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Simple Summary: This study utilizes electronic sensors to investigate the outcomes of Canine
Assisted Interactions (CAI), a growing therapeutic field, for both human and animal participants.
It represents the first attempt to deploy synchronized wearable systems on both humans and dogs,
allowing for the continuous and simultaneous collection of physiological and behavioral data during
interactions. Leveraging this data, the research examines the real-time dynamics of CAIs, moving
beyond traditional survey-based pre- and post-session evaluations. Three innovative visualization
tools—a subsession heatmap, a synchrony table, and a metric correlation matrix—are introduced to
better characterize the interactions and bonding within human-dog dyads. Preliminary exploratory
analyses provide insights that inspire further investigation into CAI mechanisms. This research
marks a significant step forward in using multimodal data collection to deepen our understanding of
human-animal interactions, particularly in therapeutic settings.

Abstract: Canine-assisted interactions (CAIs) have been explored to offer therapeutic benefits to
human participants in various contexts, from addressing cancer-related fatigue to treating post-
traumatic stress disorder. Despite their widespread adoption, there are still unresolved questions
regarding the outcomes for both humans and animals involved in these interactions. Previous
attempts to address these questions have suffered from core methodological weaknesses, especially
due to absence of tools for an efficient objective evaluation and lack of focus on the canine perspective.
In this article, we present a first-of-its-kind system and study to collect simultaneous and continuous
physiological data from both of the CAI interactants. Motivated by our extensive field reviews and
stakeholder feedback, this comprehensive wearable system is composed of custom-designed and
commercially available sensor devices. We performed a repeated-measures pilot study, to combine
data collected via this system with a novel dyadic behavioral coding method and short- and long-term
surveys. We evaluated these multimodal data streams independently, and we further correlated the
psychological, physiological, and behavioral metrics to better elucidate the outcomes and dynamics of
CAIs. Confirming previous field results, human electrodermal activity is the measure most strongly
distinguished between the dyads’ non-interaction and interaction periods. Valence, arousal, and the
positive affect of the human participant significantly increased during interaction with the canine
participant. Also, we observed in our pilot study that (a) the canine heart rate was more dynamic
than the human’s during interactions, (b) the surveys proved to be the best indicator of the subjects’
affective state, and (c) the behavior coding approaches best tracked the bond quality between the
interacting dyads. Notably, we found that most of the interaction sessions were characterized by
extended neutral periods with some positive and negative peaks, where the bonded pairs might
display decreased behavioral synchrony. We also present three new representations of the internal
and overall dynamics of CAIs for adoption by the broader field. Lastly, this paper discusses ongoing
options for further dyadic analysis, interspecies emotion prediction, integration of contextually
relevant environmental data, and standardization of human–animal interaction equipment and

Animals 2024, 14, 3628. https://doi.org/10.3390/ani14243628 https://www.mdpi.com/journal/animals



Animals 2024, 14, 3628 2 of 36

analytical approaches. Altogether, this work takes a significant step forward on a promising path to
our better understanding of how CAIs improve well-being and how interspecies psychophysiological
states can be appropriately measured.

Keywords: canine-assisted interactions; wearable systems; psychophysiology sensors

1. Introduction

Canine-assisted interactions (CAIs) are a class of widely adopted complementary and
alternative medicines that utilize interactions with trained dogs. Like all animal-assisted
interactions (AAIs), CAIs aim to improve quality of life, which is reflected in specific clinical
endpoints (e.g., blood pressure, cortisol, etc.), for human participants [1]. There has been a
wide variety of outcomes, from no effects or neutral effects to certain benefits indicated for
human participants [2]. Many of these positive effects are attributable to bonding between
the interactants or to second-order effects of the interactions (e.g., exercise, external focus,
etc.), among other things [2]. In trying to better understand the nature and source of
the observed benefits, CAI researchers have recently been moving towards objective and
quantitative evaluative methods and away from more qualitative, subjective approaches.
Wearable sensor systems for dogs open up opportunities to glean greater understanding of
the effects of human–canine interaction [3,4]. However, both the measurement tools for and
the targets of this quantification would benefit from additional research and development.

While the use case of dogs interacting with humans in controlled environments
is the most common pet therapy, many studies focus only on quantifying the human
element, generally neglecting the dog’s perspective and limiting the depth of interspecies
interaction investigation possible [5–8]. This not only has ethical implications—in the
event that the selected therapy negatively impacts the dog participant—but also affects
the quality of the therapy, which is highly dependent on the well-being of the therapy
animal [2,9,10]. Similarly, CAIs tend to focus on general assessments of quality of life, but
the high variability in the measures used and the outcomes observed in these assessments
can partially be attributed to the vagueness of the typical quality of life concept. To address
these first two concerns, we propose switching to a dyadic psychophysiological perspective.
Psychophysiology generally refers to the idea that mental and emotional processes have
detectable physiological correlates, and it provides a more solid theoretical framework
for objective interpretation of quantitative CAI data [11–14]. Additionally, by focusing on
both members of the interacting dyad, this perspective allows for direct or comparative
measurements that the general quality of life approach does not focus on, such as those from
human or animal subjects with limited communication or non-existent survey-response
capabilities [15]. The existing studies specifically used activity levels to track sleep quality
in interspecies bedfellows only.

When considering quantitative data collection, some CAI researchers have incorpo-
rated biochemical assays (e.g., measuring oxytocin, vasopressin, or cortisol) and electronic
monitoring devices (e.g., measuring heart rate or blood pressure) into their studies, repre-
senting a major step in the right direction. As CAIs can range in duration from 10 min to
16 h and in activity from quiet stroking to vigorous physical movement, many of the current
tools confine measurement to pre-intervention and post-intervention data collection and
further limit these collections to clinical or research settings [2]. Common psychophysiolog-
ical measurements using the available biochemical and electronic monitoring technologies
can be very physically invasive and also tend to significantly impact or obstruct CAI ac-
tivities. To address these concerns, we deployed a study design that eliminates the need
for biochemical analyte collections. We utilized a wireless wearable electronic monitoring
system developed by our research group—hereafter referred to as SySy (synchronized
system)—for the continuous and non-invasive measurement of human and canine physiol-
ogy simultaneously, as described in Part I: Sensor System Development [16–20]. In Part II:
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Pilot Study and Proof of Concept , we present an initial experiment using this wearable
SySy for quantitative psychophysiological analysis of an interspecies CAI dyad. Though
nascent, this work contributes to field efforts aiming to better include and quantify the
canine perspective in CAI research and to improve animal-centered emotion-recognition
technologies for real-world deployment [21–23]. The tools, methods, and results in this
paper may eventually enable researchers to better and more consistently connect CAI
inputs to outcomes, to identify relevant psychophysiological states in dyad members, to
conduct studies validating CAIs as viable complementary therapies, and to increase the
benefits of CAIs for humans and animals alike as they interact in various contexts. The
products of this work may also significantly bolster studies in other human–animal interac-
tion scenarios by laying the foundational principles for real-life human and animal data
collection beyond the research environment. Altogether, this article presents a unique study
integrating and deploying multiple wearable systems on both interactants in a typical CAI
while synchronously collecting multimodal psychophysiological data and analyzing it in
comparison to simultaneous survey and behavior coding ground truths.

Part I: Sensor System Development

2. Overview of the State of the Art and Design Process

In order to fully motivate the need for an integrated approach to quantifying inter-
species interactions and to introduce an ergonomic, validated synchronized system for
addressing this need, we first reviewed the CAI field’s research and the broader human–
animal interaction (HAI) space’s commercially available devices for human or canine
psychophysiological measurement. The main questions of this mini-review were what
objective, quantitative, non-invasive (OQN) methods (largely electrophysiological mea-
sures) are used in AAI research and to what in the non-OQN space they are experimentally
correlated (e.g., biochemical analytes, psychological surveys, behavioral coding, etc.).

There were five main results from this investigation of the literature and beyond [2].
Firstly, of the many tools and methods to evaluate CAIs and HAIs, the most-often-used are
behavioral coding, biochemical assays, and psychological surveys, though non-chemical
physiological means, such as heart rate and blood pressure, are also becoming more rep-
resented. Secondly, there are several target substrates for evaluation in HAIs broadly
and AAIs specifically, with the most common by far being electrocardiography (ECG)
(especially heart rate/variability derivatives), oxygen saturation, respiratory activity, and
blood pressure. Thirdly, in keeping with major aspects of the “framework for selecting and
benchmarking mobile devices in psychophysiological research”, as described in [24], we
found the space to have 222 CAI-applicable devices to detect the most common physiologi-
cal targets, though “canine only” systems were severely under-represented and only 37%
were supported by a complementary/validating scientific publication. Furthermore, of
the system prices in USD as of 2023 that we could accurately determine by surveying 129
different devices, the mean cost was close to 150 USD in a range of 5–1700 USD [25]. Noting
that these commercially available systems measure only one or two signals each, this re-
flects the relative expense and limitations of using commercial devices, either individually
or in combination with others, in CAI contexts. Fourthly, several objective, quantitative,
and non-invasive (OQN) parameters show significant change independently and/or good
correlation with validated behavioral or psychological measures. For example, heart rate
often significantly decreases, systolic blood pressure often significantly decreases, and
diastolic blood pressure sometimes significantly decreases with human–animal interaction.
Additionally, positive or negative movements in these two cardiovascular metrics tend to be
reflected in accompanying survey instruments, but none, including other measures beyond
heart rate and blood pressure, have been consistently correlated across studies [1,26]. Lastly,
it is noticeable that the tools utilized throughout HAIs are generally non-specialized for
their respective use cases. Many tools are adapted from other targeted human application
spaces and often ignore ergonomic, experimental, and analytical peculiarities unique to
human–animal interaction scenarios. On a major related note, the animal’s perspective is
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often not considered or centered in the design/development of OQN devices. For these
non-human participants, the main measures are heart rate or movement, if collected at
all. Furthermore, having environmental- and interaction-specific sensors (e.g., barometric
pressure, intersubject proximity) may provide additional context for large-scale physiologi-
cal, behavioral, and psychological survey data sets that appropriate data science methods
may be able to detect and isolate. In other words, the full picture includes the human, the
animal, their interaction, and the environmental context.

These reviews also reiterated that in HAI there is much variation in study design,
which is accompanied by lack of controls and general measurement method inconsistency.
While targeted outcomes and study approaches may vary reasonably, the field could
benefit greatly from a core system and modular protocol developed with HAIs specifically
in mind. It is clear that the issues in study design and endpoint measurement stem from
methodological limitations and the feasibility of various tools for use with animals. This
brief overview provides researchers with some understanding of the tools that are currently
commercially available, and it allows them to identify some promising tools that could be
added to future OQN system development efforts. To further advance the field, a more
granular look into the interaction is required, along with the objective evidence base to
gain acceptance in medical communities, by insurance providers, etc., and the versatility to
evaluate a broader spectrum of subject outcomes. Methods that are objective, quantitative,
and non-invasive are the minimum needed to advance these objectives and move the AAI
field beyond the very common general tests of feasibility, comparisons between treatment
groups, or broad attributions of positive outcome from pet interactions.

2.1. Stakeholder Survey

The surveying of the literature provides a solid idea of the general problems in the AAI,
CAI, and HAI spaces, mostly centered around the standardization of experimental protocols
and the efficiency of measurement tools, as well as some of the components necessary
to address them, such as dyadic, multimodal research, and commercial systems. While
there are thousands of published AAI studies, most pet therapy programs occur without
a specific publication record. Therefore, we conducted a brief survey study that solicited
responses and opinions from CAI stakeholders (i.e., researchers, facilitators, participants,
patient family members, therapy dog handlers, and any other individual involved in
CAIs). This was done with a combination of an 8-point Likert scale and 14 short-answer
questions asked of 10 respondents via four sections of an online survey approved by the
NC State Institutional Review Board [see Table S1 in Supplemental Materials]. With Likert
responses of 1 and 5 indicating the negative and positive extremes, respectively, ratings
of 2 or 4 conveying the sentiments of ‘somewhat negative’ or ‘somewhat positive’, and
3 representing a neutral response, only the response means for six questions out of eight
were above neutral. The exceptions were the questions about satisfaction with the current
methods and with the outcomes of CAIs for dogs. This echoed the review results in previous
sections, where researchers were able to proceed with their work somewhat, but consistently
called for methodological improvements and more canine emphasis. Also worthy of note
are the responses to the two last questions, which indicate that the respondents more than
‘somewhat’ believed that environment greatly affects CAIs, and that they were optimistic
about the future of CAIs. This is an encouragement for device and system developers to
address the gaps in the field and also to incorporate ambient, environmental, and other
contextual signals into their development processes.

The remaining non-Likert sections of the stakeholder survey asked questions about
how to best identify psychophysiological states in CAIs, about the context and design
of CAIs, and about the respondent’s thoughts on our custom SySy design plans af-
ter a contextualization primer [see Table S2 and Figure S1 in Supplementary Materials
Section S1]. Responses to open-answer questions were evaluated thematically, and the
most salient trends are reported [27,28].
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Question 9 asked about the indicators of psychophysiological states in dogs. In
keeping with the literature [29], the respondents generally identified a relaxed body, tail
wagging, and engaging approach behaviors as primary positive indicators, and a tense
body, avoidant behaviors, tail tucking, yawning, lip licking, and “whale eyes” as key
negative indicators. Some of these indicators, like tail wagging, are better-suited for
assessment by OQN measurement systems, while others, like “whale eyes”, may be more
complicated to consistently detect. When asked in Question 10 about past experiences
measuring psychophysiological states, the responses were grouped around the themes of
using observation over extended time deltas, behavioral coding, or checklists, and some use
of ECG, salivary cortisol, or the owner report. Confirming the general tenor of the literature,
half of the respondents cited little-to-no experience here. The Question 11 responses
strongly centered on non-invasive wearables for dogs and video assessment tools as the
most desired additional needs for use in CAIs. The respondents also indicated interest
in validated written assessment tools, protocols for individualized psychophysiological
state assessment, and more handler training in assessing their therapy dog’s state. The
Question 12 responses about desired data parameters centered on exportable, objective
data in an intuitive format for non-technical users. One respondent, identifying herself as a
program director, stressed the “objective” component as she currently relied on participant
anecdotes and staff opinions to evaluate CAIs, and she noted that she could greatly benefit
from standardized methodologies. Otherwise, the respondents were largely interested
in making decisions about the success of the dog in the CAI context (e.g., duration and
intensity of interactions, suitability for the task, match to patient, etc.)

Questions about the designs of CAI experiments and the contexts in which they occur
revealed three key themes. Firstly, the dogs, handlers/owners, and clinical staff were most
consistently present during the interactions, which lasted between 30 and 60 min and could
occur in contexts ranging from schools and clinics to busy hallways and lounge spaces. As
most CAIs are modeled as an interaction between a human and a dog, psychophysiological
theories should be updated to include between one and two individuals beyond the human
subject and the therapy dog (i.e., the dog handler and, potentially, a researcher/clinician).
Next, the respondents expressed interest in the integration of measurement systems into
existing dog attire (e.g., collars, vests, etc.) and for human systems to be non-distracting and
to maintain privacy. Lastly, the CAI activities most likely to induce positive psychophysio-
logical states were, for the therapy dog, (a) gentle petting, (b) exercise and play, (c) feeding
and treats, (d) calm vocalizations, and (e) copious breaks, and, for the human interactant,
(1) touching the dog, (2) having a good conversation with the handler, (3) seeing a happy
dog. These items could all be considered for incorporation into a modular CAI protocol
aimed at the maximum benefit for the human and animal interactants. These responses
also reaffirm the notion that the dog’s experience affects the quality of the interaction for
the human.

The last survey question asked for general recommendations, and, as such, the re-
sponses varied. Two experimental suggestions included (a) testing our custom SySy in
individual interaction settings vs group CAIs, and (b) recruiting diverse human subjects
(as certain populations are very unrepresented in CAIs research) as well as diverse canine
subjects (citing a relative over-representation of golden retrievers). One respondent ex-
pressed dissatisfaction with an existing commercial pet wearable while another implored
us to focus heavily on the canine perspective since humans can speak for themselves. This
interrogation of stakeholder’s opinions was very informative for the development of both
a modular protocol as well as objective, quantitative, and non-invasive systems for CAI
and psychophysiological state assessment. Overall, the respondents mirrored many of the
thematic issues highlighted in the literature reviews, and they were, generally, sanguine
about the future of our lab’s proposed SySy and of the CAI field, in general.
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2.2. Device/System Characterization

Due to the absence of a single commercially available system that could gather all the
relevant data streams simultaneously and synchronously, we assembled a custom system
composed of commercially available integrated circuits and sensors to work in concert
to quantify CAIs. The core advantages to this approach are access to most data without
filtering through proprietary algorithms, higher sampling rates, power optimization, in-
creased intuitiveness for non-technical users, and a modular, wearable test bed that is
functional even if or as individual devices are added or removed. All these make up a
custom application-specific system to better suit given AAI scenarios.

The custom-assembled sensor system (Figure 1) includes a suite of two wrist-worn
sensors and one chest-attached sensor for the human participant. One of the wrist-worn
devices is a commercial sensor for collecting electrodermal activity and skin temperature
(Empatica E4). The other wrist-worn device was developed at NC State and includes
photoplethysmography (PPG) and inertial measurement sensors in the form of an ac-
celerometer to characterize wrist movement. The next generation of this system will
include skin temperature and electrodermal sensors to eliminate Empatica E4 completely,
using a single-wrist system. The chest strap includes an ECG-based heart rate monitor
and another accelerometer for the chest movement [18]. For the canine participant, the
system assembled includes a harness for torso movement and an ECG sensor for heart
rate tracking [30]. This is coupled with a collar device for another accelerometer on the
neck region of the dog [31]. Each device in the system is supported by non-adhesive,
custom-designed electrodes and communicates with a data aggregator via Bluetooth [25].
The custom-designed human and canine sensors also include environmental sensors that
were not used for this study, as is explained later. These include ozone, volatile organic
compounds, relative humidity, barometric pressure, ambient temperature, noise, and light.
All these five systems (three for humans, two for dogs) work with an iOS smartphone app
to stream data continuously and synchronously before storage to the cloud [32–34]. The
canine harness includes a neck strap stabilizer with pockets and through-holes for wiring
and electrode-to-skin access without shaving fur [17].

Figure 1. Custom-designed wearable research system devices, representation, and data streams. The
chart on the left depicts the involved CAI data streams. The dog and the human silhouettes depict
the location of each system device. The representative pictures and paired lists further depict each
system’s location and sensors.

It is important to note that all of the discussed research systems are robustly designed,
as recommended by experts, stakeholders, and the literature, for use in movement contexts
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and/or to be deployed in canine-involved scenarios [35]. Once assembled, bench testing
and characterization of the devices of the combined wearable system was necessary, to
ensure its operationality and suitability for CAI purposes. For this effort, we used the
“Standard In-lab Testing” (SIT) protocol previously developed by our technical team,
wherein (1) each sensor on each device was evaluated, (2) each device’s connectivity
was interrogated, and (3) each device’s battery charge and discharge characteristics were
noted [36].

For heart rate (HR) validation, we used a bulky and large commercial device (Go
Direct™ EKG Sensor, Vernier Software & Technology, Beaverton, OR, USA) as ground
truth. The heart rate, determined from the various ECG sensors, was assessed during
a 4 min human and canine subject deployment [Table S3] and benchmarked against the
ground truth system, with an absolute error of 0.36% and 0.64% for humans and dogs,
respectively. The estimates and interpolation of HR from PPG, with respect to the Vernier,
caused an absolute error of 6.19%. The gravitational pull and rotation of devices along
three orthogonal axes during characteristic movements provided the necessary controlled
acceleration for activity-level assessment. The general connectivity prominence behavior
of each device was tested by measuring the received signal strength indicator (RSSI) of
the BLE signal at various distances from the connected iOS or computer device, using the
nRF Connect Analyzer iPad app. We also tested the wireless connection range of each
device in one or more environments (i.e., in an open field outside, in a typical house with
many rooms, and in a long office building hallway). Finally, we also assessed the median
device battery life and charging duration through timed charging–discharging cycles.
Individual sensor and connectivity range test representative examples can be found in [36].
Tables S4–S6 summarize the remaining devices’ connectivity, signal strength, and battery
life results, respectively. Since typical CAIs range from 10 to 60 min with a median value
of 20 min and occur within approximately 20 ft-by-20 ft spaces, our integrated wearable
system is sufficient to provide high-quality quantification of the relevant signals in these
interactions [33,36–40].

2.3. Ergonomics

The next stage was to comparatively verify the ergonomic viability of the assembled
wearable systems for both the human and canine participants, in context. Developing
a protocol to measure the animal wearability was boiled down to an ethnographic and
literature survey. Notably, a scan of various literature databases found very few papers
that focus on canine ergonomics—including that of working military, police, or service
dogs. It revealed an insufficient treatment of the subject, and it represents a major gap
in this research space [41]. An important exception is the work presented in [42], which
thoroughly discusses animal ergonomics. The study presented in [43] argues the inabil-
ity of humans to avoid anthropocentrism and the consequent exploitation of animals as
the core reason, where humans create a device without animals directly being involved
in the process. Another study [44] discusses the guiding principles for animal-centered
systems, after observing the reactions to certain devices. Aspects like sensory impercepti-
bility, physical unobtrusiveness, and cognitive unacceptability are all important factors in
the wearability of the devices for non-humans. Differences in the behavior of an animal
before and after wearing the device illustrate the animal’s judgment of the device. This
approach—confirmed by our stakeholder survey experts, as well—was the primary evalua-
tive paradigm we employed for dogs. By working within an animal-centered framework,
we hoped to minimize the human-centered pitfalls that are inevitably intertwined with
animal technology.

On the human side, it was decided that a mixture of rapid upper limb assessment
(RULA), rapid entire body assessment (REBA), and ethnographic research would provide
the best ergonomic measures for humans, though we also considered the Borg, comfort
rating, psychophysiological neuroergonomics, and many other wearability scales [45–48].
Our approach was to first evaluate how people had evaluated human wearable devices
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across contexts (e.g., occupational, industrial, etc.) and to review maps of possible device
placements/configurations on human bodies [49]. From the aforementioned resources and
searches, we extracted the relevant considerations for humans (and, as appropriate, canines),
focusing primarily on wearability, usability, and safety. As an example, these considerations
for canines included device weight-to-body mass ratio, safety, general size/bulkiness,
surface area covered (noted in the stakeholder survey), and easy integration into existing
attire. For humans, the foci were comfort, required additional energy expenditure, level
of anxiety induction, propensity for physical or mental distraction, feasibility of usage in
combination with other devices, etc., [50]. Developing survey questions that incorporated
these general and specific considerations culminated in our ergonomics test protocols for
humans and for canines, with the accompanying survey instruments. Each survey was
expected to be taken by the wearer after a period of directed exercise and movements or
after use in an experimental session, and they are herein reported as aggregated Likert
scale responses or thematically summarized open-ended feedback [see Figures S3–S5]. We
also compared our custom SySy prototype with an assembly of commercial off-the-shelf
wearables for humans (including Qardio arm, MUSE headband, Biostrap, GoBe2, Polar
H10, Zephyr Belt, Oura Ring) and dogs (MeasureON!).

To evaluate the ergonomics for wearable devices, we collected several ratings of the
various human and canine wearable device candidates from two human subjects, using
the test protocol and ergonomics surveys [Tables 1 and 2]. These demos focused on how
the system worked in an animal-involved scenario (e.g., ease of setup, wires affecting
interaction, animal toleration, data export). The human wearable devices tested scored
in the C and B range with the exception of the Empatica E4 [Table 1]. The main fault
of the rated sub-A systems tended to be in the General Questions section asking about
comfort during wear, ease of set up, and not generating negative emotions. Non-Likert
scale comments spoke to many devices’ difficulty in exporting raw or any data, provided
descriptions of exactly how movement was limited, and often re-emphasized discomfort.
For Empatica E4, the only major comments concerned its general bulkiness, relative to the
wrist, and the fact that it must be worn sufficiently tightly to maintain contact with the
electrodermal activity and skin temperature electrodes. The only commercially available
canine wearable device physically tested was the VetMeasure MeasureON! System that
earned a D rating ergonomically but brought useful additional measures to the table
(i.e., canine skin temperature) [Table 2]. The comments here centered on the system’s
difficulty to set up and the discomfort to some dogs caused by the comb-like metal electrode
prongs. Generally, the commercially available wearable devices evaluated have limited
adjustability and, thus, must be pre-selected or subsequently modified to best fit the range
of human and canine sizes.

Overall, evaluating the wearable devices ergonomically was very informative, with
some notes. Many devices had very low sampling rates (i.e., one measure every 2 to 5 min),
difficult setup/affixing protocols, and non-transparent data-processing pipelines. These
opaque processes involved proprietary algorithmic manipulations of the data that we could
not interrogate as to their validity, efficiency, or effectiveness for our purposes. That said,
some commercially available systems have the added benefits of being widely cited in the
scientific literature and/or having officially associated analytical pipelines with smooth
data processing (i.e., Empatica E4, MetaMotionR).
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For the individual and combined ergonomics of our SySy research prototype, we also
asked the human participants (from the experiment detailed in Part II: Pilot Study and
Proof of Concept) to complete the full human and canine ergonomics evaluation forms
after every full session. From these evaluations, the custom wrist band and chest patch
research systems scored in the A and B range, respectively. The comments about these
systems centered around dealing with gel-based ECG electrodes and other medical tapes
for affixing the chest patch enclosure, device stiffness, and some limitation of wrist mobility
for the wrist band [Table 1]. The custom canine harness and smart collar research prototype
individually scored in the C and A+ ranges, respectively. The latter score was due to
the collar unobtrusively clipping onto the dog’s collar—a very seamless integration into
existing attire—with only one comment noting some very minimal limitation in brushing
the dog’s neck area [Table 2]. The harness rater subtractions and comments occurred due to
the Velcro interacting with fur, especially when the dog rubbed against non-living objects
(like carpets or clothing), canine discomfort with ECG electrode gels, and limitation of
some of the surface area for petting when very small dogs wore the custom harness system.

In combination, the SySy faired well from a human perspective, as our initial attempt
at an integrated synchronized system for quantifying interspecies interactions. It scored
an A with comment themes reiterating the aforementioned difficulties with adhesives and
wrist motion. Additional notes were that for dogs that like to jump up on the chest there is
some unavoidable chance that human torso-borne devices can become dislodged and that,
for small dogs, the interaction of wrist devices with canine harnesses can be somewhat
limiting. From the canine perspective, the combined SySy collar and harness also scored
well (i.e., A-), with similar comments focused on exposed Velcro catching other fabrics, on
the inability of dogs to reach itches under the harness, and on the general limitation of
petting real estate. Throughout these pilot test interactions, we also tested the ergonomics
and data collection of a diaper-borne intertial sensor to detect tail wagging [Figure S6 ] [51].
For this, some dog owners noted that their dogs did not like the diaper and that this
approach should be modified/resized somewhat to allow for more fur and canine private
area freedom.

In our design process, two changes were implemented on the SySy prototype, based on
these ergonomic evaluations. Firstly, we started to use more user-friendly tapes and straps
for attaching the custom chest patch to the human body, in order to better accommodate
female subjects and to increase comfort. Secondly, as the majority (71.9%) of canine subjects
had long or medium-length fur, which can interact poorly with Velcro, we designed an
alternate harness option for housing the electronics, which was made of stretchable, rayon
fabric [see Figures S7 and S8 in Supplementary Materials Section S3]. This change kept the
adjustability of the main custom harness prototype, reduced the bulkiness and surface area
covered, and eliminated the use of Velcro (by tying off the ends of the fabric).

Part II: Pilot Study and Proof of Concept

In order to advance the state of the practice in CAI measurement, the previous section,
titled as “Part I: Sensor System Development", briefly described our efforts to review
scientific and commercially available wearable sensor systems, collect CAI stakeholder
needs, characterize the included devices, and evaluate the systems’ ergonomic impact in
context. Together, these efforts resulted in an iterated SySy design and prototyping process
for CAIs. This system was used throughout the pilot test described here in Part II.

2.4. Pilot Study Objective and Theoretical Background

In this section, we present a pilot study to deploy our SySy prototype and to analyti-
cally probe the relatively higher-resolution dyadic data collected, from a CAI context. We
were interested in the investigation of the following questions: (i) Does the interaction lead
to an increase in positive psychophysiological states across all relevant measures when
compared to a neutral, non-interaction period for the human and for the canine? (ii) Does
the human–animal bond measurably exist, does it grow stronger with time together, and
can it be peripherally detected with the wearable system’s physiological data? (iii) Do
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human–dog interaction inputs (e.g., human touches dog; dog licks human) lead directly
to the observed AAI outcomes (e.g., from surveys; in clinical endpoints), and are the data
collected continuously capable of demonstrating these connections?. As with any pilot test,
the evaluation of these questions was preliminary and highly contingent on experimental
execution and data quality.

Our approach was motivated by the core psychophysiological framework, which
suggests that mental and emotional states (such as stress, bonding, and flow) have phys-
iological correlates in animals, which are context- and stimulant-dependent [19,20,52].
Affective states are multifaceted events that recruit multiple bodily systems, from the
neural to the endocrine systems, and they are best approximated by fusing and correlating
multimodal data streams from several related sources [20,29,37,52]. For the purposes of this
pilot test, a positive psychophysiological state was defined as a composite of the positive
dimensions of each of the included modalities (i.e., survey, behavior coding, physiological
data), as determined by the interrogations of the literature. As posited by several CAI
mechanistic hypotheses, we assert that positive human–animal interactions can lead to
dyadic relationships that can then encourage human–animal bonds via mutually beneficial
quality time and positive contact [53,54]. Finally, we see potential in behavioral and physio-
logical synchrony as a burgeoning metric of bonding between species [55,56], and we also
see potential in heart rate, heart rate variability, and physical activation as relevant indices
of human and canine well-being [29,55,57,58].

Overall, we aimed to use the same devices and systems across a number of individuals,
to collect data that would provide a unique perspective when compared and correlated to
each other. This would produce generalizable results and could help persuade the broader
CAI field to use standardized protocols, systems, and analytical methods to increase the
comparability of data across studies [59]. Specifically, this approach advocates the adoption
of the integrated tools developed and described herein—and, potentially, the non-contact
or camera-based ones described elsewhere [60,61]—by other AAI studies outside of the
laboratory and/or for use by agricultural or domestic animal-involved stakeholders. An
additional goal of this pilot study was to differentiate between positive, negative, and
neutral psychophysiological states in the context of brief CAIs, initiating and lubricating
the transition from anecdote or quality of life measures to more objective approaches [62].
This would then enable large randomized controlled trials that would further breakdown
the macro-psychophysiological state categories of positive, neutral, or negative into distinct
categories (like fear, joy, etc.) and/or spectra (like valence, arousal, etc.), as desired by
researchers [62,63].

3. Methods

3.1. Study Procedure

This study was granted the following ethical aprovals: NC State University Institu-
tional Review Board (IRB) protocol numbers 20810 and 24393, NC State University Institu-
tional Animal Care and Use Committee (IACUC) protocol numbers 24135. Our pilot study
included a convenience sample of 8 adolescent/young adult humans (female = 62.5%) and
4 canines (female = 25%; breeds = Shih-Tzu and Maltese mix, Pitbull and Lab mix, Pitbull,
and Yorkshire Terrier). The subject inclusion/exclusion criteria were as follows: (A) at
least one of the human participants must have owned the participating dog for 6 or more
months; (B) the dog must tolerate both collars and harnesses well; (C) the human must be
willing and able to wear devices on both wrists and on the chest for roughly an hour [64];
(D) the human subject must be able and willing to complete both written/online surveys;
and (E) both members of the dyad must be able and willing to come to a dedicated NC State
University research lab space for data collection on at least two different days. Altogether,
the recruited human and canine subjects, variously paired, completed 22 experimental
day sessions.

The pilot test was performed using an exercise research facility at NC State University.
The room was carpeted, climate controlled, and isolated from noise or interruption by
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encompassing walls, a door, and floor-to-ceiling shades over the windowed areas. The
human and dog participants were allowed time to become acquainted with the environment
while the researcher went through the process of initiating the wearing system for data
collection. The interactions were unstructured and largely human-seated/non-ambulatory
interactions with the dog (e.g., talking to, touching, grooming, toy play, treat giving,
commands, etc.) without the researcher in the room. It was left to the subject to determine
whether to keep the dog leashed during the interaction, and most, but not all, opted for
this setup [59]. As described below, survey instruments were administered before and
throughout the experimental subsessions. The researcher would keep time and enter the
experiment room to communicate the transition to a new subsession but would otherwise
leave the participants unmonitored and uninterrupted. The 10 min interaction sessions
were couched, before and after, in neutral sessions for the humans to sit quietly, alone,
and relax (e.g., by reading a book, meditating, listening to music), with the dog being
removed from the research space by the researcher [Figure 2]. These 5–10 min neutral
sessions served both to reset the human’s experience and to provide multiple same-day
comparative baselines as features of emotions that were relatively non-stationary [8,65,66].
While some canine subjects rested during the human neutral subsessions, the official
baseline for the dog occurred during a separate set of 5–10 min periods, during which
they wore the physiological equipment and came to a natural rest state (i.e., they relaxed,
crouching with head down or otherwise lying down fully) in the presence of their human
partner and the researcher. In keeping with the field best practices, the evaluation methods
were mixed, including physiological data collection, human subject surveys, and behavior
coding [12,39,67–71]. All the test procedures were approved by the NC State University
Institutional Review Board and the Institutional Animal Care and Use Committee.

Figure 2. Pilot test protocol flow chart [72]. INT1 = interaction session 1; INT2 = interaction session 2;
NEU = neutral session.

As previously discussed, this study focused on both human and canine subjects’ re-
sponses to the interaction. Therefore, both participants wore physiological data-collection
equipment in this pilot study. The SySy prototype used included (i) the custom chest
patch, custom wrist band, and Empatica E4 for humans, along with (ii) the custom smart
collar and custom harness systems for dogs [67]. Each device had been introduced by
our research group previously [16–18]. These devices were selected for the biological
signals acquired, their high sampling rates, their stability during movement, their positive
ergonomic profiles, and their relative ease of use. Together, they make up the first syn-
chronized system for interspecies interaction measurement. As part of this human–canine
interaction research setup, and for post hoc behavioral coding, two or more smartphone
video cameras were used to capture all angles of the research space during the interaction
and neutral subsessions.

3.2. Analysis Design
3.2.1. Epoch Selection

Interested in the internal dynamics of a CAI session, we first selected a repeatable
time period upon which to focus our analysis. We used the information available in the
literature [69,73,74] to determine the time intervals of interest for each collected signal
and to select the most appropriate epoch length to track the desired changes in physical
phenomena across signals. These existing works showcase that for several relevant affective
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measures, phenomena changes can be reasonably measured on the 5 s-to-30 s-to-1 min
timescales, and several papers in the canine literature have 5 s-to-15 s-to-5 min sliced
time frames [69,75–78]. As such, we selected 10 s epochs to capture the fastest changes
(e.g., arousal via inertial measurement units), though we recognize (a) that significant
changes in heart rate variability were likely to have occurred somewhat slower than
movement activity fluctuations, and (b) that other metrics, like skin temperature, were
likely even slower. However, this standardization across metrics was necessary for our
proposed analytical approach, not uncommon in the scientific literature, and it still reflected
appropriate changes across each metric.

3.2.2. Behavioral Coding Approach

For human–animal interactions, one of the best, validated behavior coding paradigms
is observation of human–animal interaction for research (OHAIRE), which provides a more
objective rubric for dyadic assessment [57]. Using one–zero interval sampling, this schema
tracks facial, verbal, and other physical indicators from each interactant and from the interac-
tion as a whole before applying standard comparative statistics. Even though this tool was
specifically created and is often used for evaluating HAIs, there exists incredible variability in
the behavior coding methods and there is little consensus on which coding schema is most
appropriate for assessing psychophysiological states in CAIs [59,79–81]. Other approaches
include behavior counting, which begins with determining a time point, emotional state
behaviors of interest, and how they will be analytically interpreted [82]. These behaviors and
the time points or time ranges at which they occur are then demarcated in software tools, such
as BORIS or ELAN, spreadsheets, such as Microsoft Excel, and/or hand-written notes, before
general analysis [83,84]. Another approach, referred to as qualitative behavioral analysis, has
strong support in the social sciences and involves the integration of a human’s holistic per-
ception of a subject, to produce descriptors like “relaxed” or “frustrated” [82,85,86]. In other
words, if behavior counting can be understood as a quasi-objective observational approach,
qualitative behavioral analysis is well described as a quasi-subjective perceptive approach.

Our behavior coding approach—herein referred to as psychophysiological state assign-
ment (PPSA)—is a quasi-subjective approach similar to qualitative behavioral analysis, and
borrows several elements from the OHAIRE approach as well. It is informed by extensive
evaluation of the CAI literature’s coding schema, to isolate the reliable indicative behaviors
of affective and affiliative states for each species involved. PPSA, then, involves perceptive
coding of each interactant into positive, neutral, or negative psychophysiological states
for successive, non-overlapping 10 s epochs throughout the session. To minimize bias
and maximize consistency, this coding was performed by three raters, two of whom were
previously fully trained in the OHAIRE system [80,87–89]. Using Cohen’s Kappa value as
a measure of inter-rater reliability in post hoc video coding, the three raters were above
the common 80% agreement standard in human–animal interaction studies, scoring 89.9%
and 95.7% for humans and for canines, respectively [57,58]. PPSA preserves the temporal
benefits of qualitative behavioral analysis and allows raters to use any composition of
descriptors to inform assignment to one of the three possible psychophysiological states.
These assignments, in turn, can be represented as computer manipulatable, numerical vari-
ables: −1 for negative states, 0 for neutral states, and 1 for positive states. It is important
to note that these state labels are meant to represent clear regions along a spectrum from
negative to positive psychophysiological states, whereas normal qualitative behavioral
analysis labels are not necessarily similarly inter-related. It is also important to note that our
and other researchers’ interpretations of behavior were limited, and that disambiguating
between subjects’ true states and consensus views on what observed behaviors indicate
was beyond the scope of this study. As for the affective state, psychological surveys before
and after subsessions are considered to be gold-standard ground truths. In the meantime,
this PPSA behavior coding approach served as a good, semi-continuous ground truth for
the duration of interactions and for non-conversant canine subjects. Subsequent analysis of



Animals 2024, 14, 3628 15 of 36

the behavior coding data utilized basic statistical averages and simple percentages with
appropriate exclusion of indeterminate epochs.

3.2.3. Survey Selection and Analysis

Our literature search provided several options for relevant survey instruments to
be considered (for an exhaustive list, see Appendix 1 in [90]). Six surveys were used in
this study for primary comparison and as ground truth options for certain physiological
data collected: (i) Canine Behavioral Assessment & Research Questionnaire (C-BARQ);
(ii) Monash Dog Owner Relationship Scale (MDORS); (iii) Self-Assessment Mannikin (SAM);
(iv) Positive and Negative Affect Schedule-Short Form (PANAS-SF); (v) Human Ergonomics;
and (vi) Canine Ergonomics. The non-ergonomic short-term surveys, SAM and PANAS,
were completed by hand before, between, and after the experimental day subsessions; they
are capable of measuring short-term fluctuations in valence, arousal, positive affect, and
negative affect or anxiety [91,92]. These four parameters from these two instruments were
the closest to and best measures of our desired conceptualization of psychophysiological
states that (i) were also available as relatively brief psychological surveys, (ii) complemented
the affective inferences to be made from our physiological data [64], and (iii) were robustly
validated in the literature for our and other use cases [12,93–97]. The human and canine
surveys for ergonomics were internally developed and were completed at the very end
of the experiment by the interacting human subject. The C-BARQ and MDORS long-
term surveys were completed at the human subject’s leisure outside of the experiment.
These targeted in MDORS a common measure of human–canine relationships and in
C-BARQ a standard evaluation of the dog’s general behavior [32,98,99]. It is important
to note that all human subjects were required to complete MDORS, but only the dog’s
primary owner completed C-BARQ. In addition to following the survey instrument developers’
recommendations, the survey data analysis used basic average statistics as well as the
Wilcoxon signed-rank test for general data comparisons and repeated measures data. We
considered a 2-sided p-value of <0.05 to be statistically significant. To keep this study
more concise, the ergonomics surveys and the C-BARQ behavioral survey results will be
analyzed and presented in a future publication.

3.3. Physiological Data Analysis
3.3.1. Signal Selection and Calculation

All physiological signal metrics were selected upon extensive review of human and
canine psychophysiology in response to interaction and indicative of affective states. Using
the selected epoch time frames and the classic psychophysiological theoretical framework,
we took the raw physiological devices’ data and completed a preprocessing step that
included an initial data check and removal of outliers. We then filtered each signal, us-
ing bandpass Butterworth filters, we completed a normalization step, and we achieved
temporal synchronization across the multimodal device signals and with the behavior
coding output [36]. The second core analytical step included two forms of metric extrac-
tion: average metric by epoch (ME) and rolling window average by epoch (RE). From
the accelerometer signal (also referred to as the activity signal or inertial measurement
unit (IMU)), we directly calculated the average, minimum, and maximum acceleration by
epoch along each spatial axis, before calculating the mean amplitude deviation (MAD)
by axis and the integral modulus of acceleration (IMA) across dimensions [35,100–107].
Similar IMU metrics to those described above were also supported for analysis of canine
activity [108–110]. From the ECG signal, we used ECG waveform R peaks to extract the
interbeat interval (IBI), using the “Pyphysio” toolbox in Python 3.7 via Google Colaboratory
Jupyter notebooks [111]. With IBI serving as the basis for all the other ECG metrics, we
then determined heart rate (HR) and three additional heart rate variability (HRV) metrics
in the time domain. These included the standard deviation of the IBI of normal sinus
beats (SDNN), the root mean square of successive differences between normal heartbeats
(RMSSD), and the quotient of SDNN and RMSSD [38,75]. Briefly, RMSSD estimates “va-
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gally mediated changes” in HR while SDNN tracks both parasympathetic and sympathetic
nervous system activity contributions to the recorded HR [112]. As noted, IBI and HR
extraction is standard for ECG analysis, and the three HRV metrics were well supported
for both human and canine evaluation of valence, stress, and other psychophysiological
constituent states [20,32,37,38,75–78,112,113]. From the skin temperature (ST) signal col-
lected by the Empatica E4, we simply determined the average ST value by epoch [39,114].
From the electrodermal activity (EDA) signal, we extracted the average and maximum EDA
values to characterize the combined galvanic skin response. We also ran this signal through
the developer’s EDA Explorer online platform, to remove artifacts, to detect the phasic
skin conductance response (SCR) peaks for short-term stimuli, and to differentiate the tonic
skin conductance level (SCL) long-term baseline [108,115,116]. The EDA analysis in this
paper focused only on the SCR short-term stimuli responses. RE—the rolling window
metric extraction—calculates the same metrics from the same preprocessed signals as the
ME approach but, rather than a sequential averaging by 10 s epoch, it uses a centered, 60 s,
rolling window to produce a 10 Hz output signal (e.g., from a 200 Hz chest ECG signal, RE
produces a 10 Hz average heart rate signal). Though we extracted a 10 Hz RE signal for all
of our metrics across all 5 devices, the RE output is expressly used herein for correlational
analyses of synchrony only. The selected output frequency of 10 Hz was based on the
human and canine torso signals held in common (i.e., chest ECG and chest IMU on both
subjects). While all signals or metrics were used and investigated throughout the analysis,
for spatial economy we present a meaningful subsample of signals in this paper.

ME signals were processed as appropriate to produce the summary tables and heatmaps
displayed throughout. For each experimental session, we also calculated the difference
between epochs by metric, and we marked the increase or decrease of each metric over
the entire session. Then, referring to our literature review, we assigned a direct or inverse
relationship from that metric to the expected effect on psychophysiological states, and we
coded the epochs throughout the session for their positive or negative contributions to said
states. All metrics were also associated with and grouped according to valence (herein also
called stress) or arousal. Afterwards, these heatmaps were inspected visually for vertical
and horizontal patterning.

3.3.2. Data Analysis Part 1: Overall Methods and Interpretation

Again, the products of the aforementioned metric extraction or ME step contained
the biometrics averaged over each epoch. We read all of these ME results from the various
devices assembled under the SySy prototype, and we synthesized them by performing
6 epoch averages at the beginning, middle, and end of each subsession, representing key
minutes from the dyadic interaction. For overall reporting of physiological data by signal,
we used average test statistics and the Wilcoxon signed-rank test to compare between
session types; we used the Pearson correlation test statistic for comparisons between
multimodal data averages across interaction subsessions [19,20,75].

Given the large number of physiological signals collected from each dyad, there was
some nuance to their individual and joint interpretation. Most reported sources find that
increases in HR, EDA (e.g., skin conductance responses), and ST are generally understood
to indicate elevated arousal in humans [19,63,67,117]. Additionally, increases in HRV time
domain metrics (specifically, SDNN and RMSSD increases) indicate a decrease in stress and
potentially more positive states/emotions [19,20,38,118,119]. For interpretation of canine
physiological signals, increased HR often indicates higher arousal and increased HRV also
indicates more positive canine states [29,75–78,113]. For both species, we assume that
sustained increases in average movement in three dimensions over a given epoch of time
indicate more arousal and, thus, less calm states for that subject. We followed these broad
field guidelines for interpretation of our results, but note that further independent valida-
tion of these directionalities for each species was beyond the scope of this work as there was
no “one-to-one relationship between emotional changes and autonomic activation” [120].
Additionally, the debate surrounding a complete psychophysiological theory of emotional
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states and their interpretation for humans, not to mention animals, is ongoing [19,52,63,121].
Lastly, we acknowledge that psychological surveys and our behavior coding approach,
by design, produce state-based outcomes while the physiological approaches can only
produce directional outcomes in comparison to previous time periods’ signals.

3.3.3. Synchrony Methods

The wearable systems were located on both human wrists and on the human chest as
well as on the canine’s torso and neck. As such, we only considered the torso systems, repre-
senting the signals shared between species, for synchrony investigations of bonding. While
of potential interest for exploring previously unknown inter-relations and for identifying
relevant movements, like dog petting, for example, the data from the other subsystems
either had no direct correlate in the opposite dyadic counterpart’s subsystems or would
necessarily have resulted in spurious data (i.e., it was likely not valid to correlate human
hand motion to dog neck motion.) Additionally, psychophysiological measures closer to
the center of mass are generally understood to be less prone to movement artifacts [19,100].
Using an 18-epoch (i.e., 3 min) RE slice taken from the middle of each interaction subsession,
we used two approaches to determine interactional synchrony as a proxy for bonding.
First, the overall Pearson’s correlation for our three key ECG metrics (e.g., HR, SDNN, and
RMSSD) and for one key activity metric (e.g., IMA) was calculated [122,123]. We further
tested the metrics’ interspecies interaction via the dynamic time-warping methodology,
to track these key time series’ data alignment in general and when assuming temporal
asynchrony [123,124].

4. Results

We were able to successfully deploy wearable physiological measurement systems on
both human and canine subjects simultaneously and continuously as they interacted. Anal-
ysis of this pilot data is presented in this section and attempts to answer the aforementioned
questions of interest to the AAI, HAI, and CAI fields.

4.1. General Survey Responses

For the survey responses, we investigated the time and type dependencies of the
valence and arousal outputs from the SAM and the positive and negative affect outputs
from the PANAS. The four survey scales were taken during interstitial experimental periods,
meaning there was no survey before the baseline session. For positive or negative affect (i.e.,
“PA” and “NA”, respectively) larger numbers indicate more positive or more negative affect
[Table 3]. For the SAM valence and arousal scores (i.e., “V” and “A”, respectively), larger
values indicate more unhappiness and more calmness, respectively. Where appropriate (i.e.,
excluding surveys from 2 of the 22 sessions for participants missing, incomplete, incorrectly
filled out, or otherwise spoiled survey data) we ran the non-parametric Wilcoxon signed-
rank test, using the self-same function from the SciPy library to compare outcomes for
neutral-type to interaction-type sessions [75,125]. For individual subsessions, some clear
patterns emerged. SAM arousal consistently increased after an interaction session, on
average, compared to the neutral sessions. A similar pattern can be seen in the PANAS
positive affect, which reliably increased, on average, with the interaction sessions. The SAM
valence results by subsession were more variable, but the PANAS negative affect indicated
a reliable decrease after interaction sessions. For all neutral vs. interaction session types,
we saw a significant difference in SAM arousal (p = 0.043) and SAM valence (p = 0.0002).
Looking at the PANAS dimensions, the full group of subjects saw a significant difference
in positive affect (p = 0.0003), with no major difference in negative affect observable in
this study (Figure 3). Overall, our study group saw significant self-reported state changes
indicating more arousal, more positive valence, and more positive affect. Though decreases
in negative affect were common, no significant change occurred across subjects with canine
interaction. While these survey results are preliminary, they are promising and make
intuitive sense for CAIs.
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Figure 3. PPSA behavior coding rules flowchart. Epochs are coded based on the majority of perceived
states within the epoch.

Table 3. Neutral session to interaction session summary statistics and comparisons for the
SAM and PANAS surveys. SAM-V = valence; SAM-A = arousal; PANAS-PA = positive affect;
PANAS-NA = negative affect; sd = standard deviation; INT1 = interaction session 1; INT2 = inter-
action session 2; NEU = neutral session; BASE = baseline session; POST = postline session; ALL
NEU = all neutral sessions; ALL INT = all interaction sessions.

Subsession Statistic SAM-V SAM-A PANAS-PA PANAS-NA

BASE mean 2.32 3.64 21.05 11.73
sd 0.57 1.09 5.14 2.75

INT1 mean 2.18 3.09 21.82 11.18
sd 0.91 0.97 6.45 2.28

NEU mean 2.33 4.00 18.22 10.67
sd 0.59 0.97 4.60 1.37

INT2 mean 2.38 3.15 19.23 11.15
sd 0.51 0.90 6.08 1.46

POST mean 2.33 3.67 18.83 10.67
sd 0.52 1.03 5.85 0.82

All NEU mean 2.33 3.78 19.65 11.17
sd 0.56 1.03 5.1 2.14

All INT mean 2.26 3.11 20.86 11.17
sd 0.78 0.93 6.35 1.99

ALL NEU vs.
ALL INT

Wilcoxon
p value 0.043 0.0002 0.0003 0.0755

4.2. General Behavioral Coding Outcomes

For camera-based behavior coding, we focused on the percentages of each interaction-
type session spent in each psychophysiological state by animal–human pairing, excluding
periods where either subject was off screen as indeterminate. This was done as the dogs
were not necessarily resting during the neutral-type sessions (i.e., outside of the interaction
space, pacing, watching, and, otherwise, waiting,) and the neutral session human psy-
chophysiological state codes by epoch were unvarying (as these subjects were instructed to
sit and listen to music, read, etc.) Of course, this eliminated any meaningful comparison of
behavior coding scores between session types, though it does lend some credence to the
significant differences seen between session types for the survey results. More simply, the
interaction sessions were characterized by all three psychophysiological states, for both
participants, whereas the neutral session results were completely neutral, for the human, by
design. Beyond these observations, the first notable overall outcome was the high number
of neutral ratings by interaction session (i.e., typically over 60% of on-screen time). This
indicates that neither interactant was visibly or audibly in a positive state for most of the
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CAI sessions within our study [Table 4]. As expected, negative ratings accounted for a
vanishingly small percentage of the canine and human behavior codes. Characterizing
the majority of positively coded epochs, the dogs generally displayed more affiliative and
affective behaviors in goal-oriented interactions (i.e., in order to solicit attention or treats).
While positive codes for either interactant seemed generally higher for some pairings than
others, no other clear patterning emerged across all subjects.

We also applied an “exclusive nor” logic gate to the behaviorally coded scores by
epoch, to investigate the synchrony between dyad members, showing the percentage of the
interaction session for which the dyad had the same one of the three psychophysiological
state codes between the species. Epochs with either party off-screen were excluded, and
were also the impetus for this novel form of synchrony analysis. Across the board, pairs
spent much of the session time in the same psychophysiological state. This was likely due
to the high percentage of neutral ratings for both parties in most interactions. Looking at
successive sessions, there appeared to be no consistent synchrony patterns as the dyads
had more situational contact.

Table 4. Average behavioral coded state across all interaction sessions and subjects. h- = for hu-
man subjects; c- = for canine subjects; INT1 = interaction session 1; INT2 = interaction session 2;
pos = positive code; neu = neutral code; neg = negative code.

pos % neu % neg %

h-INT1 16.03 83.26 0.25
c-INT1 23.22 63.84 0.92
h-INT2 11.67 87.60 0.23
c-INT2 12.65 64.38 1.23

4.3. General Physiological Data Outcomes

For the IMU data acquired by the SySy custom smart collar device on small and large
dogs, the placement of the smart collar was not found to give results that were meaningfully
different from the torso-located harness IMU. The smart collar did tend towards more noise
and exogenous movement, as it was attached to loose-fitting collars. Therefore, we only
present the torso IMU signal acquired by the SySy harness device. While the smart collar
also collected ambient environmental measures beyond physical activity, we decided to
focus on dyadic interaction, and we kept back the analyzing of the effect of the environment,
as being beyond the scope of this paper, thereby reserving it for a future work.

Table 5 reports our average results across three time points within interaction or neutral
subsessions for target signals across our wearable device system. Upon visual inspection,
the human and canine HR and HRV results do not indicate clear patterning across subjects
or session types at this scale of analysis. For the cluster of activity data represented in the
last four columns of the table, it appears that left-wrist movement occurred much less than
chest or right-wrist movement, which concords with the fact that all the included human
subjects were right-hand dominant. Furthermore, within the subsession groupings, each
IMA source seemed to remain relatively stable, though the differences between the neutral
and interaction sessions were not statistically significant.
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Table 4 also reports the Wilcoxon signed-rank probability that there was a significant
difference between the neutral and interaction session types for each signal presented. Of
note, the canine harness HR signal, the human right-wrist ST signal, the human EDA mean,
and the EDA max scores differed significantly across the subjects, in this respect. As noted
previously, the canine subjects were removed from their experimental interactant during the
neutral subsessions and escorted by a researcher during this time. While the dogs were not
expected to also engage in neutral behavior and were free to do anything, from interacting
with the human to resting quietly during these subsessions, these comparison results may
indicate that focused one-on-one interaction is meaningfully distinct from regular real-life
activity in this context for a canine HR. If true, this could positively indicate the idea of
at-leisure breaks being recuperative or, at minimum, positively different for therapy dogs
while at work. As the ST signals indicate, the localized temperatures did appear to rise
across the subjects as the experimental sessions progressed, when placed on the right
hand of all the subjects. This was likely due to the increased physical activity with their
dog interactant. The strong difference between the neutral and interaction sessions may
have been due to the relatively low baseline temperatures initially observed, on average.
Generally, the EDA average amplitude by epoch and the EDA maximum amplitude by
epoch—both arousal indicators—seemed to reliably and significantly increase during the
interaction sessions, as expected. This comports well with the survey self-report findings
of increased arousal after interaction sessions across the subjects, as previously discussed.
It is worth noting here that across our analyses, and in keeping with other studies, EDA
seemed to be one of the more reliable and responsive differentiators between neutral and
interaction sessions for the human participants throughout the experiment. Upon further
analysis, other signals may prove to have been individually predictive or to have also
correlated with overall affective states, but the EDA metrics appear to have had clear and
multifaceted support between session types.

4.4. Multimodal Composite Results

To derive composite results, we took an in-depth look into some CAI sessions to see
how the patterning of metrics contributed to the overall outcomes. As noted before, this
was done by taking the ME outputs and tracking whether they increased or decreased
from epoch to epoch. Then, using careful directional indicators from the literature, we
created heatmaps that represented the 3 min segment directionality of the available valence
and arousal dimensions in a bonded individual, shown in Figure 4 [52,77,95,118]. In this
heatmap, the blue section represents metrics correlated negatively with stress while the
red represents positive arousal metrics; the canine metrics are below the dashed line on
each dimension’s chart. A solid color indicates an increase while the absence of color
(e.g., off-white tinted red or blue) indicates a decrease in the psychophysiological state
metric for that epoch. Within each section, a dotted line separates the human signals from
the canine signals, as well as further “h_” and “c_” prefix demarcations for human-sourced
and canine-sourced signals, respectively. The signal type (i.e., physiological, survey, and
behavior coding) naming conventions followed the common abbreviations previously
indicated in this paper. For these charts, blue blocks thus represent psychophysiological
state increases along the valence dimension and red blocks indicate psychophysiological
state increases along the arousal dimension.

Unexpectedly, we see no clear overall patterning for each subsession by type across
subjects. However, we note that the neutral session’s human EDA mean and EDA max
metrics decreased noticeably for most of the subjects when compared to the interaction
sessions. This reflects the significant change in the surveyed arousal score and the strength
of EDA as an arousal metric. For canines, the neutral, baseline, and post-line session
metrics do not reflect resting. However, looking vertically, the canine valence epochs tend
to show a higher degree of coherence across the signals and metrics (i.e., all increased
or all decreased). These representative visual examples of the patterning within sessions
juxtaposed to the survey outcomes are uniquely made available to researchers by the
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continuous, multimodal wearable system coupled with our experimental approach, and
they allow for multimodal output alignment. Taken altogether, this heatmap representation,
showcased in Figure 4, indicates to researchers the dynamics of the session or session slice
across behavior coding and physiological signals as well as the survey outcomes that
bracket the interaction. It also allows for fast visual inspection of vertical bands for signal
coherence or horizontal bands for expected macro-trends in certain signals (e.g., EDA
signals consistently decreasing during a neutral session, canine RMSSD indicating negative
experience, etc.) [75,76,116,126].

Figure 4. CAI subsession heatmap example with physiological, behavioral, and survey data.
P = PANAS positive affect; N = PANAS negative affect; V = SAM valence; A = SAM arousal;
INT1 = interaction session 1; h_ = human; c_ = canine; R-Wrist = right wrist; becode = behavior
coding; HR = heart rate; IBI = interbeat interval; SDNN = standard deviation of NN intervals;
RMSSD = root mean square of successive differences between heartbeats; SKIN TEMP = skin temper-
ature; EDA Mean = average electrodermal activity by epoch; EDA Max = maximum electrodermal
activity by epoch; EDA PEAK Ct = number of peaks in epoch of electrodermal activity; IMA = integral
modulus of acceleration. The dashed lines separate human and canine metrics

4.5. Physiological Data Snapshot

The Figure 5 raw signal plot is a representative glimpse of the original ECG data for
humans and canine subjects that were simultaneously produced by our multimodal system
during the experiment. The brackets are marked with colored regions, to show where the
metrics might deserve inspection since the bracket entered was a time of interesting activity.
In our approach, this is useful for several reasons. Firstly, it highlights basic, enduring
differences between the species, like a canine heart rate being faster than a human’s, on
the whole, affecting the signal processing (e.g., sampling rate, filtering, and amplification)
parameters. Secondly, indications from other data streams could prompt us to look at
the raw and derived signals for that time period (e.g., during behavior coding, a visually
observed strong negative reaction in the dog vs. the giving/receiving of a treat), for further
inspection/analysis.
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Figure 5. ECG signal CAIs with highlighted events [72].

4.6. Behavioral Coding Subset

Like the heatmap, a synchrony table provides an interesting multimodal snapshot of
the experimental data from this study. Though it is challenging to present the data from all
34 interaction sessions, the table in Table 6 showcases two interaction subsessions, each
from three humans in total as they interacted with the same dog. The arousal, valence,
positive affect, and negative affect survey scores do not show clear patterning based on
bonding here. However, lower MDORS scores indicate a stronger bond and, as expected,
H1–C1’s owner proved to be the most bonded to the dog by the survey result, and H2—a
friend of the dog—was less bonded, while H3—a stranger to C1—was the least bonded.
These differences and this ordering are also directly reflected in the behavior-coded amount
of time each pairing spent in positive states. For both interactions presented, H1 and C1
each spent much more time in positive states than the moderately bonded pairing of H2 and
C1, or the weakly bonded pairing of H3 and C1. This resulted in the MDORS survey score
and amount of time each member of the interacting dyad spent in positive states being the
measures that most closely track with the expected level of bonding. A potential counter-
indicator of bonding was the presence of negatively coded epochs for the canine. While
there were relatively few negative states coded throughout the entire pilot experiment
(1.6%), all of these occurred in interaction sessions between a dog and a non-bonded human
(i.e., when the canine was not interacting with his owner). Surprisingly, behaviorally
coded epochs spent in the same state appear to be much lower in the bonded pair when
compared to moderately and weakly bonded pairings. This unexpected result actually
follows from the fact that in most cases the majority of an interaction session was spent
in neutral states, leading to a very high same-state % result in the non-bonded interaction
subsessions. In the bonded pairings, the dog and human matched in some epochs but
largely differed, due to the nuances of certain interaction behavior sequences. For example,
in some instances, the human would display positive affective and affiliative behaviors
while the dog consumed a treat, whereas the dog displayed these behaviors as the human
was presenting the treat, leading to mismatched positively coded epochs and potentially
pointing to the pleasure cycle theory of behavioral response in dogs [29]. Additionally, with
their owners the canines tended to exceed the number of affective displays observed in the
human, while with non-owners they displayed far fewer affectively positive displays than
the human. While these behavioral indications are an initially promising way to measure
interspecies bonding, studies with larger sample sizes and further replication of these
results are required, to confirm these findings. Turning to synchrony between the selected
physiological signals, our Pearson correlation results seem to indicate that the interspecies
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paired signals were not significantly different from each other, but they do not show other
clear patterning by signal type or by bond level. We also used dynamic time warping and
minimum signal distance analyses to further approximate the level of bonding. Like the
previous correlations, the dynamic time warping results show no clear patterning across
subjects other than heart rate signal results spanning much larger path distances than the
other key signal types evaluated by this method. This was likely due to the significantly
higher canine HR when compared to humans, and may also factor in certain differences in
HRV between the two interactants. These two sets of correlation results strongly hint at
further exploration being needed of physiological synchronization between participants as
a measure of bonding.

4.7. Multimodal Correlation Matrix

We computed an individual correlation matrix across all the subjects and the full
multimodal dataset as an exploratory analytical approach. Focusing only on sessions where
both species of subjects interacted (i.e., no neutral sessions), we took the average of the
middle minute of data for each behavior coding and physiological signal, as well as the post-
interaction survey scores, to populate this matrix. This resulted in a comprehensive overlay
of signal interactions across the experimental sessions and subjects. Of considerable note,
time series HRV indicators had strong positive associations within species, as expected,
but also across species. These are already considered to be some of the best indicators of
psychophysiological states and could serve as a reliable indicator of interspecies interaction
or bond quality in future work. The integral modulus of acceleration (IMA) showed
some moderate correlations in a few signal types. For the human right wrist, the IMA
was associated with skin temperature, possibly indicating a heating effect of additional
human movement, likely due to stroking, brushing, and other interaction-specific activities.
The canine chest IMA was also moderately associated with human skin temperature for
reasons that are less intuitively clear. This IMA variant also associated moderately with
behavior coding for the canine and with the RMSSD HRV metric. That finding may
indicate that the rater’s perception of the canine state may have been somewhat influenced
by the dog’s movement, and it potentially reaffirms previous findings that RMSSD is a
reliable state indicator in dogs [75,76]. Lastly, though most other correlations between the
multimodal signals from this experiment were weak, the human self-report arousal scale
was moderately associated with the positive affect self-report scale. This relationship was
echoed in our other analyses, and it potentially indicates that a contributing factor in the
overall positive affect in the humans was the level of arousal inspired by interaction with
the dog (Figure 6).



A
ni

m
al

s
2
0
2
4
,1

4,
36

28
25

of
36

T
a

b
le

6
.

B
eh

av
io

ra
lc

od
in

g
su

bs
et

ta
bl

e
[7

2]
.I

N
T

=
in

te
ra

ct
io

n
se

ss
io

n;
H

=
hu

m
an

su
bj

ec
t;

C
=

ca
ni

ne
su

bj
ec

t;
Ph

ys
io

=
ph

ys
io

lo
gi

ca
lm

ea
su

re
s;

H
R

=
he

ar
tr

at
e;

SD
N

N
=

st
an

d
ar

d
d

ev
ia

ti
on

of
N

N
in

te
rv

al
s;

R
M

SS
D

=
ro

ot
m

ea
n

sq
u

ar
e

of
su

cc
es

si
ve

d
if

fe
re

nc
es

be
tw

ee
n

he
ar

tb
ea

ts
;I

M
A

=
in

te
gr

al
m

od
u

lu
s

of
ac

ce
le

ra
ti

on
;

P
co

rr
=

P
ea

rs
on

’s
co

rr
el

at
io

n;
D

T
W

=
d

yn
am

ic
ti

m
e

w
ar

p
in

g;
B

ec
od

e
=

be
ha

vi
or

co
d

in
g;

h
=

hu
m

an
;

c
=

ca
ni

ne
;

p
os

=
p

os
it

iv
e

co
d

e;
ne

g
=

ne
ga

ti
ve

co
d

e;
ne

u
=

ne
ut

ra
lc

od
e;

PA
N

A
S-

PA
=

po
si

ti
ve

af
fe

ct
;P

A
N

A
S-

N
A

=
ne

ga
ti

ve
af

fe
ct

;S
A

M
-V

=
va

le
nc

e;
SA

M
-A

=
ar

ou
sa

l.

IN
T

1
H

1
–
C

1
H

2
–
C

1
H

3
–
C

1

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

Pc
or

r
−0

.5
64

−0
.2

91
−0

.2
82

−0
.0

32
Pc

or
r

−0
.2

89
0.

35
9

0.
43

2
−0

.0
79

Pc
or

r
−0

.0
32

0.
21

4
0.

12
7

−0
.0

07
D

TW
22

02
.1

23
.4

50
.9

29
7.

2
D

TW
16

,4
61

.6
81

.3
10

9.
6

1.
0

D
TW

21
,4

56
.5

31
.1

58
.8

65
.9

Be
co

de
%

sa
m

e
po

s
%

ne
u

%
ne

g
%

Be
co

de
%

sa
m

e
po

s
%

ne
u

%
ne

g
%

Be
co

de
%

sa
m

e
po

s
%

ne
u

%
ne

g
%

h
21

.3
8

30
.8

8
69

.1
2

0
h

56
.1

0
18

.6
7

80
.0

0
1.

33
h

86
.8

4
1.

41
98

.5
9

0
c

--
51

.4
7

48
.5

3
0

c
--

14
.6

7
73

.3
3

1.
33

c
--

0
94

.3
7

5.
63

Su
rv

ey
M

D
O

R
S

SA
M

-V
SA

M
-A

PA
N

A
S-

PA
PA

N
A

S-
N

A
Su

rv
ey

M
D

O
R

S
SA

M
-V

SA
M

-A
PA

N
A

S-
PA

PA
N

A
S-

N
A

Su
rv

ey
M

D
O

R
S

SA
M

-V
SA

M
-A

PA
N

A
S-

PA
PA

N
A

S-
N

A
Pr

e
87

3
2

22
19

Pr
e

98
2

3
15

10
Pr

e
13

1
2

5
23

12
Po

st
--

4
2

30
10

Po
st

--
3

4
12

10
Po

st
--

2
4

16
10

IN
T

2
H

1
–
C

1
H

2
–
C

1
H

3
–
C

1

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

P
h

y
si

o
H

R
S

D
N

N
R

M
S

S
D

IM
A

Pc
or

r
−0

.2
36

−0
.0

23
−0

.0
01

0.
00

7
Pc

or
r

0.
16

9
0.

19
8

0.
19

7
0.

06
1

Pc
or

r
0.

23
2

−0
.1

22
0.

03
3

−0
.0

02
D

TW
44

,0
20

.7
63

4.
7

82
9.

7
64

.3
D

TW
34

,5
03

.5
73

.2
13

6.
9

27
6.

6
D

TW
56

,6
24

.3
56

.9
15

0.
4

64
0.

2
Be

co
de

%
sa

m
e

po
s

%
ne

u
%

ne
g

%
Be

co
de

%
sa

m
e

po
s

%
ne

u
%

ne
g

%
Be

co
de

%
sa

m
e

po
s

%
ne

u
%

ne
g

%
h

37
.1

1
86

.5
7

13
.4

3
0

h
71

.0
5

10
.6

7
89

.3
3

0
h

52
.2

0
0

10
0

0
c

--
97

.0
1

1.
49

0
c

--
21

.3
3

74
.6

7
4

c
--

1.
16

96
.5

1
2.

33

Su
rv

ey
M

D
O

R
S

SA
M

-V
SA

M
-A

PA
N

A
S-

PA
PA

N
A

S-
N

A
Su

rv
ey

M
D

O
R

S
SA

M
-V

SA
M

-A
PA

N
A

S-
PA

PA
N

A
S-

N
A

Su
rv

ey
M

D
O

R
S

SA
M

-V
SA

M
-A

PA
N

A
S-

PA
PA

N
A

S-
N

A
Pr

e
87

3
3

24
10

Pr
e

98
2

3
12

10
Pr

e
13

1
2

4
21

10
Po

st
--

1
2

32
10

Po
st

--
2

3
13

10
Po

st
--

3
5

19
10



Animals 2024, 14, 3628 26 of 36

Figure 6. Correlation matrix for interaction data [72]. h_ = human; c_ = canine; PANAS-PA = positive
affect; PANAS-NA = negative affect; SAM-V = valence; SAM-A = arousal; INT1 = interaction
session 1; Rwrist = right wrist; Lwrist = left wrist; becode = behavior coding; HR = heart rate;
SDNN = standard deviation of NN intervals; RMSSD = root mean square of successive differences
between heartbeats; SKIN TEMP = skin temperature; EDA Mean = average electrodermal activity by
epoch; EDA Max = maximum electrodermal activity by epoch; EDA PEAK CT = number of peaks in
epoch of electrodermal activity; IMA = integral modulus of acceleration.

5. Discussions and Future Work

Psychophysiological states can be a proxy for quality of life, and wearable sensor
systems have shown some promise for quantifying these states, though they have not been
sufficiently developed for or deployed in joint human–canine research in the past. This pilot
study advances our goal to use a synchronized wearable device system to quantify multiple,
interspecies CAI subjects, aspects of their bond, and their psychophysiological states during
repeated interactions. As such, there are several topics requiring further discussion.

Though the behavior coding outputs, the EDA signals, SAM arousal, SAM valence,
and PANAS PA showed significant differences between neutral and interaction subsessions
by design, our results did not clearly and consistently indicate such differences across
data modality and metric type. This conforms to most other CAI results with or without
baseline sessions or control groups. A potential reason is that, while a canine interaction
is expected to confer positive benefits above and beyond baseline, the activities typically
selected for control groups and neutral sessions (i.e., meditation, light reading, etc.) also
provide a different kind of potential benefit to participants. One way to disambiguate
this is to induce positive, negative, and neutral states in multiple subjects (traditionally
by making them view emotional movie clips) before proceeding with a CAI session and
analyzing the metric deltas.

Overall, our impression is that the evidence of bonding is most apparent in behavior
coding, since not all psychophysiological states are created or displayed equally between
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humans and dogs. While this somewhat limits the generalizability of behavior coding
assignments between participants, it does open the door to various kinds of streak matching.
As opposed to investigating preset slices of multimodal data interaction, our and others’
future work could search for streaks of sequentially displayed states to compare within
and across subjects or species. Beyond epoch streaks of coded emotional states, future
investigations could be optimized for other parameters, such as “proximity”, where both
subjects are close to or in contact with each other, or “mutual attention”, where both subjects
focus on and orient towards each other.

Though the sessions were designated as interaction periods, the more granular dy-
namics, as revealed by behavior coding, painted a more complex picture, where the CAI
itself was not responsible for all the observed states. For example, the humans often be-
came moderately frustrated with the dog constantly leaving them during the interaction
rather than with the canine interaction itself. In fact, this was actually the source of all the
negatively coded human epochs, whereas all the canine negative codes were generated
in response to human actions. In other cases, the human might display positive affective
behaviors due to their own internal mental state, when the dog was not nearby or when the
human was focusing on something else (e.g., looking around the room and singing to self).

Although unintended, the behaviorally coded differentials in the total percent of
epochs on screen between the interacting humans and canines sans leash may have served
as a partial proximity metric and, thus, as an additional indicator of the bond. That is,
if the human remained on screen for behavior coding but the canine had run away, and
stayed away, for a significant portion of the interaction time, this could have provided
some additional information about the character and quality of the interaction session and
the pair’s bond, given the appropriate context and caveats. It could also have indicated
the interaction choices of the human (i.e., offering treats more often is likely to keep
the dog nearby and on screen), the activity level, the exploratory nature, and the other
temperamental features of the participating canine (i.e., more active dogs may exit camera
shot more often). However, we could not go further with this analysis, as participants were
free to choose whether or not to leash the dog during this pilot test.

Additionally, while our results are somewhat different in form, we observed non-
alignment with another CAI study (the only one available in the literature, to the best of
the authors’ knowledge) conducting a correlational bond analysis [32]. That work found
that individuals with a weaker bond to their dog, as determined by MDORS, seemed to
have some statistically significant correlation between HRV and oxytocin measures. Herein,
though no biochemical analyte was analyzed, the results of our work seem to indicate that
HRV measures between interactants have no clear patterning as the theoretical strength
of the bond increases. This warrants deeper investigation and a larger analysis beyond a
pilot study.

For our interspecies synchrony data, we noted that the behavior coding results from
the bonded pairs seemed to be less alike than for the unbonded pairings. This result is
surprising as, in keeping with the core concept of synchrony, individuals are expected
to closely match or reflect their bonded counterparts. Our results indicate that some
aspects and assumptions of the synchrony hypothesis may not hold across data collec-
tion methodologies or contexts, especially considering that the majority of interaction
session epochs were neutral when coded. This means that the type of synchrony matters
(i.e., temporally synchronized positive states in strongly bonded pairs) and could po-
tentially add more detail to future bond/dyadic interaction analyses (e.g., moderately
synchronized positive states vs. highly synchronized negative states.) Interestingly, the
dogs only presented negatively coded epochs in interactions with unbonded individuals.
Since the humans almost universally showcased neutral-to-positive states (in parallel with
this study’s surveys and the general literature), the presence of some negative canine codes
could be a very useful metric of the impact of interaction on the therapy animal [2]. This is
especially true considering that the PPSA behavior coding approach captures the dynam-
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ics, responses, and outcomes of the canine with higher granularity than in physiological
averaging or survey pre-/post-analyses alone.

This leads directly into one limitation with the PPSA behavior coding approach. The
PPSA rules bias epochs towards neutral scoring and can also drown out non-neutral results.
The former bias occurs because 5 s of neutral accompanied by 5 s of positive or negative
is always coded as neutral. Drowning out, on the other hand, may occur if a continuous
period of 10 or fewer seconds of positive display, for example, just happens to be split
evenly between two epochs otherwise characterized by neutral display. In this case, both
epochs would be coded neutral. More generally, PPSA relies heavily on the epoch start time
and epoch size selected by the researchers, and, once set, it has the aforementioned impacts
on the resulting analyses. By comparison, surveys are even more inflexible than PPSA
behavior coding (i.e., only administered before or after an interaction) while continuous
physiological data is more easily adapted to epoch start and size alterations.

Herein, we attempt to not only present the data from each methodology independently
but also to look across multimodal data streams in order to identify psychophysiologi-
cal states. On this latter point, [12,19,67,68] go out of their way to encourage future
researchers to use multiple evaluative methods to reduce bias and increase convergent
validity—especially via the merging of several “mutually relevant . . . physiological mea-
surements” for improved and/or disambiguated effective detection. However, this type of
work is still nascent in human–canine interaction studies and also in animal psychophysiol-
ogy in general. This presents the many challenges of experimentation and interpretation
that are noted throughout this paper. One worth mentioning is the challenge of the core
psychophysiological assumption that distinct states can be reliably indicated by specific
directional signals and derived metrics. Although the pilot data in this paper were inter-
preted according to traditional psychophysiology techniques, this study was also designed
to collect data in a way that permits interrogations of this cluster of alternate approaches.
Our future work will pursue this via inclusion of contextual/environmental data and via
individualized subject-by-subject analyses for both species. Including an environmental
context may help to better interpret interaction results and enable high-resolution indoor
vs. outdoor comparisons; it could help researchers study the connection between weather
and behavior/physiology in both subjects; and it could also enable more detailed input
feature vectors for machine learning and for other causal attribution efforts.

Another challenge was the dependence of the performed analysis on previously
established psychophysiological directional indicators, inherently due to the aim of this
study to explore correlations and predictions. While these directional indicators were
based on systematic reviews of the literature, the precise relationships between certain
measurements and between human or canine states were neither fully settled nor correctly
assumed to be consistently one-to-one [120]. The indicators for the canine perspective
were also far more sparse and unsettled than those on the human side of the equation.
In a sense, indicating that certain metrics increased and decreased by epoch is a more
conservative interpretation of these results until direct correlations to emotional states are
fully established by other psychophysiological and neuroscientific research. To handle the
non-stationarity of the data, increases and decreases by epoch by subsession were used
as psychophysiological state indicators, but an alternative approach could be to establish
baseline values from the same day and track the values as they cross above and below
these averages, to identify psychophysiological states [8,65]. While this second approach is
potentially more individualized and is certainly possible, with a wearable system acquiring
data continuously and the pilot test protocol implemented, it involves a fair amount of
arbitrary decision making and/or novel statistical depth that was beyond the scope of this
paper [77,127]. Future longitudinal studies will add individual subject and state emotional
inducements to serve as the baselines for all analyses conducted on the same day, despite
the potential for downstream effects on the CAIs.

In this work, the physiological data was primarily viewed through the lens of relative
increases and decreases of selected metrics by epoch. This approach was appropriate
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for the scope of this work, as we did not set baselines for each subject with repeated
psychophysiological state emotional inducements, and as the emotional metrics were
non-stationary across the experimental days [8,65,127]. This must be kept in mind when
comparing physiological increase/decrease outcomes to behavior-coded data—which
represent continuous rater psychophysiological state perception assignments—and to
survey data—which represent subject self-scoring of independent psychophysiological state
dimensions pre-/post-interaction. An important distinction between this work and other
research in the literature is that herein we used manual analyses to interrogate the nature
of the CAI sessions. Most recent emotion detection analysis has relied on machine learning
methods such as random forest, support vector machine, or regression in combination
with other statistical tools to label and classify data segments by predetermined emotional
category [37–39,76,95,128–131]. While this remains a future possibility for our epoch dataset,
using the psychophysiological state behavior codes as labels, we wanted to build our
investigation of the data from the ground up, considering the project’s novelty, the difficulty
of defining emotion state boundaries, and the relatively small sample size/amount of data
collected in this pilot effort.

On the point of better dyadic emotional state detection, we suspect that further anal-
ysis epoch-by-epoch between the behavior-coded outputs and continuous physiological
data as well as digging deeper into individual responses to the interactions will prove more
fruitful than aggregated outcomes. However, the work discussed herein does accomplish
our proximal goals of deploying synchronous interspecies wearable systems, analyzing
continuous data, and generally characterizing CAI internal session dynamics beyond the
current pre-/post-state of the art. There is also considerable interest in looking across
measurement modalities, to begin to identify patterns and answer questions of emotion
coherence. This latter concept speaks to the idea that an experienced emotional stimulus
should be represented across all known psychophysiological indicators and that, poten-
tially, the same response is trackable across iterations of similar stimuli and can, thus, be
reliably identified. To this end, our preliminary analyses across behavioral, psychological,
and physiological modalities indicate that interactions tend to increase measures of positive
affect, measures of valence, and measures of arousal when compared to neutral sessions.
Though the behavior coding and physiological data contributed to this outcome, they were
more ambiguous and require further investigation. For CAI, survey data remains the clear-
est directional psychophysiological state indicator, as expected. Therefore, our approach
and systems can enable many avenues of future work, including but not limited to ex-
tended synchrony explorations, psychophysiological state predictive analytics, directional
coherence across signals, and both individual and longitudinal emotional state inducement.

6. Conclusions

This study was a first attempt to use wearable systems on humans and dogs for
continuous and simultaneous physiological and behavioral data collection towards cor-
relational analysis for determining synchrony and bonding in interacting dyads during
canine-assisted therapy sessions. We assembled a custom wearable sensor system proto-
type to perform a pilot study. We were also able to peer into the underlying dynamics of
the continuous CAIs that lead to the macro pre-/post-survey results commonly reported in
the field. Of particular note, we presented three novel multimodal data representations
for potential characterization of CAIs: a subsession heatmap, a synchrony table, and a
metric correlation matrix. Lastly, several of our exploratory analyses yielded interesting
proof-of-concept results, to inspire future investigations.

In the section titled “Part I: Sensor System Development”, we confirmed that the
most common methodological approaches in CAI studies are behavioral coding, biochem-
ical assays, and psychological surveys. As the field turns to more objective approaches,
physiological measures such as ECG (especially heart rate/variability derivatives), oxy-
gen saturation, respiratory activity, and blood pressure are becoming more prominent.
However, the field still struggles with often ignoring the canine’s perspective, with large
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variation in study designs accompanied by lack of appropriate controls, and with general
measurement method inconsistencies. Following up with a select group of CAI stake-
holders, we discovered that many are unsatisfied with the current measurement state
of the art, that they desire non-invasive alternatives, and that they suggest inclusion of
environmental and other contextual signals, though there is growing consensus around
desiring intuitive data formats and positive psychophysiological state indicators. For these
respondents, our custom sensor system promises to address the noted issues, and, thus, we
further characterized the system, confirming that it could perform well in a typical CAI
context (i.e., session duration, distances traversed, etc.) and that it collects high-quality data.
Before full experimental deployment, we also comparatively assessed the ergonomics of
our synchronized system devices individually and combined, before making any necessary
sensor, signal, or packaging adjustments.

Overall, the pilot study presented in the section titled “Part II: Pilot Study and Proof
of Concept” confirmed common CAI field results like canine heart rate being significantly
higher than humans during interactions, as expected, and humans generally reporting
positive-to-neutral outcomes thanks to the interaction. Interrogating the physiological data
collected in this study, we found that the electrodermal activity measures were the most
meaningfully distinct between the neutral and interaction sessions across the subjects. For
the survey data, we saw significant positive changes in subjects’ arousal, emotional valence,
and positive affect with canine interaction. Counterintuitively, nearly all the interaction
time periods were rated as neutral, with relatively few positive epochs and significantly
fewer negatively coded epochs. However, we suspect that this was partially influenced
by the chosen coding schema and epoch time period duration. This preponderance of
session neutrality also contributed to the moderately high amount of interspecies synchrony
observed behaviorally, though the bonded pairs seemed to have lower levels of coded
synchrony than expected. While the physiological synchrony results hint at promising
associations, the results were not definitive for the four metrics interrogated (i.e., heart
rate, heart rate variability (SDNN, RMSSD), and activity (IMA)). Canine surveys were not
employed, but the standardized measure we used showed clear bond quality discriminatory
power between owner of, friend to, and stranger to a dog. The independent canine results of
potential interest are the associations between canine chest integral modulus of acceleration
and human skin temperature, canine behavioral coding, and the dog’s own RMSSD heart
rate variability. Though moderate, these indicate several potential areas of follow-up
investigation on the canine side. Lastly, the dogs only seemed to experience negatively
coded epochs with unbonded human interactants as a result of a human action (e.g., sudden
movement, picking the dog up). Human negative behavioral responsivity clustered around
frustration when the dog employed repeated avoidance behaviors.

To the best of the authors’ knowledge, this is the first attempt to deploy similar devices
collecting physiological signals from interacting humans and animals continuously and
simultaneously during a CAI session. As such, our study represents a novel attempt
to use multiple, synchronized modalities when analyzing human and canine dyads as
they interact. Beyond alternate physiological evaluation approaches, replication with
larger sample sizes, expanding to other human–animal interactions, and employing more
longitudinal data collections, our future work will include generating a stable, open-
access data analysis pipeline and repository for CAIs. Such a tool would be beneficial to
other similarly disposed researchers and is crucial to standardizing psychophysiological
approaches across the animal–computer interaction field. The authors are very interested
in appropriately de-identifying this dataset and releasing it for further scientific analysis,
extension, and replication. Of special interest are further efforts to integrate appropriate
wearable and non-contact systems into a modular toolkit for widespread research use.
Consistent equipment, methodology, and data analysis/reporting within human–animal
interaction psychophysiology could significantly advance the field’s understanding of
interspecies bonding. Lastly, inclusion of contextual and ambient environmental data
via the complex analysis of dog smart collar data and the potential inclusion of eye-
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tracking systems are other promising avenues of future investigation. The former, especially,
would complete the multimodal picture of CAIs, which currently only accounts for human
and canine subject-centered measurement modalities (i.e., psychological, behavioral, and
physiological) and the subsequent points of interaction, while ignoring the broader ambient
environmental context. Though some outcomes were counterintuitive and some limitations
have been noted, the work herein still represents a uniquely significant step forward on a
promising path towards the CAI field’s better understanding of how interactions improve
interspecies well-being across time.
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