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ABSTRACT12

The excited-state properties of molecular crystals are important for applications in organic electronic devices. The GW

approximation and Bethe-Salpeter equation (GW+BSE) is the state-of-the-art method for calculating the excited-state properties

of crystalline solids with periodic boundary conditions. We present the PAH101 dataset of GW+BSE calculations for 101

molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ∼500 atoms in the unit cell. The data records include

the GW quasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy

(optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the

three lattice vectors. We envision the dataset being used to (i) identify correlations between DFT and GW+BSE quantities, (ii)

discover materials with desired electronic/ optical properties in the dataset itself, and (iii) train machine learned models to help

in materials discovery efforts. We provide examples to illustrate these three use cases.

13

Background & Summary14

Computational materials design and discovery requires exploring the infinitely vast chemical space using quantum mechanical15

methods that can reliably predict the electronic and optical properties of candidate materials. The computational cost of quantum16

mechanical simulations increases rapidly with the method accuracy and system size. This limits the scope of simulations that17

can be performed within a reasonable time in terms of the number of systems explored, their size, the accuracy of the predicted18

properties, and the types of phenomena that can be investigated.1–7
19

Density functional theory (DFT) is the workhorse of first-principles simulations.8 DFT relies on approximate exchange-20

correlation functionals to describe the many-body quantum mechanical interactions between electrons. Computationally21

efficient semi-local functionals have been used extensively for high-throughput materials screening.9–18 However, DFT is a22

ground-state theory, therefore it is inherently unable to describe excited-state properties of interest, such as fundamental band23

gaps, singlet and triplet excitation energies, optical gaps (i.e., the first singlet excitation energy), and optical absorption spectra.24

The excited states of isolated molecules may be calculated relatively efficiently with time dependent DFT (TDDFT).19–23 The25

excited states of crystalline systems may be calculated using Green’s function based many-body perturbation theory (MBPT)26

within the GW approximation and Bethe-Salpeter equation (BSE)24–28, which lends itself more easily than TDDFT to periodic27

implementations. Unfortunately, the high computational cost of GW+BSE simulations makes it unfeasible to use these methods28

for large scale materials exploration.29

Machine learning (ML) may accelerate computational materials discovery by bypassing the need to perform expensive30

first-principles simulations.29–39 To this end, statistical models are constructed based on training data to make predictions for31

new data points. Training ML models, especially deep neural networks (DNN), typically requires huge datasets. Therefore, data32

acquisition is often the bottleneck of applying ML to computational materials discovery. With the supercomputing resources33

available nowadays, acquiring DFT training data with semi-local functionals is relatively fast. This has led to the proliferation34

of DFT datasets.29, 40–47 As a result, ML models have been trained predominantly on semi-local DFT data, which limits their35

applicability to structural and ground state properties. Owing to the high computational cost of GW+BSE, such datasets are36

scarce and the amount of data they contain is relatively small compared to DFT datasets.46, 48, 49 We note that the GW datasets37

‡ These authors contributed equally to this work.
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cited here comprise small isolated molecules, which are considerably faster to calculate than periodic molecular crystals with38

hundreds of atoms in the unit cell. Recently, ML has been applied to predict the GW quasiparticle energies of small molecules.50
39

It is challenging to construct transferable ML models based on “small data”. This has limited the applicability of ML to40

excited state properties of molecular crystals. Emerging approaches to ML with small data include multi-fidelity approaches.41

These methods combine a small amount of high-fidelity data with a large amount of low-fidelity data, which, although not as42

accurate, is sufficiently correlated with the high-fidelity data for statistical inference.51–60 Recently, high-quality results have43

been achieved by fine-tuning a pre-trained DNN model with small datasets or combining feature selection with DNN.61, 62
44

Other approaches involve using low-fidelity features, selected based on physical/chemical knowledge, to construct surrogate45

models that are predictive of high-fidelity data. One such approach is the sure-independence-screening-and-sparsifying-operator46

(SISSO)63, 64 ML algorithm. The input of SISSO is a set of primary features, which are physical descriptors that could be47

correlated with the target property. SISSO generates a huge feature space by iteratively combining the primary features using48

linear and nonlinear algebraic operations. Subsequently, linear regression is performed to identify the most predictive models.49

Physical and chemical knowledge is leveraged in the choice of primary features and in the rules for combining them. SISSO50

has been demonstrated to work well with a relatively small amount of data for several different types of materials systems and51

properties.13, 65–83
52

One application that requires predicting the excited-state properties of molecular crystals is singlet fission (SF), the53

conversion of one singlet exciton into two triplet excitons.84–87 The efficiency of solar cells can be boosted by augmenting54

traditional absorbers with SF materials.88–90 The SF material can convert photons with energies high above the traditional55

absorber’s band gap into two charge carriers instead of losing their excess energy to heat. Currently, few classes of materials56

are known to undergo intermolecular SF in the solid state, and insufficient stability under operating conditions precludes their57

utilization in commercial modules.84, 85, 91, 92 Therefore, there is a need for computational discovery of new SF materials. The58

primary criterion for a material to undergo SF is the thermodynamic driving force, i.e., the difference between the singlet59

exciton energy and twice the triplet exciton energy, ES −2ET, which can be calculated using GW+BSE.93–97
60

Recently, we have used SISSO to find models based on low-cost DFT properties that can reliably predict the GW+BSE SF61

driving force.98 SISSO generated several models that predicted the GW+BSE SF driving force with errors below 0.2 eV. Based62

on considerations of accuracy and computational cost, two SISSO models were selected to build a two-step hierarchical classifier63

for screening promising candidates for SF. To train SISSO, we generated a dataset of GW+BSE calculations of the SF driving64

force of 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs). PAHs are compounds comprising carbon and hydro-65

gen atoms and containing multiple aromatic rings. Most SF materials are PAHs. In addition to SF, PAHs and their functionalized66

derivatives have versatile applications in organic electronic devices.99–109 To form the PAH101 set, crystal structures of unsubsti-67

tuted PAHs (containing only C and H atoms) were extracted from the Cambridge Structural Database (CSD)110. The PAH101 set68

contains several sub-classes including acenes, rylenes, zethrenes, as well as various compounds that do not belong to any particu-69

lar family. As shown in Figure 1, the PAH101 set contains molecules ranging in size from 12 atoms in benzene (CSD Reference:70

BENZEN) to 136 atoms in two pyrene-stabilized acenes 9,11,13,22,24,26-Hexaphenyltetrabenzo[de,rs,wx,k1l1]nonacene71

(CSD Reference: KECLAH), 9,11,13,14,15,16,18,20-Octaphenyldibenzo[de,c1d1]heptacene (CSD Reference: TAYSUJ), and a72

phenylated pentacene 1,2,3,4,6,8,9,10,11,13-Decaphenylpentacene (CSD Reference: VEBJAO). The crystal size in the PAH10173

set ranges from 44 atoms in the unit cell for biphenyl (CSD Reference: BIPHEN) to 544 atoms in 1,2,3,4,6,8,9,10,11,13-74

Decaphenylpentacene (CSD Reference: VEBJAO).75

The PAH101 dataset contains GW+BSE results for the electronic and optical properties of molecular crystals, as well as76

the DFT-level SISSO primary features used in Ref.98. We envision this dataset being used for computational discovery of77

crystalline organic semiconductors and chromophores with desired properties for applications in various organic electronic78

devices. For example, the dataset contains information on optical gaps and absorption spectra, which could be used to search79

for chromophores that absorb light in a certain energy range. In addition, the dataset contains singlet and triplet excitation80

energies, which can be used to evaluate candidate chromophores for triplet-triplet annihilation (TTA) and thermally activated81

delayed fluorescence (TADF). TTA chromophores can be used for harvesting photons with energies below the absorption82

threshold of a solar cell by up-conversion of two low-energy triplet excitons into one singlet exciton that can be absorbed.111, 112
83

TADF chromophores can be used to enhance the efficiency of OLEDs by converting electrically generated non-radiative triplet84

excitons into radiative singlet excitons.23, 113, 114 The dataset also contains GW band structures. The band dispersion is related to85

transport in crystalline organic semiconductors, which affects the performance of organic electronic devices such as field effect86

transistors (OFETs).115 Furthermore, this dataset can be used as a resource for comparing and benchmarking the performance87

of various electronic structure methods for calculating the electronic and optical properties of molecular crystals. Finally,88

this dataset can be used to augment other datasets, e.g., DFT datasets for molecular crystals or TDDFT datasets for isolated89

molecules to train multi-fidelity ML models for predicting various electronic and optical properties of molecular crystals. In90

summary, because the PAH101 is a unique set of GW+BSE data for molecular crystals, we expect it to be a resource of great91

usefulness to the computational community.92
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Figure 1. Histograms of the number of atoms (a) in a single molecule and (b) in a crystal unit cell for the materials in the
PAH101 set. Also shown are illustrations of the molecular structures of benzene (BENZEN),
9,11,13,22,24,26-Hexaphenyltetrabenzo[de,rs,wx,k1l1]nonacene (KECLAH),
9,11,13,14,15,16,18,20-Octaphenyldibenzo[de,c1d1]heptacene (TAYSUJ), 1,2,3,4,6,8,9,10,11,13-Decaphenylpentacene
(VEBJAO), and the crystal structures of 1,2,3,4,6,8,9,10,11,13-Decaphenylpentacene (VEBJAO) and Biphenyl (BIPHEN).

Methods93

Hydrogen Addition94

The starting geometries of the 101 molecular crystals were extracted from the Cambridge Structural Database (CSD).110
95

The CSD reference codes for each material are available in the data records. Some of the CIF files in the CSD are96

missing the hydrogen atom positions, which cannot be determined by X-ray diffraction. To provide an approximate po-97

sition for each missing H atom, we have developed the Hydrogen Append (HAppend) code, available in the GitHub repo:98

https://github.com/BLABABA/HAppend. HAppend is written in Python and uses RDKit116 and Pymatgen117. The workflow99

of HAppend is illustrated in Figure 2 using BEANTR as an example. All H atoms were removed from the CIF file for the100

purpose of demonstration. HAppend does not use the symmetry information provided in the CIF file. In step (1) the unit cell is101

replicated to build a super-cell so that any molecular fragments inside the unit cell can be completed. In step (2) all the complete102

molecules and molecular fragments are identified. Subsequently, any broken fragments at the supercell boundary (colored in103

blue in Figure 2) are removed. In step (3) all the complete molecules are extracted. Only two molecules are shown in Figure104

2 for demonstration purposes. Step (4) is identifying the missing hydrogen sites and appending H atoms to each molecule.105

A detailed schematic of step (4) is shown in the bottom row of Figure 2. In step 4a the missing hydrogen sites are identified106

by checking the type of hybridization of each carbon atom against the number of valence electrons participating in covalent107

bonds. In this example, all C atoms in the aromatic rings have sp2 hybridization. In step 4b H atoms are attached to atoms with108

unpaired valence electrons. The bond length and angle are determined based on the bonded neighbors and hybridization type.109

In this example, given that the C atom is sp2 hybridized, the two H-C-C angles should be about 120°. This process is performed110

for all atoms in the BEANTR molecule and the completed molecule is obtained after step 4c. Step (5) reconstructs the complete111

super-cell with appended H atoms. Step (6) reduces the super-cell back to the original unit cell with all the coordinates for112

the missing H atoms now known. Finally, sanity checks are performed to verify that the structure is correct. The structure is113

checked against the expected chemical formula (if provided in the CIF file from the CSD). In addition, RDKit is used to repeat114

step 4b and confirm that the explicit valence matches with the type of hybridization for each atom. If the sanity check fails, the115

user may have to attach H atoms manually. HAppend is not limited to PAHs and may be used to add missing H atoms to other116

types of organic molecules.117

Structural Relaxation118

Full unit cell relaxation was performed with either CASTEP118 or FHI-aims119, 120 (which code was used is reported in the data119

records). The Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional121 was used with the Tkatchenko-Scheffler120

(TS) pairwise dispersion method122. For relaxations performed with CASTEP, norm-conserving pseudopotentials were utilized121
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Figure 2. Schematic illustration of the workflow of adding missing H atoms with HAppend, demonstrated for the BEANTR
crystal. The top row shows the steps of (1) super-cell construction, (2) removal of broken molecular fragments (colored in
blue), (3) extraction of molecules, (4) addition of H atoms to all molecules, (5) reconstruction of the supercell with the H atoms
attached to all molecules, and (6) reduction of the supercell to a single unit cell. For Steps (3) and (4) only two molecules are
shown for clarity. The bottom row presents a detailed view of the hydrogen addition step: (a) identification of missing H sites,
(b) calculation of approximate H atom positions, and (c) attachment of H atoms to the molecule.

for carbon and hydrogen. The plane-wave basis set cutoff was 750 eV. A Monkhorst-Pack k-grid with a spacing of 0.07 Å−1
122

was adopted. The convergence thresholds for total energy, maximum force, maximum stress, and maximum displacement123

were 5×10−6 eV/atom, 0.01 eV/Å, 0.02 GPa, and 5×10−4 Å−1, respectively. For structures relaxed with FHI-aims, the tight124

numerical settings and tier-2 basis sets were used. The fully relaxed crystal structures and the molecular geometries extracted125

from them are provided in the data records. The GW+BSE calculations were performed for the fully relaxed crystal structures.126

DFT Features127

The data records include the DFT primary features used for SISSO in Ref.98. The DFT features of molecules and crystals were128

calculated using FHI-aims119, 120. From considerations of computational efficiency, the DFT primary features were calculated129

with locally-optimized geometries. The crystal structures were relaxed with the lattice vectors fixed at the experimental values130

and the single molecule properties were calculated using molecules extracted from these locally-optimized crystal structures.131

All primary features were calculated with the PBE functional.121 using the tight numerical setting and tier-2 basis sets of132

FHI-aims.119
133

Mean-Field Wave Function Calculation134

The Quantum ESPRESSO package123 was used to compute the DFT eigenvectors and eigenvalues, which served as the starting135

point for non-self-consistent GW+BSE calculations, using the PBE functional. Norm-conserving pseudopotentials were136

chosen in order to take advantage of the simplification of matrix elements in GW+BSE calculations.124 Troullier–Martins137

norm-conserving pseudopotentials were generated using FHI98PP-converted with fhi2upf.x v.5.0.2 from Abinit Project. The138

kinetic energy cutoff was 50 Ry. The k-point grids used for each material are reported in the data records.139

GW+BSE Calculations140

The BerkeleyGW package124 was used to perform GW+BSE calculations. From considerations of computational cost, non-141

self-consistent G0W0 calculation were performed. 550 unoccupied states were included in the dielectric function and the142
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self-energy operator evaluations. The static remainder correction was applied to accelerate the convergence. The screened143

and bare Coulomb interaction cutoffs were 10 Ry and 40, respectively. The Bethe-Salpeter equation was solved within144

the Tamm-Dancoff approximation (TDA) with 24 valence bands and 24 conduction bands included. The fine k-point grid145

wave-functions were generated using a fine k-point grid twice as dense as the coarse k-point grid. The coarse and fine k-point146

grid settings for each material are reported in the data records.147

Data Records148

The PAH101 dataset is available via the NOvel MAterials Discovery (NOMAD) repository125 and can be accessed at149

DOI: 10.17172/NOMAD/2024.12.05-1. The data are provided in YAML (.yaml) format. Each file is named as CSD-150

REFERENCE.archive.yaml, where CSD-REFERENCE is the CSD reference code for each structure. The data structure for151

each material record is described in Table 1. The top level sections are struct_id, geometry, dft, and gwbse. The struct_id152

section contains the CSD reference code. The geometry section provides the fully relaxed crystal structure and the single153

molecule geometry extracted from it. The dft section contains all the SISSO primary features used in Ref.98. The gwbse section154

provides quasi-particle (QP) and excitonic properties for the PAH101 crystals, including the fundamental gap, quasiparticle155

band structure, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the full156

dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. The GW static dielectric157

constant is not available for some of the materials in the dataset because some data that was not needed for Ref.98 was not158

preserved.159

Technical Validation160

Crystal Structures161

Figure 3. Histogram of the RMSD30 of crystal structures relaxed with PBE+TS compared to the experimental structures from
the CSD for the PAH101 set. The similarity overlay plots generated by Mercury are shown for BNPERY, BIFUOR, and
BEANTR with the experimental structures colored in gray,and the relaxed structures colored in green.

To verify the results of full unit cell relaxation with PBE+TS, the root-mean square distance (RMSD) between the relaxed162

structures and the experimental structures was calculated. We used the COMPACK129 molecular overlay method, implemented163

as the Crystal Packing Similarity tool, in Mercury 2023.2.0130. COMPACK overlays clusters of molecules taken from each164

crystal, within given distance and angle tolerances, and minimizes the RMSD between atoms, typically excluding hydrogen.165

The output of COMPACK is the number of molecules that could be overlaid and the RMSD. COMPACK comparisons were166

performed with a cluster of 30 molecules and distance and angle tolerances of 35% and 35◦. H atoms were not included.167

These were the settings used for structure comparison in the 7th crystal structure prediction blind test131, 132. Figure 3 shows a168

histogram of the RMSD obtained for the PAH101 set. For the majority of the structures in the dataset the RMSD is below 0.3169

Å. The three structures with the largest RMSDs are BNPERY, BIFUOR, and BEANTR. All three are monoclinic structures170

with larger than average deviations in their b lattice parameter and β angle. For instance, the relaxed b parameter of BEANTR171

is 6.00 Å, compared to 6.50 Å in the experimental structure, a deviation of 7.7 %. The relaxed structure of BNPERY has a β172

angle of 92.2°, compared to 98.5°in the experimental structure. Some differences between structures relaxed by DFT at 0K and173

structures experimentally characterized at room temperature are to be expected.133 Overall, the performance of PBE+TS is174

within the community accepted standards of agreement with experiment, as established in the crystal structure prediction blind175

tests.131, 132 It is possible that performing relaxations with the more accurate many-body dispersion (MBD)128 method would176

reduce the RMSD.177
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struct_id the CSD reference code for this structure

geometry

relaxed_crystal the DFT-relaxed crystal structure saved in Pymatgen Structure format

molecule
the single molecule geometry extracted from relaxed_crystal, saved in Pymatgen Molecule
format

chemical_ f ormula chemical formula of the single molecule
relax_code code used to perform crystal structure relaxation

d f t

gap_s
the single molecule gap, calculated based on the energy difference between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)

Et_s
the single molecule triplet formation energy, calculated based on the total energy difference
between the ground-state and triplet-state molecule

DF_s
the single molecule DFT estimate for the SF driving force, calculated by taking the difference
between gap_s and twice Et_s

IP_s
the single molecule ionization potential (IP), calculated based on the total energy difference
between a cation and neutral molecule

EA_s
the single molecule electron affinity (EA), calculated based on the total energy difference
between an anion and neutral molecule

bandgap the crystal band gap

Et
the crystal triplet formation energy, calculated based on the total energy difference between
the ground-state and triplet-state crystal

DF
the crystal DFT estimate for the SF driving force, calculated by taking the difference between
bandgap and twice Et

V Bdisp the valence band dispersion, i.e., the energy range of the HOMO-derived band
CBdisp the conduction band dispersion, i.e., the energy range of the LUMO-derived band
hab the transfer integral, calculated with fragment orbital DFT126

polarization

the trace of the polarization tensor for a single molecule, calculated with DFT using the PBE
functional and the range-separated self-consistently screened version of many-body dispersion
(MBD@rsSCS) method127, 128

epsilon_mbd the dielectric constant calculated with PBE+MBD@rsSCS
weight_s the molecular weight in atomic mass units (amu)
density the crystal density in amu Å−3

eigenvalues
the eigenvalues for the single molecules, data stored as n×4 matrix, whose columns
are: State, Occupation, Eigenvalue [Ha], Eigenvalue [eV]

kgrid the k-grid settings for the calculation of crystal primary features

gwbse

absorption

a Optical absorption spectrum for light polarized along the a, b, and c crystal axes. Each
b absorption data record contains four columns: energy (eV), the imaginary and real
c parts of the dielectric function ε2 and ε1, and the normalized joint density of states.

bandstructure
kpoints the high-symmetry k-point path used to calculate the GW band structure

val

the values of band structure, saved as n× 8 matrix, whose columns are: spin, band
index, k-point coordinate x, k-point coordinate y, k-point coordinate z, mean-field
energy, quasi-particle energy, difference between mean-field and quasi-particle energy

bse_Es the singlet exciton energy (optical gap) calculated with BSE
bse_Et the triplet exciton energy calculated with BSE
bse_DF the SF driving force for a crystal, bse_Es−2×bse_Et

kgrid_coarse the k-grid used for coarse grid wave-function calculation
kgrid_ f ine the k-grid used for fine grid wave-function calculation
f undamental_gap the fundamental gap calculated with GW

bse_Es_bind the singlet-state exciton binding energy
bse_Et_bind the triplet-state exciton binding energy
epsilon_gw the dielectric constant calculated with GW ; N.A. entered if not available

Table 1. Data records: Description of the data structure of the PAH101 set with explanations of all entries.

GW+BSE Convergence178

The results of GW+BSE calculations with the BerkeleyGW code are sensitive to the convergence of several parameters49, 134, 135.179

Because of the large number of calculations performed for the PAH101 set, we have chosen parameters that provide a balance180

between accuracy and computational cost. The convergence of the settings used for the PAH101 dataset has been demonstrated181

previously for selected systems93, 98. Figure 4 shows the convergence with respect to coarse k-point grid and the number of182

empty bands used in the GW step for representative materials. The number of k-points is inversely proportional to the unit cell183
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size. Benzene has the smallest unit cell in the PAH101 set and therefore requires a relatively large number of k-points. 9,9’-184

bifluorenyl (CSD reference code BIFUOR) represents a system of intermediate size. For both materials, increasing the number185

of k-points beyond the chosen settings leads to a change of less than 0.001 eV in the GW band gap. For the representative186

materials fluoranthene (CSD reference code FLUANT02) and 6-phenylpentacene (CSD reference code VEBKAP), increasing187

the number of empty bands beyond 550 leads to a change of less than 0.02 eV in the GW band gap. For fluoranthene, increasing188

the number of valence and conduction bands used for the BSE step beyond 24 leads to a change of less than 0.06 eV in189

the optical gap. The settings used for the PAH101 set are sufficiently robust for "production" calculations. Notably, in the190

time that passed since the PAH101 set was generated, there have been advances in streamlining the convergence of MBPT191

calculations.136–139 These have focused primarily on inorganic crystals with a few atoms in the unit cell. A workflow that192

converges the settings for each system individually would be too expensive for systems of the size of the PAH101 set. If a193

certain material is of particular interest, then more detailed calculations may be pursued with ultra-converged settings and/or194

more accurate methods than G0W0@PBE.195

Figure 4. Convergence of GW+BSE calculations for representative materials. Change in the GW band gap as a function of
the coarse k-point grid for (a) benzene and (b) 9,9’-bifluorenyl (CSD reference code BIFUOR). (c) Change in the GW band gap
as a function of the number of empty bands for fluoranthene (CSD reference code FLUANT02) and 6-phenylpentacene (CSD
reference code VEBKAP). (d) Change in the BSE optical gap as a function of the number of fine bands for fluoranthene. The
chosen settings are circled in red.

Optical Absorption196

The GW+BSE approach has been benchmarked extensively for isolated molecules, for which high-level quantum chemistry197

reference data can be calculated.49, 140–144 For molecular crystals no benchmark studies are available, owing to the difficulty198

of obtaining reference data for large systems with periodic boundary conditions. Therefore, we are only able to validate the199

results of GW+BSE by comparison to experiments. Table 2 shows a comparison of the GW+BSE optical gaps (singlet exciton200

energies) to experimental values and GW+BSE values reported by others, where available. The GW+BSE values reported201

here are within 0.2 eV or less of the values reported by others. The results of GW+BSE calculations can differ because of202

differences in the implementation and convergence settings, as discussed extensively in Ref.49. Because the absorption edge203

is not abrupt, Tauc plots are typically used to extract the optical gap from absorption spectra.145–148 This can lead to some204

uncertainty in the experimental values. Here, if multiple experimental values are found for the same material, they are within205
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0.1 eV or less of each other in most cases. For the entries marked with *, we used the Tauc method to extract the optical gap206

from the experimental data because no value for the optical gap was reported in the paper. For the entries marked with **, there207

is a larger uncertainty in the optical gaps extracted using the Tauc method because the absorption edge does not decay to zero.208

In most cases, the GW+BSE optical gaps are within 0.2 eV or less from experimental values.209

Table 2. Optical gaps obtained using GW+BSE (EGW+BSE
g ) compared with experimental values (EExp

g ) and GW+BSE values
reported by others (EGW+BSE

g in Ref), where available. Entries marked with * were extracted by us from absorption spectra
using the Tauc method. Entries marked with ** have an absorption spectrum that is non-zero in the low-energy region, leading
to a larger uncertainty in the optical gaps extracted using the Tauc method.

CSD
Ref. Code

Compound Name EGW+BSE
g

(eV)
E

Exp
g

(eV)
EGW+BSE

g

in Ref (eV)
BENZEN Benzene 4.83 4.69-4.8149 5.0150

ANTCEN Anthracene 3.22 3.16151 3.3150

TETCEN01 Tetracene 2.24 2.38152, 153 2.4150

PENCEN Pentacene 1.72 1.8-1.85154–156 1.7-1.8150, 157, 158

ZZZDKE01 Hexacene 1.17 1.37*-1.4159–161 1.0150

QQQCIG04 Rubrene (Orthorhombic) 2.28 2.32162

QQQCIG13 Rubrene (Monoclinic) 2.62 2.36163

QQQCIG14 Rubrene (Triclinic) 2.30 2.31163

PERLEN05 Perylene (SHB) 2.61 2.58*164, 165

PERLEN07 Perylene (HB) 2.45 2.49*164, 165

POBPIG Diindeno[1,2,3-cd:1’,2’,3’-lm]perylene 2.21 2.25166

QUATER10 Quaterrylene 1.33 1.48-1.60167–169

CORONE01 Coronene 2.96 2.9-2.92*170, 171

HBZCOR Hexabenzo(bc,ef,hi,kl,no,qr)coronene 2.70 2.80172, 173

BEANTR 1,2-Benzanthracene 3.27 3.14174

BIPHEN Biphenyl 3.41 4.1-4.18175–178

CRYSEN01 Chrysene 3.66 3.6**179

TERPHE02 p-Terphenyl 4.17 3.9**179

BNPERY 1,12-Benzoperylene 2.80 2.4-2.5*180

KUBVUY 10,10’-Diphenyl-9,9’-bianthryl 3.23 2.9*181

KUBWAF01 9,9’-Bianthracenyl 3.05 2.7-2.8*182

The GW+BSE absorption spectra are validated by comparison to thin film experimental data for representative materi-210

als.172, 179, 183 For an anisotropic crystal the absorbance depends on the polarization direction of the incident light. Most211

absorption experiments are performed on polycrystalline samples and even in experiments performed on single crystals212

the crystallographic orientation of the sample with respect to the polarization of the incident light is often unknown. This213

introduces some uncertainties in the comparison with experiments. We calculate the absorbance for light polarized along the a,214

b, and c lattice vectors and normalize the maximum of the total absorbance to one. The results are shown in Figure 5. For215

1,2-benzanthracene (BEANTR), coronene (CORONE01), and hexabenzo(bc,ef,hi,kl,no,qr)coronene (HBZCOR) the agreement216

of the GW+BSE spectra with experiment is very good. For chrysene (CRYSEN01), p-terphenyl (TERPHE02), and triphenylene217

(TRIPHE12) the agreement is more qualitative.218

In addition to the unknown direction of the polarization with respect to the crystal axes, there are other factors, both on the219

experimental side and on the theoretical side that can contribute to discrepancies. In ref.179 the crystal structure of the films220

is not reported. The crystal structures used in our calculations are the common forms of p-terphenyl and chrysene, but both221

materials have other polymorphs reported in the CSD (for triphenylene all CSD entries appear to be the same structure but222

we cannot rule out the appearance of a different thin film polymorph). In polycrystals there can be contributions from grain223

boundaries (in samples comprising very small crystallites, which is not the case here, there can be surface contributions as well).224

Furthermore, we do not consider vibrational contributions in our simulations. Sources of errors in GW+BSE calculations include225

the DFT exchange-correlation functional used for the mean-field starting point, numerical convergence of various settings226

(k-point grids, number of empty states used in the GW step, the number of bands used in the BSE step), the non-self-consistency227

in the GW step, the plasmon pole approximation used in the GW step,49 the Tamm–Dancoff approximation used in the BSE228

step,25, 150, 184–188 and the static approximation for W used in the BSE step.184, 189 See also Ref.190 for additional discussion.229

The significance of different sources of errors can be material dependent. In the future, it would be desirable to rigorously230
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assess the contributions of different sources of errors in GW+BSE by comparison to high-level theories or well-controlled231

experiments (performed on single crystals with well-defined polarization) for a diverse benchmark set of molecular crystals.232

Figure 5. Absorption spectra calculated using GW+BSE compared with thin film experiments172, 179, 183 for (a)
1,2-benzanthracene (BEANTR), (b) coronene (CORONE01) with the region around the absorption edge magnified for clarity,
(c) chrysene (CRYSEN01), (d) hexabenzo(bc,ef,hi,kl,no,qr)coronene (HBZCOR), (e) p-terphenyl (TERPHE02), and (f)
triphenylene (TRIPHE12).

Usage Notes233

The PAH101 set is the currently the largest trove available of GW+BSE data for molecular crystals. As such, it offers unique234

opportunities to (i) learn about correlations between DFT and GW+BSE values of various properties, (ii) discover materials235

with desired electronic/ optical properties in the dataset itself, and (iii) train machine learning models to help in materials236

discovery efforts. Here, we provide examples for these three use cases.237

Reliability of DFT Models238

In materials discovery workflows it is desirable to use models that are fast to evaluate for preliminary screening of a large239

number of candidates. Semi-local DFT has been used extensively for this purpose. However, such models must be sufficiently240

reliable to at least capture the correct trends. Here, we perform statistical analysis across our dataset to examine whether241

selected DFT models are sufficiently predictive of GW+BSE quantities. The PAH101 dataset may similarly serve as a resource242

for researchers interested in comparing the results of other DFT and TDDFT models to GW+BSE.243

Figure 6 shows correlation plots between selected properties calculated by DFT with the PBE functional and GW+BSE@PBE.244

In Panel (a) single-molecule and crystal DFT quantities are compared to the GW+BSE crystal optical gap. The fundamental245

gap of a molecule corresponds to the difference between the ionization potential (IP) and electron affinity (EA). The funda-246

mental gap of a molecular crystal (calculated by GW ) is typically significantly narrower than the single molecule fundamental247

gap because of screening and band dispersion in the crystal.97 The optical gap of a molecular crystal is narrower than the248

fundamental gap because of the exciton binding energy.191 The IP and EA calculated based on on DFT total energy differences249

are better estimates than the Kohn-Sham eigenvalues of the HOMO and LUMO. However, it has been shown that the molecular250

fundamental gaps obtained from PBE IP-EA have errors of 0.89 eV on average compared to reference data.192 As expected,251

the molecular PBE IP-EA values significantly overestimate the GW+BSE optical gaps of the corresponding molecular crystal.252

Although there is correlation with the overall trend of the GW+BSE optical gaps, the spread of the PBE IP-EA values is too253

large to be considered as a reliable predictor.254

It is well known that molecular HOMO-LUMO gaps and crystal band gaps are significantly underestimated by (semi-)local255

functionals such as PBE, owing to the self-interaction error (SIE).193 For the PAH101 set, both the PBE single molecule256
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Figure 6. Correlations between DFT and GW+BSE across the PAH101 set for selected properties: (a) DFT molecular IP-EA,
molecular HOMO-LUMO gaps, and crystal band gaps compared to GW+BSE optical gaps. (b) DFT triplet formation energy of
the molecule and crystal compared to the GW+BSE triplet exciton energy. Molecular structures of some outliers are also
shown. (c) DFT dielectric constant calculated by using the MBD polarizability in the Clausius-Mossotti equation compared
with the GW static dielectric constant.

HOMO-LUMO gap and crystal gap systematically underestimate but correlate well with the GW+PBE optical gaps. Based257

on this, these values may be sufficiently reliable for rough preliminary screening based on relative trends among materials.258

The single molecule PBE HOMO-LUMO gap is particularly attractive for this purpose because it is very fast to evaluate.259

Furthermore, there are large datasets of single molecule46 and crystal PBE gap47 that can be mined. We note, however, the260

effect of SIE is material-dependent.143, 194 Compounds whose HOMO and/or LUMO are highly localized may be affected more261

severely than PAHs, whose frontier molecular orbitals are typically delocalized over the aromatic system. Therefore, it would262

be prudent to reevaluate the reliability of DFT-PBE molecular and crystal gaps for more diverse data sets.263

In Panel (b) the single molecule and crystal DFT triplet formation energies are compared to the GW+BSE triplet excitation264

energies. Overall, the single molecule and crystal DFT values are quite close to each other and to the GW+BSE triplet exciton265

energies, with MAEs of 0.20 eV and 0.23 eV, respectively and R2 values of 0.89 and 0.86, respectively. The reasons for this266

agreement need to be investigated further (we are not aware of any benchmark studies of DFT triplet formation energies).267

The four most significant outliers, whose molecular structures are shown, are: biphenyl (BIPHEN), benzene (BENZEN),268

2’,2”’,3’,3”’,5’,5”’,6’,6”’-octaphenyl-p–quinquephenyl (PUNVEA), and hexaphenylbenzene (HPHBNZ03). These compounds269

are characterized by phenyl rings connected by single C-C bonds, whereas the majority of compounds in the PAH101 set are270

characterized by extended aromatic systems. Our results indicate that DFT triplet formation energies are fairly reliable as271

lower-cost descriptors for preliminary screening. However, based on the nature of the outliers, it would be prudent to validate272

these findings for more diverse materials.273

Panel (c) shows a comparison between the static dielectric constant calculated by PBE+MBD and by GW . The GW value274

corresponds to the dielectric function value at 0 frequency and 0 wave-vector, ε(ω = 0,q = 0). The DFT value is obtained275

by using the MBD polarizability in the Clausius-Mossotti relation, as described in Ref.97. The comparison reveals that the276

DFT values are narrowly distributed around 3 and, in general, do not correlate with the GW values. For some materials the277

values obtained from PBE+MBD may fortuitously agree with experimental and/or GW values;195 however, even with the278

self-consistent screening approach used in the MBD method,127, 128 DFT does not capture the many-body physics contained in279

the GW dielectric function. This demonstrates that it is important to consider larger sets of materials to assess the reliability of280

methods.281

Materials Discovery282

The electronic and optical properties of most of the materials in the PAH101 set have not been thoroughly investigated283

experimentally. Some of the quantities calculated here, such as triplet excitation energies, are difficult to probe experimentally284

and require highly specialized techniques and facilities. Therefore, although the PAH101 set is relatively small, it is possible285

that some useful materials would be found in it. Here, we provide examples for some of the electronic and optical properties286

relevant for organic electronic devices that can be extracted from the dataset. The dataset can be searched for materials with a287

10/22



particular property or combination of properties. As demonstrated below, the dataset may provide insights on structure-property288

relations and expose gaps in our understanding of the properties of molecular crystals that call for further investigation.289

Figure 7. Distributions of (a) the singlet exciton eneries, which correspond to the optical gaps, (b) the singlet exciton binding
energies, (c) the singlet-triplet gaps, and (d) the GW static dielectric constant across the PAH101 dataset. Some crystal
structures are also shown.

One of the key properties for device applications is the optical gap, whose distribution in the dataset is shown in Figure 7a.290

The PAH101 set contains materials with a wide range of optical gaps. Crystalline quaterrylene (QUATER10) and hexacene291

(ZZZDKE01) have the smallest optical gaps of 1.33 eV and 1.17 eV, respectively. If a material is sought with an optical gap of292

up to about 5 eV it may be found in the dataset. Absorption spectra for light polarized along the three crystal axes are also293

provided in the dataset (see Table 1), such that materials can be sought with broad absorption and/or absorption peaks in certain294

energy ranges.295

The singlet exciton binding energy, whose distribution is shown in Figure 7b, corresponds to the difference between the296

GW fundamental gap and the optical gap. This is the energy required to split photogenerated excitons into free charge carriers297

in organic solar cells. In most organic materials the exciton binding energy is significant compared to inorganic materials298

because the dielectric screening of charges is not as strong. However, some materials in the PAH101 set have low exciton299

binding energies (in parentheses), including: anthra(2,1,9,8-hijkl)benzo(de)naphtho(2,1,8,7-stuv)pentacene (BOXGAW; 0.013300

eV), dinaphtho(1,2-a:1’,2’-h)anthracene (DNAPAN; 0.071 eV), tetrabenzo(de,no,st,c1d1)heptacene (TBZHCE; 0.130 eV),301

benzo[lm]chryseno[1,12,11,10-opqrab]perylene (YUNYAJ; 0.165 eV), and hexabenzo(bc,ef,hi,kl,no,qr)coronene (HBZCOR;302

0.169 eV). All of these compounds are characterized by very extended and/or elongated π systems, which likely lead to an303

already low molecular exciton binding energy (not calculated here), further reduced by dielectric screening in the solid form.304

Triplet exciton binding energies are also provided in the dataset (see Table 1). They are typically significantly higher than305

singlet exciton binding energies.306

Another property of interest for device applications is the singlet-triplet gap, i.e., the energy difference between the307

lowest singlet excited state and the lowest triplet excited state, both of which are included in the PAH101 dataset (see Table308

1). The singlet-triplet gap is a key property for organic light emitting diodes (OLEDs). Most of the electrically generated309

excitons in OLEDs are triplet excitons, which cannot decay radiatively to the ground state. In thermally activated delayed310

fluorescence (TADF) chromophores, a small singlet-triplet gap enables reverse intersystem crossing (RISC) from the lowest311

triplet excited state to the lowest singlet excited state, which subsequently decays to the ground state, emitting a photon.196–198
312

Figure 7c shows the distribution of singlet-triplet gaps in the PAH101 dataset. Small singlet-triplet gaps are rare among313

this class of materials. The materials with lowest singlet-triplet gaps (in parentheses) are: trinaphtho[1,2,3,4-fgh:1’,2’,3’,4’-314

pqr:1”,2”,3”,4”-za_1_b_1_]trinaphthylene (GUQZUP; 0.36 eV), 9,18-diphenyltetrabenz(a,c,h,j)anthracene (FACPEE; 0.38 eV),315

acenaphtho[3,2,1,8-fghij]tetrabenzo[a,c,m,o]picene (VUFHUA; 0.435 eV), benzo(1,2,3-bc:4,5,6-b’,c’)dicoronene (YOFCUR;316

0.44 eV), and 2-(naphthalen-2-yl)azulene (PUJQIV; 0.45 eV). Even the lowest singlet-triplet gaps in the PAH101 set would317

be considered marginal or too high for TADF. However, examining these materials may reveal new classes of chromophores318

that could be interesting for further investigation and fine-tuning by chemical modification. Charge transfer (CT) excitations319
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between spatially separated HOMO and LUMO states are considered key to achieving small singlet-triplet gaps in TADF320

chromophores.113, 197 With the exception of PUJQIV, the materials with the smallest singlet-triplet gaps in the PAH101 set321

bear no resemblance to the donor-acceptor compounds typically used for TADF. Rather, they are large PAHs with extended π322

systems. FACPEE, VUFHUA, and YOFCUR have segments that could lead to CT-like intramolecular excitations. GUQZUP323

(shown in Figure 7c) can be described as a graphene flake with no obvious segments. The twisted conformation it adopts in the324

crystal structure may contribute to orbital localization and CT-like excitations. The effect of crystal packing and intermolecular325

vs. intramolecular CT excitations on singlet-triplet gaps is also not well-understood and should be further investigated in326

relation to TADF in crystalline materials.199, 200
327

Figure 7d shows the distribution of the GW static dielectric constant in the PAH101 dataset. There is a prevalent perception328

in the organic electronic community that all organic solids have a similar dielectric constant of about 3 (we have not been able329

to trace the origin of this perception to a particular paper). The DFT values obtained for the PAH101 set (see Figure 6c) may330

confirm this perception, but the GW values tell a different story. Several materials in the dataset have GW static dielectric331

constants (in parentheses) that are significantly higher than 3, including: diindeno[1,2,3-cd:1’,2’,3’-lm]perylene (POBPIG06;332

9.75), benzo[lm]chryseno[1,12,11,10-opqrab]perylene (YUNYAJ; 7.51), hexacene (ZZZDKE01; 7.41), indeno(7,7a,1,2,3-333

lmno)-1,12-ethenochrysene (SURTAA; 7.33), and tetrabenzo[a,d,j,m]coronene (SETTES; 7.05). These are compounds with334

extended and/or elongated π systems, which are probably highly polarizable (the molecular polarizability is not calculated here).335

The crystal packing probably also contributes significantly to the dielectric screening. Most of the research on organic materials336

with high dielectric constants has been on polymers for applications in bulk heterojunction organic solar cells (e.g.,201), which337

are very different for the materials in the PAH101 set. This calls for further investigation of the dielectric behavior of molecular338

crystals. We note that the full dielectric function, which contains information on the frequency dependence and anisotropy, is339

available in the dataset (in the absorption entry, see Table 1).340

Machine Learning341

To demonstrate how the PAH101 dataset can be reused to train ML models for other purposes than SF, we use SISSO to find342

predictive models for the GW fundamental band gap, whose values are also provided in the dataset. The dataset can be used in343

a similar manner to train ML models other than SISSO to predict any of the quantities included in the dataset. In addition, it344

can be used to supplement larger lower-fidelity datasets to train multi-fidelity models.345

SISSO models were trained following the same procedure used in Ref.98. The same primary features were used (also346

provided in the PAH101 dataset), with the exception of DF_s and DF_c, because the DFT estimate for the SF driving force347

is not a physically meaningful descriptor in relation to the fundamental band gap. The same 10 structures as in Ref.98 were348

withheld as an unseen test set and the remaining 91 structures were used for model training. Features were constructed with a349

maximum rung (the number of times primary features are combined) of 3 and a maximum dimension (Dim) of 4. Features350

were combined using the operator set H = {+,−,×,÷,exp, log,()−1,()2,()3,
√
, 3
√
, | · |}. The maximum complexity, i.e., the351

maximum number of operators in one combined feature, was set to 10. A total of 5×102, 4×105, and 6×1010 features were352

generated by SISSO with a rung of 1, 2, and 3, respectively.353

After feature generation, SISSO performs linear regression to yield the model prediction, where each model is the scalar354

product of the SISSO-generated feature with a vector of fitted coefficients. Then, the models are ranked according to their355

prediction performance. Sure independence screening (SIS) is used to select optimal subspaces from the huge feature space.356

The number of features saved after SIS was set to 20. SISSO then uses `0-norm minimization as a sparsifying operator (SO) to357

determine the sparse solution for each such subspace. For each combination of dimension and rung, 40 rounds of leave-10-out358

cross validation (LCV) were performed. In each round, 10 data points (out of the 91 points used for model training) were359

randomly selected and held out as an unseen validation set. The model with the lowest RMSE for the validation set was selected360

in each round. Finally, the model with the lowest root mean square error (RMSE) for the combined LCV training and validation361

data was selected out of the 40 models. This model is denoted as MDim,Rung. A full account of the SISSO models is provided in362

the SI.363

The computational cost of SISSO-generated models varies depending on the number and type of primary features they364

contain. The cost of each model was evaluated by summing over the costs of all the primary features included in it. The cost of365

features that appear in the model more than once was counted only once. The computer time required to calculate the single366

molecule PBE gap, GapS, was assigned a value of 1 cost unit and the cost of other features is tabulated in the SI as multiples of367

that unit. The cost of all the primary features has been updated from the values given in Ref.98 to account for new developments368

in the latest version of FHI-aims. In particular, the MBD calculation has become significantly more efficient than in older369

versions of the code. The cost was averaged over the 10 structures in the validation set, rather than picking one system of370

average size, as in Ref.98. Figure 8a shows a Pareto chart of the accuracy vs. the computational cost of the SISSO models371

considered here. The “train" RMSE is calculated for the training set of 91 structures. The “test" RMSE is calculated for the 10372
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Figure 8. Performance of SISSO-generated models for predicting the GW fundamental band gaps of molecular crystals: (a)
Pareto chart of the accuracy vs. the computational cost of SISSO-generated models. The “train" accuracy corresponds to the
RMSE obtained for the LCV validation set during training and the “test" accuracy corresponds to the withheld set of 10
materials not included in the training. The dashed lines indicate the Pareto front. Model prediction as a function of the GW

fundamental band gap for (b) M4,2 and (c) M4,3. Molecular structures of some of the outliers are also shown.

withheld materials, which were excluded from the LCV. The best balance of cost and accuracy is provided by the M4,2 model:373

M4,2 = 0.90× ES
T ×GapC

GapS ×ρC
−0.063×

ln(CBC
disp)×AtomNumC

MolWtS

+197×
(CBC

disp)
3

EAS ×MolWtS
+0.035× EAS

GapS × ln(ρC)
+1.67

(1)

The M3,3 and M4,3 models, whose computational cost is considerably higher, have a better accuracy for the training set. However,374

their RMSE increases significantly for the unseen test set, which is indicative of over-fitting. This is also seen in the correlation375

plots in Figure 8b,c. Interestingly, SISSO does not produce any models that can predict the crystal fundamental gap based only376

on single molecule features (the equations of all models are provided in the SI).377

Code availability378

• The HAppend code for adding missing hydrogen atoms to molecular crystal structures is available in the GitHub379

Repository HAppend, together with scripts for making band structure and absorption plots.380

• Scripts for calculating the SISSO primary features and for processing SISSO results are available in the GitHub repository381

MLfeat_FHI-aims.382

• The BerkeleyGW code for performing GW+BSE calculations124 is available at the BerkeleyGW website.383

• The FHI-aims code,119 used to perform some relaxations and calculate DFT features, is available at the FHI-aims website.384

• The Quantum ESPRESSO code,123 used to calculate the mean-field wave functions for subsequent GW+BSE calculations,385

is available at the Quantum ESPRESSO website.386

• The SISSO code,63 used to perform sure independent screening and sparsifying operator model training, is available at387

the GitHub Repository SISSO388
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