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Dementia Detection by In-Text Pause Encoding
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Abstract—In dementia, particularly Alzheimer’s Disease (AD),
communication challenges are evident, especially in vocabulary
and pragmatic aspects. Affected individuals often use vague, non-
specific words, and their speech lacks informative nouns and
verbs, leading to imprecise communication. However, aspects like
sentence structure, phonology, and articulation are believed to
remain intact until later stages, though this view is debated in the
research community. The rise of Large Language Models (LLMs)
has made significant strides in various domains, including senti-
ment analysis and question-answering. These advancements have
been applied to dementia research, with studies using LLMs to
analyze textual data. Some research incorporates pauses in text
to enhance performance, while others utilize transfer learning
techniques. However, limited datasets for dementia detection pose
challenges in training LLMs. Our research presents a novel
approach to measuring the impact of in-text encoding strategies
by embedding special characters within the text to enhance model
performance and incorporating sequences and summaries of their
frequency. Our best model achieves 0.88 and 0.86 in f1-score and
accuracy, respectively, whereas the baseline has 0.42 and 0.56 in
f1-score and accuracy.

Index Terms—Dementia, Speech Analysis, LLMs, NLP

I. INTRODUCTION

In dementia, language difficulties primarily manifest in
terms of word access, word meaning, and the pragmatic
aspects of communication. For instance, individuals affected
by AD frequently tend to use semantically “empty” words
like “thing” or “stuff,” which lack specificity and nuance [1].
They also tend to employ relatively lower portions of nouns
and, notably, fewer verbs that carry significant informational
content [2]. This can result in their communication appearing
less precise and more challenging to follow. Furthermore, their
overall discourse may seem disorganized, making it harder for
others to engage in meaningful conversations with them.

On the other hand, it is generally believed that other
language components such as syntax (the structure of sen-
tences), phonology (the sound system of language), and ar-
ticulation (the physical production of speech sounds) remain
relatively well-preserved until the later stages of the disease
[3]. However, this particular conclusion remains a subject of
controversy within the research community, with some experts
challenging the notion that these aspects of language remain
unaffected throughout the course of Alzheimer’s Disease, but
not in the late stages of the disease [4], [5].
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The advent of large language models (LLMs) has led to
significant achievements across various domains, including
sentiment analysis, question answering, summarization, and
more [6], [7]. These models have demonstrated their ability to
tackle intricate tasks effectively. Notably, models like BERT
[8] and similar variants [9]-[11] have shown their capacity for
comprehending the context within textual data, encompassing
diverse aspects of language, such as semantics and syntax [12].

In recent years, researchers have integrated LLMs into their
studies on various forms of dementia. They have approached
this by either analyzing textual data or speech independently
or by combining both modalities simultaneously, as referenced
in a series of studies [13]-[17]. In most cases, obtaining
transcriptions of speech involves the use of automatic speech
recognition (ASR) models. Our primary focus here is on
the text-based aspects of their methodologies. For example,
one study [14] introduced a novel approach by incorporating
pauses (special characters) in the textual data, aiming to
leverage these pause-related cues within the textual context.
This inclusion led to performance enhancements compared
to utilizing plain text alone. Another prevalent strategy in
dementia detection is the utilization of transfer learning, as
demonstrated in multiple studies [14], [16], [18], highlighting
its effectiveness in enhancing performance.

It’s worth noting that training LLMs can be challenging
due to limited datasets for dementia detection. To address this
challenge, several authors proposed various data augmentation
techniques in studies [19]-[21], which have proven to be
effective in augmenting the available data for training models.
Additionally, some researchers have explored the robustness
and sensitivity of LLMs in predicting Alzheimer’s disease.
In a particular study [22], the investigation focused on eval-
uating the robustness and sensitivity of BERT-like models
in Alzheimer’s disease prediction. This research is crucial
not only for the development of more reliable classification
models, but also for gaining a better understanding of the
capabilities and limitations of these models.

In this paper, we aim to detect dementia through textual
input with in-text pause encoding. In our methodology, three
different pauses (short, medium, and long) are extracted from
the audio and encoded with the corresponding text by different
encoding techniques. We perform a combinatorial search to
find the best combination of in-text pause encoding scheme
that results in superior performance. To the best of our
knowledge this type of approach is novel and the in-text pause
encoding techniques have not been tested on the Pitt Corpus
Cookie Theft dataset [23]. Our main results indicate that this
approach is effective in improving performance compared to
the baseline. These results show the advantage of incorporating



pause information within the text.

The rest of this paper is organized as follows: In Section
II, the data preparation, pause encoding, and modeling are
discussed. In Section III, the results are presented. Lastly, we
present our conclusions in Section IV.

II. METHODOLOGY

In our experiments, the Pitt Corpus Cookie Theft dataset
[23] is used. This dataset contains audio and transcripts from
different individuals for different tasks. In the first step of our
methodology, we clean the dataset from the special characters
that would not be used in our experiments. Next, we encode
different types of pauses within the textual input to the model,
as explained in Section II-B. In Section II-C, different model
architectures are proposed. These models are carefully selected
to study the effect of model complexity on performance.

A. Data Preparation

In here we outline the procedure for data cleaning in
our study, which utilizes transcripts from the Pitt Corpus
Cookie Theft dataset [23]. These transcripts are rich in detail,
including the patients’ demographic information like gender
and age, as well as clinical data such as dementia severity.
Additionally, they contain syntactic details to ensure language
consistency, timestamps, and dialogues between researchers
and participants. This dataset contains 243 and 305 record-
ings and CHAT style transcriptions for control and dementia
groups, respectively. throughout our experiments, we use the
transcriptions for our training and evaluation. For our analysis,
we specifically exclude certain special characters found in the
conversations, such as “xxx”, “(.)”, “&-uh”, “. exc”, among
others. Table I illustrates the process. Each of these symbols
has its meaning, which can be found in the DementiaBank
documentation [23].

B. In-text Pause Encoding

In this research, the relationship between speech pauses and
the likelihood of dementia is a key focus, a topic extensively
explored in various studies [14], [24]. These studies often
classify different types of dementia based on the frequency
and duration of pauses in speech.

We choose to use transcripts for our analysis rather than
audio recordings. While audio data offers a richer source
of information, its high dimensionality presents significant
computational challenges. To circumvent these challenges and
efficiently process the data, we rely on transcripts. There are
various transcription tools available that can accurately convert
speech to text, facilitating our analysis. These tools allow us to
effectively analyze the data without the computational burden
associated with processing high-dimensional audio files.

TABLE I
EXAMPLE OF DATA CLEANING PROCESS

Before
After

(..) &=sighs just &-um &m mention the &-uh what what
just mention the what what

In the Cookie Theft dataset used in our study, specific
special characters indicate different lengths of pauses: short,
medium, and long. The symbols “(.)”, “(..)”, and “(...)”
represent these pauses, respectively. To simplify processing,
we substitute these symbols with more model-friendly terms:
“ShPause”, “MePause”, and “LoPause”. In [24], authors are
using a similar concept to encode pauses within the text.
Their approach is different from ours in how they incorporate
encoded pauses in the text. Their methodology is applied to
the ADReSS dataset [23], and they utilize temporal word
alignment, which is not the case in our approach. Additionally,
we analyze the impact of incorporating frequency of each
pause type within the text.

We refer to the baseline model with the text input with all
symbols removed as By. The models performed better when
they were provided with a secondary numerical vector input
corresponding to the frequencies of the pauses in the form

[#Sh, #Me, #Lo] ,

where #Sh, #Me and #Lo represent the number of short,
medium and long pauses, respectively. All variants of the
models discussed below include this vector as a secondary
input and employ the architecture described in the next section.

We consider the combinations of 4 different ways of en-
coding pauses within the text: In-place (I), End-Sequence (.5),
Frequency (F'), and Vector (V). As an example, consider the
original text with pauses (after replacing the pause symbols
with our previously defined terms) in the form:

“segl ShPause seg2 LoPause seg3 ShPause ...”

where seg! indicates a segment of text, and ShPause represents
a short pause, and so on. We refer to this as a text with in-place
encoding. A text without in-place encoding takes the form:

“segl seg2 seg3 ...

The end-sequence encoding creates a sequence of the pauses
in the order in which they are present and takes the form:

“ ShPause LoPause ShPause ...”.

This sequence is concatenated at the end of the original text.
The frequency encoding creates a text with the count of each
pause type attached to each pause type. It takes the form:

#Sh + “ShPause” + #Me + “MePause”+ #Lo + “LoPause”,

and it also concatenated at the end of the original text. Finally,
the vector encoding is similar to the frequency encoding except
that it does not contain the pause type. It takes the form:

#Sh + “ 7 + #Me + “ "+ #Lo + “ .

Our simplest model does not contain any of these encod-
ings and is denoted as Ep, s, F,,v,- The model inputs that
include in-place and frequency encoding will be denoted
as Ey, s,.r ,v,- Other inputs are denoted similarly. We will
explore all 16 combinations of the pause encoding in Section
III. Note that the frequency and vector encodings contain the
same information. They are used to verify that the LLM does
process that information in the same way.
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C. Modeling

As mentioned in Section I, there are many models using
LLMs to process textual data. In our experiments, we will be
using BERT-base-uncased model [8] as the base for feature
extraction. We conducted extensive experiments to find the
best setup to optimize performance. As shown in Figure 1, our
architecture has BERT as its base, followed by one dropout
layer and two linear layers to perform classification. Also,
to process the frequency vector, an encoder-decoder model is
introduced. This model consisted of linear layers.

For our setup, we use cross-entropy as one of our optimiza-
tion terms as follows

Lcl - ZE(ytagt)a
t

where F,y;, and gy, are the cross-entropy loss, ground-truth
label, and predicted label, respectively. For the auto-encoder,
we introduce the following optimization term

Lp=MSE(Xp,Xp),

where M SFE is the mean square error loss, and X and X P
are true frequency input and its reconstruction, respectively.
So, the total optimization cost becomes

L=Ly+ ALp,

Pause number list

Input transcript
nput transcrip eg.5.2,2]

=

Linear + RELU

768 dim
768 dim
256 dim
1 dim Linear + RELU
label output 8 dim
Decoded
3 dim * A
Binary Cross-Entropy loss
Y py MSE

Cross Loss
Reg Loss

Loss Function

Fig. 1. Model architecture.

where )\ is a hyper-parameter to be optimized.

Note that the baseline model does not have the auto-encoder
network because processing the frequency vector is not part
of the raw text for analysis. For all other experiments, this
network is present.

III. RESULTS AND DISCUSSION

This section details the outcomes of various experiments'
which utilized different in-text encoding methods, as outlined
in Section II-B, and various models discussed in Section II-C.
All experiments employed the BERT [8] base uncased model
in conjunction with the AdamW optimizer [25] with default
parameters, and each model was trained for 10 epochs. For
all experiments, we used A = 0.75. To ensure the reliability
of the results, a 20-fold cross-validation was conducted for
each encoding scheme. The performance of the encodings
scheme is presented in Table II. The metrics used to evaluate
performance include accuracy and f1-score, with the best result
highlighted in red.

For the baseline, By, where no pause encoding is included,
the model achieves 0.56 and 0.42 in accuracy and fl-score,
respectively. When adding the numeric vector of counts as
secondary input using our proposed architecture, the accuracy
remains at 0.56, but the fl-score increases to 0.45. That is a
7% improvement on fl-score. However, the most significant
improvements occur when the encoding are incorporated.

When just in-text encoding (Z7r, s,.F,,v,) 1 used the per-
formance reaches 0.74 and 0.77 in accuracy and fl-score,
respectively, which shows a significant improvement. For other
encodings, the gap is even larger. The Ej, g, r, v, model
achieved the highest performance for all the metrics overall
with 0.86 and 0.88 for accuracy and fl-score. Compared to
the baseline, the fl-score increases by a factor greater than 2.

A possible reason for the success of this method might
be attributed to how these encoded pause characters create

Uhttps://github.com/AR0S-NCSU/Dementia-Detection-InTextEmbedding
TABLE II

PERFORMANCE FOR ALL MODELS. THE BEST OVERALL PERFORMANCE IS
HIGHLIGHTED IN RED.

Model Acc. fl

Bo 0.56 £0.11 | 0.42£0.27
Ery,50,F. vy | 056 £0.11 | 0.45+0.33
Er,,50,F. vy | 0.74£0.08 | 0.77 = 0.06
Ery,5,,F, vy | 0-8630.06 | 0.88 £0.05
Ery,50,F,vy | 0.81£0.07 | 0.850.06
Ery,50,F7,v; | 0.83£0.05 | 0.85+0.04
Er,,5,,F,vy | 0.80£0.06 | 0.8340.05
Er, 50,7,V | 0.84£0.06 | 0.86 =+ 0.06
Er,,50,F,v; | 0.81£0.07 | 0.84 +0.06
Ery,5,,F,,vy | 0.81£0.05 | 0.8440.05
Ery,5,,F70,v, | 0.82£0.07 | 0.8440.05
Ery,50,7,,v, | 0.83£0.05 | 0.8540.05
Ery,s,,F,,v, | 0.83£0.06 | 0.84 4 0.06
Er,,5,,F,v; | 0.82£0.06 | 0.8440.05
Er,,50,7,,v, | 0.82£0.07 | 0.85+0.06
Er.s1./,vp | 0.81£0.06 | 0.83 £0.05
Er,,s,,F7,v; | 0.83£0.06 | 0.8540.05
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TABLE III
AVERAGE PERFORMANCE OVER ENCODING SCHEME.
Model | Average Acc. Average f1
Er, 0.80+£0.06 | 0.8040.12
Er, 0.81 +0.06 | 0.84 +0.05
Es, 0.78+0.07 | 0.79+0.12
Es, 0.83 + 0.06 0.85 4+ 0.05
Er, 0.78+0.07 | 0.79+0.12
Er, 0.83 + 0.06 0.85 4+ 0.05
By, 0.78 £0.07 | 0.79+£0.12
By, 0.83 £+ 0.06 0.85 4+ 0.05

recognizable patterns in the text, simplifying the task for
the model to identify and classify the inputs. Additionally,
the occurrence frequency and distribution of each pause type
within the text might serve as a distinctive feature, helping
the model differentiate between the dementia group and the
control group. This distinction could significantly contribute
to the model’s ability to accurately separate these groups.
Also, it should be mentioned that our proposed encoding
scheme resulted in more stability in performance as could be
observed in Table II. All the models with encoding have a
smaller standard deviation, which shows the robustness that
these encodings introduce to the model. Perhaps illustrating
the power of transfer learning from an LLM.

Table III shows the aggregate difference between models
with and without an encoding. The best performance take
place when frequency encoding E'f, , vector encoding E'y, and
end-sequence encoding Eg, are present. All get an average
fl score of 0.85. This is consistent with the best mode
performance found in Table II, and validates the fact that
these models contain very similar information. We observe that
the averages for models that include an encoding are smaller
than those that do include an encoding (e.g., £, has higher
performance overall than F7p,). This difference is due to the
low performance of E7, s, r,,v, Which contains no encoding.

IV. CONCLUSIONS

We implemented and analyzed a novel encoding strategy
within the text, incorporating special characters to enhance
the performance of the model. This method, as evidenced
by the results in Table II, outperformed the baseline model,
which did not include in-text pause encoding. Additionally,
this strategy demonstrated greater stability across various
experiments, indicated by its lower variance. However, further
research is necessary to fully understand the limitations and
potential applications of this approach across diverse datasets
and utilize other special language cues such as verbs, nouns,
and repetition of “uh” and “um” utterances in the text.
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