2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | 979-8-3503-7149-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/EMBC53108.2024.10782834

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 18,2024 at 20:52:08 UTC from IEEE Xplore. Restrictions apply.

Alzheimer’s Disease Classification From Speech
Pause Distributions With Context Information
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Abstract—Alzheimer’s disease (AD) is known to affect the
lengths and frequencies of certain kinds of pauses in speech.
Previous studies have used features based on pause lengths for
AD classification. We conjecture that in addition to using pause
lengths, it is beneficial to incorporate the “context” behind each
pause, i.e., what is being said before and after each pause.
We propose an AD detection method based on this idea. As
part of the proposed method, pause lengths and context are
extracted from the raw audio using automatic speech recognition
(ASR) and forced alignment. Then, statistical summaries of
pause lengths with context information are extracted from the
transcripts and used as features for classification. Our results
indicate that incorporating the context significantly improves
classification performance compared to using pause lengths alone,
with classification accuracy of up to 81%. Additionally, the
proposed features largely preserve privacy.

Index Terms—Alzheimer’s disease, dementia, speech, ASR,
forced alignment

I. INTRODUCTION

Screening and early identification of Alzheimer’s disease
(AD) can help those affected by it get timely treatment, in-
cluding the newly FDA-approved drug Lecanemab [1], which
is given intravenously and removes the culprit protein deposits
from the brain in early stages of the disease progression. Thus,
it is crucial to identify signs of AD as early as possible.

One early feature of AD is difficulties thinking of words
when speaking, especially lower frequency words that carry
precise meanings. One of the ways this is seen in a person’s
speech is that they pause as they try to remember the word.
For this reason, their speech is expected to have more pauses
before more difficult words. They may also have difficulties
remembering a story or formulating their thoughts. Previous
studies have sought to quantify these effects [2]-[4].

Various approaches have been proposed to detect AD from
speech using acoustic features, linguistic features or combina-
tions of both. To a degree, the language difficulties associated
with AD can be captured using just text-based linguistic
features. However, audio data contains information that text
alone cannot capture, including prosody. This information can
be useful for detecting or tracking progression of AD. For
example, one study [5] incorporated pauses into text-based
features, which improved performance over using plain text.
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Manual transcription is cumbersome and not a viable option
in many real-world applications. When only audio is available,
text-based inference is still possible through ASR, which
transcribes speech from raw audio. This enables the use
of multimodal approaches which integrate acoustic features
extracted from audio with linguistic features extracted from
ASR-generated transcripts. Examples of ASR models include
Silero [6], wav2vec 2.0 [7], HuBERT [8] and Whisper [9].
Typically, ASR does not provide phoneme- or word-level
timestamps. Forced alignment can be used to align the ASR-
generated transcript to the original audio. Forced alignment
has been applied to AD [10] and mild cognitive impairment
[11] for multimodal inference.

Deep learning (DL) models are often used for classification
and regression due to their flexibility and performance. DL
models applied to dementia include multi-layer perceptrons
(MLPs) [12], long short-term memory (LSTM) models [13]-
[17], convolutional neural networks (CNNs) [18], and trans-
formers like BERT [10], [14], [16], [19]-[23], ERNIE [23],
GPT-3 [24] and the vision transformer (ViT) [19]. Many of
these models are currently among the state-of-the-art for de-
mentia detection. However, DL models typically require huge
amounts of data and tend to be computationally demanding
during training. Moreover, DL models that directly take raw
audio or transcripts as input can lead to privacy concerns.

In this paper, we propose an AD detection method based on
the effect of AD on pauses during speech. We conjecture that
in addition to using pause lengths, it is beneficial to incorporate
the “context” behind each pause, i.e., what is being said before
and after each pause. To keep compute requirements low and
address privacy concerns, we limit the context for each pause
to words immediately before and after it. The order of words in
the transcript is not retained after feature extraction. Potentially
sensitive words are not retained either. Our results indicate that
incorporating the context behind pauses significantly improves
classification performance compared to using pause lengths
alone. The rest of this paper is organized as follows: Section
IT explains the methodology followed, Section III describes the
experiments and results, and Section IV consists of remarks
and interpretations of the results.

II. METHODOLOGY

For our analysis, we will make use of the Cookie Theft
picture description task from the Pitt corpus in Dementia-
Bank [25]. The corpus contains audio recordings and their
transcripts from 104 control participants and 208 participants
with Alzheimer’s disease (AD). In Cookie Theft, there are



243 recordings for the “control” group and 305 recordings
for the “dementia” (AD) group. The corpus also contains
CHAT-format transcripts [26] with phrase-level timestamps.
We obtain the “ground truth” transcripts by processing the
CHAT transcripts. To ensure that the proposed method can be
used even when only raw audio is available, we use ASR and
forced alignment to transcribe the recordings with word-level
timestamps.

Our main objective is to develop a classifier between indi-
viduals in the “control” and “dementia” groups using the raw
audio recordings. Prior to this, we perform tests of statistical
significance to better understand what kinds of pauses are
relevant for AD detection, which in turn motivates the use of
pause distributions for classification. For each kind of pause,
we perform a one-sided t-test for the hypothesis that the mean
pause length is greater for the “dementia” group.

To build the classifier, we need to first preprocess the audio
to recover the transcriptions, extract the desired features, and
use those features as input to a machine learning classifier.
As can be observed in Fig. 1, during training, the feature
extraction pipeline includes pause length extraction, statistical
summarization and feature selection.

Aside from our main objective of differentiating between
“control” and “dementia” groups, we also aim to answer the
following questions through our experiments. How do ASR-
generated transcripts compare to the “ground truth” transcripts
for inference? Is it better to group pauses by words or by
Part-of-Speech (PoS) tags? Is it better to use histogram-
based features or quantile-based features? Which features in
particular are the most informative? Which classifiers work
well for this problem?

A. Preprocessing: Text Transcription and Force Alignment

The feature extraction step relies on transcripts with word-
level timestamps. For the ground truth transcripts, only the
timestamped phrases are extracted from the CHAT transcripts
in the corpus. Other details such as morphological informa-
tion are removed. ASR and forced alignment are performed
using Silero’s pre-trained speech-to-text model and the built-in
alignment functionality in its decoder [6]. The model is used
out-of-the-box without fine-tuning. As a pre-processing step
for ASR and forced alignment, all recordings are converted

Audio Data

ASR & Forced
Alighment

Common Word
Identification

Pause Length
Extraction

Statistical . Training of
P 4 Feature Selection > e
Summarization Classifier

Fig. 1. Block diagram of training. K-fold cross-validation is performed for
validation. When the “ground truth” transcripts from the dataset are used, the
ASR + forced alignment step is not needed.

to mono and downsampled to 16 kHz. Part-of-speech (PoS)
tagging is performed by the averaged perceptron model [27],
[28] based on the Penn Treebank tagset [29].

Transcripts from the same participant are merged because
we ultimately want to extract statistical summaries for partic-
ipants instead of individual transcripts.

B. Feature Extraction

Pause Extraction. Once we have transcripts with word-level
timestamps, we categorize pauses based on what words are
adjacent to them. No minimum length is set while defining
“pauses”, i.e., if there’s no silence between two words, the
pause is considered to be 0 seconds long. We try out two
different approaches for categorizing pauses, described below.

1) Pauses Before/After Common Words: The algorithm for
extracting the features is as follows:

a) Identify the W most common words in the dataset, where
W is fixed.

b) For each participant’s transcript and for each of the W
most common words, extract the following:

i) List of lengths of all pauses occurring immediately
before the word in the transcript. Denote this category
of pauses by the tuple (word, “before”).

ii) List of lengths of all pauses occurring immediately
after the word in the transcript. Denote this category
of pauses by the tuple (word, “after”).

Note that for each transcript, each tuple (word, pause
position) forms a distinct category of pauses.

We use only common words to ensure that there are enough
samples in each category to extract crude statistical features
that are not sparse. This should inform the choice of W.

2) Pauses Before/After Part-of-Speech (PoS) Tags: This type of
categorization is similar except that all the words are replaced
by their equivalent PoS tags, and the iteration is over the list
of unique PoS tags instead of common words. Each tuple (tag,
pause position) forms a distinct category. In this case, we refer
to the number of unique PoS tags as W. The idea behind using
PoS tags instead of words is that it may be beneficial to group
together words that play similar roles in a sentence.

Based on the above description, the number of categories
per transcript is 2W for either approach.

Statistical Summarization. Now we describe the statistical
features extracted from the pause lengths. Ideally, we want
these features to represent pause distributions. Motivated by
this, we use two different types of features (separately).

1) Histogram-Based Features: For each category (word/tag,
pause position), the features are normalized histogram frequen-
cies, minimum and maximum of pause lengths. The number
of bins per histogram, b, is kept fixed, so it is important to
explicitly provide range information, which is why minimum
and maximum are added as features. In this case, the total
number of features per sample is 2W (b + 2).
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2) Quantile-Based Features: The features are g-quantiles of
pause lengths, including the 0% and ¢ quantiles. The total
number of features per sample is 2W (g + 1).

Feature Selection. Univariate feature selection is done by
selecting the IV best features in terms of mutual information
scores, where N is fixed. This step uses only training data so
that the testing data does not bias the classifier.

C. Classification

A set of candidate classifiers are trained and evaluated
using the training data as part of /K -fold cross-validation. The
model with the best average accuracy across folds is selected.
Finally, the selected model is evaluated on the testing set
using accuracy, F1 score, precision and recall. If there is a
gap between the testing performance and the average cross-
validation performance, the model is discarded.

III. EXPERIMENTS AND RESULTS
A. Tests of Statistical Significance

For each category (word/tag, pause position) described in
Section II-B, a one-sided t-test was performed for the hypoth-
esis that the mean pause length is greater for the “dementia”
group. W = 75 was chosen for common words. For the
transcripts in the Pitt corpus, we observed that:

e For 71% of the word categories and 85% of the tag
categories, the average pause length is greater for the
“dementia” group than for the “control” group. Many of
these differences are statistically significant (p < 0.05).
Fig. 2 shows the most significant of these differences.

o The words with the most statistically significant differ-
ences (p < 0.015) for the means of pause length before
utterance are: “and”, “is”, “can”, “oh”, “cookie”, “she’s”,
“there’s”, “he”, “he’s”, “okay”, “anything” and “off”.

o The words with the most statistically significant differ-
ences (p < 0.015) for the means of pause length after
utterance are: “is”, “jar”, “cookies”, “and”, “the”, “uh”,
“mother”, “for”, “girl”, “boy”, “to”, “um” and “window”.

o There are particularly noticeable differences between the
two groups in terms of pauses before interjections (UH),
pauses before wh-adverbs (WRB), pauses after “to” (TO),
and pauses before and after conjunctions (CC) [all with
p < 0.012]. See Fig. 2 for other PoS tags.

These results indicate that pause lengths with word align-
ment, especially in conjunction with other types of features,
could be good indicators of signs of AD. Based on this, we
use features derived from these pauses for classification.

B. Classification

For classification, features were extracted according to the
method described in Section II-B. The number of participants
in the dataset was 290. The train-test split was 80/20. For
K-fold cross-validation, K was 5. The following candidate
classifiers were used: k& nearest neighbors (kNN) with k = 3,
random forest (RF) with a max. depth of 2, decision tree (DT),
support vector classifier (SVC) with a radial basis function
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Fig. 2. Boxplots of pauses before/after common words/parts-of-speech (most
significant differences only). For better visualization, very short pauses (<
150 ms) were not included in the plots.

(RBF) kernel, linear SVC with L1 penalty, stochastic gradient
descent (SGD) classifier, multilayer perceptron (MLP) with a
100-unit hidden layer and ReLU activation, gradient boosting,
and XGBoost with a max. depth of 2.

For model selection, our goal is to find not just a good
classifier but also good values for parameters such as W and b.
Thus, multiple combinations of parameters were experimented
with to identify good model candidates. Because the number
of all possible combinations is very large, this was done in
an iterative fashion by fixing some parameters while varying
others. Each combination of parameters was tested with all
9 classifiers. For each combination, only the classifier with
the best average accuracy score during cross-validation was
retained. Then, to evaluate a particular choice of a parameter,
the parameter was kept fixed and aggregate scores (mean,
standard deviation [SD] and max. of classifier scores) were
computed over variations of other parameters. For example,
to evaluate word-based categories, other parameters such as
feature type were varied, and then aggregates scores were
computed over these variations.

Table I summarizes the results from these experiments. In
experiment (1), transcript type, feature type and categorization
type were varied while other parameters were fixed (W = 75,
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TABLE I
RESULTS FROM THE MODEL SELECTION EXPERIMENTS DESCRIBED IN
SECTION III-B. MEAN, SD AND MAX. ARE COMPUTED FROM THE BEST
PERFORMING CLASSIFIERS FOR DIFFERENT COMBINATIONS OF
PARAMETERS. (1), (2) AND (3) DENOTE EXPERIMENT NUMBERS.

TABLE II
COMPARISON OF SELECTED MODEL WITH OTHER MODELS THAT USE THE
PITT CORPUS. “GT” REFERS TO USE OF GROUND TRUTH TRANSCRIPTS.

q = 4, and histogram-based features with b = 20 and log scale
for bins). Based on this, word-based categorization was found
to work better on average across different combinations of
parameters. In experiment (2), transcript type, feature type and
W (between 50 and 200) were varied while other parameters
were fixed (word-based categorization, ¢ = 4 and b = 20
with log scale for histogram-based features). Based on this, on
average, histogram-based features were found to work better,
and ASR-generated transcripts were found to work slightly
better. In both experiments (1) and (2), feature selection
was not performed. In the final experiment (3), the scale of
histogram bins was varied between linear and log, W was
varied between 100 and 150, b was varied between 8 and 20,
N was varied between 200 and 2000 (along with a variation
with no feature selection), and ASR-generated transcripts were
used. On average, the MLP and SVC were found to work best.

The best performing model that generalized well was
MLP with ASR-generated transcripts, histogram-based fea-
tures, word-based categories, W = 150, b = 8, linear scale
for histogram bins and N = 1500 selected features. When
this model was evaluated on the testing set, the classification
accuracy was 81.03%, F1 score was 0.86, precision was
0.85 and recall was 0.87. During cross-validation, the mean
accuracy was 79.78%, mean F1 score was 0.85, mean precision
was 0.83 and mean recall was 0.88. Prior to feature selection,
the number of features was 3000. Feature selection reduced
this to N = 1500 features.

With the same set of parameters but using XGBoost instead
of MLP, the feature importance scores were noted. The only
features with non-zero importance scores were “max pause
after ‘open”™, “bin #4 of pauses before ‘window’”, “bin #4
of pauses after ‘action”, “max pause before ‘anything’’, and
“bin #4 of pauses before ‘cookie’. The testing accuracy was
70.69% and mean cross-validation accuracy was 71.58%.

The performance differences between ground truth and ASR
transcripts in experiment (2) were minor, so we repeated
experiment (3) but with ground truth transcripts instead of
ASR transcripts. The performances were similar. The best

Accuracy | FI1 Score | Precision | Recall

Mean Acc. | SD of Acc. | Max. Acc. Proposed method (ASR) 81.0% 0.86 0.85 0.87

(1) Word-based cat. 73.77% 412% 78.87% Proposed method (GT) 81.0% 0.84 0.94 0.76

PoS tag-based cat. 72.25% 2.9% 74.88% Pauses without context 57.9% 0.72 0.60 0.91

(2) Histogram-based feat. 74.78 % 2.46% 77.59% Haider et al. 2019 [30] 78.7% 0.78 0.80 0.77
Quantile-based feat. 71.35% 1.88% 74.93% Klumpp et al. 2018 [31] 84.4% - - -

(2) Ground truth trans. 72.90% 3.00% 76.12%
ASR transcripts 73.24% 2.68% 77.59% .

(3) kNN 64.85% 143% 7375 model had a testing set accuracy of 81.03% and a mean cross-
Random forest 68.12% 1.86% 72.83% validation accuracy of 82.25%. It used W = 200, b = 8, linear
Decision tree 65.09% 2.89% 72.42% le for hi ram bins and N = 1 f r

SVC with RBF kernel 72.61% 3.88% 80.19% scale for histogram bins and 500 selected features.
Linear SVC 72.77% 2.69% 79.04% When all pause lengths were used without considering the
SGD 70.43% 2.94% 76.30% context, the best accuracy was 57.94% using a random forest.
MLP 75.44% 3.11% 80.69% ‘o indi : : :
Gradient boosting T1.91% 5 0% 761% This indicates that tgkmg mt.o account tbe context behind
XGBoost 71.09% 2.03% 76.78% pauses, even something as simple as adjacent words, can

significantly improve performance.

Table II shows a comparison of the proposed method with
other methods that also used the Pitt corpus. Note that the
methodologies differ between the proposed method and other
authors’ methods. Haider et al. [30] trained decision tree
classifiers on different sets of acoustic features (eGeMAPS,
ComParE 2013 and MRCG) and fused the results with a
vote among the classifiers. By contrast, our method uses a
simpler set of features based on pause lengths, making it more
amenable to interpretability. They used leave-one-subject-out
cross-validation. Klumpp et al. [31] trained a multilayer per-
ceptron with one hidden layer on 546 word frequency features.
They used leave-one-subject-out cross-validation as well. Like
our method, their method does not preserve word order, but
it uses a larger set of words compared to our method. It
also reduces words to their stems, which can lead to loss of
potentially useful [32] information about word forms.

IV. DISCUSSION

In the proposed method, the number of features is relatively
small, with the best-performing model using 1500 features.
Moreover, the number of features does not increase with audio
length. This keeps computational requirements in check during
training/inference. The features also largely preserve privacy.
They do not retain any sensitive words or word ordering.
Note that it may be possible to recover some word ordering
by observing the features corresponding to minimum and
maximum pause values, but that would only give away a small
number of short combinations of common words at worst.
Thus, these features can be included as part of a larger set
of privacy-preserving features. A secure local device (e.g.,
a wearable) can perform transcription, extract such features
from the transcript, and send the features to a remote server.
The server can then use a larger model to perform inference
without having direct access to the audio or transcript.

The results from the tests of statistical significance hint at
the following.

o People with AD tend to have longer unvoiced pauses
after filler words like “um” and “uh”. This might show
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that they need more time to think of words or what to
say than the time afforded to them by saying “um” or
“uh”. Neurotypical people use these fillers to buy them
more time when they are formulating what to say, and
usually the amount of time they take is enough to keep
conversing.

Those with AD tend to have longer pauses before and af-
ter the word “is”, which might indicate trouble retrieving
adjectives and verbs.

Those with AD tend to pause longer after saying “the”,
which might indicate trouble retrieving a specific noun.
Those with AD tend to have longer pauses after words
such as “mother”, “girl” and “boy”. These are relatively
high frequency words, but after they have said those
words, speakers must explain something about what these
characters are doing and how they relate to each other.
This might be taxing for word retrieval.

It should be noted that the specific words associated with
pauses apply only to the Cookie Theft task. Other topics should
be evaluated as well to identify topic-specific norms as well
as general patterns or principles.

V. CONCLUSION

In this paper, we proposed a new Alzheimer’s disease
(AD) detection method. It takes the raw speech audio as
input, performs ASR and forced alignment for transcription
with word-level timestamps, extracts pause distributions with
context information, and finally performs classification using a
multilayer perceptron (MLP). The proposed model preserves
privacy, uses interpretable features, and is small enough for
potential use in local devices like wearables.
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