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Abstract—In dementia, particularly Alzheimer’s Disease (AD),
communication challenges are evident, especially in vocabulary
and pragmatic aspects. Affected individuals often use vague, non-
specific words, and their speech lacks informative nouns and
verbs, leading to imprecise communication. However, aspects like
sentence structure, phonology, and articulation are believed to
remain intact until later stages, though this view is debated in the
research community. The rise of Large Language Models (LLMs)
has made significant strides in various domains, including senti-
ment analysis and question-answering. These advancements have
been applied to dementia research, with studies using LLMs to
analyze textual data. Some research incorporates pauses in text
to enhance performance, while others utilize transfer learning
techniques. However, limited datasets for dementia detection pose
challenges in training LLMs. Our research presents a novel
approach to measuring the impact of in-text encoding strategies
by embedding special characters within the text to enhance model
performance and incorporating sequences and summaries of their
frequency. Our best model achieves 0.88 and 0.86 in f1-score and
accuracy, respectively, whereas the baseline has 0.42 and 0.56 in
f1-score and accuracy.

Index Terms—Dementia, Speech Analysis, LLMs, NLP

I. INTRODUCTION

In dementia, language difficulties primarily manifest in

terms of word access, word meaning, and the pragmatic

aspects of communication. For instance, individuals affected

by AD frequently tend to use semantically “empty” words

like “thing” or “stuff,” which lack specificity and nuance [1].

They also tend to employ relatively lower portions of nouns

and, notably, fewer verbs that carry significant informational

content [2]. This can result in their communication appearing

less precise and more challenging to follow. Furthermore, their

overall discourse may seem disorganized, making it harder for

others to engage in meaningful conversations with them.

On the other hand, it is generally believed that other

language components such as syntax (the structure of sen-

tences), phonology (the sound system of language), and ar-

ticulation (the physical production of speech sounds) remain

relatively well-preserved until the later stages of the disease

[3]. However, this particular conclusion remains a subject of

controversy within the research community, with some experts

challenging the notion that these aspects of language remain

unaffected throughout the course of Alzheimer’s Disease, but

not in the late stages of the disease [4], [5].
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The advent of large language models (LLMs) has led to

significant achievements across various domains, including

sentiment analysis, question answering, summarization, and

more [6], [7]. These models have demonstrated their ability to

tackle intricate tasks effectively. Notably, models like BERT

[8] and similar variants [9]–[11] have shown their capacity for

comprehending the context within textual data, encompassing

diverse aspects of language, such as semantics and syntax [12].

In recent years, researchers have integrated LLMs into their

studies on various forms of dementia. They have approached

this by either analyzing textual data or speech independently

or by combining both modalities simultaneously, as referenced

in a series of studies [13]–[17]. In most cases, obtaining

transcriptions of speech involves the use of automatic speech

recognition (ASR) models. Our primary focus here is on

the text-based aspects of their methodologies. For example,

one study [14] introduced a novel approach by incorporating

pauses (special characters) in the textual data, aiming to

leverage these pause-related cues within the textual context.

This inclusion led to performance enhancements compared

to utilizing plain text alone. Another prevalent strategy in

dementia detection is the utilization of transfer learning, as

demonstrated in multiple studies [14], [16], [18], highlighting

its effectiveness in enhancing performance.

It’s worth noting that training LLMs can be challenging

due to limited datasets for dementia detection. To address this

challenge, several authors proposed various data augmentation

techniques in studies [19]–[21], which have proven to be

effective in augmenting the available data for training models.

Additionally, some researchers have explored the robustness

and sensitivity of LLMs in predicting Alzheimer’s disease.

In a particular study [22], the investigation focused on eval-

uating the robustness and sensitivity of BERT-like models

in Alzheimer’s disease prediction. This research is crucial

not only for the development of more reliable classification

models, but also for gaining a better understanding of the

capabilities and limitations of these models.

In this paper, we aim to detect dementia through textual

input with in-text pause encoding. In our methodology, three

different pauses (short, medium, and long) are extracted from

the audio and encoded with the corresponding text by different

encoding techniques. We perform a combinatorial search to

find the best combination of in-text pause encoding scheme

that results in superior performance. To the best of our

knowledge this type of approach is novel and the in-text pause

encoding techniques have not been tested on the Pitt Corpus
Cookie Theft dataset [23]. Our main results indicate that this

approach is effective in improving performance compared to

the baseline. These results show the advantage of incorporating20
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pause information within the text.

The rest of this paper is organized as follows: In Section

II, the data preparation, pause encoding, and modeling are

discussed. In Section III, the results are presented. Lastly, we

present our conclusions in Section IV.

II. METHODOLOGY

In our experiments, the Pitt Corpus Cookie Theft dataset

[23] is used. This dataset contains audio and transcripts from

different individuals for different tasks. In the first step of our

methodology, we clean the dataset from the special characters

that would not be used in our experiments. Next, we encode

different types of pauses within the textual input to the model,

as explained in Section II-B. In Section II-C, different model

architectures are proposed. These models are carefully selected

to study the effect of model complexity on performance.

A. Data Preparation

In here we outline the procedure for data cleaning in

our study, which utilizes transcripts from the Pitt Corpus
Cookie Theft dataset [23]. These transcripts are rich in detail,

including the patients’ demographic information like gender

and age, as well as clinical data such as dementia severity.

Additionally, they contain syntactic details to ensure language

consistency, timestamps, and dialogues between researchers

and participants. This dataset contains 243 and 305 record-

ings and CHAT style transcriptions for control and dementia
groups, respectively. throughout our experiments, we use the

transcriptions for our training and evaluation. For our analysis,

we specifically exclude certain special characters found in the

conversations, such as “xxx”, “(.)”, “&-uh”, “. exc”, among

others. Table I illustrates the process. Each of these symbols

has its meaning, which can be found in the DementiaBank

documentation [23].

B. In-text Pause Encoding

In this research, the relationship between speech pauses and

the likelihood of dementia is a key focus, a topic extensively

explored in various studies [14], [24]. These studies often

classify different types of dementia based on the frequency

and duration of pauses in speech.

We choose to use transcripts for our analysis rather than

audio recordings. While audio data offers a richer source

of information, its high dimensionality presents significant

computational challenges. To circumvent these challenges and

efficiently process the data, we rely on transcripts. There are

various transcription tools available that can accurately convert

speech to text, facilitating our analysis. These tools allow us to

effectively analyze the data without the computational burden

associated with processing high-dimensional audio files.

TABLE I
EXAMPLE OF DATA CLEANING PROCESS

Before (..) &=sighs just &-um &m mention the &-uh what what
After just mention the what what

In the Cookie Theft dataset used in our study, specific

special characters indicate different lengths of pauses: short,

medium, and long. The symbols “(.)”, “(..)”, and “(...)”

represent these pauses, respectively. To simplify processing,

we substitute these symbols with more model-friendly terms:

“ShPause”, “MePause”, and “LoPause”. In [24], authors are

using a similar concept to encode pauses within the text.

Their approach is different from ours in how they incorporate

encoded pauses in the text. Their methodology is applied to

the ADReSS dataset [23], and they utilize temporal word

alignment, which is not the case in our approach. Additionally,

we analyze the impact of incorporating frequency of each

pause type within the text.
We refer to the baseline model with the text input with all

symbols removed as B0. The models performed better when

they were provided with a secondary numerical vector input

corresponding to the frequencies of the pauses in the form

[#Sh, #Me, #Lo] ,

where #Sh, #Me and #Lo represent the number of short,

medium and long pauses, respectively. All variants of the

models discussed below include this vector as a secondary

input and employ the architecture described in the next section.
We consider the combinations of 4 different ways of en-

coding pauses within the text: In-place (I), End-Sequence (S),

Frequency (F ), and Vector (V ). As an example, consider the

original text with pauses (after replacing the pause symbols

with our previously defined terms) in the form:

“seg1 ShPause seg2 LoPause seg3 ShPause ...”

where seg1 indicates a segment of text, and ShPause represents

a short pause, and so on. We refer to this as a text with in-place

encoding. A text without in-place encoding takes the form:

“seg1 seg2 seg3 ...”.

The end-sequence encoding creates a sequence of the pauses

in the order in which they are present and takes the form:

“ ShPause LoPause ShPause ...”.

This sequence is concatenated at the end of the original text.

The frequency encoding creates a text with the count of each

pause type attached to each pause type. It takes the form:

#Sh + “ShPause” + #Me + “MePause”+ #Lo + “LoPause”,

and it also concatenated at the end of the original text. Finally,

the vector encoding is similar to the frequency encoding except

that it does not contain the pause type. It takes the form:

#Sh + “ ” + #Me + “ ”+ #Lo + “ ”.

Our simplest model does not contain any of these encod-

ings and is denoted as EI0,S0,F0,V0 . The model inputs that

include in-place and frequency encoding will be denoted

as EI1,S0,F1,V0
. Other inputs are denoted similarly. We will

explore all 16 combinations of the pause encoding in Section

III. Note that the frequency and vector encodings contain the

same information. They are used to verify that the LLM does

process that information in the same way.
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C. Modeling

As mentioned in Section I, there are many models using

LLMs to process textual data. In our experiments, we will be

using BERT-base-uncased model [8] as the base for feature

extraction. We conducted extensive experiments to find the

best setup to optimize performance. As shown in Figure 1, our

architecture has BERT as its base, followed by one dropout

layer and two linear layers to perform classification. Also,

to process the frequency vector, an encoder-decoder model is

introduced. This model consisted of linear layers.

For our setup, we use cross-entropy as one of our optimiza-

tion terms as follows

Lcl =
∑

t

E(yt, ŷt),

where E, yt, and ŷt are the cross-entropy loss, ground-truth

label, and predicted label, respectively. For the auto-encoder,

we introduce the following optimization term

LF = MSE(XF , X̂F ),

where MSE is the mean square error loss, and XF and X̂F

are true frequency input and its reconstruction, respectively.

So, the total optimization cost becomes

L = Lcl + λLF ,

Fig. 1. Model architecture.

where λ is a hyper-parameter to be optimized.

Note that the baseline model does not have the auto-encoder

network because processing the frequency vector is not part

of the raw text for analysis. For all other experiments, this

network is present.

III. RESULTS AND DISCUSSION

This section details the outcomes of various experiments1

which utilized different in-text encoding methods, as outlined

in Section II-B, and various models discussed in Section II-C.

All experiments employed the BERT [8] base uncased model

in conjunction with the AdamW optimizer [25] with default

parameters, and each model was trained for 10 epochs. For

all experiments, we used λ = 0.75. To ensure the reliability

of the results, a 20-fold cross-validation was conducted for

each encoding scheme. The performance of the encodings

scheme is presented in Table II. The metrics used to evaluate

performance include accuracy and f1-score, with the best result

highlighted in red.

For the baseline, B0, where no pause encoding is included,

the model achieves 0.56 and 0.42 in accuracy and f1-score,

respectively. When adding the numeric vector of counts as

secondary input using our proposed architecture, the accuracy

remains at 0.56, but the f1-score increases to 0.45. That is a

7% improvement on f1-score. However, the most significant

improvements occur when the encoding are incorporated.

When just in-text encoding (EI1,S0,F0,V0 ) is used the per-

formance reaches 0.74 and 0.77 in accuracy and f1-score,

respectively, which shows a significant improvement. For other

encodings, the gap is even larger. The EI0,S1,F0,V0
model

achieved the highest performance for all the metrics overall

with 0.86 and 0.88 for accuracy and f1-score. Compared to

the baseline, the f1-score increases by a factor greater than 2.

A possible reason for the success of this method might

be attributed to how these encoded pause characters create

1https://github.com/ARoS-NCSU/Dementia-Detection-InTextEmbedding

TABLE II
PERFORMANCE FOR ALL MODELS. THE BEST OVERALL PERFORMANCE IS

HIGHLIGHTED IN RED.

Model Acc. f1
B0 0.56± 0.11 0.42± 0.27

EI0,S0,F0,V0
0.56± 0.11 0.45± 0.33

EI1,S0,F0,V0
0.74± 0.08 0.77± 0.06

EI0,S1,F0,V0 0.86 ± 0.06 0.88 ± 0.05
EI0,S0,F1,V0 0.81± 0.07 0.85± 0.06
EI0,S0,F0,V1 0.83± 0.05 0.85± 0.04
EI1,S1,F0,V0

0.80± 0.06 0.83± 0.05
EI1,S0,F1,V0

0.84± 0.06 0.86± 0.06
EI1,S0,F0,V1

0.81± 0.07 0.84± 0.06
EI0,S1,F1,V0

0.81± 0.05 0.84± 0.05
EI0,S1,F0,V1

0.82± 0.07 0.84± 0.05
EI0,S0,F1,V1 0.83± 0.05 0.85± 0.05
EI0,S1,F1,V1 0.83± 0.06 0.84± 0.06
EI1,S1,F0,V1 0.82± 0.06 0.84± 0.05
EI1,S0,F1,V1

0.82± 0.07 0.85± 0.06
EI1,S1,F1,V0

0.81± 0.06 0.83± 0.05
EI1,S1,F1,V1

0.83± 0.06 0.85± 0.05
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TABLE III
AVERAGE PERFORMANCE OVER ENCODING SCHEME.

Model Average Acc. Average f1
EI0 0.80± 0.06 0.80± 0.12
EI1 0.81± 0.06 0.84± 0.05
ES0 0.78± 0.07 0.79± 0.12
ES1

0.83 ± 0.06 0.85 ± 0.05
EF0

0.78± 0.07 0.79± 0.12
EF1

0.83 ± 0.06 0.85 ± 0.05
EV0

0.78± 0.07 0.79± 0.12
EV1

0.83 ± 0.06 0.85 ± 0.05

recognizable patterns in the text, simplifying the task for

the model to identify and classify the inputs. Additionally,

the occurrence frequency and distribution of each pause type

within the text might serve as a distinctive feature, helping

the model differentiate between the dementia group and the

control group. This distinction could significantly contribute

to the model’s ability to accurately separate these groups.

Also, it should be mentioned that our proposed encoding

scheme resulted in more stability in performance as could be

observed in Table II. All the models with encoding have a

smaller standard deviation, which shows the robustness that

these encodings introduce to the model. Perhaps illustrating

the power of transfer learning from an LLM.

Table III shows the aggregate difference between models

with and without an encoding. The best performance take

place when frequency encoding EF1
, vector encoding EV1

and

end-sequence encoding ES1 are present. All get an average

f1 score of 0.85. This is consistent with the best mode

performance found in Table II, and validates the fact that

these models contain very similar information. We observe that

the averages for models that include an encoding are smaller

than those that do include an encoding (e.g., EI1 has higher

performance overall than EI0 ). This difference is due to the

low performance of EI0,S0,F0,V0 which contains no encoding.

IV. CONCLUSIONS

We implemented and analyzed a novel encoding strategy

within the text, incorporating special characters to enhance

the performance of the model. This method, as evidenced

by the results in Table II, outperformed the baseline model,

which did not include in-text pause encoding. Additionally,

this strategy demonstrated greater stability across various

experiments, indicated by its lower variance. However, further

research is necessary to fully understand the limitations and

potential applications of this approach across diverse datasets

and utilize other special language cues such as verbs, nouns,

and repetition of “uh” and “um” utterances in the text.
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