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Abstract—Cough detection is a crucial tool for long-term
monitoring of respiratory illnesses. While clinical methods are
accurate, they are not available in a home-based setting. In
contrast, wearable devices offer a more accessible alternative, but
face challenges in ensuring user speech privacy and detecting
coughs accurately in real-world settings due to potential poor
audio quality and background noise. This study addresses these
challenges by developing a small-size multimodal cough and
speech detection system, enhanced with an Out-of-Distribution
(OOD) detection algorithm. Through our analyses, we demon-
strate that combining transfer learning, a multimodal approach,
and OOD detection techniques significantly improves system
performance. Without OOD inputs, the system shows high
accuracies of 92.59% in the in-subject setting and 90.79% in the
cross-subject setting. With OOD inputs, it still maintains overall
accuracies of 91.97% and 90.31% in these respective settings by
incorporating OOD detection, despite the number of OOD inputs
being twice that of In-Distribution (ID) inputs. This research
are promising towards a more efficient, user-friendly cough and
speech detection method suitable for wearable devices.

Index Terms—Multimodal Cough Detection, Out of Distribu-
tion Detection, Audio Classification, Signal Processing

I. INTRODUCTION

Lung diseases including asthma and chronic obstructive
pulmonary disease (COPD) have significant global morbidity
and mortality burden [1]. Long-term monitoring of these con-
ditions is guided by assessments of coughing, a key symptom
that is tracked for both the diagnosis and management of these
chronic conditions [2]. However, quantifying cough frequency
is often inaccurate due to inherent challenges with reliance
on patient recall, with a tendency to underestimate cough
[3] which can adversely impact clinical care. The earlier
work in the [4] noted that the accuracy of diagnosing asthma
and COPD by primary care providers can be alarmingly
low, with correct diagnosis rates estimated to range between
25% and 50%. To aid with a more accurate assessment of
chronic cough, long-term tracking of the type and frequency
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of cough is beneficial. Presently, long-term clinical monitoring
in a home-based setting is expensive, not only due to the
cost of specialized devices but also due to the manual labor
involved in their operation and data analysis [5]. To address
this diagnostic challenge and enable effective long-term moni-
toring, in-home wearable devices have been developed [6], [7].
These devices are embedded with machine learning models to
record and analyze various biosignals, such as cough sounds.
Typically, these models are trained to classify specific sounds
using only audio input, assuming the data is clean. However,
the reliability of these systems heavily depends on the quality
of the data, a consideration that requires careful attention in
system design.

Designing an effective cough detection system involves
three key considerations: data collection, model architecture,
and robustness. Despite the availability of various public
datasets [8]–[10], there is a gap in data that accurately reflects
real-world cough scenarios. Therefore, using raw data for de-
velopment and testing is crucial. Architecturally, most current
models rely on audio-only inputs, with limited exploration of
multimodal data, like the one in [11], [12], showing obvious
improvement. Inertial measurement units (IMU) have proven
useful in numerous applications such as body rocking [13].

Robustness comes from accurately identifying “Out-Of-
Distribution” (OOD) sounds, which are unfamiliar noises not
covered during the model’s training. These are contrasted with
“In-Distribution” (ID) samples, which the model recognizes
from its training. Models trained on specific classes often
misclassify OOD sounds in practical use with high confidence,
which can lead to unreliable results. Addressing OOD data
handling is thus essential in our design [14]–[16]. Our pre-
vious research [17] shows that incorporating OOD detection
algorithms can significantly enhance model performance, even
at low sampling rates, ensuring user privacy.

To address these issues, we developed a chest worn sensor to
collect microphone based audio and chest IMU based motion
data to develop a multimodal model that incorporates OOD
detection. Inspired by the availability of new microcontrollers
with ultra-low-power neural accelerator capabilities targeting
audio and sensor applications (such as the Type2DA Edge
AI Module developed by Murata [18]), we envision future
wearable devices capable of processing tasks like multimodal
sensing (e.g., audio and inertial sensing), sounds classification,
and OOD detection.

In this work, we collected a multimodal dataset of indi-
viduals performing various activities with non-verbal (e.g.,20
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Fig. 1: Overview of Data Collection and Processing. Illustrations of (a) the sensor arrangement and (b) the data collection
protocol. The data is then (c) synchronized and (d) processed using the different AI pipelines. The processing includes (e)
feature extraction followed by (f) OOD and ID predictions.

cough) and verbal vocalizations (i.e., while speaking). We
compared single-modal (audio-only) and multimodal (with
inertial) models equipped with a simple but effective OOD
detection algorithm. The overview of the data collection and
processing pipelines can be found in Fig. 1. Finally, a detailed
comparative evaluation of these algorithms was conducted in
both in-subject and cross-subject settings. Our findings reveal
that: 1) Detecting coughs and speech is more challenging
when the models are tested on participants whose sounds
are not part of the training set, highlighting the need for
models with better generalization; 2) Transfer learning signifi-
cantly boosts prediction accuracy; 3) Multimodal models show
marked improvements in both in-subject and cross-subject
settings, especially in cough detection; and 4) OOD detection
effectively improves cough and speech sound detection when
exposed to OOD inputs.

The rest of this paper is organized as follows: Section II
details the process of data collection and pre-processing, and
provides a summary of the dataset. Section III introduces
the problems addressed in this study, describes the models
employed, and outlines our experimental setups. Section IV
provides detailed analyses and comparisons, covering single-
modal, multimodal, and OOD-involved models, and offers
an extensive discussion of these findings. Finally, Section
V summarizes the entire work and explores potential future
research scope. Data and the related code used in this paper
are available [19].

II. DATASET

In the data collection process shown in Fig. 1(b), each
participant performed a series of vocalizations under various
activity levels. A total of 12 participants were involved in
this study as approved by NC State University IRB Protocol
25003. The participants were healthy individuals between 20
and 30 years old. Participants sat (∼ 2 min), walked (∼ 2
min), ran (∼ 2 min), walked (∼ 2 min), and sat (∼ 2 min)

with 30-second resting intervals in each activation transition.
This activity cycle was repeated three times, once for each one
of the vocalizations specified in Table I

Audios were recorded by two chest-mounted microphones,
one facing away from the participant (out-microphone) and
one facing toward the participant (in-microphone) (Fig. 1 1(a)).
We custom designed an enclosure and used microphones taken
from commercially available Bluetooth earbuds (Tozo model
T10 [20] with the speaker circuit disconnected. The partici-
pant’s movement was recorded with Mbientlab’s MetaMotionS
r1 [21] sensor mounted on chest capturing 9-axis IMU data.
The sensors were arranged on the participant as depicted in
Fig. 1(a).

At the beginning of each recording, participants clapped
three times and this procedure is used for data synchronization
across different modalities. As depicted in Fig. 1(c), these
three claps are distinctly observable in both the audio and
IMU signals, producing accurate synchronization.

The data was labeled using the open-source tool Audino
[22]. For the combination sounds, such as talking while
coughing, we annotated both classes to the data. To make
the data easy to load, we stored the annotation in an indexed
format at 1 kHz, where each point is a 1×9 array with the
corresponding idx labeled as 1 (i.e., using a one-hot encoding
due to the potential overlap between labels).

The duration of audio recordings for each category is
detailed in Table II. We categorize sounds into several classes:
participant-generated sounds such as “Cough”, “Speech”,

TABLE I: PARTICIPANT VOCALIZATION PROTOCOL

Abbreviation Description
Silent Participants remained silent except when instructed

to cough every 20 seconds.
Talking Participants read from a script or answered questions,

with periodic cough instructions every 20 seconds.
Nonverbal Participants were silent except for performing non-

verbal vocalizations (coughing, laughing, sneezing,
groaning, throat clearing) at 20-second intervals.
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TABLE II: DATASET DESCRIPTION

Label (idx) Cough (0) Speech (1) Sneeze (2) Deep Breath (3) Groan (4) Laugh (5) Speech-far (6) Other Sounds (7)

Length (mins) 26.925 81.349 1.814 6.599 4.015 4.106 8.746 339.949
Percentage (%) 5.69 17.189 0.389 1.399 0.85 0.87 1.85 71.799

“Sneeze”, “Deep Breath”, “Groan”, and “Laugh”; “Speech
(far)”, which represent speech from individuals around the
subject; and “Other Sounds”, indicating unlabeled environ-
mental noises; including periods of silence. As shown in the
table, this is an imbalanced dataset with the majority of the
sounds falling into the “Other Sounds” category, followed
by “Speech” and “Cough”. For this research, we utilized
all labeled sounds to train and evaluate our model on a
classification task, and employed “Other Sounds” sounds as
OOD inputs for testing.

Finally, Table III presents an overview of the various modal-
ities employed in our study along with their corresponding
frequencies.

III. METHODOLOGY

A. Problem Statement

We aimed to address two problems to improve model
performance: enhancing prediction accuracy, and recognizing
OOD inputs for the system reliability in real-world settings.

Problem Statement 1: The task was defined as a 3-class clas-
sification problem for ID inputs. The classes were “Cough”,
“Speech”, and other vocalization sounds including “Sneeze”,
“Deep Breath”, “Groan”, “Laugh”, and “Speech-far”.

Problem Statement 2: The task was defined as OOD detec-
tion. In this context, all the classes defined in Problem State-
ment 1 were categorized as ID classes, and “Other Sounds”,
which were not part of the training dataset, were designated
as the OOD class. The detection of OOD instances happens
during the inference. To evaluate the model robustness on the
main detection task (cough and speech) while OOD data was
involved, we evaluated the overall performance by categorizing
OOD data and other vocalization sounds in Statement 1 as the
same class.

B. Metrics

For problem 1, the classic classification metrics were used
for evaluation including accuracy, mAP, cough f1, and speech
f1 [23]. For problem 2, besides classification metrics, OOD
detection evaluation metrics were also involved including
AUROC, and Detection Error [24].

C. Model Specification

In this study, we focused on three algorithms: Efficient
CNN MobilNet [25]–[27], a multimodal model that combines

TABLE III: DATASET DESCRIPTION

Modality Audio Accelerometer Gyroscope Magnetometer

Frequency 16k Hz ≈ 100Hz ≈ 100Hz ≈ 25Hz

Timestamps ✗ ✓ ✓ ✓

MobilNets with IMU Net, and the Virtual-logit Matching
(ViM) [28] algorithm for OOD detection. We first compared
MobilNet and transferred MobilNet. Then, we examined how
the multimodal model performs in comparison. Finally, we
enhanced both MobilNets and the multimodal model with the
ViM and compared their performances.

MobilNet is a lightweight, efficient model designed for
mobile and edge devices. It uses depth-wise separable convolu-
tions to reduce computational load while maintaining effective
performance. MobileNets [29], [30] have shown favorable
performance in the audio domain. An efficient MobileNet was
proposed in the literature [30] that was initially pre-trained on
ImageNet and further trained on Audioset with the Knowledge
Distillation technique. Using Knowledge Distillation enabled
MobileNet to learn from large-scale high-performance Trans-
formers as a student model and achieved competitive audio
tagging performance.

Our multimodal model integrates an IMU network with
MobileNet. The IMU network is based on a Convolutional
Neural Network (CNN) with 5 convolutional layers and one
linear layer. This IMU network outputs 128 features that
are concatenated with the 960 features from MobileNet. The
combined 1088 features are further reduced to 960 features to
keep it consistent across single-modality and multimodality
OOD performance comparison purposes via a linear layer.
Finally, the model outputs class-dependent logits by a linear
layer which was used in both ID classification and OOD
detection.

ViM [28] is a state-of-the-art OOD method that combines
the class-agnostic score from feature space and ID class-
dependent logits. This class-agnostic score, serving as an
additional logit for the virtual OOD class, is derived from the
residual of the feature against the principal space. It is then
scaled and matched with the original logits. A key advantage
of this method is its application solely during inference but
achieving promising results.

D. Experiment Setup

In our experiments, we used a 1.5 s sliding window with 0.5
s hop size [17], to extract data samples from each recording.
Each data sample is labeled by the majority class in the
sample. To fit into the pre-trained EfficientNet model [30], the
audio was upsampled to 32 kHz. Then, the dataset was divided
into two sets for training and evaluation by two different
configurations, In-subject and Cross-Subject.

In-subject: Each audio was truncated such that 30% of its
entire length formed the evaluation set, with the remaining
70% as the training set. We conducted 6 experimental runs for
this configuration. We selected the test data using a strategy
similar to K-fold cross-validation, in which the test set starts
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TABLE IV: AVERAGE RESULTS OF SINGLE-MODALITY 3-CLASS
CLASSIFICATION ACROSS 6 EXPERIMENTS

Model Type Acc mAP cough f1 speech f1

mn In-sub 0.8518
±0.0291

0.8627
±0.0151

0.7564
±0.0307

0.9244
±0.0247

mn as In-sub 0.9210
±0.0237

0.9363
±0.0126

0.8568
±0.0263

0.9655
±0.0154

mn Cross-sub 0.8135
±0.0242

0.7752
±0.0561

0.7011
±0.0401

0.8986
±0.0173

mn as Cross-sub 0.8937
±0.0216

0.8767
±0.0167

0.7819
±0.0438

0.9573
±0.0109

after 10%, 20%, 30%, 50%, 60%, or 70% of the length audio
recording. For example, if we select a start of 10% that
means that the test set consists of the audio between 10%
and 40% of the recording. This is done to ensure that we have
different scenarios that include different physical activities in
our protocol for training and testing.

Cross-subject: We randomly selected 3 subjects as the leave-
out test sets. The data from the remaining 9 subjects were
utilized as training sets. We also conducted 6 experimental
runs in this configuration for fair comparison purposes.

For feature extraction, we analyzed the transfer learning
technique by comparing MobileNet and the MobileNet pre-
trained on ImageNet [31] and AudioSet [8]. The baseline
MobileNet model is denoted as mn and the AudioSet pre-
trained MobilNet is denoted as mn as.

All experimental models were trained using a batch size of
32 with 30 epochs, incorporating early stopping to prevent
overfitting. In the case of the single-modal experiments, a
learning rate of 5× 10−5 was employed. For the multimodal
experiments, a reduced learning rate of 4×10−5 was utilized,
considering a greater number of parameters. For the OOD
detection experiments, we selected M = 128 to split features
for class-dependent logits and class-agnostic logit.

IV. RESULTS AND DISCUSSION

A. Single-Modality In-Distribution Performance

We first evaluated the single-modality effectiveness of a 3-
class in-distribution classification task, conducted under both
in-subject (in-sub) and cross-subject (cross-sub) settings. Ta-
ble IV shows the average outcomes from six experiments
as introduced in Section III-D. The AudioSet pre-trained
MobileNet outperformed the standard MobileNet across all
evaluated metrics with lower standard deviations indicating
the effectiveness and stability of transfer learning.

In the cross-subject setting, we observed that the models
were less stable and less accurate, especially in detecting
cough sounds. This difficulty was mainly due to the diverse
cough sounds produced by different individuals, making it
harder to differentiate coughs from other non-verbal vocal-
izations. For speech detection, the performance drop was
minor. This was because, even though speech varies among
individuals, its consistent energy patterns make it easier to
distinguish from other sounds.

Compared to the binary classification of cough and speech,
as presented in Table V, the inclusion of additional vocal-
izations significantly impacted the detection of cough and
speech (lower f1 scores). This was particularly evident in
cough detection because a cough can be categorized as a non-
verbal vocalization similar to other sounds such as groaning
which increases the difficulty of the cough detection task.
Similarly, the performance of speech detection was hindered
by the presence of environmental speech-like sounds, despite
differences in volume and fluency.

B. Multimodal In-Distribution Performance

The results of the experiments conducted on multimodal
models are presented in Table VI. These results highlighted the
importance of utilizing well-pretrained models for achieving
both effective and stable outcomes.

Comparing Table IV and VI, it is evident that multimodal
approach slightly enhanced performance when a powerful pre-
trained model was employed. This improvement was partic-
ularly in the cross-subject setting, where the F1 score for
cough detection increased from 0.7819 to 0.7975, and the
F1 score for speech detection raised from 0.9573 to 0.9654.
The diminished performance observed in single-modality and
multimodal under the cross-subject setting highlighted chal-
lenges inherent in cough and speech detection when the sounds
for model training and testing were from different subjects.
Comparing standard deviations in different setups indicated
the stability of the results was primarily influenced by the
models themselves because pre-trained base models had lower
standard deviations than that of baseline models.

C. OOD performance

To evaluate our model’s robustness under real-world sce-
narios, we introduced OOD inputs at inference time and
categorized them as other vocalization sounds while evaluating
the accuracy. The F1 scores of cough and speech showed
the detection performance in the specific class. To evaluate
the model’s ability on OOD task, we computed AUROC and
detection error by categorizing OOD inputs as the negative
class and the 3 ID classes as the positive class.

Tables VII and VIII provided a comparative analysis of
models with and without OOD detection under in-subject and
cross-subject settings, respectively. The comparison revealed
that the integration of an OOD detection algorithm substan-
tially improved overall accuracy. In terms of the specific
class, the OOD inputs caused a big drop in cough detection
resulting in a much lower F1 score of cough. This was
possible because of the similarity of the cough distribution

TABLE V: AVERAGE RESULTS OF SINGLE-MODALITY COUGH AND
SPEECH BINARY CLASSIFICATION ACROSS 6 EXPERIMENTS

Model Type Accuracy AP cough f1 speech f1

mn as In-sub 0.9732
±0.0101

0.9896
±0.0061

0.9433
±0.0176

0.9824
±0.0070

mn as Cross-sub 0.9683
±0.0029

0.9817
±0.0105

0.9149
±0.0274

0.9799
±0.0031
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TABLE VI: AVERAGE RESULTS OF MULTIMODAL 3-CLASS
CLASSIFICATION ACROSS 6 EXPERIMENTS

Model Type Acc mAP cough f1 speech f1

mn10 In-sub 0.8396
±0.0303

0.7701
±0.0641

0.7790
±0.02487

0.9181
±0.0243

mn10 as In-sub 0.9259
±0.0238

0.9431
±0.0132

0.8587
±0.0294

0.9693
±0.0163

mn10 Cross-sub 0.8191
±0.0343

0.7406
±0.0469

0.6674
±0.0330

0.9037
±0.0263

mn10 as Cross-sub 0.9079
±0.0199

0.9016
±0.0088

0.7975
±0.0332

0.9654
±0.0101

and OOD data distribution which were mostly contributed
by non-verbal sounds. The ViM helped to relieve this effect
and this enhancement was more evident in cough recognition
than in speech recognition. Furthermore, the performance
improvement was more obvious in the in-subject setting than
in the cross-subject setting. This further indicated the challenge
in model generalization which was also shown in previous
tables. When comparing single-modal and multimodal models,
it was observed that the multimodal models delivered a further
slight improvement in overall accuracy while single-modal
models can better recognize OOD inputs and produce better
cough recognition.

D. Extensions

Upon reviewing Tables IV and V, it is observed that the F1
score for cough detection decreased by approximately 0.09 and
0.13 in the in-subject and cross-subject settings, respectively,
after introducing a third class, vocalizations. However, the F1
score for speech detection dropped only by 0.017 and 0.023
in these settings. This discrepancy suggested the need for
a deeper exploration into error sources, potentially through
visualizing the confusion matrix for all 8 classes, to inform
model improvement strategies.

Comparing single-modal models and multimodal models
resulted in Table IV and VI, the enhancement in performance
due to the integration of multiple modalities was evident,
highlighting the significance of using additional related in-
formation. This indicated that incorporating more modalities
(e.g. heart rate, symptoms) had the potential to further improve
performance.

From Table VII and VIII, we observed that while multi-
modal models with OOD detection achieved the highest over-
all accuracy, theses were not as effective in OOD detection task
as single-modal models. This phenomenon might be attributed

TABLE VII: COMPARISON OF WITH AND WITHOUT OOD DETECTION ON
AVERAGE RESULTS FROM 6 EXPERIMENTS FOR IN-SUBJECT ANALYSIS

(DE* IS DETECTION ERROR)

Modality OOD Acc cough f1 speech f1 AUROC DE*

Single ✗ 0.8320 0.5025 0.8233

Single ✓ 0.9121 0.5809 0.8802 0.7598 0.2691

Multi ✗ 0.8430 0.4638 0.8746

Multi ✓ 0.9197 0.5546 0.9017 0.7081 0.2624

TABLE VIII: COMPARISON OF WITH AND WITHOUT OOD DETECTION
ON AVERAGE RESULTS FROM 6 EXPERIMENTS FOR CROSS-SUBJECT

ANALYSIS (DE* IS DETECTION ERROR)

Modality OOD Acc cough f1 speech f1 AUROC DE*

Single ✗ 0.8268 0.4562 0.8064

Single ✓ 0.8885 0.4955 0.8657 0.8297 0.2662

Multi ✗ 0.8673 0.4342 0.9044

Multi ✓ 0.9031 0.4715 0.9124 0.7526 0.2829

to the uncertainty introduced by the IMU signals. With 9 IMU
signals in total, not all contribute to sound recognition, as
shown in Figure 1(d). However, the CNN model lacked the
capacity to filter out irrelevant features effectively. Therefore,
there was potential for further improvement in multimodal
models for OOD detection, possibly through a better IMU
model and appropriate OOD detection techniques.

V. CONCLUSION AND FUTURE WORK

In conclusion, our study developed a multimodal model
for cough and speech detection by integrating chest based
audio and IMU signals. The multimodal models demon-
strated promising results, outperforming single-modal models
in recognizing coughs, speech, and other vocalizations. The
integration of OOD detection further enhanced the robustness
of the model in identifying cough and speech sounds in the
presence of OOD inputs. A detailed comparative evaluation
of these algorithms conducted in both in-subject and cross-
subject settings reveal that: 1) Detecting coughs and speech is
more challenging when the models are tested on participants
whose sounds are not part of the training set, highlighting the
need for models with better generalization; 2) Transfer learn-
ing significantly boosts prediction accuracy; 3) Multimodal
models show marked improvements in both in-subject and
cross-subject settings, especially in cough detection; and 4)
OOD detection effectively improves cough and speech sound
detection when exposed to OOD inputs

In our future work, we aim to expand our data collection to
include a wider range of other signals and participants’ symp-
toms, which can be new modalities for model improvement.
For preprocessing, we will add filtering and source separation
techniques to remove noise. Additionally, we plan to enhance
audio modalities by pre-training models on pre-existing cough
datasets and explore more suitable multimodal architectures
that are better fit for OOD detection. We will also investi-
gate alternative OOD detection and uncertainty quantification
methods to strengthen the model’s robustness. Furthermore,
considering the protection of participant privacy, we intend
to evaluate the model’s performance at lower sampling rates
to find an optimal balance between data security and model
effectiveness. Finally, we will deploy our system to the Murata
Type2DA Edge AI Module and test real-time performance.
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