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Abstract— Photoplethysmography (PPG) has emerged
as a highly convenient and non-invasive technique for
assessing heart rate and its variability in wearable health
monitoring devices. However, a drawback lies in the energy
demand of PPG systems which consequently increases the
average power consumption of wearable devices integrated
with PPG sensors. In this paper, we present our efforts to-
wards packaging a novel compressed-sensing (CS) based
ultra-low power PPG application-specific integrated circuit
(ASIC) into a wearable device and testing it through a
preclinical human study. The system comprises a custom-
designed ultra-low power PPG analog front-end circuit,
integrated with a digital back-end to implement CS, and
a commercial off-the-shelf microcontroller for Bluetooth
Low Energy (BLE) based wireless data transfer. Two cir-
cular PCBs, a general-purpose main board, and a plugin
board housing the ASIC interfacing components, fit into
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a wristband form factor. This modular architecture of the
wristband platform allows for the incorporation of other
environmental sensors for future correlated sensing stud-
ies between health and the environment. The PPG ASIC
consumes 172 uW power to extract heart rate from the
sparse PPG signal whereas the whole system consumes
1.66 mW power for continuous streaming of heart rate data
over the BLE radio which can be further duty cycled. This
work presents the first-ever demonstration of a wearable
wristband with CS based PPG performed on a chip. The
preclinical trial of the platform demonstrated its efficacy in
assessing accurate heart rate in comparison to commercial
PPG and electrocardiography systems.

Index  Terms— photoplethysmography, compressed
sensing, sparse sampling, biomedical monitoring,
Bluetooth Low Energy, wearable sensors, system
validation, preclinical trials.

|. INTRODUCTION

ROWING social emphasis on personal health and well-

being caused wearable physiological monitoring systems
to gain tremendous popularity in recent years, particularly with
their integration into consumer products such as smartwatches
and fitness trackers. These wearable devices offer continuous
monitoring of heart rate (HR) and its variability, crucial
features that hold critical implications for assessing an individ-
ual’s cardiovascular health status [1], [2]. Among the various
methods available for HR assessment, photoplethysmography
(PPG) stands out as a simple, compact, and noninvasive tech-
nique that utilizes on-skin optical sensing to detect changes in
arterial blood volume within tissue [3], [4]. Unlike traditional
HR monitoring methods, which often involve unpleasant body-
attachments like adhesive electrodes for electrocardiography
(ECG), wearable PPG devices offer a more user-friendly ex-
perience. These devices seamlessly integrate into users’ daily
routines and are minimally obtrusive, allowing for continuous
monitoring without disrupting activities of daily life.

The commercially available fitness trackers and smartwatch
devices with integrated biophotonic sensors have targeted user
comfort to be one of the most important factors in the design
consideration. While clinical systems are typically deployed on
the clips placed on the finger, consumer products have been
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TABLE |
COMPARISON OF THE KEY SPECIFICATIONS WITH THE STATE-OF-THE-ART AFEs

Literature TBCAS’17 TBCAS’10 TBCAS’15 ESSCIRC’17 TBCAS’18 ISSCC’21 TBCAS’22  SENSORS ’24

Our work [5] [6] 71 [8] [91, [10] [11] [12] [13]
Technology (um) 0.18 1.50 0.18 0.18 0.18 0.18 0.04 COTS
Power supply (V) 1.2 5.0 1.8 - 33 1.2,3.3 5, 1.1 2.8
Sampling rate (Hz) 128 - 4 100 165 160k 100, 40 2048 100 - 10 100
Noise RTI (pArms) 486 - 2200 20.4 600 - 15.2 -
Noise BW (Hz) 10 - 6 10 10 20 5 16
LED control vV X v/ VA VA v v V4
Feature extraction HR, HRV SpO, - - HR SpO, HR, SpO, HR/HRY, SpO,
AFE power (uW) 172 400 216 13-25 27,29 28 4.6 - 3.75 1330 - 165
LED power (uW) 1200 - 43 4400 1125 - 120 - 520 -9 305 226 -5.7 710 - 100

designed mostly to be worn on the wrist, especially with the
growth in the smartwatch market. This placement also reduces
motion artifacts, avoids interference with the motion of the
hand and use of fingers, and allows for sufficient space to
accommodate larger batteries, thereby reducing the frequency
of charging. Quite a few similar wrist-worn physiological
sensors in the literature [14], [15] use recently emerging
commercial off-the-shelf (COTS) integrated circuits (ICs),
such as AFE4400 (Texas Instruments, Dallas, TX, USA), for
processing the raw PPG signal which consumes a substan-
tial amount of power. Moreover, these systems often offer
onboard wireless transmission capabilities to decrease wiring
complexity, albeit at the expense of additional electrical power
consumption [16]. Consequently, miniaturization of sensing
devices and system-level power optimization are two of the
ongoing challenges for system designers to ensure even more
comfort and wearability [17].

PPG hardware consists of a light source (mostly light emit-
ting diodes, LED), a light-sensing detector (mostly photodi-
odes, PD), a front-end circuit to amplify and/or filter the signal,
and a digital control unit [18]. Among these components, the
LED consumes the majority of the power, in the order of tens
of mWs, to generate a sufficient amount of photons to interact
with the hemodynamic system and bring heart rate modulated
signals back to the detectors [19]. To address this power
consumption issue, traditionally very low-duty-cycle pulses
with a low sampling frequency are used [20], [21]. However,
the sampling frequency and the duty cycle of the active pulses
are limited by the Nyquist criterion and bandwidth of the
circuit [22], [23].

Compressed sensing (CS) has been introduced to overcome
the inherent redundancies of signal acquisition for applications
where the signal of interest is sparse in any basis space [24].
This method promotes the use of random sampling instead
of traditional uniform sampling by showing that the original
waveform can be faithfully reconstructed from this minimally
sampled signal, which has a lower effective sampling rate
than the limits posed by the Nyquist-Shannon sampling the-
orem [25] and hence reduces the resource usage required
for signal acquisition. Biological signals like PPG, which
have a small number of non-zero (significant) components in
the frequency domain (i.e. single frequency oscillation with
minimal harmonic content), are suitable candidates for this

optimized acquisition technique [26], [27].

In order to reduce the power consumption of the HR
monitoring systems, we previously explored the CS approach
and presented a PPG application-specific integrated circuit
(ASIC) with a power consumption of 172uW [5], [28].
This ASIC is capable of extracting the HR data from the
compressed PPG signal with an effective sampling rate as
low as 4 Hz. Table I displays the performance evaluations of
some of the ultra-low-power PPG ASICs which are designed
to consume less energy by using various alternative techniques
like logarithmic amplifier [6], dynamic range enhancement [7],
heart-beat locked loop (HBLL) [9], [10], [12], light-to-digital
converter [8], [11], adaptive predictive sampling [13], etc.
Among these techniques, HBLL is very similar to CS, as they
both reduce the effective sampling rate. Although HBLL was
not originally suitable for pulse oximetry (dual-wavelength
PPG) as it did not generate any amplitude information, it
was later improved in [12]. However, both of these works are
vulnerable to motion artifacts as these techniques heavily de-
pend on transient features. On the other hand, CS, along with
some frequency-domain post-processing steps similar to [29],
[30], can be more suitable for practical use cases. Moreover,
it is important to note that all these reported specifications are
based on benchtop evaluations, primarily conducted on the
finger, which is a favorable setup for low power consumption.
Further evaluation within wearable form factors and human
testing would provide a more fair and practical benchmark
between these ASICs.

With this goal, we have packaged the CS PPG ASIC into
a miniaturized wearable form factor in order to evaluate its
usability to track HR on the wrist [31]. The goal of the work
presented here was the preclinical evaluation of the wearable
PPG wristbands through an Institutional Review Board (IRB)
approved human study to assess the system’s efficacy. This
study was performed under the United States National Science
Foundation (NSF) Engineering Research Center (ERC) for
Advanced Self-powered Systems of Integrated Sensors and
Technologies (ASSIST) at NC State University, Raleigh, NC,
USA, in collaboration with Interuniversity Microelectronics
Centre (imec) and Katholieke Universiteit (KU) Leuven in
Belgium. ASSIST designs, manufactures, and evaluates low-
power wearable sensors for correlated sensing of health and
exposure [32]. Section II describes the hardware and software
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Fig. 1. Diagram of the PPG readout circuit showing connectivity among
the major blocks of the modular system [31].
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interfacing of the CS PPG ASIC with ASSIST’s modular
system and Section III presents the in vivo experimental
protocol and the methods for extracting HR from the recorded
signals. The comparison of this system with a commercial
HR monitoring platform in stationary and physically active
subjects is demonstrated in Section IV. CS stands out as a
promising ultra-low power PPG technique, especially with this
presented study demonstrating the wearable form factor and
its practical use on the wrist.

I[I. SYSTEM DESIGN AND IMPLEMENTATION

We have designed the wearable wristband platform in this
work following ASSIST’s flexible architecture (Fig. 1) that
consists of a main board for central processing and plugin
boards for additional features. This allows for the use of the
same main board with various ASSIST plugin boards housing
energy harvesters (e.g. solar or thermoelectric) or other sensor
subsystems, such as inertial measurement units, ultra-low-
power ozone sensors, or volatile-organic-compound sensors to
assess air quality, for future correlated studies.

A. Compressed Sensing PPG ASIC

The designed PPG ASIC has three major blocks: 1) an
analog front end (AFE) to process the photocurrent from the
PD; 2) a successive-approximation-register (SAR) analog-to-
digital converter (ADC) to digitize the analog signal; and 3) a
digital back end (DBE) capable of implementing CS with a
selectable compression ratio (CR) of 8x, 10x, and 30x with
the help of a 32kHz clock signal provided externally. As the
ASIC design is detailed in [5], only the features relevant to
system interfacing are revisited here.

The AFE is comprised of a transimpedance amplifier (TIA),
a digital-to-analog converter (DAC), and a switched integrator
(SD). The current DAC cancels out a programmable portion
of the DC component of the photocurrent at the input of
TIA in order to avoid saturating the readout circuit and to
increase the dynamic range. The TIA is implemented using
a Miller-compensated operational transconductace amplifier
(OTA) with resistive feedback (Rf). While connecting to a
PD, stability issues can arise due to the reverse bias junction
capacitance of the PD (C,). Hence, a compensation capacitor
(C¢) is added in parallel to Rf to introduce an LHP zero,
thereby improving the stability margin of the TIA. Both the
feedback resistor and capacitor can be tuned to adapt to
different operating conditions, as the PPG signal varies widely
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Fig. 3. Schematic of the LED driver circuit which is designed to drive
up to 60 mA current with a resolution of 3.75mA [31]. The opamp sets
a fixed voltage at the emitter of the transistor (NPN BJT), followed by
an electronic switch to control the duty cycle of the LED pulses and a
digitally programmable resistor bank to control the I gp.

depending on factors such as skin tone and location on the
body.

The input capacitance from the PD (C,) coupled with
relatively lower values of feedback capacitor (Cy) of the TIA
causes peaking in the noise transfer function, which neces-
sitates the addition of a low-pass filter. This is particularly
important in pulsed PPG acquisition systems, to include the
noise limiting filter before the signal is sampled [21]. Hence,
the SI is included as the second stage in the readout circuit
which also adds extra gain to the signal path tunable by
programming the feedback capacitor (Ciy).

B. Interfacing the PPG ASIC

The 4.0 x 2.5 mm? bare die of the ASIC has 84 bond pads in
total. The use of a standard plastic-leaded chip carrier (PLCC)
to attach the ASIC would consume an area of 35.9 x 35.9 mm?
and could be challenging to accommodate within a wrist-
worn form factor. With the aim of miniaturization, a cus-
tom 12 x 12mm? printed circuit board (PCB) is designed
to host the bare die instead of the standard PLCC package
(Fig. 2) to access only the necessary connections, which is
sufficient for system operation. The bare dic of the ASIC
is attached to the ground plane of this breakout board with
silver conductive epoxy (8331, MG Chemicals Ltd., Surrey,
BC, Canada) and heat-cured at 65 °C for 20 minutes. The chip
is, then, bonded with an ultrasonic/thermosonic wedge-wedge
wirebonder (7476E, WESTBOND Inc., Anaheim, CA, USA)
using aluminum wire of 1 um diameter.

The various programmable components of the ASIC men-
tioned in the previous subsection need to be controlled by the
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Fig. 4. Schematic of 10 conditioning circuitry along with supply voltage
regulation topology [31].

central system. It ends up requiring 16 digital input-output (I0)
pins for adjusting the gain and bandwidth of the amplifying
and filtering stages of the AFE, the PD bias cancellation
current (Ipac), the CR of random sampling, etc. Moreover,
the onboard LED driver (Fig. 3) has a 4-bit analog switch
(TS3A4751, Texas Instruments) which is used to control the
LED brightness by changing the current (I gp).

In order to let the microcontroller access all these con-
nections with the limited number of GPIO pins, we used
commercially available I*C-based IO expanders (PCF8574 &
PCF8575, Texas Instruments). Unlike the rest of the system
comprised of commercial integrated circuits using 3.3 V power
supply, the ASIC is designed to operate at 1.8V supply
voltage to keep the power consumption low. To exchange the
voltage levels, we have used several 8-bit voltage translators
(NLSV8T244, ON Semiconductor, Denver, CO, USA) placed
between the IO expanders and the ASIC (Fig. 4). The 32kHz
clock signal required for the ASIC could also be provided by
the microcontroller through one of the voltage translator lines,
but to reduce noise and jitter, the clock signal is generated
directly from a 555 timer IC (LMC555, Texas Instruments).

There were three ways to digitally record the analog PPG
signal: 1) using the internal 12-bit SAR ADC which would
need more IO expanders and voltage translators and hence
draw additional power (estimated to be 27uW); 2) using
the ADC peripheral of the microcontroller which usually
consumes even more power (1200 uW in our case); or 3) using
a low-power external ADC IC which is fast enough to respond
and sample within the narrow pulse width of the switched
output. Moreover, while experimenting with the microcon-
troller’s peripheral ADC, we noticed that its input impedance
is lower, and hence the sampling current drawn by the ADC
caused PPG signal deformations. As a result, we used an
ultra-fast ADC IC (ADS7142, Texas Instruments) which can
be operated through 1°C commands in single-shot mode and
consume approximately 27 yW according to its datasheet.

C. The Modular PCB Approach

All the aforementioned components along with the ASIC
breakout board are soldered into a circular PCB of 3mm
diameter. For modularity, this PCB (plugin board) is plugged
onto another general-purpose PCB (main board) of the same
size (Fig. 5a) that houses the system-on-a-chip (SoC). As

©

Fig. 5. (a) Modular System design where the main (bottom) board
houses the microcontroller and the power supply block, and the plugin
board houses the wire-bonded PPG ASIC and the other interfacing ICs.
(b) The actual placement of the PCBs in the 3D-printed case. (c) The
back side of the wristband shows the optical sensor [31].

mentioned earlier, this modular architecture is intended for
future validation of these sensors in the clinics, for example,
to correlate the vital health signs with the air quality mea-
sures [32].

The main board houses a Bluetooth Low Energy (BLE)
radio transceiver (Bluegiga BLE113, Silicon Laboratories,
Inc., Austin, TX, USA) controlled by an SoC (CC2541,
Texas Instruments). This board also contains other COTS ICs
including memory, ADC, etc. to accommodate the broader
range of requirements for various plugin sensor boards. The
system is powered by a 150 mW rechargeable Li-ion polymer
battery which is regulated to 3.3 V by a switching regulator or
Buck converter (TPS62162, Texas Instruments). The voltage
regulation from 3.3V to 1.8V for the PPG ASIC is performed
by another switching regulator (TPS62122, Texas Instruments)
in the plugin board (Fig. 4).

All components required for interfacing the PPG ASIC
are placed in the plugin board (Fig. 1) except the LED
and PD which are placed underneath the main board, on
the opposite and tissue side, to access the skin through a
rectangular window in the 3D printed casing (Fig. 5c). One
of the major challenges in getting good-quality PPG signals is
ensuring consistent skin contact. For this, we have used a small
castellated board to solder the light source-detector couple,
so that it protrudes out from the casing slightly providing a
much secure contact. The current system uses a multi-LED
and single-PD package (SFH7050 BioMon Sensor, OSRAM
Opto Semiconductors GmbH, Regensburg, Germany) in order
to allow for switching wavelengths. Previously, we had used
the red (660 nm) LED on this package for evaluation purposes
following the general trend of routine clinical applications [5].
In this study, we explored the quality of the PPG signal
using the green (525 nm) LED and observed that it produces
stronger PPG pulses at this location. This wavelength is also
less prone to bias sensitivity resulting in better motion artifact
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Fig. 6.  Transient plot of supply current at 3.7V input and average

power consumption at different modes of operation [31]. The distribution
of power consumption among the different components on the boards
during the transmission phase at CR = 30x is shown in the pie chart.

TABLE Il
PARTICIPANT DEMOGRAPHICS OF 21 SUBJECTS (13 MALE, 8 FEMALE)

Parameter mean SD  minimum  maximum
Age (years) 27.00 9.60 19.00 60.00
Height (cm) 173.09 9.60 152.40 185.42

Mass (kg) 67.25 15.18 43.00 102.06
BMI (kg/m?) 22.26 3.99 16.80 35.24

rejection [33].

After the wristband assembly was completed, the overall
power consumption of the system was measured using a source
meter (Model 2450, Keithley Instruments, Cleveland, OH,
USA). For demonstration purposes, the sampling mode has
been switched between different CR modes (including uniform
sampling). The total power consumption of the system includ-
ing BLE data transfer is measured to be 1.66 mA (Fig. 6),
which is mostly due to wireless transmission, and can be
further reduced with proper duty cycling of the BLE packages
depending on the application.

[1l. EXPERIMENTAL METHODS

Before the wrist, the first measurements were taken on
the fingers to evaluate the system against the earlier finger-
based assessment [5]. We placed the circular PCB on the
index finger of the subject and ensured a tight enough skin
coupling of the BioMon sensor to acquire a strong PPG
response. We observed that the single-ended design of the
TIA makes the output bias level relatively more sensitive
to the applied pressure or motion artifacts. To overcome
this, we implemented a closed-loop adaptive control in the
embedded software. This protects the PPG signal from going
into saturation by adjusting the Ipsc dynamically. Whenever
the sampled signal goes within 100mV of the supply rails,
the microcontroller changes the Ipac setting to adjust the
DC component of the input photocurrent. The voltage step
appearing in the raw PPG data is removed from the signal
during post-processing by canceling out any abrupt voltage
shifts.

After this initial experimentation on the finger, we per-
formed the preclinical evaluation and validation of the CS
PPG wristband on 21 subjects (demographics are tabulated in
Table II) in two phases: 15 subjects participated in stationary

Biopac
MP160
system

Bionomadix
wireless

=3

Fig. 7. Invivo experimental setup showing the CS and BIOPAC devices.

50 60 70 80 90 100 110 120 130 140 150
frequency (BPM)

Fig. 8. (a) Transient plot of the uniformly-sampled raw PPG signal
recorded from the three devices. (b) The shift in bias levels is removed
from the CS PPG signal and peak detection is performed on the BN ECG
signal. (c) The frequency domain plots of the PPG signals showing the
detected HR values in comparison with the mean+SD of the HR values
from the ECG signal.

studies and 6 subjects performed physical activities during
data collection. The experimental procedure was approved
by the IRB at NC State University under protocol Number
12418. For validation and comparison, we used two other
commercial systems from BIOPAC Systems, Inc., Goleta,
CA, USA: BioNomadix (BN) wireless PPG (BN-PPGED) and
wired ECG (ECG100C) modules connected to a benchtop
system (MP160 Data Acquisition System). In the case of
physical activities, the BN wireless ECG module (ECG2R)
is used. HR from this commercial ECG system was used as
the gold standard. CS PPG recordings were used to benchmark
against the commercial PPG system. During the experiments,
the subjects sat on a chair wearing the CS PPG wristband
on the left hand along with the BN PPG sensor underneath
the strap of the wristband to ensure similar location and
contact pressure for both PPG sensors (Fig. 7). The BN ECG
system was connected to three standard wet-gel electrodes
(Red Dot™ 2560, 3M, Saint Paul, MN, USA) attached to
the chest. Then, we collected four sessions of data for the
four CR configurations of the CS PPG wristband while the
subjects were resting their arm on the table.

All the collected data is first passed through a Hampel
filter from Matlab (Mathworks, Natick, MA, USA) to remove
outliers in the raw data [34]. The CS PPG signal is then
adjusted for any large bias shifts originating from the change
in Ipac current setting (Fig. 8b). To realize CS in silico, the
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Fig. 9. (a-c) Transient plot of the randomly-sampled PPG signal
recorded from CS wristband using different CR along with the BN
PPG signal. ECG signal is omitted for clarity. (d-f) The Lomb-Scargle
periodogram of the CS PPG data and the regular periodogram of the
BN PPG data showing the detected HR values in comparison with the
mean+SD of the HR values from the ECG signal.
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Fig. 10. The Lomb-Scargle periodogram of the CS PPG data and the
regular periodogram of the BN PPG data showing the selection of HR
peak from motion-corrupted signal along with the average HR value from
the ECG signal.

ASIC generates a pseudo-random sequence of timing pulses
that repeats every four seconds. This pulse train activates
the LEDs and the AFE simultaneously to realize the random
sampling. Hence, all the signals were sliced into 4-second
windows before extracting any HR information.

Theoretically, it is possible to reconstruct the PPG signal
from the CS data, but as we are interested in the extraction of
HR, the Lomb-Scargle periodogram (LSP) method [35], [36]
is applied to each 4-second segment to generate the power
spectral density (PSD) of the PPG signal (see Fig. 9). The
linear trend was removed from individual data segments before
applying the LSP algorithm as elaborated in the Appendix.

The uniformly sampled data from both the CS and BN
devices were also split into the same 4-second windows for
consistency. The PPG data were treated with fast Fourier
transform (FFT) to extract the HR (Fig. 8c). For the BN
ECG signal, the instantaneous HR was first extracted from the
inverse of the peak-to-peak interval and then averaged over the
4-second windows.

Within the context of this paper, since the main focus is
to demonstrate miniaturization and verify the effectiveness
of CS in the power reduction of PPG, data collection from
stationary subjects is primarily used for system validation.
Physical exercise and activities of daily life affect the quality
of PPG acquisition by introducing undesired signal artifacts.
Although there are several time-domain and frequency-domain

Fig. 11. (a) Example of transient plots comparing the HR values in
BPM (using the 4-second window) obtained from all three devices. The
blue patch denotes the 5% tolerance range around the gold-standard
estimation. (b) The mean+SD of the HR values.

techniques for removing motion artifacts for biosignals, they
are mostly applicable to uniformly sampled data [37]. Among
these, a few techniques that rely on sparse spectral methods
have the potential to be used with randomly sampled data
as CS also relies on sparsity of the signal. Hence, PPG
performance during varying levels of motion and the use of
an appropriate motion artifact rejection technique necessitates
a more comprehensive and future study [38].

However, we have collected preliminary proof-of-concept
data during a walking activity (0.67 ms~! speed on a treadmill)
from six additional subjects to show how a sparse spectral
technique (FOCUSS [29], TROIKA [30], etc.) can be adopted
for CS PPG data. As an initial attempt, we focused on
TROIKA which has three essential parts: signal decompo-
sition for denoising, sparse signal reconstruction for high-
resolution spectrum estimation, and spectral peak tracking with
verification [30]. In our current implementation, LSP works
as a weak alternative to the first two parts, as LSP does
not produce sufficient spectral resolution for motion artifact
removal. Hence, both the CS and BN PPG data affected
by motion artifacts were treated with only one extra post-
processing step similar to the last step from TROIKA after
extracting the LSP periodogram from each 4-second window.

The TROIKA framework divides spectral peak tracking
into three main components: initialization, peak selection, and
verification. The tracker is initialized with the HR values
obtained by identifying the frequency with the highest PSD
same as before. For each subsequent 4-second window of
exercise data, we identified all peaks in the Lomb-Scargle
periodogram within a frequency range of +0.25 Hz (+15 BPM)
of the previous window’s identified HR values and the appro-
priate one was selected according to the framework (Fig. 10).
Finally, the HR values were verified with a regularization-
based method to compensate for large changes.

IV. RESULTS FROM VALIDATION EXPERIMENTS

The HR values from both the PPG signals (recorded by CS
and BN devices) were compared with those from the gold-
standard ECG signal. Fig. 11 shows the example plots of the
HR values from one subject at different CR configurations.
The HR values from both the PPG signals mostly followed the
HR values from the gold-standard ECG within a 5% tolerance
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Fig. 12.  Mean absolute error in HR estimation in BPM obtained from
the PPG devices with respect to the gold-standard ECG device.
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Fig. 13.  Bland-Altman plots comparing the HR values from (a-d) CS
PPG with different CRs and (e) BN PPG in comparison with that from
the gold-standard ECG. (f) The effect of compression ratio on the HR
estimation errors in the case of CS PPG.

range [39]. The mean+SD of the HR values also show a good
agreement.

Fig. 12 shows the mean absolute error (MAE) of the HR
from CS PPG and BN PPG compared to that from the BN
ECG. The average MAE obtained from the CS PPG device is
1.95, 2.6, 2.8, and 3.94 BPM at compression ratios of 1, 8, 10,
and 30, respectively. Although CS PPG showed higher MAE
than the commercial BN PPG (1.3 BPM, on average); it should
be noted that the BN device uses a much higher sampling rate
(2000Hz) and more energy resources for its circuits and the
LED drivers.

The Bland-Altman plots [40] in Fig. 13 show the mean+SD
of the error values in different CR configurations. It is evident
again that, except CR=30, all the other CR configurations
resulted in a similar range of errors. One-way ANOVA test and
linear regression on the MAE values show a significant corre-
lation (p < 10™) between the MAE and CR configurations
(Fig. 13f). Medium-level compression resulted in minimal
error in HR estimation compared to commercial PPG systems
and the gold-standard ECG system.

While we present the power consumed by the AFE, DBE,
and LED driver along with MAE of HR estimation obtained
through in vivo human subject testing, it is relatively chal-
lenging to benchmark these with other work in the literature
since all these systems were evaluated under different in
vivo experimental conditions. The following factors are not
standard between these studies cited in Table I: 1) mea-
surement location on the body, 2) presence and intensity of
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Fig. 14. Mean absolute error in HR estimation in BPM obtained from
the PPG devices with respect to the gold-standard ECG device during
physical activity.

physical activity and hence the motion artifacts during data
acquisition, 3) body-mass index and skin tone of the subjects,
and 4) system hardware including a novel ASIC or using only
COTS integrated circuits or components. PPG measurement
from the fingers generally generates better results compared
to the wrist (e.g., [12]). Among the presented work in Table I,
[13] had a particular focus on developing an application-
specific signal processing method using adaptive predictive
sampling incorporated into COTS component based circuit
design, thereby demonstrating superior results despite motion
artifacts.

Our device produced promising results on the wrist of
stationary subjects where the improvement for motion artifacts
requires a special focus on new signal processing methods
that can handle compressed-sensing signals. This is kept
beyond the scope of this presented study and as a future
work. However, we still evaluated the effect of the motion
artifacts and implemented straightforward solutions to reduce
the impact on the signal quality.

The MAE is expected to deteriorate in the presence of
motion artifacts from physical activities. Fig. 14 shows the
improvement of HR estimation, thanks to the application
of spectral peak tracking from the TROIKA framework. As
demonstrated in [30], the peak tracking step alone cannot fully
improve the estimation error. Overall, TROIKA improved the
MAE from 28.7BPM to 17.3 BPM which is actually better
than the MAE obtained from the commercial BN device
(improved from 27.4 BPM to 20.0 BPM). Hence, we speculate
that the real cause of the MAE is not the CS topology itself
but the need for motion artifact reduction by implementing ef-
fective signal processing tools, similar to the one demonstrated
by [13] for non-compressed PPG signals.

While the spectral peak tracking and use of TROIKA frame-
work did improve the accuracy under motion artifacts, there
is a considerable amount of room for further improvements in
the signal processing domain. This warrants a separate study
and publication to develop proper motion artifact techniques
specific to CS PPG signals. We recommend that the first
research problem to solve in the future would be to develop
an alternative or improvement of the LSP algorithm that can
generate high-resolution spectral information from randomly
sampled data. This would also necessitate the adoption of
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denoising techniques for CS data. Once a reliable periodogram
is obtained, the existing peak tracking algorithms can be used
to enhance the temporal tracking of HR. Lastly, the improved
algorithm can be implemented in ASIC as a part of the feature
extraction unit.

V. CONCLUSION

This paper demonstrates the first-ever integration and eval-
uation of a novel compressed-sensing based ultra-low power
photoplethysmography ASIC into a wearable wristband plat-
form. The ASIC provides an analog front-end circuit and a
digital back-end for low-power PPG signal acquisition. The
system miniaturization effort towards a wearable form factor
is achieved along with no compromise in the performance
of the ASIC. The ASIC power consumption is as low as
172 uW where the overall system consumed 1.66 mW. Most
of this was due to wireless Bluetooth transmission and can
be further reduced in the next iteration of the ASIC design by
replacing the COTS SoC with a more application-specific SoC
as well as optimizing the ASIC for the targeted application.
Finally, we evaluated the performance of the wristband with
in vivo experiments through an IRB-approved preclinical trial
on a total of 21 subjects and compared the accuracy of heart
rate extraction with a commercially available PPG system.
With respect to the gold-standard ECG system, medium-level
compression resulted in minimal error of HR estimation in sta-
tionary subjects compared to the commercial PPG system. The
results from this study confirm that compressed sampling is a
promising method to reduce the energy requirements of PPG
systems with a reasonable trade-off for measurement accuracy
on stationary subjects. The results also warrant the need for the
development of novel signal processing techniques to remove
motion artifacts from compressed sensing PPG signals.

APPENDIX

Let z(t;), j = 1,2, ..., M be the CS PPG samples where
M 1is the number of pseudo-random samples collected at the
timestamps ¢; within a 4-second window. LSP estimates the
PSD (Px) of z(t;) as a function of angular frequency (w;)
using (1) and the frequency at the maxima of PSD gives the
value of HR.

M ? M ?
Zl zo(t;) cij Zl zo(t;) sij
J= J=
Py (w;) = Vi + Vi ey
> > sy
Jj=1 Jj=1

cos (w;(t; — m))s
sin (wi(tj — Tz))

As the values of w; and t; are already known a priori from
the frequency range of interest and ASIC’s sampling instants

respectively, the values of coefficients, ¢;; and s;;, can be pre-
calculated using

M .

> sin (2wgt;)
M

Y cos (2w;t;)

This simplification (faster compared to the truly random
case where the sampling instants are not known before-
hand [41]) paves the way to implementing the LSP algorithm
in the firmware making the platform ready for real-time HR
extraction in the future.
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