and N.N.K.; supervision, S.L. and N.N.K.; project administration, 

S.L. and N.N.K.; funding acquisition, S.L. and N.N.K. All authors have read and agreed to the published version 

of the manuscript. 

Funding: This research was performed as part of the Statistical Models with Applications to Geoscience REU 

(Research Experience for Undergraduates) and was funded by NSF grant number 
1950768. 

Data Availability Statement: Data is publicly available. Please refer to the data section. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [CrossRef] 
2. Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. 

[CrossRef] [PubMed] 
3. Peruyera, G. A Future Submerged: Implications of Sea Level Rise for South Florida. Fla. A M Univ. Law Rev. 2012, 8, 297. 
4. IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., 

Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 

pp. 3–32. [CrossRef] 

5. European Environment Agency. Projected Change of Global Mean Sea Level. 2015. Available online: https://www.eea.europa. eu/data-and-

maps/daviz/projected-global-mean-sea-level#tab-dashboard-01 (accessed on 26 January 2023). 
6. Mengel, M.; Levermann, A.; Frieler, K.; Robinson, A.; Marzeion, B.; Winkelmann, R. Future sea level rise constrained by observations and 

long-term commitment. Proc. Natl. Acad. Sci. USA 2016, 113, 2597–2602. [CrossRef] 
7. Chen, J.L.; Wilson, C.R.; Tapley, B.D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat. Geosci. 2013, 6, 549–

552. [CrossRef] 
8. Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions. Mar. 

Geod. 2010, 33, 435–446. [CrossRef] 
9. Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B. The increasing rate of global mean sea-level rise 

during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [CrossRef] 
10. Beckley, B.D.; Lemoine, F.G.; Luthcke, S.B.; Ray, R.D.; Zelensky, N.P. A reassessment of global and regional mean sea level trends from TOPEX 

and Jason-1 altimetry based on revised reference frame and orbits. Geophys. Res. Lett. 2007, 34, L14608. [CrossRef] 
11. Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 

22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [CrossRef] 
12. Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding 

of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Future 2017, 5, 
1217–1233. [CrossRef] 

13. Grinsted, A.; Jevrejeva, S.; Riva, R.E.M.; Dahl-Jensen, D. Sea level rise projections for Northern Europe under RCP8.5. Clim. Res. 2015, 64, 

15–23. [CrossRef] 
14. Slangen, A.B.A.; Church, J.A.; Agosta, C.; Fettweis, X.; Marzeion, B. Richter. Anthropogenic forcing dominates global mean sea-level rise since 

1970. Nat. Clim. Chang. 2016, 6, 701–705. [CrossRef] 
15. Carson, M.; Köhl, A.; Stammer, D.; Slangen, A.B.A.; Katsman, C.A.; van de Wal, R.S.W.; Church, J. Coastal sea level changes, observed and 

projected during the 20th and 21st century. Clim. Chang. 2016, 134, 269–281. [CrossRef] 
16. Jackson, L.P.; Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios. Glob. 

Planet. Chang. 2016, 146, 179–189. [CrossRef] 
17. Le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.W.; Slangen, A.B.A.; Lowe, J.A.; White, K.D. Sea Level 

Change and Coastal Climate Services: The Way Forward. J. Mar. Sci. Eng. 2017, 5, 49. [CrossRef] 
18. Mitchum, G.T. Sea Level Changes in the Southeastern United States; Florida Climate Institute, Florida State University: Tallahassee, FL, USA, 

2011. 
19. Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise 

detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [CrossRef] [PubMed] 
20. Veng, T.; Anderson, O.B. Consolidating Sea level acceleration estimates from satellite altimetry. Adv. Space Res. 2021, 68, 496–503. 

[CrossRef] 
21. Cazenave, A.; Moreira, L. Contemporary sea-level changes from global to local scales: A review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2022, 

478. [CrossRef] 

https://doi.org/10.1007/s10712-011-9119-1
https://doi.org/10.1007/s10712-011-9119-1
https://doi.org/10.1038/nature14093
https://doi.org/10.1038/nature14093
https://www.ncbi.nlm.nih.gov/pubmed/25629092
https://www.ncbi.nlm.nih.gov/pubmed/25629092
https://www.ncbi.nlm.nih.gov/pubmed/25629092
https://doi.org/10.1017/9781009157896.001
https://doi.org/10.1017/9781009157896.001
https://www.eea.europa.eu/data-and-maps/daviz/projected-global-mean-sea-level#tab-dashboard-01
https://www.eea.europa.eu/data-and-maps/daviz/projected-global-mean-sea-level#tab-dashboard-01
https://www.eea.europa.eu/data-and-maps/daviz/projected-global-mean-sea-level#tab-dashboard-01
https://doi.org/10.1073/pnas.1500515113
https://doi.org/10.1073/pnas.1500515113
https://doi.org/10.1038/ngeo1829
https://doi.org/10.1038/ngeo1829
https://doi.org/10.1080/01490419.2010.491031
https://doi.org/10.1080/01490419.2010.491031
https://doi.org/10.1038/nclimate3325
https://doi.org/10.1038/nclimate3325
https://doi.org/10.1029/2007GL030002
https://doi.org/10.1029/2007GL030002
https://doi.org/10.1002/2014EF000239
https://doi.org/10.1002/2014EF000239
https://doi.org/10.1002/2017EF000663
https://doi.org/10.1002/2017EF000663
https://doi.org/10.3354/cr01309
https://doi.org/10.3354/cr01309
https://doi.org/10.1038/nclimate2991
https://doi.org/10.1038/nclimate2991
https://doi.org/10.1007/s10584-015-1520-1
https://doi.org/10.1007/s10584-015-1520-1
https://doi.org/10.1016/j.gloplacha.2016.10.006
https://doi.org/10.1016/j.gloplacha.2016.10.006
https://doi.org/10.3390/jmse5040049
https://doi.org/10.3390/jmse5040049
https://doi.org/10.1073/pnas.1717312115
https://doi.org/10.1073/pnas.1717312115
https://www.ncbi.nlm.nih.gov/pubmed/29440401
https://www.ncbi.nlm.nih.gov/pubmed/29440401
https://www.ncbi.nlm.nih.gov/pubmed/29440401
https://doi.org/10.1016/j.asr.2020.01.016
https://doi.org/10.1016/j.asr.2020.01.016
https://doi.org/10.1016/j.asr.2020.01.016
https://doi.org/10.1098/rspa.2022.0049
https://doi.org/10.1098/rspa.2022.0049


Geosciences 2023, 13, 310 18 of 18 

22. Tamisiea, M.E.; Mitrovica, J.X. The moving boundaries of sea level change: Understanding the origins of geographic variability. 

Oceanography 2011, 24, 24–39. [CrossRef] 
23. Strauss, B.; Tebaldi, C.; Kulp, S.; Cutter, S.; Emrich, C.; Rizza, D.; Yawitz, D. Florida and the surging sea: A vulnerability assessment with 

projections for sea level rise and coastal flood risk. Clim. Cent. 2014, 1–58. 
24. Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 

2016, 6, 691–695. [CrossRef] 
25. Laboratory for Satellite Altimetry/Sea Level Rise. Regional Sea Level Time Series. 2020. Available online: https://www.star. 

nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_regional.php (accessed on 26 January 2023). 
26. Zlotnicki, V.; Qu, Z.; Willis, J. MEaSUREs Gridded Sea Surface Height Anomalies Version 1812. EA_SURFACE_HEIGHT_ALT 

_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1609. Ver. 1812. PO.DAAC, CA, USA. 2019. Available online: https://podaac.jpl.nasa. 

gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812 (accessed on 26 January 2023). 
27. Wakelin, S.L.; Woodworth, P.L.; Flather, R.A.; Williams, J.A. Sea-level dependence on the NAO over the NW European Continental Shelf. 

Geophys. Res. Lett. 2003, 30. [CrossRef] 
28. Douglas, B.C.; Peltier, W.R. The puzzle of global sea-level rise. Phys. Today 2002, 55, 35–40. [CrossRef] 
29. Bâki, I.H. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long 

records. J. Geod. Sci. 2018, 8, 55–71. 
30. Roden, G.I. Low frequency sea level oscillations along the Pacific coast of North America. J. Geophys. Res. 1966, 71, 4755–4775. [CrossRef] 
31. Forget, G.; Campin, J.-M.; Heimbach, P.; Hill, C.N.; Ponte, R.M.; Wunsch, C. ECCO version 4: An integrated framework for non-linear inverse 

modeling and global ocean state estimation. Geosci. Model Dev. 2015, 8, 3071–3104. [CrossRef] 
32. ECCO Consortium; Fukumori, I.; Wang, O.; Fenty, I.; Forget, G.; Heimbach, P.; Ponte, R.M. ECCO Central Estimate (Version 4 Release 3). 2017. 

Available online: https://web.corral.tacc.utexas.edu/OceanProjects/ECCO/ECCOv4/Release3/ (accessed on 26 January 2023). 

33. ECCO Consortium; Fukumori, I.; Wang, O.; Fenty, I.; Forget, G.; Heimbach, P.; Ponte, R.M. ECCO Central Estimate (Version 
4 Release 4). 2019. Available online: https://podaac.jpl.nasa.gov/ECCO?tab=mission-objectives&sections=about%2Bdata (accessed on 26 

January 2023). 

34. ECCO Consortium; Fukumori, I.; Wang, O.; Fenty, I.; Forget, G.; Heimbach, P.; Ponte, R.M. ECCO Ocean Temperature and Salinity—Monthly 

Mean 0.5 Degree (Version 4 Release 4). Ver. V4r4. PO.DAAC, CA, USA. 2021. Available online: https: 

//podaac.jpl.nasa.gov/dataset/ECCO_L4_TEMP_SALINITY_05DEG_MONTHLY_V4R4 (accessed on 26 January 2023). 
35. Chang, E.K.M.; Lee, S.; Swanson, K.L. Storm track dynamics. J. Clim. 2002, 15, 2163–2183. [CrossRef] 
36. Eichler, T.; Higgins, W. Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Clim. 2006, 19, 2076–

2093. [CrossRef] 
37. Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm tracks and climate change. J. Clim. 2006, 19, 3518–3543. [CrossRef] 
38. Kennedy, A.J.; Griffin, M.L.; Morey, S.L.; Smith, S.R.; O’Brien, J.J. Effects of El Nino—Southern Oscillation on sea level anomalies along the 

Gulf of Mexico coast. J. Geophys. Res. 2007, 112, C05047. [CrossRef] 
39. Geyman, E.; Maloof, A.C. Deriving Tidal Structure from Satellite Image Time Series. Earth Space Sci. 2020, 7, e2019EA000958. [CrossRef] 
40. Plater, A.J.; Kirby, J.R. Sea-Level Change and Coastal Geomorphic Response. Treatise Estuar. Coast. Sci. 2011, 3, 39–72. 
41. Hoyt, W.T.; Imel, Z.E.; Chan, F. Multiple Regression and Correlation Techniques: Recent Controversies and Best Practices. Rehabil. Psychol. 

2008, 53, 321–339. [CrossRef] 
42. Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; CRC Press: Boca Raton, FL, USA, 1990; Volume 43. 
43. Schimek, M.G. Smoothing and Regression: Approaches, Computation, and Application; Wiley: New York, NY, USA, 2000. 

44. Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models. Stat. Sci. 1986, 1, 297–310. [CrossRef] 
45. Friedman, J.H.; Stuetzle, W. Smoothing of Scatterplots; Technical Report ORION 003; Department of Statistics, Stanford University: Stanford, 

CA, USA, 1982. 
46. Wang, Y.; Liu, Q. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment 

relationships. Fish. Res. 1986, 77, 220–225. [CrossRef] 
47. Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 

596–610. [CrossRef] 
48. Steyerberg, E.W. Clinical Prediction Models a Practical Approach to Development, Validation, and Updating; Springer: Berlin/Heidelberg, 

Germany, 2009. 

49. Prandi, P.; Cazenave, A.; Becker, M. Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and 

satellite altimetry over 1993–2007. Geophys. Res. Lett. 2009, 36. [CrossRef] 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and 

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 

from any ideas, methods, instructions or products referred to in the content. 

https://doi.org/10.5670/oceanog.2011.25
https://doi.org/10.5670/oceanog.2011.25
https://doi.org/10.1038/nclimate2961
https://doi.org/10.1038/nclimate2961
https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_regional.php
https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_regional.php
https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_regional.php
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://doi.org/10.1029/2003GL017041
https://doi.org/10.1029/2003GL017041
https://doi.org/10.1063/1.1472392
https://doi.org/10.1063/1.1472392
https://doi.org/10.1029/JZ071i020p04755
https://doi.org/10.1029/JZ071i020p04755
https://doi.org/10.1029/JZ071i020p04755
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.5194/gmd-8-3071-2015
https://web.corral.tacc.utexas.edu/OceanProjects/ECCO/ECCOv4/Release3/
https://podaac.jpl.nasa.gov/ECCO?tab=mission-objectives&sections=about%2Bdata
https://podaac.jpl.nasa.gov/dataset/ECCO_L4_TEMP_SALINITY_05DEG_MONTHLY_V4R4
https://podaac.jpl.nasa.gov/dataset/ECCO_L4_TEMP_SALINITY_05DEG_MONTHLY_V4R4
https://podaac.jpl.nasa.gov/dataset/ECCO_L4_TEMP_SALINITY_05DEG_MONTHLY_V4R4
https://doi.org/10.1175/1520-0442(2002)015%3C02163:STD%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3C02163:STD%3E2.0.CO;2
https://doi.org/10.1175/JCLI3725.1
https://doi.org/10.1175/JCLI3725.1
https://doi.org/10.1175/JCLI3815.1
https://doi.org/10.1175/JCLI3815.1
https://doi.org/10.1029/2006JC003904
https://doi.org/10.1029/2006JC003904
https://doi.org/10.1029/2019EA000958
https://doi.org/10.1029/2019EA000958
https://doi.org/10.1029/2019EA000958
https://doi.org/10.1037/a0013021
https://doi.org/10.1037/a0013021
https://doi.org/10.1214/ss/1177013604
https://doi.org/10.1214/ss/1177013604
https://doi.org/10.1016/j.fishres.2005.08.011
https://doi.org/10.1016/j.fishres.2005.08.011
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1029/2008GL036564
https://doi.org/10.1029/2008GL036564

