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Abstract

Visual cues are commonly used by many animals, both intrinsically

and explicitly, to communicate. Understanding and deciphering

animal behavior and communication has been an area of active re-

search, especially to assess emotions andmood. Dogs have been one

of the most studied animals thanks to their integration into every

aspect of human life. Objective measurement of dogs’ behavioral

communications is increasingly of interest. Remote cameras, com-

puter vision, and signal processing techniques offer a non-contact

system for objectively characterizing tail wag—a behavior com-

monly believed to be important for dog communication. Cameras

do not compromise subject comfort or the mechanics of behavioral

signals of interest. This study focuses on the tail as an indicator of

emotional state and expands an existing Mask R-CNN computer

vision methodology to derive detailed tail wag metrics across a

population of 30 dogs in the presence (or absence) of certain stimuli.

We updated the existing work with several thousand additional

training images to make it more robust, at the cost of increased false

positives.We have shown that this methodworks efficiently enough

on most of videos in our data set to capture the tail wag signal in

spite of streaming and detection difficulties. A good correspondence

between these metrics and the video footage was observed. Our

approach enables extracting tail position in three dimensions and

deriving temporal metrics like speed and momentum. These novel

capabilities allowed for performance of broad population statistical

tests which revealed certain tail wag metrics to be different in the

presence of certain visual stimuli. The findings of this study vali-

date the potential for computer vision to provide higher resolution

monitoring and continuous interpretation of dog tail movements

and positions.
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1 Introduction

Scientific advancements in animal cognition have been fueling

the long-term aspiration of interspecies communication with par-

ticular focus on apes, parrots, dolphins, horses, rabbits, cats, and

dogs [13]. Dogs are one of the most common animals in human

environments, and they serve critical roles including companion-

ship, emotional support, drug detection, guiding people with visual

disabilities, medical alerts, herding, etc. Despite progress with this

popular domesticated species, deciphering the nuances of commu-

nication, especially to assess their emotions and mood, remains a

challenge due to intricacies and complexity of their social cues and

expressions.

It has long been discussed that tail wag is one of the behavioral

signals used by dogs for visual and tactile communication and as a

display of emotional states [12]. Dogs regularly use tail orientation,

in conjunction with body posture, movement, and facial expres-

sions, to display emotion, intention, and motivation. The movement

dynamics and many degrees of freedom of a wagging tail enables

dogs’ tails to be a predominant display of such information.

Computer vision, when combined with deep learning, provides

a powerful technique to record, analyze, and interpret animal be-

havior. Semantic segmentation is a computer vision technique for

extracting meaningful sections of complex image data. It can be
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used for behavior tracking by identifying certain anatomical fea-

tures corresponding to behavior. This has only recently been possi-

ble thanks in large part to Convolutional Neural Networks (CNN).

CNNs have proven great at extracting features and developing fea-

ture maps from image data. Stacked CNNs are capable of more

abstract feature detection, improving performance. One such CNN

architecture, Mask Region-based Convolutional Neural Network

(Mask R-CNN), has been developed to generate pixel masks cor-

responding to objects in the frame [9]. These masks enable the

necessary infrastructure to provide high accuracy and timely frame-

by-frame behavior monitoring to assess stereotypical behavior and

temperament. Such techniques have been used for pose estimation

using depth cameras [11] and more generally for markerless detec-

tion of anatomical features [28]. For example, in previous attempts

to gauge the emotional state of dogs, pictures of facial expressions

were categorized as positive anticipation or negative frustration [3].

Mancini [18] argues that in attempts to create communication

with animals and human-animal interactions broadly, the animal’s

comfort and psychological well-being are paramount. With this

in mind, a good design solution is to use camera-based systems.

These systems are strongly motivated by [21] and implemented

in [19, 23]. Camera systems can provide continuous, high-resolution

tail wag identification while only requiring that the dog remain

within the observation area, thereby minimizing animal discomfort.

Being mounted from above, the cameras permit easy mobility and,

importantly, do not impede natural tail movement in any way. Ad-

ditionally, camera-based systems could allow for detecting multiple

dog and multiple human subjects simultaneously for socialization

experiments, and could be combined with other approaches like

attention and posture monitoring for more stimulating, pet-aware

toys.

In this paper, we present our latest efforts for an enhanced com-

puter vision system for measuring and interpreting dogs’ tail wag-

ging behavior. The system uses a depth camera for 3D pose estima-

tion of the tail, and the tail response is measured in the presence

of specific visual stimuli to better quantify positive or negative re-

sponses. This work extends the Mask R-CNN pipeline described by

Roberts et al. [23] to a full end-to-end pipeline from video recordings

to tail position and wag behavior analytics. Roberts et al. reported

on preliminary efforts using a neural network model trained pre-

dominately on video from two dogs only and showed relatively

poor ability to generalize to unseen dogs. The work presented here

updates this pipeline in two important ways: (1) completing the

pipeline with metrics to judge tail position and motion, (2) adding

significantly more training data from about 50 dog subjects to im-

prove R-CNN detection rates. We present results indicating that

the newly trained model is capable of much broader recognition,

and that the performance of recognition of the tail by this model is

sufficient to derive meaningful tail position and wag analytics that

can support future investigation of behavioral communication in

domestic dogs.

We chose the problem of monitoring tail wag. As far as we

know, there has never been objective monitoring of tail wag besides

Roberts et al. [23], and while this earlier system did detect dog tails,

it was not robust enough for full-length video data. Our updated

system is the first successful application of tail motion detection that

works well enough on video recordings. The main contribution of

this paper is the development of a computer vision system capable

of objective tail wag measuring on video data. We also validated our

system to confirm its usefulness to the behavior community and

performed a final preliminary comparison using the extracted data

from thirty dogs. This paves the way for a stimulus-based behavior

classification using tail motion.

2 Background

We discuss the two prominent tail wag theories, prior studies per-

taining to dog tail wag, and common approaches formerly used

with computer vision systems on animal farming and sciences.

2.1 Tail Wag Theories

Earlier work on interpreting tail wagging behavior has focused

on two prominent theories for why dogs wag their tails and re-

lates to their development alongside the domestication process: 1)

the domestication syndrome hypothesis, and 2) the domesticated

rhythmic wagging hypothesis.

As described in the Belyaev experiments, the domestication syn-

drome hypothesis posits that tail wag arose unexpectedly as a

byproduct of selection for tameness and other human-useful traits.

Interestingly, Russian geneticist Dmitri Belyaev was able to produce

human-compatible traits in wild foxes in as little as six generations

of selective breeding for tameness [6]. These new traits included

the ability to be petted, whining when humans leave, and tail wag-

ging when experimenters approached. The last of these already

indicates a movement towards human-dog communication. These

tamed foxes are also capable of following human gaze, suggesting

intention or interest recognition. Alternatively, the rhythmic wag-

ging hypothesis posits that tail wag arose during the domestication

process as a direct response to humans’ proclivity for rhythmic

stimuli [26].

2.2 Prior Studies in Dog Tail Wag

Observational studies of dogs in the 1960s and 70s regularly dis-

cussed tail movement in a limited context, as more an addendum

to larger displays of dog emotion rather than a display in and of

itself. Fox [8] and Tembrock [29] both reference tail movement and

position as displays of motivational states. In particular, higher tail

positions are associated with confidence and/or aggression while

lowered tail position can be a neutral signal or may reflect fear

and/or submission.

More recent experiments aimed not only to properly interpret

the signal from tail motion, but also to use these motions to display

proper emotional states. Some of these experiments used robotic

tails to display information with attempts to use simulated tail wag

signals to provoke responses from other dogs [2, 15] as well as

humans [27]. Leaver and Reimchen [15] looked at dogs’ decision

to approach made in response to a short or long tail that was either

sedentary or wagging. They found that longer tails were better at

displaying signals and that wagging tails were more approachable.

Quaranta et al. [22] presented stimuli to dogs and monitored the

tail wag left vs. right bias. Positive stimuli invoked right-biased

wags while neural or unfamiliar stimuli showed either no bias or

left-biased wags. They relate these to the left or right brain hemi-

sphere dominance. Ruge et al. [24] proposed a much higher-fidelity
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ethogram model to improve user experience. They showed a large

dependency on dog temperament and noted that wag duration and

intensity were also important for interpretation, not just instan-

taneous orientation. The group acknowledges a need for further

nuances for the model, which has been one of our motivations

behind this presented study.

2.3 Computer Vision in Animal Applications

Within farming and animal sciences, animal measurements can be

time demanding, costly, and stressful for the animals [4, 7, 16]. The

recent popularity in digital cameras and 3D cameras has made com-

puter vision systems (CVS) an acceptable method as a non-invasive

and lower-cost alternative. RGB and IR cameras are commonly

used, though depth cameras using time-of-flight or LiDAR and

hyperspectral cameras have also been applied.

Deep learning approaches using these cameras have now been

useful for a variety of tasks, including object sensing, mapping,

recognition, motion tracking, semantic/image segmentation, scene

interpretation, monitoring, phenotyping, image classification, and

pose estimation. CVSs have been applied to primates, dogs, horses,

cats, cattle, pigs, ovine, and poultry [4, 7, 16]. Many convolutional

neural network architectures have been created for these tasks:

• Animal tracking: DeepLabCut, EZtrack, DeepPoseKit

• Image classification: AlexNet, Inception,MobileNet, DenseNet,

ResNet, VGG, YOLO

• Object Detection: YOLO, R-CNN andMask R-CNN,DenseNet,

ResNet

• Semantic/Instance Segmentation: DeepLab, Mask R-CNN

• Pose Estimation: CPHR, DeepLabCut, DeepPose

• Custom training library: Microsoft’s COCO

Important for this paper, a survey focusing on CVS for animal

emotions was published recently [4]. Many of these studies focused

on pain specifically, but other standard emotions were included,

depending on the species. Depending on the study, either a discrete

emotional state model or a dimensional approach model (classifying

along different dimensions, often with valence) was used. These

studies commonly employed facial motion tracking, such as custom

Facial Action Coding System approaches that have been adapted

for primates, dogs, horses, and cats. There have also been many

studies on behavioral encoding in horses, dogs, and pigs, focusing

on body expressions observed in posture [4]. Sometimes stimuli

were controlled and administered to the test animals and in other

studies, the animal was monitored over time and natural behaviors

were grouped.

For our study, we performed instance segmentation using the

Mask R-CNN approach, retraining it specifically for tail detection

using a COCO library approach. The Mask R-CNN is optimal for

this type of task because it performs object classification, detection

and segmentation in parallel [16]. In addition to using traditional

2D image tools, we were able to acquire 3D data using a depth

camera, making our approach unique.

3 Methodology

We detail the experiment with dogs and how the video data was

acquired, then discuss ethics, followed by major updates to the prior

work to make the system more robust, how image processing was

conducted, and lastly discuss how final metrics were calculated.

3.1 Experimental Setup

This work augmented a previously presented data pipeline [23],

following guidance from [21]. To briefly summarize the process,

a flat space of about four square meters was monitored overhead

with a RealSense D415 depth camera [5] (Intel, Portland, OR), which

provided color, infrared, and depth images at 60 frames per second

(FPS) (see Figure 2). This setup was also easily ignored by the

dogs. Owners sat with their dogs leashed and visual stimuli were

presented for periods of 15 seconds each (see Figures 1 and 3). Each

session lasted about 6 minutes total and there were 42 participants.

Figure 1: Computer vision setup for dog tail monitoring

The RGB and depth video streams were recorded in standard

VGA resolution (640 × 480) at 60 FPS. The higher frame rate en-

abled more accurate measurement of tail position since the spatial

displacement of the tail in 16ms is far lower than the standard 33ms

encountered with a more common 30 FPS recording rate. The Re-

alSense Viewer software recorded video streams in a format called

ROS bag1 that allowed the pixel-synced depth and RGB images to

be replayed after recording as if they were being streamed from

the camera itself. The primary benefit was the ability to replay

the recordings with accurate timing for post-processing, and more

importantly, to ensure the depth and RGB images remained in sync

for the tail position analysis. The depth video provided pixel-linked

RGB images and depth maps, meaning a pixel in the RGB image

was correlated directly with a pixel in the depth map, allowing

ascertainment of 3D information. A second RGB camera was used

to monitor the visual stimulus being presented to the dog. The

experimenter performed hand gestures within the field of view of

both cameras for calibration.

A Maria database stored the data-heavy images in each frame

from the RealSense camera (RGB, depth, and IR). Additionally, the

1http://wiki.ros.org/Bags
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Figure 2: the top-view scene that is used by the computer

vision algorithm for automated detection of the tail wag

database stored the final results- centroids and medial axis points

with corresponding depths. This way, storage was optimized and

future access to the results were easily obtainable for all later steps.

The outline below describes the image processing pipeline. The

boldfaced items highlight the particular contribution of this paper.

These changes are different from previous implementations [19, 23],

and provide additional robustness.

(1) Acquire color and depth frames

• Queue image frames from stored .bag file

• Store image frames into pre-built Maria DataBase for easy

access

(2) Perform image segmentation to identify the dog tail within

the image frame

• Use R-CNN to acquire all masks for base, end, entire tail,

and foot

• Determine primary masks for main tail sections

• Store masks in Maria DataBase

(3) Derive tail the medial axis and main centroids

• Identify dog tail skeletonization

• Use centroids to determine tail start and end points

• Logically order skeleton points

(4) Derive standardized points for tail position

• Establish orientation of tail position reference for

each frame

• Preprocess with interpolation and standardization

• Calculate tail position, direction, angle, and tip score

• Store scores in Maria DataBase for quick future ref-

erence

(5) Calculate time-specific metrics

• Limit per Nyquist rate

• Finite difference for speed and acceleration

• Estimate angular momentum with speed and tail

Figure 3: Presented visual stimuli during the computer vision

tests included a) a large ball, b) a yellow box, c) a trash bag, d)

nothing, e) an English Sheepdog stuffed dog, f) a Jack Russell

stuffed dog, g) a Sheltie stuffed dog, and h) a real dog

3.2 Ethics

All procedures involving dog participants were conducted under

an IACUC approved protocol (Protocol #18-053-O ) and under the

direction of a board certified veterinary behaviorist. The 30 dogs

included in this work were recruited as volunteers via flyers and

email listservs within the NC State College of Veterinary Medicine

(CVM) students, staff, and faculty. Dogs visited the CVM for a single

visit, and owners signed an informed consent prior to the start of

the study [23]. Experiment volunteers could withdraw from the

study at any time, and staff had the option of prematurely ending

the experiment in the event of observed stress or discomfort.

3.3 Major Updates

We performed an early run-through of the dog video data. This

exercise elucidated two major difficulties with a naive approach. 1-

The original R-CNN was insufficient to robustly identify dog tail

segments in images, and 2- the streaming method used to extract
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individual images was not sufficient to attain each frame. Each of

these challenges and their solutions are presented next.

3.3.1 R-CNN Retraining. Previous training for the R-CNN was dis-

cussed in [23]. To summarize the original model, a generic Mask

R-CNN was implemented based on the open-source repository by

Matterport [1]. To specialize the base model towards tail recogni-

tion, approximately 300 images were annotated from the original

bag files from two dogs specifically. Performance on the two dogs

used for training was decent but could not be generalized to the

other dog images well. While this was a good starting model, we

found inefficiencies with video detection of various dogs through-

out our videos. We define this inefficiency in terms of useful frames,

where a useful frame is one in which enough tail segments were

successfully detected in order to detect the full dog tail. The base R-

CNN run-through produced a very low percentage of useful frames

per video (see Figure 4). Commonly, dog video files produced less

than 10% useful frames, suggesting either long stretches of false

negatives or very choppy tail identification, not good enough to

detect the wag signal. The average percentage of useful frames was

20.97%.

This performance was not acceptable for our analysis, so we

recruited student volunteers to annotate additional images using

LabelBox (https://labelbox.com/). We had about 50 images for each

dog in the study, producing an additional dataset size of approxi-

mately 2500 annotated images. This was over eight times the origi-

nal dataset and was expected to greatly improve semantic segmen-

tation performance. However, we noticed issues even when using

the gold standard of human annotations. These included highly

fluffy tails, very small dogs which are naturally harder to detect,

and darker colored dogs whose tails could not be distinguished

amongst regular fur. Being difficult for human detection, we cannot

expect the computer vision model to perform any better, so this

helps set an upper bound on expected performance. Using these

additional annotations, we retrained the Mask R-CNN.

While the same dogs were used for both training and validation,

the images from the dogs were split randomly. This means that

despite of the many breeds and sizes that our model was trained on,

our model may still suffer low generalizability. However, for pur-

poses of tail detection in our video data, this model was sufficient.

Figure 4: Semantic segmentation rate of tail detection

Training curves are shown in Figure 5. We observed that gener-

ally, losses decreased with epoch as expected. We selected the 157th

epoch as our model as this best balanced the various validation

losses. After updating the R-CNN with additional images, the aver-

age percentage of useful frames almost doubled to 38.03%. While

still not great, most of dog videos had at least 30% useful frames.

This score accounts for null time before and after the experiments,

so the experimental detections would be higher. As we will see in

subsequent analysis, even at 30% detections, we can detect the wag

signal consistently.

Figure 5: R-CNN retraining curves

Table 1: Updated R-CNN mAP Scores

Metric IoU area maxDetections Score

Average Precision 0.50:0.95 all 100 0.222

Average Precision 0.50 all 100 0.472

Average Precision 0.75 all 100 0.184

Average Precision 0.50:0.95 small 100 0.248

Average Precision 0.50:0.95 medium 100 0.235

Average Recall 0.50:0.95 all 1 0.251

Average Recall 0.50:0.95 all 10 0.305

Average Recall 0.50:0.95 all 100 0.305

Average Recall 0.50:0.95 small 100 0.270

Average Recall 0.50:0.95 medium 100 0.335

We used the COCO library’s evaluation function with 500 val-

idation images to report on mean average precision (mAP) and

report these scores in Table 1. This showed expected scores around

0.2-0.3. The additional training for the R-CNN improved its tail

detection rate (reducing type 2 error), but now detects tails where

none are present (increased type 1 error). Figure 6 shows the num-

ber of detections of each type for each frame. Most frames have 0

or 1 detection as expected, but it is not uncommon for 2 or more

detections, with fewer instances of higher numbers of detections.
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Multiple detections are primarily caused by experimenters walking

into the frame during setup and post-experiment, though we have

also observed instances of the dog’s leg being identified as a tail.

To resolve this ambiguity, we selected a primary detection for each

class by examining nearby tail sections and/or past detections. For

example, if two end-of-tails are detected, and one is closer to a prior

known location of an end-of-tail, then this one is primary. Alterna-

tively, if two end-of-tails are detected and one is much closer to an

entire-tail detection, then this one is primary. In cases of multiple

detections, we utilized the following equation, with 𝑡 being number

of frames before the current frame, and 𝑟 being pixel-wise distance

between different tail subsection centroids:

𝑠 = max

(
0, 1 −

20 · 𝑡 + 𝑟

600

)

The primary detection is the one with the higher score. We

engineered this equation specifically for the following important

properties:

(1) balancing a dependence between time and distance

(2) higher scores when closer in distance and time

(3) scores 0 when...

(a) near-full frame-length away

(b) frames more than 30 frames (1/2 sec) before

(4) simple function

(a) piecewise linear

(b) on the unit interval 𝑠 ∈ [0, 1]

Figure 6: Counts of tail sections through the frames for one

of the dogs.

3.3.2 Streaming. Because of the nature of RealSense bag files, data

are streamed into a queue. However, the streaming process is not

consistent enough to extract each sequential frame, skipping some

and double counting others. The frame skip rates are shown in

Figure 7, where about 47% of frames are sequential while 99% are

within 6 frames from each other. Because of inconsistent stream

speeds when multiple calls to a bag file are made, we implemented

a 20% overlap between multiprocess calls to prevent large gaps in

time.

Figure 7: Frame number differences show how often frames

are skipped from the streaming file. About 46.9% of frames

are consecutive, while over 99.6% of frames are within the

Nyquist rate. The Nyquist rate is a standard tool used in

signal processing to ensure a signal capture a periodic phe-

nomenon [20].

During experimentation, in addition to the specialized depth

camera, we had a standard camera behind the experiment space,

where the dog and stimulus being presented could be observed.

Ideally, the bag file video and rear video should be temporally

aligned, differing by no more than a constant, so that stimuli times

can be aligned with tail wag times. Yet, the stream inconsistencies

introduced non-constant time distortion. Fortunately, the bag files

contain frame numbers as metadata and the video made from the

bag frames was corrected by filling in empty times with the most

recent last frame.

3.4 Processing

Once the two major problems were corrected, we proceeded with

a more standard workflow highlighted in Figure 8. We used the R-

CNN to extract the masks, use skeletonization to collect the medial

axis points, and standardized the points before feature extraction.

The following procedure was originally presented and is summa-

rized from our earlier work [19]. However, it is greatly expanded

upon for the final camera-based system presented in this paper.

3.4.1 Masks. The R-CNN returned a list ofmasks that corresponded

to the sections of the image with either the base of the tail, the end

of the tail, the entire tail, or a human foot.

We began with the prior R-CNN model [23] and analyzed the

number of successfully processed frames. The main obstruction

towards broader applicability was the accuracy of the Mask R-

CNN [9]. Table 2 shows that the pipeline could successfully identify



Automated Depth Sensing-Based Computer Vision for Dog Tail Wagging Interpretation ACI 2024, December 02–05, 2024, Glasgow, United Kingdom

Figure 8: Data pipeline flowchart

the dog tail approximately 2/3 of the time. In particular, the base of

the tail was easily identifiable with a detection rate of about 64% of

the frames.

Table 2: Table of R-CNN results

Metric Value

Percent tail detection 67.9%

Percent base of tail detection 64.1%

Percent end of tail Detection 38.5%

3.4.2 Medial Axis. Starting with a set from the medial axis, we

order the skeleton points to orient the virtual tail. Our Mask R-CNN

identifies the base, the body, and the end of the tail [23]. Ordering

is accomplished using a piecewise optimal pathing approach. From

one point, we connect it to the nearest point, and continue this

process until all points are connected. For initialization, the centroid

of either the base or the end of the tail is used as either the start or

the end point, respectively [19].

After R-CNN detection and tail skeletonization, only the medial

axis keypoints and centroids of the base-of-tail and end-of-tail were

stored for further processing. This saved processing and storage

time for all further steps without loss of needed information.

Based on which sections of the tail were detected in each frame,

either a Base-Tail approach or End-Tail approach was used. The

Base-Tail places the centroid of the base as the first point and

sequentially finds the closest points along the tail. The End-Tail

starts at the centroid of the end of the tail, then sets the furthest tail

point from this centroid as the first point, then sequentially finds

Table 3: Method used for determining orientation based on

segments of the tail detected by the Mask R-CNN model. For

*, if base detected within 30 frames ago: Base-Tail, else if end

detected within 30 frames ago: End-Tail, else skip.

Base End Tail Method

1 1 1 Base-Tail

1 1 0 skip

1 0 1 Base-Tail

0 1 1 End-Tail

1 0 0 skip

0 1 0 skip

0 0 1 *

0 0 0 skip

the closest points moving along the tail. Which method was used

in which case depended on what subsets of the tail were detected

as outlined in Table 3.

3.4.3 Standardization. After all medial axis keypoints were se-

quenced and before valid metrics were extracted, further prepro-

cessing steps were necessary to make a proper comparison. These

additional steps were:

• interpolation

• invert depth

• rotation

We wish to be able to compare medial axis points pertaining to

the same small intervals along the tail. For this reason, we convert

these points to percentiles along the tail. Another problem arises

as the depth (z-axis) is recorded in different units than the pixels (x

and y axes). For this reason, we kept overhead positions separate

from depth positions where possible. For interpolation, points were

selected along the length of the tail determined by pixel distance

alone. Interpolation to a standard twenty points (shown in Figure

9c) allowed for alignment of points between frames.

Depth inversion was a simple operation to convert depth data

to height data. Since scores are relative to the distance along the

tail, we maintained heights as negative numbers.

Lastly, we translated and rotated the points such that the first

point was at the origin and the first direction for the tail was facing

directly −�𝑦. The dot product equation was used to estimate a 𝜃 . A
rotation was then completed with quaternions (see Figure 9d).

3.5 Deriving Features

We calculated four directional scores based strongly on the ethogram

by [24]. These were position (up vs down), direction (left vs right),

angle (degree from midline), and tip angle (greatest angle along tail

end). The reference coordinate frame was designed to have the tail

pointing directly backward, seen as a continued extension of the

spine [19]. This aligned the y-axis along the dog’s spine and the

z-axis opposite gravity (see Figure 10). Scores were then calculated

and normalized by the length of the tail, thereby returning values

𝑥 ∈ [−1, 1]. For demonstration, Figure 11 shows several instances

of tail positions with their corresponding scores.
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Figure 9: Medial Axis Preprocessing Steps (a) R-CNN iden-

tifies a base of tail and entire tail subsections (b) centroids

and skeletonization provide medial axis keypoints (c) inter-

polation is used to standardize the points relative to position

along the tail (d) translation and quaternions are used to

rotate the medial axis to a standard format

As an example, the equation for direction (which varies along

the x direction) is:

direction score =
20∑
𝑖=1

| |𝑠𝑥,𝑖 − 𝑠𝑥,𝑖−1 | |

| |𝑠𝑖 − 𝑠𝑖−1 | |

Here, 𝑖 indexes the 20 interpolated subsections along the length

of the tail. Numerator terms, 𝑠𝑥,𝑖 , indicates the x-value (direction
score) of tail segment 𝑖 , while denominator terms, 𝑠𝑖 , are the full
3-vector values of tail segment 𝑖 . Tail tip angle was calculated by

calculating the maximum angle between sequential tail subsections

for the last few identified medial axis points.

Figure 10: Tail Orientation

Figure 11: Dog tail positions and accompanying scores

Tail speed, angular momentum, and acceleration are all time-

dependent metrics and are heavily affected by 1) frame skips and

2) proper interpolation for correct medial axis point comparison

between frames. From prior experience, we estimated a maximum

reasonable tail wag frequency of 5 Hz, which required a sampling

frequency of 10 Hz as imposed by the Nyquist rate. With a camera

rate of 60 fps, this means that at most five consecutive frames

can be lost/skipped without loss of signal. Generally, speed and

acceleration are estimated using finite difference methods. However,

because of inconsistent frame detection rates, these equations were

slightly altered from the traditional backward difference method.

With 𝑠1 and 𝑠2 being a set of medial axis points in frames 1 and 2, 𝑖
indexing tail axis points, and 𝑛 being frame number, average speed

is calculated as:

avg speed =

∑20
𝑖=1 | |𝑠2,𝑖 − 𝑠1,𝑖−1 | |

(𝑛2 − 𝑛1) · 20
, 𝑛2 − 𝑛1 ≤ 6

Acceleration is calculated similarly.

We are also interested in the tail’s angular momentum (L) for

motion analysis. Though we are interested in general motion of

the tail for display purposes, angular momentum has been applied

previously to understanding climbing motion in lizards and geckos

[10, 25]. Angular momentum is the product of inertia and angular

velocity. Inertia itself is the product of squared distance from a pivot

and mass. With the base of the tail as the pivot (see Figure 12) and

assuming that the tail has constant mass distribution, 𝜌 , inertia is:
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Figure 12: Tail momentum derivation

𝐼 =
∫ 𝑅

0
𝜌 · 𝑟2𝑑𝑟 =

𝜌

3
· 𝑅3

and angular momentum simplified to the expression:

𝐿 =
𝜌

3
· 𝑅3 · 𝑣

Since 𝜌 varies from dog to dog, we report 𝐿/𝜌 as a metric.

We report tail position, direction, angle, and tip angle at each

frame as well as tail velocity, acceleration, and angular momentum.

4 Results

An example of metrics for one dog are shown in Figure 13. The

top graph shows the visual stimuli times. These were presented for

periods of 15 seconds, which corresponds to 1000 frames, which is

about the length of these sections. We observed that near the begin-

ning of the experiment (during setup), there are few metrics since

the dog was offscreen during most of this time. We also observed a

lull in position, direction, and speed a bit before the 70,000th frame,

corresponding to a time when the dog was resting its tail. Lastly,

we observed times of sporadic higher-variance position, angle, and

speed scores, suggesting the tail was more active during these times.

There are some momentary changes such as around frame 75,000,

where we see a short-left bias in direction and tail angle turning

slightly positive (forward-facing). There are also noteworthy pe-

riods of rapid direction change (strong wag) from frame 80,000 to

84,000. Times of high angular momentum, such as at frame 85,000,

correspond to when the tail was commencing or terminating a tail

wag.

We simplified the stimulus response by averaging metric data

(either position, direction, angle, tip angle, speed, angular momen-

tum, or acceleration) to times roughly aligned with the time the

visual stimulus was presented. We elected to offset the response

window by 30% to allow a delay for the dog to see and properly

respond to the stimulus and residual effects after the curtain was

closed. For example, if a stimulus was presented from second 100

to 115, the score would be averaged from 104.5 to 119.5.

4.1 Computer Vision Quality

In addition to collecting video data, we had previously annotated

the number of wags per dog in response to each stimulus. With

this ground truth data, we examined the quality of the R-CNN

signals. Figure 14 shows direction score sequence examples from

our method at times when visual stimuli were shown. Sections with

high wag counts show obvious cyclical patterns as expected of tail

Figure 13: All metrics calculated throughout the experiment

for one representative dog in our data set. Black is raw data;

red is mean averaged trend. Visual stimulus is 1 when stimu-

lus is being shown; order of stimuli is black ball, white gray

fake dog, yellow box, small brown white fake dog, trash bag,

white brown fluffy fake dog, nothing, real dog.

wagging. This suggests we are detecting the wag behavior that we

claim.

Notably, only certain subsections of stimulus times showed ex-

pected tail wag periodicity. Because of Heisenberg’s uncertainty

principle, we cannot simultaneously perfectly know the time and

frequency of a signal, but wavelet transforms are good at balancing

temporal and frequency information to roughly estimated periods

of signal [17]. To filter out the effects from non-wagging times, we

used the wavelet transform with a standard Ricker wavelet, and

observed good amplitudes in the pseudocolor plot at ordinate posi-

tion 10 (Figure 15b). We then took the amplitude of this section and

smoothed it with a moving average filter (15c). Signals consistently

above the threshold of 0.25 were considered to be wag times. Once

these times were detected, the following sinusoidal metrics were

calculated:

• Offset: average of the 5th to 95th percentile of the sequence
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Figure 14: Subplots 𝑎 and 𝑏 show R-CNN-derived patterns

with very low true wag values. Plots 𝑐 and 𝑑 show R-CNN-

derived patterns with high true wag values. We can observe

very clear cyclical patterns in 𝑐 and 𝑑 that are not observable

in 𝑎 and 𝑏.

• Amplitude: bisection of the 5th to 95th percentile of the

sequence

• Peak Frequency: max frequency from the FFT between 1 and

4 Hz

Lastly, subsections were combined using a weighted average in

proportion to the length of the subsection. This then returned an

overall offset, amplitude, and frequency score for each stimulus

time.

5 Discussion

To demonstrate that our system does work and captures the tail

wag signal, we show a short section of one of the derived metrics,

direction score, in Figure 16. It should be noted that direction cor-

responds to left and right movement relative to the spine from an

overhead camera. We observed a high degree of correspondence

between the direction score and the tail motion in the video. The

dog was wagging its tail in sections A and C, stopped wagging in

section B, and sat in section D. We observed that the direction score

showed very low variance in sections B and D as can be expected.

Although sections A and C appear to have high variance due to

noise, they actually align with tail motion during a tail wag pulse,

with a frequency around 2 Hz and amplitude from -0.75 to 0.75

times the length of the tail.

By zooming into a section of the tail wag, we can observe more

clearly the sinusoidal pattern in the data. Figure 17 shows a cyclic

pattern with a frequency of 1.8 ± 0.1 Hz. This proves that the video

Figure 15: We identified more detailed wag times using a

wavelet transform with the Ricker wavelet. a) the original

signal, b) wavelet transform of (a), c) moving average of the

absolute value of the wavelet transform where ordinate of

(b) is 10. In this example, the wag times returned correspond

to frames [0, 303] ∪ [431, 863].

system is capable of capturing the tail wag signal. As a future direc-

tion, since wag signals are frequency signals that are determined

temporally, wavelet analysis would be a good analytical direction.

Wavelet spectrograms could immediately reveal wag behavior lo-

calized in time and frequency.

Figures 18 and 19 show each of our seven metrics’ distributions

of the dogs to each stimulus presented. We can observe that most

stimuli show similar population distributions, except for "real dog"

response, which has a slightly lower angle and tip angle score,

suggesting that the tail was more backward during these times.

The standard positions were around -0.7 for position, which is

highly down relative to the base of the tail, 0 for direction, which

indicates no left/right bias, as expected, and angle was -0.4, which

is moderately behind the dog, also as expected. These plots show

similar values for most stimuli. This is largely because these are raw

data aggregated across all the dogs tested. We intend on performing

an in-depth analysis on each subgroup and stimuli as a future work.

Regardless, these plots do show the applicability of a high-level

initial analysis using the data acquired from our system.

When we focused on the smaller time subsets corresponding to

wagging, these signals became obvious to a human observer. We

performed a verification test by counting wags from our system

and comparing it to the true counts. Sequences were mean-centered

and stepwise interpolated to account for NANs. Then the following

three features were extracted:

• Frequency: derived from the FFT algorithm, we recorded the

peak frequency from the power spectrum. This is helpful for

estimating the number of wags.
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Figure 16: Detailed comparison of derived direction score and

corresponding video frames. This 16-sec clip shows segments

A and C to be when tail was wagging prominently, segment B

during which the dog stopped wagging its tail, and segment

D during which the dog sat down with the tail leaning to

the left as expected of a negative direction score. Time is

displayed top to bottom.

• Magnitude: this is the average of the absolute values of the

first difference of the bandpassed signal.

• Kurtosis: calculated from the histogram of the bandpass

filtered signal. This helps determine how common wagging

is.

Using these features, we then optimized a linear combination of

these few features using a 70/30 train-test split. We minimized the

sum of squared error and found a coefficient of determination (𝑅2)
with the true wag count of 0.45 ± 0.08, a moderate fit.

Figure 17: Fitting a simple sinusoid to a short segment of

direction score elucidates a tail wag frequency of 1.8 ± 0.1

Hz.

Figure 18: Distributions of the four position scores of all 30

dogs against each visual stimuli presented.

We next detail sources of uncertainty. The efficacy of computer

vision systems can be evaluated along the lines of accuracy, ease of

use, observer effects, and usability for paired studies.

As with all large system workflows, our camera-based system

is susceptible to errors accrued from assumptions or randomness.

Causes of deviations are similar to those already reported in our

earlier work [19]. We summarize the causes of deviations that

are still valid. 1- Being a neural network-based model, our RCNN

naturally has object detection uncertainty (see Figure 4) [9]. If a tail

section is not detected, the frame becomes less useful and robustness

deteriorates. 2- Depth cameras specifically have random noise that

is not shared with standard color images. This can alter values along

the z-axis. 3- For our reference frame, the first few skeleton points

of the medial axis presumably point directly along the y-axis. If
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Figure 19: Distributions of the motion scores of all 30 dogs

against each visual stimuli presented.

invalid, this assumption would create a systematic error affecting all

other medial axis point estimates [19]. 4- Similarly, on the opposite

end of the tail, the tail tip angle should be only at the very end of

the tail, but may differ based on the dog species or tail conditions. 5-

Dog-specific tail conditions can greatly affect performance, such as

tail fluffiness or small tails, which confuses medial axis detection.

6 Future Work

The following future directions include continuing efforts originally

presented in our earlier publication [19]. Here, we expand upon

these earlier plans with more details.

Despite the desire for improved accuracy and the current low de-

tection rates for individual frames, our computer detection system

has still been sufficient for tail wag monitoring. Robustness was

generally improved and the system functioned sufficiently in spite

of many missed detections. However, we could consider implement-

ing further robust procedures such as interpolation when within

the dog tail wag Nyquist rate as only one frame detection is required

in six consecutive frames presently. This is usually within reason

using the presented methodology since the detection rates were

improved using more training data. Alternatively, we can consider

detrended fluctuation analysis (DFA) since this method is robust

to the signal gaps commonly seen in the tail wag signals. Using

the final derived metrics, future clustering analyses can be used to

quantify the number of tail patterns or corresponding emotions [19].

Linear mixed models would serve as a means of comparison by

accounting for the effects of different dog breeds, personalities,

and effects of the different stimuli. With 𝑖 for individual dog, 𝑗 the
stimulus, and 𝑘 the feature, a model could be:

𝐹𝑘,𝑖 𝑗 = 𝛽0 + 𝛽1 × 𝑑𝑜𝑔𝑖 + 𝛽2 × 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑗

Using a computer vision approach, our tail detection methodol-

ogy could be improved to a larger general ethology method using

camera-based systems for posture and attention monitoring [21].

It could also be seen as a future open tool similar to DeepLabCut,

which currently supports pose estimation [14]. As a more immedi-

ate improvement, a logical next step would be to identify owners’

interactions with their dogs to monitor the human-dog dyad and

more in-depth communication cues. Attached to the front-end of

a feedback system, we can foresee this system being used for au-

tomated training. Vision-based tail wag tracking is a very useful

research tool for understanding dog behavior better and with fu-

ture application areas such as dog shelters, where dogs are already

confined in spaces.

Overlapping tails, e.g. a curly-tailed or sickle-tailed dog, was

originally a concern but was very uncommon, so we chose to ignore

it at this time. This could be rectified in the future using the depth

filter values along the cross section. If the depth of the center of the

cross is more similar to one path than the other, it would suggest

that it belongs to the former.

Even with all these improvements presented here, we anticipate

variability and covariates amongst many well-established charac-

teristics of the population of dogs, such as effects of dog breed,

personality, left vs right preference, as well as tail traits, like fluffi-

ness, curl, or simply the absence of a tail. Our post-analysis models

specifically focused on the need to account for these population

dynamics to best set the tail wag model baseline. It should be noted

that the primary objective of this work is the completion of a tail

wag monitoring toolkit. We did not attempt to create an inter-

pretability framework because we anticipate that interpretations

will change with future studies. All interpretations made in this

paper were meant as examples of what could be claimed given

the data from this system. In addition to controlling population

dynamics, we spent extensive time analyzing the validity of the

signals to understand the noise versus signal relationship and the

limitations of the system.

Lastly, our updated system was designed to permit future stud-

ies on human-dog interaction. As such, the system, with further

modifications, could be fully capable of identifying multiple dog

tails in frame as well as a human in frame, whether the person be

a trainer presenting commands, owner providing encouragement,

or stranger causing confusion. While multiple tails are expected to

be a minor update, human detection will be more difficult since we

have not provided such training data yet.

7 Conclusion

This paper significantly expands the R-CNNmethodology presented

before [23] to work on continuous video data for dog tail wag

tracking. We updated the original R-CNN with several thousand

additional training images to make it more robust, at the cost of

increased false positives. We then modified the data pipeline by

taking advantage of both the temporal nature of the video as well as

spatial locations of various detected class sections. We have shown

that the method does work well enough on most of our videos

to capture the tail wag signal in spite of streaming and detection

difficulties. We observed a good correspondence between these

metrics and the video footage. We then applied our system to 30
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dog videos and extracted tail position in all three dimensions and

derived temporal metrics like speed and momentum. The successful

attempts to perform broad population statistical tests revealed some

visual stimuli to be identifiable from tail wag alone.

Our system successfully detects tail position with a high reso-

lution and without interfering with dog movement or natural tail

motion. This study supports the literature and sets a standard for

high-resolution monitoring extracted from tail motion. We expect

that the higher resolution proposed with the presented methodol-

ogy will inspire and help elucidate future studies of dog ethology,

such as, in more dog-centric training or play environments.
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