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Simple Summary: Guide dogs play a critical role in assisting individuals with visual impairments,
enhancing their daily activities and overall quality of life. However, the high cost of guide dog
training limits accessibility for many within this community. Incorporating custom-designed sensors
and advanced data analytics into early-stage training has the potential to improve training success
rates and reduce associated costs. In this study, we developed a custom sensor system that attaches
to guide dog puppy collars to collect motion, audio, and environmental data during the “In-For-
Training” evaluation process at a leading guide dog school in the United States. We employed two
primary machine learning methods capable of making predictions based on various combinations of
smart collar sensor data.

Abstract: Guide dogs play a crucial role in enhancing independence and mobility for people with
visual impairment, offering invaluable assistance in navigating daily tasks and environments. How-
ever, the extensive training required for these dogs is costly, resulting in a limited availability that
does not meet the high demand for such skilled working animals. Towards optimizing the training
process and to better understand the challenges these guide dogs may be experiencing in the field,
we have created a multi-sensor smart collar system. In this study, we developed and compared
two supervised machine learning methods to analyze the data acquired from these sensors. We
found that the Convolutional Long Short-Term Memory (Conv-LSTM) network worked much more
efficiently on subsampled data and Kernel Principal Component Analysis (KPCA) on interpolated
data. Each attained approximately 40% accuracy on a 10-state system. Not needing training, KPCA is
a much faster method, but not as efficient with larger datasets. Among various sensors on the collar
system, we observed that the inertial measurement units account for the vast majority of predictabil-
ity, and that the addition of environmental acoustic sensing data slightly improved performance
in most datasets. We also created a lexicon of data patterns using an unsupervised autoencoder.
We present several regions of relatively higher density in the latent variable space that correspond
to more common patterns and our attempt to visualize these patterns. In this preliminary effort,
we found that several test states could be combined into larger superstates to simplify the testing
procedures. Additionally, environmental sensor data did not carry much weight, as air conditioning
units maintained the testing room at standard conditions.

Keywords: Conv-LSTM; KPCA; autoencoder; manifold learning; pattern recognition; guide dogs

1. Introduction

There were over 7.5 million non-institutionalized visually disabled people in the
United States alone in 2016 [1]. Guide dogs are used to help these people in everyday life,
but not every dog is suitable for this critical role. Less than 1% of these visually impaired
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people in the United States have access to a guide dog. The major barrier is the cost of
training a guide dog for a visually impaired person, which is close to fifty to seventy
thousand US dollars [2,3]. This is exacerbated by the high dropout rate of guide dogs
during training. More than half of dogs in training will fail out of the program to become
working guide dogs [4]. Even following a guide dog school graduation, there is a small yet
noticeable dropout rate throughout performance years until retirement after approximately
8.5 years [5]. However, some attempts to reduce dropout rate have worked previously.
For example, about 30% of guide dogs used to be disqualified because of skeletal hip
issues, but this was reduced to negligible thanks to breeding programs in the late 1990s [6].
As another example, potential guide dogs can be returned for retraining if they originally
failed [7]. Of the 40% of the returned dogs, 53% later graduated, improving the overall
graduation rate.

A specific potential guide dog’s personality and temperament are the greatest obstacles
towards graduation. Personality is defined as behavioral tendencies that are consistent
within an individual, but which are distinguishable from others. At The Seeing Eye, one of
the largest guide dog schools in the US, personality-related behavioral problems constituted
approximately 21% of dogs failing training the first time. Of personality-related problems,
the most prominent issue was fearfulness [7]. Fear experienced during traumatizing early
puppyhood events leads to general behavioral problems within dogs [8] and is a significant
predictor of guide dog training failure [9]. At Guiding Eyes for the Blind, these traits are
tested as a “Fear of Strangers” score evaluated by professionals [10]. Another common
challenge is the susceptibility to distractions [7]. A guide dog needs heightened attention
to street signs and other daily activities without being overly attentive to loud noises like
a car horn. The noise and other-dog distraction tests are temperament tests designed to
evaluate distractedness early [11] and similar tests are performed in pre-evaluations for
guide dog training.

While breeds, genetics, and certain biological aspects can be well controlled through
breeding programs and systematic medical assessment, it is also important to evaluate the
early developmental progress. Our team developed and used wearable devices in several
applications of working dog behavior monitoring [10,12-15], including sleep monitoring,
temperament evaluations, and breathing and heart rate assessment.

For potential guide dog puppies, we formerly presented a smart collar system [16-18]
capable of recording both dog behavioral and immediate environmental data continuously.
The collar records body movement using an inertial measurement unit (IMU) and barking
behavior using sound sensors. Movement of the body is expected to be the greatest
behavioral predictor since excessive motions can indicate excitability or a proneness to
being easily distracted, whereas minimal movement can indicate passivity or fear responses.
This can help identify dogs that are unsuitable to work as guide dogs. The sound sensors can
similarly assist by identifying behaviors such as barking for attention-seeking or identifying
sudden noises that may overly startle the dog. Immediate surrounding environmental
information, such as ambient temperature and light, relative humidity, and barometric
pressure, are also registered. These sensors have been assessed to identify exposure to new
places during early puppy raising [16]. In the context of this present work, these are not
expected to vary significantly, though may still improve our predictions.

While this collar system can be used in various stages of the guide dog training, in this
study, we focused on analyzing the data collected from these devices during a behavioral
evaluation protocol performed in a guide dog school. In particular, we deployed this
system on puppies undergoing the In-For-Training (IFT) Evaluation protocol in one of the
largest guide dog schools in the US (Guiding Eyes for the Blind (GEB), Yorktown Heights,
NY, USA) for determining dog fitness before entering their official training program.

The rest of this paper is organized as follows: we introduce the broader goals of this
study and then detail our data analysis methods by describing the dataset. We also provide
details about our two supervised methods, Convolutional Long Short-Term Memory (Conv-
LSTM) network and Kernel Principal Component Analysis (PCA), and our unsupervised
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method, the autoencoder (AE). Then, we describe the performance and results of each of
these methods. Lastly, we conclude by comparing and discussing the accuracy of these two
supervised methods, and benchmark with what the autoencoder was able to extract from
our dataset.

2. Motivation of the Study

We describe the motivation of this study in three sections. First, we discuss how this
research is intended to improve on prior research using smart collars on guide dogs. Then,
we share how this study would identify certain behaviors and apply to future guide dog
testing while also reviewing the state-of-the-practice in dog behavior tests. Lastly, we focus
on the particular objective of this study to develop advanced data analytics to process smart
collar data acquired during IFT testing.

2.1. The Unique Contribution of This Study for Smart Collar-Based Guide Dog
Performance Assessment

This work follows and expands on prior work with smart collars on guide dogs
to transform subjective temperament scoring into an objective data-based assessment in
several ways by performing the following:

e Using new data collected during IFTs, which had not been available before.

*  Accessing a significantly larger dataset than earlier works as a significant step towards
scaling up.

*  Analyzing the data acquired in-lab under controlled conditions as a baseline, allowing
better expectations of full-scale field data when acquired in the future.

We formerly presented a smart collar system capable of continuously recording both
dog behavioral and immediate environmental data. The development of these smart collar
devices emphasizes two specific goals. The first is to acquire objective measurements
of guide dog behavior while the puppies are trained and evaluated in the guide dog
school [10,14]. Traditionally, more common subjective scoring is performed by a trained
staff member using the behavioral checklist (BCL) or other questionnaires. Even with
trained staff, these scoring methods are subjective and more liable to higher error rates.
Therefore, there is an opportunity to use objective, quantitative data and data processing
methods to enhance behavior testing. Secondly, as part of their training process, guide
dog schools transfer potential guide dog puppies to volunteer raisers who care for the
puppies at their homes until a certain age. This period is a major blind spot during early
dog development and these collars with sensors are able to help alleviate uncertainty
by providing continuous monitoring of behaviors in the variety of environments that
the puppies enter under the care of volunteer raisers [16,18]. Holder et al. [17] outline
how participatory research combined with wearable electronic sensor systems can help to
investigate this significant period in the life of a guide dog puppy [17]. This current work
is a new step to this overall exploration to attain and use objective quantitative measures
to assess guide dog performance. Within this big picture, we particularly focus on IFT
measurements in this presented study.

In guide dog schools, identifying the puppies that are not perfectly suited to work as a
guide dog is a key strategy to minimize training costs. Guide dog training programs focus
on balancing the uncertainty of early testing to make decisions as soon as possible with
the higher opportunity costs of later and more accurate testing. It is suggested that testing
should take place around the 14-month mark because behavioral traits are more stable at
this age [11]. Our prior work focused on early puppy temperament scoring, where we
acquired data from more than five hundred puppies using a smart harness system resulting
in the largest ever dataset from this population [10,14,16,18]. The current work presented in
this paper focuses on the testing performed on puppies at the 15-18-month age, which may
have made it more likely for us to extract features representative of future adult behavior.
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2.2. Identifying Dog Temperament

This section provides a more detailed view of how we seek to examine dog temper-
ament as a part of our main overarching goal. A large-scale survey (1851 total) on dog
behavioral problems reported by dog owners revealed eleven main factors [8], including
aggression, fear, separation anxiety, and excitability. For guide dogs specifically, ref. [11]
lists common tests that can be used to identify desirable temperaments. The most relevant
are the six temperament tests, including a passive test, where time to relax is recorded;
a noise test, where a food bowl is dropped to distract the dog; and a dog distraction test,
where an unfamiliar dog is presented. In line with these tests, GEB performs such tests
during its IFT process for prospective guide dogs. These tests are performed sequentially
and additionally include distracting events, such as an umbrella opening, activating a
vacuum cleaner, and shaking a metal nail-filled can. The main objective of the IFT is to
monitor a dog’s tendency to be distracted and observe levels of fear and excitability. These
are recorded in a checklist with scores from 1 to 5.

The smart collars developed by our team have previously been shown to distinguish
various activities in a controlled training and temperament evaluation environment [16].
In this current study, the number of states (each corresponding to IFT tests) was expanded
to 50, where the smart collar data were analyzed to observe subtle differences between
certain temperamental behaviors. The states in the IFT could correspond directly to certain
dog temperaments. For example, a highly excitable dog would be expected to have more
erratic movement and show high jerkiness in collected inertial measurement data. Similarly,
the passive test [11] can be inferred from the “Explore-Enters Space” state, when the dog is
allowed to roam the test environment, as well as the “Ignore dog” state, when the trainer
ignores the dog. Movement during this “Ignore dog” state could indicate excitability or
separation anxiety. This is a preliminary analysis to set up a baseline and investigate
whether we can extract features and patterns on smart collar data that correspond to
temperament demonstrated during various IFT states.

2.3. Exploring Various Data Analysis Methods for Smart Collar IFT Data Analysis

To reiterate, the IFT evaluation is one of the most important evaluation steps conducted
on 15-18-month-old dogs after an approximately 12-month socialization process with
volunteer raisers and when they arrive to the guide dog school, to determine whether
they are a fit for guide training or not. For such an evaluation, temperament and rates of
adaptability to strangers, other dogs, and new environments are examined (see Figure 1).
Trainers seek well-posed, confident dogs for further guide dog training [19] as guide dogs.
For the last two years, our smart collar system has been deployed during the IFT tests
conducted at the GEB guide dog school to support this study [17]. The collar would
be connected to an accompanying custom iOS app over Bluetooth. The graphical user
interface of the app allowed trainers to record the timing of controlled stimuli used as test
events. This created a time-accurate label that could be associated with the collar’s data
collection. The exploration of dog behavior captured in the data was aimed to determine
subtle reactions to the evaluation steps while also assessing the environmental parameters.
This is expected to add objectivity to the test evaluations, which qualify or disqualify a
given dog more accurately and earlier in the training process.

Our smart collar system uses multiple different sensors to collect data related to the
dog’s behavior and environment; we focused on employing the most accurate data fusion
within the scope of this study to attain higher accuracy than using individual sensors. Data
fusion architectures are numerous and highly specific to the problem being analyzed and
format of the data [20-25]. Therefore, one major project goal was to find and optimize such
an architecture specific to monitoring canine behavior within the context of the immediate
environment. Additionally, because data were collected as a time series for each sensor,
we anticipated large temporal dependencies. While there are already many time series
models such as the common Auto-Regressive Integrated Moving Average (ARIMA), these
lack any data fusion capabilities. We instead chose Long Short-term Memory Networks
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(LSTMs), which can accommodate fusion from multiple sensors and have shown strong
predictability on time series data [26].

vacuum handle moving sees bat

= ¥ IFT Evaluation dog

. \with smart collar

statue lion dog on table statue turtle

Figure 1. (a) Smart collar device, (b) smart collar implemented, and (c) dog undergoing IFT with
smart collar on. Examples of objects corresponding to labels are shown in (c).

Another goal of this study was to simplify future dog behavioral evaluations using
this newly acquired data. We observed that the behavior categories classified under the
IFT evaluation were towards the reactions demonstrated to the applied stimuli while other
natural and generic dog behaviors were not labeled. For instance, a dog may jump at any
random time during a pre-defined evaluation step. While this behavior may not be paid
attention to or categorized directly under the IFT, it is a quantifiable and easily recognizable
event that could be identified using machine learning and used to further analyze the
dog’s behavior. For this reason, we were interested in and included an unsupervised
learning approach to categorize these ill-defined, dog-specific tendencies extracted from the
data directly. For this, we performed manifold learning for the categorization of common
patterns of the sensor data [27].

Overall, the specific goals we would like to achieve with this study include
the following:

* A more accurate understanding of canine behavior in response to the IFT test;
*  Accounting for individual effects like temperament on behavior;

*  Apply multi-sensor data fusion to understand dog temperament and behavior;
*  Explore creating a lexicon for in-field behavior interpretation.

3. Methodology

This section describes the dataset used and preprocessing procedures, followed by
the design of the supervised machine learning approaches: LSTMs and KPCA. Finally,
an unsupervised method, autoencoders, is introduced for creating a data lexicon of guide
dog actions and behaviors.

3.1. Dataset Description

IFT sessions are conducted roughly every 1-2 months at Guiding Eyes for the Blind
guide dog school facilities. Typically, between 15 and 30 dogs undergo the IFT testing
during each session, each lasting about ten minutes. Data from these sessions have been
accrued for the last two years, creating a dataset of 460 unique dogs tested. During the
session, the dog being evaluated to work as a guide dog was presented with various stimuli
such as an examination by a veterinarian and suddenly turning on a vacuum cleaner. These
are some events that may commonly create anxiety or other emotional responses in dogs in
general. The precise start and stop times of these events were recorded by an associated
trainer using our iOS app developed specifically for IFT evaluations [17].

During this evaluation, the collar-based sensor system collected behavioral data using
inertial measurement units (IMUs) to assess body movement, and a microphone to detect
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loud barking sounds. While we describe it as an audio sensor, it actually only collects
decibel levels at a much lower sampling rate than speech for privacy concerns. These sound
levels can come from the dog or the environment. Meanwhile, environment-only conditions
were recorded using ambient light, ambient temperature, relative humidity, and barometric
pressure sensors. Because different physical signals change with a different rate, all the
sensors had different sampling rates. In general, the IMUs, audio, and light sensors were
sampled at a much higher rate (100 Hz) than the slowly changing temperature, humidity,
and pressure sensors (1 Hz). This adjustment is required to conserve battery power and
the bandwidth of the Bluetooth Low Energy protocol used for wireless transmission of
the data.

Interpolation was required to account for the different sampling rates of the different
sensors. The IFT test sequentially proceeded through a total of 50 different labeled events,
including passing by objects or ignoring loud noises. We think of these as fifty labeled
‘states’ moving forward. However, many other studies that seek to classify motion used
much fewer states, typically five to ten. For a better comparison with other motion classifier
studies, we selected a smaller 10-state dataset as well. Based on preliminary models similar
to those later described, these ten states were chosen from the most easily distinguishable
fifty states (the states with the greatest confusion matrix scores). Lastly, for data fusion, we
considered using the IMU alone (similar to other studies), IMU with audio, and IMU with
audio and with environmental sensors (temperature, humidity, etc.). Note that because
of the low sampling rate of the environmental sensors, there were not enough data to
meaningfully create the two 50-state IMU-Audio-Environmental datasets.

Table 1 shows the total of 10 datasets that were assembled. The datasets are differenti-
ated by whether the data were interpolated, the size of the state-space, and what sensors
were included:

¢ Interpolation or subset;
e A 50-state or 10-state classification;
e  IMU or IMU-Audio or IMU-Audio-Env.

Table 1. Dataset variants.

Index Sampling N States Fusion Method  Train Size Test Size
1 interpolate 10 IMU 3159 1355

2 interpolate 10 IMU-Audio 3159 1354

3 interpolate 10 IMU-Audio-Env 1898 814

4 subsample 10 IMU 63,196 27,084
5 subsample 10 IMU-Audio 63,182 27,078
6 subsample 10 IMU-Audio-Env 37,968 16,272
7 interpolate 50 IMU 15,080 6464

8 interpolate 50 IMU-Audio 15,029 6441

9 interpolate 50 IMU-Audio-Env  NaN NaN
10 subsample 50 MU 301,616 129,264
11 subsample 50 IMU-Audio 300,580 128,820
12 subsample 50 IMU-Audio-Env ~ NaN NaN

3.2. Data Preprocessing

Interpolation was required to account for the differences in sampling rates. We per-
formed a linear interpolation to bring lower sampling rate sensors in line with higher ones,
creating 500-length sequences for all sensors. These are the “interpolate” sampling datasets.
We then took these and split them into twenty smaller sequences each of length 25. These
are the “subsample” sampling datasets. The subsample datasets therefore have twenty
times the data samples, but of much shorter duration. Data were then grouped by the times
of the IFT activities, providing a many-to-one relationship between the data and labels. We
then took the interpolated data and performed standard Z-normalization to reduce the
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number of later execution times and computation complexity. This was performed for each
sensor modality, m, throughout an entire IFT session.

7o Xm,i — Wm
m,i — 0.7
m

3.3. Supervised Methods

Using supervised learning, our aim was to be able to classify canine behavior from
on-board collar sensors using LSTMs, where the ground truth is the observation of the
human trainer as labeled in the app. Previous experiments have shown that deep convolu-
tional LSTMs have been successful for multimodal activity recognition using accelerom-
etry [28,29]. Accelerometry and ECG have also been previously used for guide dog eval-
uations using convolutional networks and LSTMs [10]. However, these former tests con-
sidered fewer and more similar sensors. In this study, we fused accelerometry, audio,
and environmental sensor data.

3.3.1. Description of LSTM Models

Prior research has shown that LSTMs attain great performance when working with
sequential data because they were specifically designed to track long-term data patterns.
Therefore, we fit and evaluated LSTM models for label predictions for our dataset. Sub-
sequent hyperparameter investigations on LSTMs [26] revealed that the learning rate
is the most important hyperparameter for LSTM models, followed by hidden layer size,
with most other hyperparameters being generally negligent. We therefore focused primarily
on the learning rate and hidden layer sizes when tuning our Conv-LSTM model.

Depending on the specific dataset, the model may have slight variants. For the 10-state
models, we finished the model with a 10-node dense layer, while for the 50-state model,
we finished the model with a 50-node dense layer. The number of channels also varied
depending on which sensors were used (IMU, audio, and environmental sensors with 3,
1, and 4 channels, respectively). We also considered using a higher-capacity model using
convolution layers of 1024 instead of 64 for the interpolated datasets.

Figure 2 shows the architecture of the convolutional LSTM model. Note that we also
used this structure using 1024 nodes instead of 64 as a larger-capacity model. The results
were similar though.

Input(500)

Conv1D(64)-MaxPool

Conv1D(64)-MaxPool

Conv1D(64)-MaxPool

Conv1D(64)-MaxPool

LSTM(32)

LSTM(32)

Dense(10)

Figure 2. ConvLSTM architecture strongly based on [29].

The LSTM models were trained in North Carolina State University’s high-performance
computing cluster node Hazel with an attached GPU. Depending on availability, we either
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used a single Intel Xeon 1.8 GHz core with NVIDIA GeForce GTX 1080 or a single Intel
Xeon 2.6 GHz core with NVIDIA GeForce RTX 2080 Ti.

3.3.2. Description of KPCA Models and Setup

Figure 3 shows the setup of our KPCA method. PCA works on input data (X) only and
is typically used as a dimensional reduction technique. We split data into a 70/30 train/test
split. Then, we used the training data to train the KPCA model, after which we obtained
the KPCA components for both the train and test data. Following this, we used the
training KPCA components and corresponding training classifications to train a Ridge
classifier. The Ridge classifier then penalized less useful components and this was how
dimensional reduction was performed. The test classifications were then acquired using the
trained Ridge classifier and test KPCA components. KPCA had one main unidimensional
hyperparameter: <. In addition to this optimization, only linear training for the Ridge
classifier was required, giving this method a huge complexity advantage over the Conv-
LSTM model.

Train Dataset ai 4
Rl DA | — ety | TREEIERCA
Model
: . KPCA Test
Train Dataset Trained KPCA Model Dataset
KPCA Train
Test Dataset
estatase Dataset
Null Ridge KPCATrain Dataset Trained Ridge
N —_————» .
Classifier Classifier
Trained Ridge
KPCA Test Classifier KPCAPred
Dataset Dataset
KPCA Test -
—_—
Dataset ceumacy

Figure 3. KPCA architecture.

3.4. Unsupervised Methods

Our use of Conv-LSTMs and KPCA targeted the behavior prediction during various
IFT tasks/steps used to evaluate suitability for guide dog training. We explored whether,
at least to some degree, behavioral actions may be determined by monitoring IMUs,
audio and immediate environmental conditions. It is also desirable to generalize the
data patterns for a more accurate behavior-to-data dictionary for exploring the patterns
beyond the IFT. Usually, pattern learning experiments are conducted in well-controlled
environments and with well-practiced actions, such as running on a treadmill with a pre-set
protocol. This configuration largely limits many real-world effects such as personality
differences, mistakes in performance and corresponding corrections, and large amounts
of uncontrolled noise in the signal. Even with this in mind, however, we hypothesize that
certain actions will still be prominent, such as a dog jumping randomly or sitting for a
period of time, and that these should be distinguishable. Note also that these behaviors are
not necessarily correlated with labeled data from the IFT sessions, warranting unsupervised
learning approaches.

We attempted several multivariate unsupervised learning methods to label certain
consistent and repetitive behaviors observable within the data from the collar-based sensor
system. The challenge was that we could not segment the data space into subspaces, as we
expected high amounts of spatial overlap between actions. Instead, we were interested
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in identifying patterns within sequential time segments of the data. For this purpose, we
specifically looked at manifold learning and autoencoders.

3.4.1. Manifold Learning

Manifold learning is a general method for learning a dictionary of patterns in the
data. This approach seeks to find a low-dimensional space from data that exist in a high-
dimensional space [27,30]. A given datapoint in our datasets has at most eight dimensions,
x € R®, accounting for IMUs, audio, and environmental signal streams. However, incorpo-
rating sequences for pattern recognition results in a much higher dimensionality. With n
sequential points, x € R%". This makes manifold learning more useful in this context.

To validate the use of manifold learning in this context, we performed a simple
preliminary test using our collar-based system to ensure that we could observe real-world
manifolds. With one collar in hand, we performed some exercises, including simply
walking and jogging around a short path. We observed that for the IMU data (Figure 4), we
could easily distinguish two manifolds, one corresponding to walking, the other to jogging.
These plots display lines in order to highlight the data sequence patterns rather than the
datapoints themselves. Noticeably, the walking manifold takes up a much smaller overall
space than the jogging manifold. The jogging manifold has a U shape with higher variation
in the center but consistency at the ends. Jogging and walking are easily distinguished
based on the shape. We also repeated the experiment with a different collar orientation
since IMU sensor values are orientation-specific. Figure 5 shows this effect on jogging,
where we see that the data pattern looks to have been flipped over the x-axis. However,
the pattern within the dataset has remained the same as an inverted U shape. This suggests
that the manifolds should be more abstract to account for rotations and translations.

Walking View 1 Walking View 2

20 30

8
S

-30

Y-axis Acceleration
Z-axis Acceleration

-40

-60

60 -10
-20 -10 0 10 -20 -10 i} 10

X-axis Acceleration X-axis Acceleration

Jogging View 1 Jogging View 2

Y-axis Acceleration
Z-axis Acceleration

X-axis Acceleration X-axis Acceleration

Figure 4. Manifold against action. Top figures are walking cycles and bottom figures are jogging
cycles. Left figures show Y-axis against X-axis and the right is an alternative view showing Z-axis
against X-axis [31].
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Figure 5. Effects of orientation on manifolds.

Clearly, different movement patterns during gait are easily distinguishable by their
corresponding manifolds when using data acquired from our collar sensor system, at least in
this controlled setting. As a simple proof-of-concept demonstration, this analysis indicates
that various motions are distinguishable. In the context of the IFT, as an example, a dog
with a confident, smooth trot is likely to be distinguished from a nervous dog pulling
on a leash. However, the data quality and controls from the IFT sessions are far less and
therefore expected to be noisier, potentially producing large-variance manifolds. This is an
expected difficulty when creating a dictionary of manifolds.

After producing a working manifold dictionary set, we can then use it to classify new
patterns. Given a pattern, we can determine the distance from each manifold in the set
and assign it to the closest one. We can project a new data pattern onto the manifolds and
the one with the lowest reconstruction error is classified as the behavior associated with
this manifold.

3.4.2. Autoencoder

Autoencoders (AEs) are great and popular unsupervised learning models that simul-
taneously achieve excellent dimensional reduction outcomes. AEs are a type of neural net
architectures with two segments: (1) an encoder where hidden layers become subsequently
smaller until a minuscule feature space, or latent representation, of only a few traits is
reached, and (2) a decoder, which performs the opposite operation from the latent space
back up to the original size of the dataset. Loss is calculated from the difference between
the original and reconstructed data. Using AEs, only the most important characteristics of
the data are learned in the latent space.

Vanilla AEs are not designed to handle sequential data, though decent results for
sequences can be obtained using convolutions. For this reason, we considered Conv-
AEs, where encoding and decoding layers are constructed out of layers of 1D Conv
units (Figure 6). Data are windowed with a heavy overlap, and chains of convolution
layers are used for encoding and decoding. Additionally, potentially, since this AE setup
uses a similar structure to the Conv-LSTM networks outlined earlier for IFT classifica-
tion, there is the potential for transfer learning being used between the supervised and
unsupervised algorithms.

As before, depending on availability, we either used a single Intel Xeon 1.8 GHz core
with NVIDIA GeForce GTX 1080 or a single Intel Xeon 2.6 GHz core with NVIDIA GeForce
RTX 2080 Ti.
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Input(500)

Conv1D(128)

Conv1D(64)

Conv1D(16)

Conv1D(8)

Conv1D(16)

Conv1D(64)

Conv1D(128)

Output(500)

Figure 6. Autoencoder architecture.

3.4.3. Unsupervised Interpretation and the Pre-Image Problem

We hypothesize that the unsupervised learning methods should identify a much
smaller, important subspace of the patterns in our dog dataset. This subspace should be
much smaller than a given pattern’s space while discriminating between different man-
ifold classes. In the case of KPCA, this space is called the Reproducing Kernel Hilbert
space (RKHS) [32] and with the LSTM-AE, it is the latent variable space. In using unsu-
pervised methods, we were not sure which input patterns would prove to be the most
common. Knowing these common patterns would add much interpretability to our find-
ings. The autoencoder framework converges the input space into a latent space, but for the
interpretability of these latent space clusters, we are interested in the inverse problem, find-
ing the common patterns. This is known more formally as the pre-image problem [30,32].

To formalize this problem, we consider an input, x, from an input space, x € RM,
and latent variable, ¢, from space ® € RN with M >> N. Let ¢(x) be the mapping
provided by an LSTM-AE, KPCA, or other function estimation method. With these terms
defined, our goal is to first identify an optimal ¢* € & that represents a high-density
latent-space region. We then want to find the corresponding x whose mapping ¢(x) can
reach as close as possible in some optimal sense to our ¢*. A reasonable objective function
to represent this is to solve the following;:

x* = argmin [lg(x) — 9|~ M

For the first problem of selecting a ¢*, we can use clustering methods within the
latent space. This is accomplished with methods like K-means or elliptic classification.
The clustering can be selected by unsupervised approaches using the Kernel density
estimation in ®. Alternatively, supervised versions can be used, either by grouping ¢(x)
that share a category or by grouping ¢ (x) that share a category and are correctly predicted
in the validation set. From these clusters, an initial choice of ¢* is the centroid of the
cluster. This would provide a representative of the behavior in the input space. As a
second approach, a series of cluster edge points could be selected and used to find the
corresponding variances of the behavior in the pre-image space x.

For the second problem of finding x*, we can obtain an initial estimate using a xg with
¢(xo) near ¢*. From here, gradient descent or other optimization approaches can be used
constrained by being in the space around the xs that have ¢(x)s around ¢*. However, since
we have developed an autoencoder, the decoder section can be used as the mapping from
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d to X, naturally solving the pre-image problem. Nevertheless, we use this terminology
moving forward.
4. Results

This section presents the results of the Conv-LSTM network, performance of the KPCA
method, and the performance of the autoencoder technique.
4.1. Conv-LSTM Results

The average memory usage for all the datasets was constant at 1.89 £ 0.3 GB. This was
expected to be constant since neural networks load data in chunks. Run time depended
linearly on dataset length (number of entries), as shown in Figure 7. This suggests a strong
linear relationship between dataset size and performance, as expected.
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Figure 7. Relation between LSTM train time and dataset length.

Figure 8 shows an example loss and accuracy training and validation curves for
one of the datasets. Losses show that validation loss achieved a minimum of around
250 epochs while there was some overfitting of the training data throughout all epochs.
Validation accuracy, however, showed a fast convergence at about 50 epochs, but had a
stepwise improvement around 250 epochs. This is undesirable in general because stepwise
improvements are not smooth and therefore unpredictable. However, the magnitude of the
step was only a few percent, and so could be reasonably ignored. Again, the training curve
showed a decent amount of overfitting.
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Figure 8. LSTM training curves for interpolated 10-state IMU-only dataset.

Table 2 compares the overall performances of the Conv-LSTM network on each of the
ten datasets. We show macro precision, recall, F1-score, and accuracy for each dataset. Note
that the 50-state IMU-Audio-Env datasets were not tested because there were insufficient
data for each state.
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Table 2. LSTM results. Top results in each section for each metric are in bold.

Dataset Mac-Prec Mac-Recall Mac-F1-Score  Acc

interp 10 IMU 0.363 0.312 0.349 0.297
interp 10 IMU-Audio 0.348 0.314 0.337 0.320
interp 10 IMU-Audio-Env 0.459 0.193 0.468 0.283
subsam 10 IMU 0.373 0.375 0.374 0.377
subsam 10 IMU-Audio 0.385 0.389 0.387 0.390
subsam 10 IMU-Audio-Env  0.442 0.413 0.419 0.468
interp 50 IMU 0.057 0.051 0.090 0.052
interp 50 IMU-Audio 0.017 0.020 0.034 0.017
interp 50 IMU-Audio-Env NaN NaN NaN NaN
subsam 50 IMU 0.131 0.144 0.139 0.150
subsam 50 IMU-Audio 0.126 0.146 0.136 0.153
subsam 50 IMU-Audio-Env  NaN NaN NaN NalN

Lastly, example confusion matrices are shown in Figure 9.
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Figure 9. Examples of (left) the 10-state confusion matrix and (right) a 50-state confusion matrix
for Conv-LSTM.

4.2. KPCA Results

For KPCA, we had to subsample some of the datasets in order to comply with high-
performance computing space requirements. Most datasets were small enough to not
require special requirements, but the subsampled datasets had too much data to run. These
were therefore subsampled to either a quarter or a sixteenth of their original sizes. The av-
erage memory usage and run times for KPCA on all the datasets showed an accelerating
increase in requirements against training size, as shown in Figure 10. The time complexity
of calculating the Kernel matrix in KPCA is O(n?), and so, our findings are in line with
theory. Some of the smaller tested datasets were able to be calculated in several minutes
while larger ones took days and 51 GB of memory.
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Figure 10. Relation between KPCA training (a) space vs. dataset length and (b) time vs. dataset length.
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Table 3 compares the overall performances of the KPCA method on each of the ten
datasets. We show macro precision, recall, F1-score, and accuracy for each dataset. Note
again that the 50-state IMU-Audio-Environmental datasets were not tested because there

were insufficient data for each canine state.

Table 3. KPCA results. Top results in each section for each metric are in bold.

Dataset Mac-Prec Mac-Recall Mac-F1-Score  Acc

interp 10 IMU 0.420 0.435 0.416 0.430
interp 10 IMU-Audio 0.429 0.433 0.420 0.438
interp 10 IMU-Audio-Env 0.564 0.237 0.250 0.327
subsam 10 IMU 0.236 0.240 0.208 0.244
subsam 10 IMU-Audio 0.244 0.246 0.216 0.248
subsam 10 IMU-Audio-Env ~ 0.449 0.119 0.123 0.195
interp 50 IMU 0.141 0.149 0.138 0.154
interp 50 IMU-Audio 0.146 0.155 0.146 0.162
interp 50 IMU-Audio-Env NaN NaN NaN NaN
subsam 50 IMU 0.067 0.060 0.051 0.062
subsam 50 IMU-Audio 0.056 0.055 0.057 0.058
subsam 50 IMU-Audio-Env  NaN NaN NaN NaN

4.3. IFT State Space Stability

We were interested in understanding the confusion between IFT states. We note
that each model (ConvLSTM and KPCA) produces a most-common state, but that this
can mistakenly correspond to another state. To visualize this, Figure 11 shows a Sankey
diagram. On the left are all 50 states; on the right are the states that are most commonly
selected from the states on the left. Occasionally, an IFT state is confused evenly across

many other states; in this case, these are associated with the null state.
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Figure 11. Sankey diagram showing common IFT state confusion. The null state indicates confusion
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4.4. Autoencoder in Latent Variable Space

The autoencoder was used to establish a much smaller latent variable space that
corresponded to common data patterns obtained from the dogs. We see the training curves
for the interpolated 10-state IMU-only dataset in Figure 12 as an example. The training
converged to a validation loss minimum of about 0.29 after about 70 epochs. Unfortu-
nately, the validation loss shows a number of irregular spikes in loss, suggesting a level of
instability. This instability does not exist in the training set.
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0.34 1
0.33 +

0.32 1
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0.29
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Figure 12. Autoencoder training of the interpolated 10-state IMU-only dataset.

Following training, we compared several input and output sequences to check whether
the model was learning patterns. Example sequences can be seen in Figure 13, with black
showing the original sequence and red the recreated sequence. In the leftmost four plots,
the autoencoder had successfully learned low-frequency, low-order patterns that look like
smoothed versions of the original. The two plots on the right, however, show a stark
mismatch between the original and the recreated. The top-right shows a higher-frequency
section in the recreated signal and the bottom-right shows a lack of any decent fit for the
oscillatory sequence. Overall, this would indicate that most of the sequences are being
reasonably estimated (at least the overall trend), while a significant minority of cases
are undetermined.
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Figure 13. Six examples of autoencoder input sequence (black) and corresponding output sequence
(red) from the interpolate-50-IMU dataset.
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5. Discussion

The default accuracy, if the system were random, for the 50-state system is just 2%
and for the 10-state system, 10%. So, the 15% accuracy on the 50-state system and 30-40%
accuracy on the 10-state system is considered to be very promising. While some other
recent work in the literature evaluating predictions from IMU data have higher reported
accuracies (80% to 100%), it is important to indicate that these solve a noticeably simpler
problem [28,33,34]. For instance, each of these have a much smaller number of states
(typically 4 to 6), as opposed to our 10 or 50 states. Our data are also much noisier for a
number of practical reasons.

1. The timing of the different states is not concrete; these can vary depending on the
trainer using the app or how the dog is performing that day.

2. The states we used were not designed to be different and were created for a standard-
ized protocol; as a result, many states are similar to each other, such as ones during
which distractions are provided for the dog.

3. The sensors are attached to the collar and is not firmly connected to the dog; this
produces motion artifacts that especially affect IMU performance.

4. Dogs are less obedient at following protocol than human subjects.

A couple of confusion matrices are shown in Figure 9. In both cases, two trends
indicating a good fit emerge. First, a noticeable diagonal means that predicted states
agree with the true state. And the second, that most predicted states have some non-zero
background, suggests that the model is indeed learning most of the states to some extent.
However, the 50-state confusion matrix does show a lack of some predicted states, likely
due to sparsity in the importance vs. discernibility of these states. Recalling that each state
makes up either 2% of the 50-state or 10% of the 10-state datasets, there is no concern of
overfitting to an overrepresented class in this case.

Looking at the accuracy data in Tables 2 and 3, several instances are observed in
which combining the data from multiple sensors showed a substantial improvement in
performance. The Conv-LSTM network on the subsampled 10-state datasets showed a
marked increase in performance from 38%, using only the IMU, to 39% when incorporating
audio data, then to 47% with the environmental data. The Conv-LSTM network on the
subsampled 50-state datasets also showed a minor improvement from 15.0% using the
IMU-only to 15.3% when including audio data. Interestingly, data fusion showed worse or
ambiguous results for the Conv-LSTM network on the interpolated datasets. Accuracy for
the interpolated 10-state system was consistently around 30% while on the interpolated
50-state datasets, accuracy was far lower than expected, suggesting improper fitting. With
KPCA, small improvements were observed with the inclusion of the audio data. In the
interpolated 10-state dataset, accuracy was improved by 0.8%; the subsampled 10-state
dataset showed a 0.4% improvement; and the interpolated 50-state dataset showed a 0.8%
improvement. We speculate that audio improves performance because some of the states
included the use of loud noises like fans or falling objects hitting the ground to make noise
in an attempt to distract the dog. Audio signals also captured bark information from the
dog directly. Unfortunately, we saw that the inclusion of environmental data degraded
performance to a large extent in both of the 10-state datasets, by about a 10% reduction
in the interpolated and 5% reduction in the subsampled datasets. This suggests that the
environmental information confused the KPCA model.

The Conv-LSTM model performed better for the subsampled datasets while the KPCA
model performed better on the interpolated datasets in every case tested. Because the
KPCA model does not require extensive training like the LSTM model, it is generally more
useful. The main drawback of KPCA is that it will not work on larger datasets because it
requires an expensive eigendecomposition step [35]. During these trials, the subsampled
datasets provided too many samples and had to be downsampled to run. As this expanded
the general database, KPCA became less useful. A future direction is to consider iterable
KPCA [35,36] to remediate this problem. Neural network-based Conv-LSTMs do not have
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this problem. While training will take proportionally longer with more data, memory usage
will remain constant.

The autoencoder’s latent space varied as either 4- or 8-dimensional, depending on
whether interpolation or subsampling was used, respectively. In both cases, we used a
2-dimensional t-distributed stochastic neighbor embedding procedure [37] to visualize the
distribution of latent variables. Ideally, we would have had multiple separate clusters to
correspond to distinct actions caught by the sensors. However, this was not observed and
instead, all of the data aggregated into one large cluster (see part (a) of Figures 14 and 15).
Despite this, we could plot the densities of the embeddings to find regions of relative high
density. Recalling the pre-image problem, we could set ¢* to the centers of these high-
density regions. The decoder of our autoencoder could then act as the functional inverse
from ® to X. After decoding, we obtained the corresponding x sequences, which are shown
in part (b) of Figures 14 and 15. For simplicity, we only show the x-axis acceleration patterns.
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Figure 14. Generated sequences’ latent space (a) and corresponding sequences (b) indicated by color.
Ran on subsample set.

100 4 a

504

t-SNE Dim 2
Sequence

-100

50 75 100 0 100 200 300 400 500

-75 -50 =25 [} 25
t-SNE Dim 1 Timepoint

Figure 15. Generated sequences’ latent space (a) and corresponding sequences (b) indicated by color.
Ran on interpolation set.

We can see that for the subsampled data (Figure 14b), common sequences are fairly
simple, consisting of constant lines or up/down linear trends. Constant left or right
accelerations are common, such as x1, x3, x4, x5, and x4. Because of this, direction changes
are rarely represented. This makes sense considering these time frames are very short,
representing subsecond motion. Interestingly, there is no sequence that goes through the
centerline (abscissa = 0), suggesting that the dog either remains on the left or right-half of
motion for these sequences. It is uncommon for these short durations to show a change
in direction.

For the interpolated data (Figure 15b), the corresponding sequences are noisier and
with distinct regions of climb/decline or stability. These are more interesting and expected
of canine behaviors. For instance, we do see sequences that pass through the centerline
(abscissa = 0), suggesting directional changes. Each sequence found represents a unique
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motion, which we speculate as follows (for orientation, we take positive values along the
x-axis to be “right” and negative values to be “left”):

e xy: General left-biased movement;

*  xp: Chaotic and may indicate undesirable behavioral quick movement in response to
a distraction, or possibly an appropriate reaction like a jump onto a table;

e x3: Constant left-biased movement;

® x4 Similar to x; but quicker;

*  xs5: Strong right bias start, followed by motion (dog may start moving or walking);

* x4 Right-biased motion (walking);

*  x7: Walking that starts left and moves more rightward.

We look at the acceleration pattern in Figure 16a, where we see that many patterns
remain along boundaries of the unit cube, suggesting that these motions correspond to
constant directions of travel. By doubly integrating the acceleration data, we can estimate
the position in Figure 16b. We notice that movement in the negative x and especially y
directions was important enough to warrant separate high-density clusters.
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Figure 16. (a) Acceleration and (b) position sequences derived from ¢* using the decoder from
the autoencoder. Color indicates which sequence corresponds to the same sequence in Figure 15.

Potential Outcomes for Guide Dog Behavior Assessments

Due to the controlled environmental conditions, the environmental sensor data were
not as helpful for either model type, and potentially confused the models sometimes,
resulting in lower accuracies. We speculate that this was due to the IFT being conducted
in the same indoor testing location for all dogs, meaning that recorded differences in
temperature or light are more likely to be the result of random minor fluctuations rather
than significant information. The environment is constant for each state since the entire
IFT was conducted in the same room. Prior studies showed that these smart collars are
capable of distinguishing environments [16]. However, these tests were performed with
significantly different environments, such as indoor vs. outdoor. Therefore, adding the
environmental sensors to the data analysis may be more beneficial when the guide dogs
undergo tests with highly variable environments.

The Sankey diagram (Figure 11) shows that some states are commonly confused from
multiple other states and serve as larger aggregate states, such as “Sees distraction dog” and
“Exam complete”. Noticeably, however, many of states are uniquely determined correctly,
such as “Idle” and the “Fan passes”. Fortunately, a good number of well-defined states
correspond to behavior-related tests, such as the following:

*  Passive tests—"“Explore-Enters Space” and “Ignore Dog”;

e Noise tests—"Vacuum on-On leash” and “Noise can shake”;
e  Dog Distraction tests—"“Dog dist-Dog returns to handler”;

e  Stranger Fear/Aggression —“Sees Unusual Person”.



Animals 2024, 14, 3403

19 of 22

The uniqueness in these temperament-related tasks indicates that we are properly
able to identify different states that best predict dog temperament of interest. With this
in mind, this study is still a preliminary work. We focus on establishing a baseline in this
study and will be assessing dog-specific reactions to these events in a future work. Despite
this, we observed that the correct identification of certain known IFT states is, in some
cases, tantamount to identifying dog-specific temperament. As an example, our models
can distinguish between “Explore-Enters Space”, where the dog is active, from “Ignore
dog”, where the dog is passive. Then, if a potential guide dog shows similar results in both
states, we could infer either attention-seeking (movement when being ignored) or fear (not
exploring the space). In this way, a next step for our models would be to distinguish dog
temperaments directly from the collar data, rather than relating each through the IFT states.

We also observed that not all states were easily identifiable. Seven of the fifty states
mapped to “null”, meaning that they could not be consistently identified from the models,
and others mapped to one similar state. For instance, we see several larger aggregate
states around “Sees distraction dog” and “Exam complete”. From our findings, as potential
improvements for future IFT tests, we recommend removing stand-alone null-mapped
states, such as “Rolly toy seen” or “Sees bat”, as these states are difficult to identify from the
data. Some of the aggregate states indicate too much similarity between subdivided tasks.
The “Exam-load on table”, “Dog on table”, “Vet arrives”, and “Exam complete” states,
for instance, could be grouped into one “Exam” superstate, reducing the total number
of test states. These recommendations could help simplify the standard IFT testing and
data analysis.

Of our main hypotheses (outlined earlier), we have successfully accurately modeled
the IFT states to set a baseline for identifying individual dog-specific behavior, and the
models could distinguish states that are tantamount to behavior. We leave the analysis
of individual effects as a future endeavor, requiring model comparison with the guide
dog school’s corresponding BCLs. We were also able to successfully apply multi-sensor
data fusion models to better understand dog actions and behavior. This would be an
important asset when the IFT testing is performed under different environmental conditions.
Unfortunately, the large groupings observed in the AE latent space suggests that common
behaviors are not easily distinguishable, and a common lexicon cannot be established.
However, higher-density regions suggest that this may be possible in the future with
additional data or greater preprocessing measures.

6. Conclusions

This study presents our initial results in analyzing the multi-sensor data acquired from
a wearable collar system designed for guide dog training. The system contains behavioral
and environmental sensors, which were deployed on hundreds of guide dog puppies
undergoing training at a prominent guide dog school in the US over the past couple of
years. The In-for-Training protocol conducted at Guiding Eyes for the Blind aims to observe
potential guide dogs and assess their suitability for future training at the school. In this
paper, we developed two supervised methods, a Conv-LSTM network and KPCA, for a
preliminary analysis of these data. We found that the Conv-LSTM network worked much
better on subsampled data and that KPCA worked better on interpolated data. KPCA is a
much faster method since training is not required, but will not work with larger datasets.
We found that the IMU accounts for the vast majority of predictability, though audio data
improved performance slightly in most datasets. We also created a lexicon of data patterns
using an unsupervised autoencoder. We found several regions of relatively higher density
in the latent variable space that correspond to more common patterns. This preliminary
analysis showed the feasibility of deep learning and Kernel methods in learning specific
guide dog states for objective future testing and revealed a starting point for common
dog-specific patterns observable through cluster analysis.
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