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Abstract

Visual cues are commonly used by many animals, both intrinsically
and explicitly, to communicate. Understanding and deciphering
animal behavior and communication has been an area of active re-
search, especially to assess emotions and mood. Dogs have been one
of the most studied animals thanks to their integration into every
aspect of human life. Objective measurement of dogs’ behavioral
communications is increasingly of interest. Remote cameras, com-
puter vision, and signal processing techniques offer a non-contact
system for objectively characterizing tail wag—a behavior com-
monly believed to be important for dog communication. Cameras
do not compromise subject comfort or the mechanics of behavioral
signals of interest. This study focuses on the tail as an indicator of
emotional state and expands an existing Mask R-CNN computer
vision methodology to derive detailed tail wag metrics across a
population of 30 dogs in the presence (or absence) of certain stimuli.
We updated the existing work with several thousand additional
training images to make it more robust, at the cost of increased false
positives. We have shown that this method works efficiently enough
on most of videos in our data set to capture the tail wag signal in
spite of streaming and detection difficulties. A good correspondence
between these metrics and the video footage was observed. Our
approach enables extracting tail position in three dimensions and
deriving temporal metrics like speed and momentum. These novel
capabilities allowed for performance of broad population statistical
tests which revealed certain tail wag metrics to be different in the
presence of certain visual stimuli. The findings of this study vali-
date the potential for computer vision to provide higher resolution
monitoring and continuous interpretation of dog tail movements
and positions.
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1 Introduction

Scientific advancements in animal cognition have been fueling
the long-term aspiration of interspecies communication with par-
ticular focus on apes, parrots, dolphins, horses, rabbits, cats, and
dogs [13]. Dogs are one of the most common animals in human
environments, and they serve critical roles including companion-
ship, emotional support, drug detection, guiding people with visual
disabilities, medical alerts, herding, etc. Despite progress with this
popular domesticated species, deciphering the nuances of commu-
nication, especially to assess their emotions and mood, remains a
challenge due to intricacies and complexity of their social cues and
expressions.

It has long been discussed that tail wag is one of the behavioral
signals used by dogs for visual and tactile communication and as a
display of emotional states [12]. Dogs regularly use tail orientation,
in conjunction with body posture, movement, and facial expres-
sions, to display emotion, intention, and motivation. The movement
dynamics and many degrees of freedom of a wagging tail enables
dogs’ tails to be a predominant display of such information.

Computer vision, when combined with deep learning, provides
a powerful technique to record, analyze, and interpret animal be-
havior. Semantic segmentation is a computer vision technique for
extracting meaningful sections of complex image data. It can be
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used for behavior tracking by identifying certain anatomical fea-
tures corresponding to behavior. This has only recently been possi-
ble thanks in large part to Convolutional Neural Networks (CNN).
CNN’s have proven great at extracting features and developing fea-
ture maps from image data. Stacked CNNs are capable of more
abstract feature detection, improving performance. One such CNN
architecture, Mask Region-based Convolutional Neural Network
(Mask R-CNN), has been developed to generate pixel masks cor-
responding to objects in the frame [9]. These masks enable the
necessary infrastructure to provide high accuracy and timely frame-
by-frame behavior monitoring to assess stereotypical behavior and
temperament. Such techniques have been used for pose estimation
using depth cameras [11] and more generally for markerless detec-
tion of anatomical features [28]. For example, in previous attempts
to gauge the emotional state of dogs, pictures of facial expressions
were categorized as positive anticipation or negative frustration [3].

Mancini [18] argues that in attempts to create communication
with animals and human-animal interactions broadly, the animal’s
comfort and psychological well-being are paramount. With this
in mind, a good design solution is to use camera-based systems.
These systems are strongly motivated by [21] and implemented
in [19, 23]. Camera systems can provide continuous, high-resolution
tail wag identification while only requiring that the dog remain
within the observation area, thereby minimizing animal discomfort.
Being mounted from above, the cameras permit easy mobility and,
importantly, do not impede natural tail movement in any way. Ad-
ditionally, camera-based systems could allow for detecting multiple
dog and multiple human subjects simultaneously for socialization
experiments, and could be combined with other approaches like
attention and posture monitoring for more stimulating, pet-aware
toys.

In this paper, we present our latest efforts for an enhanced com-
puter vision system for measuring and interpreting dogs’ tail wag-
ging behavior. The system uses a depth camera for 3D pose estima-
tion of the tail, and the tail response is measured in the presence
of specific visual stimuli to better quantify positive or negative re-
sponses. This work extends the Mask R-CNN pipeline described by
Roberts et al. [23] to a full end-to-end pipeline from video recordings
to tail position and wag behavior analytics. Roberts et al. reported
on preliminary efforts using a neural network model trained pre-
dominately on video from two dogs only and showed relatively
poor ability to generalize to unseen dogs. The work presented here
updates this pipeline in two important ways: (1) completing the
pipeline with metrics to judge tail position and motion, (2) adding
significantly more training data from about 50 dog subjects to im-
prove R-CNN detection rates. We present results indicating that
the newly trained model is capable of much broader recognition,
and that the performance of recognition of the tail by this model is
sufficient to derive meaningful tail position and wag analytics that
can support future investigation of behavioral communication in
domestic dogs.

We chose the problem of monitoring tail wag. As far as we
know, there has never been objective monitoring of tail wag besides
Roberts et al. [23], and while this earlier system did detect dog tails,
it was not robust enough for full-length video data. Our updated
system is the first successful application of tail motion detection that
works well enough on video recordings. The main contribution of
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this paper is the development of a computer vision system capable
of objective tail wag measuring on video data. We also validated our
system to confirm its usefulness to the behavior community and
performed a final preliminary comparison using the extracted data
from thirty dogs. This paves the way for a stimulus-based behavior
classification using tail motion.

2 Background

We discuss the two prominent tail wag theories, prior studies per-
taining to dog tail wag, and common approaches formerly used
with computer vision systems on animal farming and sciences.

2.1 Tail Wag Theories

Earlier work on interpreting tail wagging behavior has focused
on two prominent theories for why dogs wag their tails and re-
lates to their development alongside the domestication process: 1)
the domestication syndrome hypothesis, and 2) the domesticated
rhythmic wagging hypothesis.

As described in the Belyaev experiments, the domestication syn-
drome hypothesis posits that tail wag arose unexpectedly as a
byproduct of selection for tameness and other human-useful traits.
Interestingly, Russian geneticist Dmitri Belyaev was able to produce
human-compatible traits in wild foxes in as little as six generations
of selective breeding for tameness [6]. These new traits included
the ability to be petted, whining when humans leave, and tail wag-
ging when experimenters approached. The last of these already
indicates a movement towards human-dog communication. These
tamed foxes are also capable of following human gaze, suggesting
intention or interest recognition. Alternatively, the rhythmic wag-
ging hypothesis posits that tail wag arose during the domestication
process as a direct response to humans’ proclivity for rhythmic
stimuli [26].

2.2 Prior Studies in Dog Tail Wag

Observational studies of dogs in the 1960s and 70s regularly dis-
cussed tail movement in a limited context, as more an addendum
to larger displays of dog emotion rather than a display in and of
itself. Fox [8] and Tembrock [29] both reference tail movement and
position as displays of motivational states. In particular, higher tail
positions are associated with confidence and/or aggression while
lowered tail position can be a neutral signal or may reflect fear
and/or submission.

More recent experiments aimed not only to properly interpret
the signal from tail motion, but also to use these motions to display
proper emotional states. Some of these experiments used robotic
tails to display information with attempts to use simulated tail wag
signals to provoke responses from other dogs [2, 15] as well as
humans [27]. Leaver and Reimchen [15] looked at dogs’ decision
to approach made in response to a short or long tail that was either
sedentary or wagging. They found that longer tails were better at
displaying signals and that wagging tails were more approachable.
Quaranta et al. [22] presented stimuli to dogs and monitored the
tail wag left vs. right bias. Positive stimuli invoked right-biased
wags while neural or unfamiliar stimuli showed either no bias or
left-biased wags. They relate these to the left or right brain hemi-
sphere dominance. Ruge et al. [24] proposed a much higher-fidelity
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ethogram model to improve user experience. They showed a large
dependency on dog temperament and noted that wag duration and
intensity were also important for interpretation, not just instan-
taneous orientation. The group acknowledges a need for further
nuances for the model, which has been one of our motivations
behind this presented study.

2.3 Computer Vision in Animal Applications

Within farming and animal sciences, animal measurements can be
time demanding, costly, and stressful for the animals [4, 7, 16]. The
recent popularity in digital cameras and 3D cameras has made com-
puter vision systems (CVS) an acceptable method as a non-invasive
and lower-cost alternative. RGB and IR cameras are commonly
used, though depth cameras using time-of-flight or LiDAR and
hyperspectral cameras have also been applied.

Deep learning approaches using these cameras have now been
useful for a variety of tasks, including object sensing, mapping,
recognition, motion tracking, semantic/image segmentation, scene
interpretation, monitoring, phenotyping, image classification, and
pose estimation. CVSs have been applied to primates, dogs, horses,
cats, cattle, pigs, ovine, and poultry [4, 7, 16]. Many convolutional
neural network architectures have been created for these tasks:

Animal tracking: DeepLabCut, EZtrack, DeepPoseKit

Image classification: AlexNet, Inception, MobileNet, DenseNet,
ResNet, VGG, YOLO

Object Detection: YOLO, R-CNN and Mask R-CNN, DenseNet,
ResNet

Semantic/Instance Segmentation: DeepLab, Mask R-CNN

e Pose Estimation: CPHR, DeepLabCut, DeepPose

o Custom training library: Microsoft’s COCO

Important for this paper, a survey focusing on CVS for animal
emotions was published recently [4]. Many of these studies focused
on pain specifically, but other standard emotions were included,
depending on the species. Depending on the study, either a discrete
emotional state model or a dimensional approach model (classifying
along different dimensions, often with valence) was used. These
studies commonly employed facial motion tracking, such as custom
Facial Action Coding System approaches that have been adapted
for primates, dogs, horses, and cats. There have also been many
studies on behavioral encoding in horses, dogs, and pigs, focusing
on body expressions observed in posture [4]. Sometimes stimuli
were controlled and administered to the test animals and in other
studies, the animal was monitored over time and natural behaviors
were grouped.

For our study, we performed instance segmentation using the
Mask R-CNN approach, retraining it specifically for tail detection
using a COCO library approach. The Mask R-CNN is optimal for
this type of task because it performs object classification, detection
and segmentation in parallel [16]. In addition to using traditional
2D image tools, we were able to acquire 3D data using a depth
camera, making our approach unique.

3 Methodology

We detail the experiment with dogs and how the video data was
acquired, then discuss ethics, followed by major updates to the prior
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work to make the system more robust, how image processing was
conducted, and lastly discuss how final metrics were calculated.

3.1 Experimental Setup

This work augmented a previously presented data pipeline [23],
following guidance from [21]. To briefly summarize the process,
a flat space of about four square meters was monitored overhead
with a RealSense D415 depth camera [5] (Intel, Portland, OR), which
provided color, infrared, and depth images at 60 frames per second
(FPS) (see Figure 2). This setup was also easily ignored by the
dogs. Owners sat with their dogs leashed and visual stimuli were
presented for periods of 15 seconds each (see Figures 1 and 3). Each
session lasted about 6 minutes total and there were 42 participants.

e
B(:) Camera Sensor

Figure 1: Computer vision setup for dog tail monitoring

The RGB and depth video streams were recorded in standard
VGA resolution (640 X 480) at 60 FPS. The higher frame rate en-
abled more accurate measurement of tail position since the spatial
displacement of the tail in 16ms is far lower than the standard 33ms
encountered with a more common 30 FPS recording rate. The Re-
alSense Viewer software recorded video streams in a format called
ROS bag! that allowed the pixel-synced depth and RGB images to
be replayed after recording as if they were being streamed from
the camera itself. The primary benefit was the ability to replay
the recordings with accurate timing for post-processing, and more
importantly, to ensure the depth and RGB images remained in sync
for the tail position analysis. The depth video provided pixel-linked
RGB images and depth maps, meaning a pixel in the RGB image
was correlated directly with a pixel in the depth map, allowing
ascertainment of 3D information. A second RGB camera was used
to monitor the visual stimulus being presented to the dog. The
experimenter performed hand gestures within the field of view of
both cameras for calibration.

A Maria database stored the data-heavy images in each frame
from the RealSense camera (RGB, depth, and IR). Additionally, the

http://wiki.ros.org/Bags
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Figure 2: the top-view scene that is used by the computer
vision algorithm for automated detection of the tail wag

database stored the final results- centroids and medial axis points
with corresponding depths. This way, storage was optimized and
future access to the results were easily obtainable for all later steps.

The outline below describes the image processing pipeline. The
boldfaced items highlight the particular contribution of this paper.
These changes are different from previous implementations [19, 23],
and provide additional robustness.

(1) Acquire color and depth frames
e Queue image frames from stored .bag file
e Store image frames into pre-built Maria DataBase for easy
access
(2) Perform image segmentation to identify the dog tail within
the image frame
e Use R-CNN to acquire all masks for base, end, entire tail,
and foot
e Determine primary masks for main tail sections
e Store masks in Maria DataBase
(3) Derive tail the medial axis and main centroids
o Identify dog tail skeletonization
e Use centroids to determine tail start and end points
e Logically order skeleton points
(4) Derive standardized points for tail position
e Establish orientation of tail position reference for
each frame
e Preprocess with interpolation and standardization
e Calculate tail position, direction, angle, and tip score
o Store scores in Maria DataBase for quick future ref-
erence
(5) Calculate time-specific metrics
e Limit per Nyquist rate
e Finite difference for speed and acceleration
e Estimate angular momentum with speed and tail

Martin et al.

Figure 3: Presented visual stimuli during the computer vision
tests included a) a large ball, b) a yellow box, c) a trash bag, d)
nothing, e) an English Sheepdog stuffed dog, f) a Jack Russell
stuffed dog, g) a Sheltie stuffed dog, and h) a real dog

3.2 Ethics

All procedures involving dog participants were conducted under
an IACUC approved protocol (Protocol #18-053-O ) and under the
direction of a board certified veterinary behaviorist. The 30 dogs
included in this work were recruited as volunteers via flyers and
email listservs within the NC State College of Veterinary Medicine
(CVM) students, staff, and faculty. Dogs visited the CVM for a single
visit, and owners signed an informed consent prior to the start of
the study [23]. Experiment volunteers could withdraw from the
study at any time, and staff had the option of prematurely ending
the experiment in the event of observed stress or discomfort.

3.3 Major Updates

We performed an early run-through of the dog video data. This
exercise elucidated two major difficulties with a naive approach. 1-
The original R-CNN was insufficient to robustly identify dog tail
segments in images, and 2- the streaming method used to extract
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individual images was not sufficient to attain each frame. Each of
these challenges and their solutions are presented next.

3.3.1  R-CNN Retraining. Previous training for the R-CNN was dis-
cussed in [23]. To summarize the original model, a generic Mask
R-CNN was implemented based on the open-source repository by
Matterport [1]. To specialize the base model towards tail recogni-
tion, approximately 300 images were annotated from the original
bag files from two dogs specifically. Performance on the two dogs
used for training was decent but could not be generalized to the
other dog images well. While this was a good starting model, we
found inefliciencies with video detection of various dogs through-
out our videos. We define this inefficiency in terms of useful frames,
where a useful frame is one in which enough tail segments were
successfully detected in order to detect the full dog tail. The base R-
CNN run-through produced a very low percentage of useful frames
per video (see Figure 4). Commonly, dog video files produced less
than 10% useful frames, suggesting either long stretches of false
negatives or very choppy tail identification, not good enough to
detect the wag signal. The average percentage of useful frames was
20.97%.

This performance was not acceptable for our analysis, so we
recruited student volunteers to annotate additional images using
LabelBox (https://labelbox.com/). We had about 50 images for each
dog in the study, producing an additional dataset size of approxi-
mately 2500 annotated images. This was over eight times the origi-
nal dataset and was expected to greatly improve semantic segmen-
tation performance. However, we noticed issues even when using
the gold standard of human annotations. These included highly
fluffy tails, very small dogs which are naturally harder to detect,
and darker colored dogs whose tails could not be distinguished
amongst regular fur. Being difficult for human detection, we cannot
expect the computer vision model to perform any better, so this
helps set an upper bound on expected performance. Using these
additional annotations, we retrained the Mask R-CNN.

While the same dogs were used for both training and validation,
the images from the dogs were split randomly. This means that
despite of the many breeds and sizes that our model was trained on,
our model may still suffer low generalizability. However, for pur-
poses of tail detection in our video data, this model was sufficient.

60
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Figure 4: Semantic segmentation rate of tail detection
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Training curves are shown in Figure 5. We observed that gener-
ally, losses decreased with epoch as expected. We selected the 157th
epoch as our model as this best balanced the various validation
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losses. After updating the R-CNN with additional images, the aver-
age percentage of useful frames almost doubled to 38.03%. While
still not great, most of dog videos had at least 30% useful frames.
This score accounts for null time before and after the experiments,
so the experimental detections would be higher. As we will see in
subsequent analysis, even at 30% detections, we can detect the wag

signal consistently.
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Figure 5: R-CNN retraining curves

Table 1: Updated R-CNN mAP Scores

Metric IoU area maxDetections  Score
Average Precision  0.50:0.95 all 100 0.222
Average Precision 0.50 all 100 0.472
Average Precision 0.75 all 100 0.184
Average Precision  0.50:0.95  small 100 0.248
Average Precision  0.50:0.95 medium 100 0.235

Average Recall ~ 0.50:0.95 all 1 0.251
Average Recall ~ 0.50:0.95 all 10 0.305
Average Recall ~ 0.50:0.95 all 100 0.305
Average Recall ~ 0.50:0.95  small 100 0.270
Average Recall ~ 0.50:0.95 medium 100 0.335

We used the COCO library’s evaluation function with 500 val-
idation images to report on mean average precision (mAP) and
report these scores in Table 1. This showed expected scores around
0.2-0.3. The additional training for the R-CNN improved its tail
detection rate (reducing type 2 error), but now detects tails where
none are present (increased type 1 error). Figure 6 shows the num-
ber of detections of each type for each frame. Most frames have 0
or 1 detection as expected, but it is not uncommon for 2 or more
detections, with fewer instances of higher numbers of detections.
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Multiple detections are primarily caused by experimenters walking
into the frame during setup and post-experiment, though we have
also observed instances of the dog’s leg being identified as a tail.
To resolve this ambiguity, we selected a primary detection for each
class by examining nearby tail sections and/or past detections. For
example, if two end-of-tails are detected, and one is closer to a prior
known location of an end-of-tail, then this one is primary. Alterna-
tively, if two end-of-tails are detected and one is much closer to an
entire-tail detection, then this one is primary. In cases of multiple
detections, we utilized the following equation, with t being number
of frames before the current frame, and r being pixel-wise distance
between different tail subsection centroids:

600

The primary detection is the one with the higher score. We
engineered this equation specifically for the following important
properties:

20-t+r
s=max |0, 1 - ——

(1) balancing a dependence between time and distance
(2) higher scores when closer in distance and time
(3) scores 0 when...
(a) near-full frame-length away
(b) frames more than 30 frames (1/2 sec) before
(4) simple function
(a) piecewise linear
(b) on the unit interval s € [0, 1]

counts
r

e

base of tail

end of tail
counts
|
[
1

[51=]

entire tail
counts

foot
counts

55 6 6.5 7 5 8 85 9 a5 10

Figure 6: Counts of tail sections through the frames for one
of the dogs.

3.3.2  Streaming. Because of the nature of RealSense bag files, data
are streamed into a queue. However, the streaming process is not
consistent enough to extract each sequential frame, skipping some
and double counting others. The frame skip rates are shown in
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Figure 7, where about 47% of frames are sequential while 99% are
within 6 frames from each other. Because of inconsistent stream
speeds when multiple calls to a bag file are made, we implemented
a 20% overlap between multiprocess calls to prevent large gaps in
time.

50%

45%
S 40%

35%

30%

25%

20%

15%

Percent Frame Differences

10%

5%

T .
1 2 3 4 5 6 7 8 9
Frame Number First Difference

0%

Figure 7: Frame number differences show how often frames
are skipped from the streaming file. About 46.9% of frames
are consecutive, while over 99.6% of frames are within the
Nyquist rate. The Nyquist rate is a standard tool used in
signal processing to ensure a signal capture a periodic phe-
nomenon [20].

During experimentation, in addition to the specialized depth
camera, we had a standard camera behind the experiment space,
where the dog and stimulus being presented could be observed.
Ideally, the bag file video and rear video should be temporally
aligned, differing by no more than a constant, so that stimuli times
can be aligned with tail wag times. Yet, the stream inconsistencies
introduced non-constant time distortion. Fortunately, the bag files
contain frame numbers as metadata and the video made from the
bag frames was corrected by filling in empty times with the most
recent last frame.

3.4 Processing

Once the two major problems were corrected, we proceeded with
a more standard workflow highlighted in Figure 8. We used the R-
CNN to extract the masks, use skeletonization to collect the medial
axis points, and standardized the points before feature extraction.
The following procedure was originally presented and is summa-
rized from our earlier work [19]. However, it is greatly expanded
upon for the final camera-based system presented in this paper.

3.4.1 Masks. The R-CNN returned a list of masks that corresponded
to the sections of the image with either the base of the tail, the end
of the tail, the entire tail, or a human foot.

We began with the prior R-CNN model [23] and analyzed the
number of successfully processed frames. The main obstruction
towards broader applicability was the accuracy of the Mask R-
CNN [9]. Table 2 shows that the pipeline could successfully identify
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Figure 8: Data pipeline flowchart

the dog tail approximately 2/3 of the time. In particular, the base of
the tail was easily identifiable with a detection rate of about 64% of
the frames.

Table 2: Table of R-CNN results

Metric Value

Percent tail detection 67.9%
Percent base of tail detection | 64.1%
Percent end of tail Detection | 38.5%

3.4.2 Medial Axis. Starting with a set from the medial axis, we
order the skeleton points to orient the virtual tail. Our Mask R-CNN
identifies the base, the body, and the end of the tail [23]. Ordering
is accomplished using a piecewise optimal pathing approach. From
one point, we connect it to the nearest point, and continue this
process until all points are connected. For initialization, the centroid
of either the base or the end of the tail is used as either the start or
the end point, respectively [19].

After R-CNN detection and tail skeletonization, only the medial
axis keypoints and centroids of the base-of-tail and end-of-tail were
stored for further processing. This saved processing and storage
time for all further steps without loss of needed information.

Based on which sections of the tail were detected in each frame,
either a Base-Tail approach or End-Tail approach was used. The
Base-Tail places the centroid of the base as the first point and
sequentially finds the closest points along the tail. The End-Tail
starts at the centroid of the end of the tail, then sets the furthest tail
point from this centroid as the first point, then sequentially finds
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Table 3: Method used for determining orientation based on
segments of the tail detected by the Mask R-CNN model. For
*, if base detected within 30 frames ago: Base-Tail, else if end
detected within 30 frames ago: End-Tail, else skip.

Base End Tail Method

1 1 1 Base-Tail
1 1 0 skip

1 0 1 Base-Tail
0 1 1 End-Tail
1 0 0 skip

0 1 0 skip

0 0 1 *

0 0 0 skip

the closest points moving along the tail. Which method was used
in which case depended on what subsets of the tail were detected
as outlined in Table 3.

3.4.3 Standardization. After all medial axis keypoints were se-
quenced and before valid metrics were extracted, further prepro-
cessing steps were necessary to make a proper comparison. These
additional steps were:

e interpolation
e invert depth
e rotation

We wish to be able to compare medial axis points pertaining to
the same small intervals along the tail. For this reason, we convert
these points to percentiles along the tail. Another problem arises
as the depth (z-axis) is recorded in different units than the pixels (x
and y axes). For this reason, we kept overhead positions separate
from depth positions where possible. For interpolation, points were
selected along the length of the tail determined by pixel distance
alone. Interpolation to a standard twenty points (shown in Figure
9c) allowed for alignment of points between frames.

Depth inversion was a simple operation to convert depth data
to height data. Since scores are relative to the distance along the
tail, we maintained heights as negative numbers.

Lastly, we translated and rotated the points such that the first
point was at the origin and the first direction for the tail was facing
directly —yj. The dot product equation was used to estimate a 0. A
rotation was then completed with quaternions (see Figure 9d).

3.5 Deriving Features

We calculated four directional scores based strongly on the ethogram
by [24]. These were position (up vs down), direction (left vs right),
angle (degree from midline), and tip angle (greatest angle along tail
end). The reference coordinate frame was designed to have the tail
pointing directly backward, seen as a continued extension of the
spine [19]. This aligned the y-axis along the dog’s spine and the
z-axis opposite gravity (see Figure 10). Scores were then calculated
and normalized by the length of the tail, thereby returning values

€ [-1,1]. For demonstration, Figure 11 shows several instances
of tail positions with their corresponding scores.
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Figure 9: Medial Axis Preprocessing Steps (a) R-CNN iden-
tifies a base of tail and entire tail subsections (b) centroids
and skeletonization provide medial axis keypoints (c) inter-
polation is used to standardize the points relative to position
along the tail (d) translation and quaternions are used to
rotate the medial axis to a standard format

As an example, the equation for direction (which varies along
the x direction) is:

[Isx,i = Sx,i—1ll

20
direction score = Z
o lsi = si-1ll

Here, i indexes the 20 interpolated subsections along the length
of the tail. Numerator terms, sy ;, indicates the x-value (direction
score) of tail segment i, while denominator terms, s;, are the full
3-vector values of tail segment i. Tail tip angle was calculated by
calculating the maximum angle between sequential tail subsections
for the last few identified medial axis points.
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Figure 10: Tail Orientation

Overhead:

Behind:

description score description score description score

Position : horizontal : 0 mid-high : 0.7 horizontal : 0
Direction :  center 0 mid-right : 0.7 slightleft :  -0.1
Angle @ <45° 0 right 45° : 0.7 <45° : -01
Tip : <45° 1 <45° 1 90° E 0

Figure 11: Dog tail positions and accompanying scores

Tail speed, angular momentum, and acceleration are all time-
dependent metrics and are heavily affected by 1) frame skips and
2) proper interpolation for correct medial axis point comparison
between frames. From prior experience, we estimated a maximum
reasonable tail wag frequency of 5 Hz, which required a sampling
frequency of 10 Hz as imposed by the Nyquist rate. With a camera
rate of 60 fps, this means that at most five consecutive frames
can be lost/skipped without loss of signal. Generally, speed and
acceleration are estimated using finite difference methods. However,
because of inconsistent frame detection rates, these equations were
slightly altered from the traditional backward difference method.
With s1 and s being a set of medial axis points in frames 1 and 2, i
indexing tail axis points, and n being frame number, average speed
is calculated as:

T2 sz = spi-1ll

d =
avg spee (g — 1) - 20

, np—ny <6
Acceleration is calculated similarly.

We are also interested in the tail’s angular momentum (L) for
motion analysis. Though we are interested in general motion of
the tail for display purposes, angular momentum has been applied
previously to understanding climbing motion in lizards and geckos
[10, 25]. Angular momentum is the product of inertia and angular
velocity. Inertia itself is the product of squared distance from a pivot
and mass. With the base of the tail as the pivot (see Figure 12) and
assuming that the tail has constant mass distribution, p, inertia is:
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Am = Ar - p

Figure 12: Tail momentum derivation

R
I:/ p-rzdr:B-R3
0 3

and angular momentum simplified to the expression:

L=£'R3'U
3

Since p varies from dog to dog, we report L/p as a metric.
We report tail position, direction, angle, and tip angle at each
frame as well as tail velocity, acceleration, and angular momentum.

4 Results

An example of metrics for one dog are shown in Figure 13. The
top graph shows the visual stimuli times. These were presented for
periods of 15 seconds, which corresponds to 1000 frames, which is
about the length of these sections. We observed that near the begin-
ning of the experiment (during setup), there are few metrics since
the dog was offscreen during most of this time. We also observed a
lull in position, direction, and speed a bit before the 70,000th frame,
corresponding to a time when the dog was resting its tail. Lastly,
we observed times of sporadic higher-variance position, angle, and
speed scores, suggesting the tail was more active during these times.
There are some momentary changes such as around frame 75,000,
where we see a short-left bias in direction and tail angle turning
slightly positive (forward-facing). There are also noteworthy pe-
riods of rapid direction change (strong wag) from frame 80,000 to
84,000. Times of high angular momentum, such as at frame 85,000,
correspond to when the tail was commencing or terminating a tail
wag.

We simplified the stimulus response by averaging metric data
(either position, direction, angle, tip angle, speed, angular momen-
tum, or acceleration) to times roughly aligned with the time the
visual stimulus was presented. We elected to offset the response
window by 30% to allow a delay for the dog to see and properly
respond to the stimulus and residual effects after the curtain was
closed. For example, if a stimulus was presented from second 100
to 115, the score would be averaged from 104.5 to 119.5.

4.1 Computer Vision Quality

In addition to collecting video data, we had previously annotated
the number of wags per dog in response to each stimulus. With
this ground truth data, we examined the quality of the R-CNN
signals. Figure 14 shows direction score sequence examples from
our method at times when visual stimuli were shown. Sections with
high wag counts show obvious cyclical patterns as expected of tail
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Figure 13: All metrics calculated throughout the experiment
for one representative dog in our data set. Black is raw data;
red is mean averaged trend. Visual stimulus is 1 when stimu-
lus is being shown; order of stimuli is black ball, white gray
fake dog, yellow box, small brown white fake dog, trash bag,
white brown fluffy fake dog, nothing, real dog.

wagging. This suggests we are detecting the wag behavior that we
claim.

Notably, only certain subsections of stimulus times showed ex-
pected tail wag periodicity. Because of Heisenberg’s uncertainty
principle, we cannot simultaneously perfectly know the time and
frequency of a signal, but wavelet transforms are good at balancing
temporal and frequency information to roughly estimated periods
of signal [17]. To filter out the effects from non-wagging times, we
used the wavelet transform with a standard Ricker wavelet, and
observed good amplitudes in the pseudocolor plot at ordinate posi-
tion 10 (Figure 15b). We then took the amplitude of this section and
smoothed it with a moving average filter (15c). Signals consistently
above the threshold of 0.25 were considered to be wag times. Once
these times were detected, the following sinusoidal metrics were
calculated:

o Offset: average of the 5th to 95th percentile of the sequence
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Figure 14: Subplots a and b show R-CNN-derived patterns
with very low true wag values. Plots ¢ and d show R-CNN-
derived patterns with high true wag values. We can observe
very clear cyclical patterns in c and d that are not observable
in g and b.

e Amplitude: bisection of the 5th to 95th percentile of the
sequence

o Peak Frequency: max frequency from the FFT between 1 and
4Hz

Lastly, subsections were combined using a weighted average in
proportion to the length of the subsection. This then returned an
overall offset, amplitude, and frequency score for each stimulus
time.

5 Discussion

To demonstrate that our system does work and captures the tail
wag signal, we show a short section of one of the derived metrics,
direction score, in Figure 16. It should be noted that direction cor-
responds to left and right movement relative to the spine from an
overhead camera. We observed a high degree of correspondence
between the direction score and the tail motion in the video. The
dog was wagging its tail in sections A and C, stopped wagging in
section B, and sat in section D. We observed that the direction score
showed very low variance in sections B and D as can be expected.
Although sections A and C appear to have high variance due to
noise, they actually align with tail motion during a tail wag pulse,
with a frequency around 2 Hz and amplitude from -0.75 to 0.75
times the length of the tail.

By zooming into a section of the tail wag, we can observe more
clearly the sinusoidal pattern in the data. Figure 17 shows a cyclic
pattern with a frequency of 1.8 + 0.1 Hz. This proves that the video
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Figure 15: We identified more detailed wag times using a
wavelet transform with the Ricker wavelet. a) the original
signal, b) wavelet transform of (a), ¢) moving average of the
absolute value of the wavelet transform where ordinate of
(b) is 10. In this example, the wag times returned correspond
to frames [0,303] U [431, 863].

system is capable of capturing the tail wag signal. As a future direc-
tion, since wag signals are frequency signals that are determined
temporally, wavelet analysis would be a good analytical direction.
Wavelet spectrograms could immediately reveal wag behavior lo-
calized in time and frequency.

Figures 18 and 19 show each of our seven metrics’ distributions
of the dogs to each stimulus presented. We can observe that most
stimuli show similar population distributions, except for "real dog"
response, which has a slightly lower angle and tip angle score,
suggesting that the tail was more backward during these times.
The standard positions were around -0.7 for position, which is
highly down relative to the base of the tail, 0 for direction, which
indicates no left/right bias, as expected, and angle was -0.4, which
is moderately behind the dog, also as expected. These plots show
similar values for most stimuli. This is largely because these are raw
data aggregated across all the dogs tested. We intend on performing
an in-depth analysis on each subgroup and stimuli as a future work.
Regardless, these plots do show the applicability of a high-level
initial analysis using the data acquired from our system.

When we focused on the smaller time subsets corresponding to
wagging, these signals became obvious to a human observer. We
performed a verification test by counting wags from our system
and comparing it to the true counts. Sequences were mean-centered
and stepwise interpolated to account for NANs. Then the following
three features were extracted:

e Frequency: derived from the FFT algorithm, we recorded the
peak frequency from the power spectrum. This is helpful for
estimating the number of wags.
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Figure 16: Detailed comparison of derived direction score and
corresponding video frames. This 16-sec clip shows segments
A and C to be when tail was wagging prominently, segment B
during which the dog stopped wagging its tail, and segment
D during which the dog sat down with the tail leaning to
the left as expected of a negative direction score. Time is
displayed top to bottom.
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e Magnitude: this is the average of the absolute values of the
first difference of the bandpassed signal.

e Kurtosis: calculated from the histogram of the bandpass
filtered signal. This helps determine how common wagging
is.

Using these features, we then optimized a linear combination of
these few features using a 70/30 train-test split. We minimized the
sum of squared error and found a coefficient of determination (R?)
with the true wag count of 0.45 + 0.08, a moderate fit.
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Figure 18: Distributions of the four position scores of all 30
dogs against each visual stimuli presented.

We next detail sources of uncertainty. The efficacy of computer
vision systems can be evaluated along the lines of accuracy, ease of
use, observer effects, and usability for paired studies.

As with all large system workflows, our camera-based system
is susceptible to errors accrued from assumptions or randomness.
Causes of deviations are similar to those already reported in our
earlier work [19]. We summarize the causes of deviations that
are still valid. 1- Being a neural network-based model, our RCNN
naturally has object detection uncertainty (see Figure 4) [9]. If a tail
section is not detected, the frame becomes less useful and robustness
deteriorates. 2- Depth cameras specifically have random noise that
is not shared with standard color images. This can alter values along
the z-axis. 3- For our reference frame, the first few skeleton points
of the medial axis presumably point directly along the y-axis. If
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Figure 19: Distributions of the motion scores of all 30 dogs
against each visual stimuli presented.

invalid, this assumption would create a systematic error affecting all
other medial axis point estimates [19]. 4- Similarly, on the opposite
end of the tail, the tail tip angle should be only at the very end of
the tail, but may differ based on the dog species or tail conditions. 5-
Dog-specific tail conditions can greatly affect performance, such as
tail fluffiness or small tails, which confuses medial axis detection.

6 Future Work

The following future directions include continuing efforts originally
presented in our earlier publication [19]. Here, we expand upon
these earlier plans with more details.

Despite the desire for improved accuracy and the current low de-
tection rates for individual frames, our computer detection system
has still been sufficient for tail wag monitoring. Robustness was
generally improved and the system functioned sufficiently in spite
of many missed detections. However, we could consider implement-
ing further robust procedures such as interpolation when within
the dog tail wag Nyquist rate as only one frame detection is required
in six consecutive frames presently. This is usually within reason
using the presented methodology since the detection rates were
improved using more training data. Alternatively, we can consider
detrended fluctuation analysis (DFA) since this method is robust
to the signal gaps commonly seen in the tail wag signals. Using
the final derived metrics, future clustering analyses can be used to
quantify the number of tail patterns or corresponding emotions [19].
Linear mixed models would serve as a means of comparison by
accounting for the effects of different dog breeds, personalities,
and effects of the different stimuli. With i for individual dog, j the
stimulus, and k the feature, a model could be:

Frij=PBo + p1 X dogi + P2 X stimulus;

Martin et al.

Using a computer vision approach, our tail detection methodol-
ogy could be improved to a larger general ethology method using
camera-based systems for posture and attention monitoring [21].
It could also be seen as a future open tool similar to DeepLabCut,
which currently supports pose estimation [14]. As a more immedi-
ate improvement, a logical next step would be to identify owners’
interactions with their dogs to monitor the human-dog dyad and
more in-depth communication cues. Attached to the front-end of
a feedback system, we can foresee this system being used for au-
tomated training. Vision-based tail wag tracking is a very useful
research tool for understanding dog behavior better and with fu-
ture application areas such as dog shelters, where dogs are already
confined in spaces.

Overlapping tails, e.g. a curly-tailed or sickle-tailed dog, was
originally a concern but was very uncommon, so we chose to ignore
it at this time. This could be rectified in the future using the depth
filter values along the cross section. If the depth of the center of the
cross is more similar to one path than the other, it would suggest
that it belongs to the former.

Even with all these improvements presented here, we anticipate
variability and covariates amongst many well-established charac-
teristics of the population of dogs, such as effects of dog breed,
personality, left vs right preference, as well as tail traits, like fluffi-
ness, curl, or simply the absence of a tail. Our post-analysis models
specifically focused on the need to account for these population
dynamics to best set the tail wag model baseline. It should be noted
that the primary objective of this work is the completion of a tail
wag monitoring toolkit. We did not attempt to create an inter-
pretability framework because we anticipate that interpretations
will change with future studies. All interpretations made in this
paper were meant as examples of what could be claimed given
the data from this system. In addition to controlling population
dynamics, we spent extensive time analyzing the validity of the
signals to understand the noise versus signal relationship and the
limitations of the system.

Lastly, our updated system was designed to permit future stud-
ies on human-dog interaction. As such, the system, with further
modifications, could be fully capable of identifying multiple dog
tails in frame as well as a human in frame, whether the person be
a trainer presenting commands, owner providing encouragement,
or stranger causing confusion. While multiple tails are expected to
be a minor update, human detection will be more difficult since we
have not provided such training data yet.

7 Conclusion

This paper significantly expands the R-CNN methodology presented
before [23] to work on continuous video data for dog tail wag
tracking. We updated the original R-CNN with several thousand
additional training images to make it more robust, at the cost of
increased false positives. We then modified the data pipeline by
taking advantage of both the temporal nature of the video as well as
spatial locations of various detected class sections. We have shown
that the method does work well enough on most of our videos
to capture the tail wag signal in spite of streaming and detection
difficulties. We observed a good correspondence between these
metrics and the video footage. We then applied our system to 30
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dog videos and extracted tail position in all three dimensions and
derived temporal metrics like speed and momentum. The successful
attempts to perform broad population statistical tests revealed some
visual stimuli to be identifiable from tail wag alone.

Our system successfully detects tail position with a high reso-
lution and without interfering with dog movement or natural tail
motion. This study supports the literature and sets a standard for
high-resolution monitoring extracted from tail motion. We expect
that the higher resolution proposed with the presented methodol-
ogy will inspire and help elucidate future studies of dog ethology,
such as, in more dog-centric training or play environments.
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