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Abstract: Tidal creeks play a vital role in influencing geospatial evolution and marsh ecological
communities in coastal landscapes. However, evaluating the geospatial characteristics of numerous
creeks across a site and understanding their ecological relationships pose significant challenges
due to the labor-intensive nature of manual delineation from imagery. Traditional methods rely on
manual annotation in GIS interfaces, which is slow and tedious. This study explores the application
of Attention-based Dense U-Net (ADU-Net), a deep learning image segmentation model, for auto-
matically classifying creek pixels in high-resolution (0.5 m) orthorectified aerial imagery in coastal
Georgia, USA. We observed that ADU-Net achieved an outstanding F1 score of 0.98 in identifying
creek pixels, demonstrating its ability in tidal creek mapping. The study highlights the potential of
deep learning models for automated tidal creek mapping, opening avenues for future investigations
into the role of creeks in marshes’ response to environmental changes.

Keywords: DenseNet; attention; convolutional neural networks; U-Net; remote sensing; coastal
wetlands; creeks’ segmentation

1. Introduction

Around the world, the spatial extent and patterning of coastal wetlands are changing
due to anthropogenic interventions (e.g., damming of rivers and limiting sediment supply
to estuaries [1], urban development in coastal zones [2], groundwater withdrawal [3]) and
natural influences (natural redistribution of sediments [4], drought or climatic events [5],
and storms [6]). These intertidal, vegetated landscapes, which form at the interface of
land and sea, provide vital economic (fisheries [7], recreational activity [8]) and ecosystem
services (biodiversity [9], carbon sequestration [10]). Past studies have highlighted the
importance of understanding the nature of geospatial change in salt marshes, mangrove
forests, and other coastal wetlands so that they can be better preserved and restored [11].
Within these systems, the areas experiencing particularly high rates of change are often
the boundaries between lower elevation channel and creek networks that convey water
throughout wetland systems and the adjacent vegetated habitats [12].

Tidal creeks and channels form vast, dendritic networks throughout the world’s wet-
lands [13,14]. These geomorphic features deliver water, nutrients, and sediments to interior
locations via tidal and storm flooding, which sustain robust vegetation growth [15], build
elevation (e.g., development of natural levee systems [16]), and alter ecosystem services of
the larger landscape (e.g., fish foraging, dispersal of larvae, enhanced biodiversity [17]).
The spatial scale of these features can range from sub-meter to several km wide and tens
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of m to hundreds of km long [14]. These dendritic networks can have relatively high
rates of change in spatial extent (1–10 m per year) over annual or decadal time scales.
The hydrodynamic conditions of the system, paired with the local geology (i.e., erodibility
or depositional patterns), can define their evolution [18]. Resolving the current distribution
of tidal creek features as well as how they are changing (with direct effects on the rate
and pattern of change in the wetlands they intersect) is vital to advancing understanding
of the overall function and stability of these high-value coastal landscapes [19]. Despite
increasing awareness that creek–marsh boundaries are where change is often most rapid,
most approaches to quantify coastal tidal creek expansion (on landscape scales) rely on
manual delineation of features in a limited spatial extent [20]. Thus, a need remains to
differentiate creeks and channels at higher resolution and at large spatial scales to extract
vital information about the location and pace of coastal wetland change.

Several studies have been conducted in coastal wetland mapping over the years [21,22].
Existing methods can be categorized into heuristic approaches, genetic algorithms, and ma-
chine learning techniques. A heuristic approach such as the Normalized Difference Water
Index (NDWI) is combined with Maximum Between-Class Variance (Otsu) [23] classifica-
tion to delineate the wide tidal creeks in Sentinel-2A data [24]. Then, a Modified Fuzzy
C-Means (MFCM) algorithm was used to effectively suppress the differences between
the targeted features and the background caused by spatial heterogeneity in the tidal flat
environment. In [25], the NDWI, in conjunction with edge detection algorithms such as the
Canny algorithm, morphological expansion algorithm, and Graham Scanning Method, is
used to delineate tidal creek features in Landsat 8 data. A different approach focuses on
genetic algorithms (GAs). In [26], the GA utilizes predictors from LiDAR-UAV, digital aerial
photogrammetry (DAP)-UAV, and RGB datasets to determine vegetation characteristics.
The fitness function of the GA is calibrated based on the target population data, and the
algorithm aims to minimize the Root Mean Square Error (RMSE) in fitting the input data.
Other methods have been developed to delineate creek networks using the digital eleva-
tion model alone or combined with raster images. A combination of a threshold for the
bed elevation and curvature has often been adopted to delineate the network planimetric
profile [27–29]. However, these approaches usually require a threshold for bed elevation
and curvature for delineation.

With the advancement of machine learning, many machine learning models have been
applied to map coastal wetlands. To predict freshwater wetlands coverage in Poyang Lake
(China), Dronova et al. [30] developed an object-based image analysis to delineate func-
tional plant groups and compared the results from the following classifiers: Bayesian [31],
Logistic [32], Neural Network [33–36], Decision Trees [37], K-Nearest Neighbors (KNN) [38],
and Support Vector Machines (SVM) [39]. These models were developed to predict a three-
class classification problem and a six-class classification problem. The model utilized
Landsat 5 TM data as input and was corrected to surface reflectance. The input channels
were Landsat TM bands 3, 4, 5, and 7, and the normalized difference vegetation index
(NDVI) and NDWI. They found no clear improvements when incorporating textures in the
object-based image analysis, possibly due to Landsat’s larger pixel size of 30 m resolution.
Whyte et al. [40] created an object-based image analysis model to delineate South Africa’s
most extensive estuary wetlands. They utilized the SRTM digital elevation model, Sentinel-1
(C-Band Radar, VV + VH), and Sentinel-2 ( blue, green, red, NIR, and SWIR) as inputs for
their model.

Unlike early machine learning models, which often relied on handcrafted features,
deep learning models can automatically learn hierarchical representations from raw data.
U-net has been extensively used to classify remote sensing images of coastal wetlands.
Li et al. [41] developed a robust U-Net model to classify coastal wetlands in South Carolina
(USA). The model input was Sentintel-2 satellite bands 2–8 and 11–12 and derived index
layers with a 10 m or 20 m resolution. They considered the spatial heterogeneity of the
coastal environment. They examined two NOAA National Estuarine Research Reserves
(NERRs) in South Carolina: the North Inlet–Winyah Bay (NIWB) NERR for model training
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and the ACE Basin NERR for testing. A high-resolution land cover map in the NIWB was
used for the training process. Ground reference points recorded by the NERR and Google
Earth were utilized for accuracy assessment. This work was a multi-class classification
problem separated into groups: water, low marsh, high marsh, forest, and others. The best
performance of their model was 90% accuracy, but they demonstrated the challenge in
coastal wetland delineation whereby spectral signatures of different classes may be consid-
erable. In other research [42], the authors utilized a U-Net deep learning architecture to
classify bi-temporal, high-resolution, county-scale aerial images to determine the spatial
extent and changes in land cover classes impacting tidal marshes. U-Net was compared
with two machine learning classifiers, random tree (RT) and SVM. The results indicate that
the U-Net model outperformed the other two classifiers regarding Overall Accuracy (92.4%
for U-Net compared to 81.6% for SVM and 75.7% for RF). Zheng et al. [43] conducted
a study on the quantitative analysis of tidal creek evolution and vegetation variation in
silting muddy flats on the Yellow Sea. The focus of this study was to understand the factors
influencing the evolution of tidal creeks in coastal wetland ecosystems facing challenges
from rapid economic development, climate change, and sea level rise. They applied various
classification methods, including random forest, maximum likelihood, SVM, and the U-Net
convolutional neural network, in their research. The experiments suggested that the U-Net
convolutional neural network algorithm demonstrated the highest overall accuracy and
kappa coefficient compared to other classification methods, with an overall accuracy of
94.35% and a kappa coefficient of 0.95. In other research, Huang et al. [44] utilized a U-Net
convolutional neural network model to extract habitat information and the expansion of
Spartina alterniflora in Suaeda salsa-dominated coastal wetlands. To study the sea level rise,
shifts in plant and animal distributions, and other drivers of change [45] investigated the
multi-year data. Similarly, in [46–48], U-net is applied to enhance the classification accuracy
of tidal creeks within the Yancheng wetlands.

Another research study employed a WetSegNet, a novel convolutional neural network
model inspired by ResNet [49], for binary classification tasks, distinguishing between
“wetlands” and “not” categories within freshwater wetland areas situated in Illinois (USA).
This model used high-resolution (1 m) aerial imagery (NAIP) and digital elevation models
to predict the binary class problem. In all variants of the WetSegNet model (seven in total),
the accuracy ranged from (based on area under the curve) 89.15% to a peak of 93.44%. This
model significantly improved the quality of wetland predictions and could predict at high
resolution (1 m) levels compared to previous models that utilized Landsat (30 m resolution).
Wang et al. [50] provide a detailed investigation into the application of drone LiDAR
leveraging deep learning of point clouds for mapping 3D marshes in an intertidal estuary
dominated by Spartina alterniflora. By leveraging deep learning algorithms, such as the
RandLA-Net model, the drone LiDAR point cloud can be classified into different categories
(e.g., ground, low vegetation, high vegetation) with an overall accuracy of around 84.13%.
This classification process is essential for accurately delineating bare earth surfaces and
marsh features in intertidal estuaries. However, the U-Net architecture performed best
because of its ability to capture both local details and global context simultaneously.

In this study, we aim to develop a machine model to segment creek features from
the adjacent wetland landscape using high-resolution aerial imagery for wetland cover-
type prediction. Specifically, we seek to create a deep neural network capable of precisely
identifying tidal creeks within 0.5 m resolution aerial images found in Georgia, USA. These
segments are categorized as “creek” or “not creek” pixels. The model will recognize creek
features across a diverse spectrum of scales, encompassing the fine-grained details at the
pixel level within the marsh landscape (less than 1 m) to the more extensive open water
bodies, ranging from 10 m to kms in width. Segmenting tidal creek footprints in high-
resolution aerial imagery (with a resolution of 0.5 m) is notably challenging due to intricate
landscape details and noisy features. We employed an Attention-based Dense U-Net model
(ADU-Net) to address this challenge. The outcomes of this research lay the groundwork for
a better understanding of the intricate network structure of tidal creeks within salt marshes
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and other coastal wetlands. This, in turn, supports future research endeavors focused on
assessing the rates and patterns of geospatial changes within tidal creek marshes through
analyses of aerial imagery time series and landscape-scale assessments of the provisioning
of ecosystem functions and services that are influenced by the relationships between tidal
creeks and adjacent vegetated marsh areas.

2. Materials and Methods
2.1. Study Site Characteristics

The study site is situated in the region between Blackbeard Creek (northern end) and
the Altamaha River (southern end) in coastal, southeastern Georgia, USA (refer to Figure 1).
The dataset encompasses an area of approximately 255 square km along the coastline. This
region includes diverse ecosystems, including extensive fresh, brackish, and salt marsh
habitats and a chain of barrier islands providing habitats for different marine and terrestrial
wildlife. This study site was chosen because it offers a wide spectrum of creek features in
terms of spatial scale, spectral properties, geomorphologies, and landscape textures.

Figure 1. (a) Aerial imagery dataset (entire extents) used to predict pixels for this study. (b) Study
extents (red box) indicate the study extents concerning Georgia, USA. (c–h) Zooms of different
locations across the domain show representative variations in creeks (shape, scale, and background
textures). These regions were labeled in ArcGIS 10.7 to create the overall training, validation, and test
datasets for quantitative results.
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For instance, in salt marsh regions closer to the ocean, the intertidal wetland is domi-
nated by smooth cordgrass (Spartina alterniflora) and upland treed hammocks. The density
and height of Spartina alterniflora vary with elevation and hydroperiod (the time inundated
per day or tidal period), with the densest and tallest grasses (over 200 cm in height) pros-
pering at creek banks and low marsh areas [26,51]. Moving further from the water sources,
the stem height (ranging from 10 to 100 cm) and density of vegetation are further reduced,
allowing for differentiation of rough zonation by eye in aerial or satellite imagery. Closer to
freshwater sources such as the Altamaha River, which is the primary water source in our
study area, Juncus romerianus has become the dominant plant species. Juncus romerianus
exhibits a distinct appearance from Spartina alterniflora in the input dataset [52].

Figure 1a shows the extent of labeled data we developed to train the model and a rep-
resentative range of features and landscape textures. For example, Figure 1c,e both contain
prominent mudflat features (grayish areas), which are caused by both crab grazing (i.e.,
removal of surficial vegetation) or high inundation periods [13]. In Figure 1f, the landscape
looks much different as this region becomes dominated by Juncus plants. Figure 1g can be
characterized by its sharper gradients in color and, notably, many small, fractured marsh
areas along the creekbanks. Lastly, in Figure 1f, the site can be characterized by the water
area appearing more like the background textures.

This diverse array of landscape features within our study area provides a dataset for
training and evaluating the ADU-Net model, enabling accurate delineation and classifica-
tion of creek networks across varying environmental conditions and spatial scales.

2.2. Dataset Characteristics

The input dataset for this study consisted of high-resolution ortho-images with a spatial
resolution of 0.5 m, acquired in November 2017 using the Leica ADS100 aerial imagery
system. The dataset contains four channels: blue (435–495 nm), green (525–584 nm), red
(wavelength of 619–651 nm), and near-infrared (808–882 nm). We did not incorporate
digital elevation models because they are often unreliable (i.e., low vertical accuracy) or
coarse spatial resolution (10–30 m) in coastal marsh areas. The data underwent a geo-
rectification process, employing ground control points provided and maintained by the
Georgia Coastal Ecosystems Long-Term Ecological Research (LTER) site. Subsequently,
all images were mosaicked together in the .sid format. Figure 1 offers an overview of
the complete dataset and its image extents. The overall image (Figure 1a) is provided in
GeoTIFF tiles encompassing the entire area. In this work, we utilized 5000 × 5000 pixel
segments from these images, resulting in 383 images. The dataset includes a substantial
165,000 × 155,000 pixels, including NaNs (indicating missing or undefined values).

The labels were manually digitized in ArcMap 10.7 utilizing the ArcScan feature and
polygon geospatial operations from the imported image dataset. Creeks and water features
were manually labeled and exported to GeoTIFF rasters. In Figure 1c–h, the different
training datasets delineated are shown, which were selected to represent broad patterns of
creek features found throughout the coastal landscape. The training data locations were
determined based on expert knowledge of the system variation of vegetation dynamics
to fully capture the range of marshes from fresher to saltier. Furthermore, sufficient data
were needed in areas with upland forests as these regions initially produced considerable
amounts of noise when doing preliminary tests in model development. The model is coded
in Python 3.1.

2.3. Proposed Architecture: Attention-Based Dense U-Net Model (ADU-Net)

We have proposed an Attention-based Dense U-Net model (ADU-Net) to segment
tidal creek features from high-resolution aerial imagery. The different components of the
proposed architecture are highlighted in Figure 2. ADU-Net maps the complex creek
networks by combining the strengths of U-Net architecture with dense connectivity and
attention mechanisms.
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Figure 2. The architecture of the proposed ADU-Net model.

• U-Net: The U-Net model, proposed by Ronneberger et al. in 2015 [53], is a basic
architecture for semantic segmentation tasks, consisting of two main components: the
encoder (left half) and the decoder (right half). The encoder encompasses downsam-
pling layers, progressively increasing the filters in each step and extracting high-level
feature representations from the input image. The decoder involves upsampling opera-
tions to reconstruct the original image size. Additionally, U-Net uses skip connections,
significantly improving the reconstruction quality. The downsampling operations in
the encoder can lead to the loss of fine-grained spatial information. Thus, skip connec-
tions enable the decoder to preserve the spatial details by providing a direct pathway
for information to bypass the downsampling layers. Thus, the U-Net model’s elegance
lies in its ability to harness the local features effectively, its distinctive “U” shape,
and the incorporation of skip connections. U-Net retains fine-detailed information by
integrating skip connections, enabling accurate feature extraction and reconstruction.
Thus, leveraging global and local context facilitates precise pixel-level classification
and segmentation tasks.

• Dense Layers: ADU-Net incorporates DenseNet architecture to enhance feature extrac-
tion and address gradient-related issues. The Dense Net is a variation of a traditional
convolutional neural network (CNN) [54] introducing dense connections between
layers. With the conventional CNN, as the network size increases, it can face either an
exploding or vanishing gradient problem. DenseNet adopts a unique characteristic
known as dense connectivity to address these issues.
In the DenseNet architecture, feature maps from preceding layers are not simply
passed sequentially but concatenated to subsequent layers. Figure 3 illustrates this
dense connectivity pattern. Within each dense block, comprising three 2-D CNN
layers, the input to the Nth layer consists of the concatenated features from layers
N − 1, ..., 1. This dense connectivity promotes feature reuse, effectively addressing
the vanishing gradient problem and fostering enhanced information flow throughout
the network. By integrating dense connections, DenseNet enables the model to
capture and leverage essential features from all levels of the network, contributing to
improved performance.
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Figure 3. The illustration of Dense Block used in ADU-Net.

ADU-Net comprises 9 dense blocks with three 2D convolutional layers as depicted
in Figure 3. The encoder has 5 dense blocks. After each dense block in the encoder,
a max-pooling layer is applied to reduce the spatial resolution. As we obtain the latent
space representation, the spatial resolution decreases, and the feature map increases.
In the decoder, there are four dense blocks, and an upsampling layer is applied before
each dense block.

• Attention Layers: The ADU-Net architecture the incorporates Convolutional Block
Attention Module (CBAM) [55] in its encoder and decoder components to emphasize
salient spatial regions (refer to Figure 4). We have incorporated the spatial attention
mechanism to enhance the network’s focus on essential areas within the input data.
The spatial attention is computed by applying average-pooling and max-pooling
operations along every channel and concatenating them. The pooling operation
highlights the relevant information present in the input.
In the ADU-Net design, the attention layer is strategically placed after each dense
block, allowing for selective emphasis on significant features within the densely
connected layers. This placement ensures that attention is applied just before the up-
sampling operation in the decoder phase. The network obtains attention-normalized
features before expanding the spatial resolution by incorporating the attention layer
prior to upsampling. This strategic integration of the attention layer facilitates U-
Net’s ability to discern and prioritize relevant spatial information during encoding
and decoding processes. It improves the model’s capacity to capture and leverage
critical features, leading to more effective and contextually rich representations in the
final output.

Figure 4. The architecture of Spatial Attention incorporated within ADU-Net (CBAM [55]).

2.4. Model Experiments

We used 6012 input samples for the training of the U-Net model. Each input sample
has a dimensionality of 224 × 224 × 4. However, the model is prone to overfitting due to
a large number of parameters and a smaller number of training samples. This can result
in poor generalization on the test dataset. To mitigate this issue, we implemented data
augmentation by flipping the input images vertically and horizontally and applying a
90-degree rotation.
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The data were split into training, validation, and testing sets. Training images that
contained the most creek features (e.g., not large open waterbody areas) were oversampled
at a ratio of 0.7 to 0.3 for open waterbody images. The resulting test dataset was split again
into the test and validation datasets.

We used a range of metrics such as F1 score, dice score, user accuracy (also known as
precision), producer accuracy (or recall), and kappa coefficients to evaluate the quantitative
performance of the model. Here are some terms used to define these metrics. True positives
(TP) are the actual positives that are correctly predicted positives. True negatives (TN) are
actual negatives that are correctly predicted negatives. False positives (FP) are actual nega-
tives that are wrongly predicted positives. False Negatives (FN) are actual positives that are
wrongly predicted negatives. The user accuracy or precision (Equation (1)) calculates the
proportion of correctly predicted positive observations (true positives) out of all predicted
positive observations (true positives and false positives).

User Accuracy =
TP

TP + FP
(1)

The producer accuracy or recall (Equation (2)) calculates the proportion of actual positive
instances (e.g., creek pixels) that the model correctly identifies. It quantifies the number of
positive class predictions (true positives) made from all positive examples (true positives
and false negatives) in the dataset.

Producer Accuracy =
TP

TP + FN
(2)

The F1 score (Equation (3)) is the harmonic mean of precision and recall. It provides a
balanced measure of the model’s performance by considering precision and recall.

F1 =
2 × User Accuracy × Producer Accuracy

User Accuracy + Producer Accuracy
(3)

The dice score, or the Dice Similarity Coefficient (Equation (4)), is the spatial overlap
between the predicted segmentation and the ground truth. Its value ranges between 0 and
1, with 1 being the perfect overlap.

Dice Score =
2 × |Predicted ∩ Ground-truth|
|Predicted|+ |Ground-truth| (4)

where |Predicted ∩ Ground-truth| is the number of pixels correctly classified as target
objects in both ground-truth and prediction masks. |Predicted| and |Ground-truth| are
the total number of pixels classified as belonging to target objects in ground-truth and
predicted masks, respectively. The kappa coefficient, or Cohen’s kappa (Equation (5)),
is a statistical measure of inter-rater agreement for categorical items. The kappa coeffi-
cient provides a measure of agreement between predicted segmentation and ground-truth
segmentation [56].

Kappa Coefficient =
2 × (TP × TN − FP × FN)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(5)

These metrics collectively provide insights into different aspects of the model’s performance.
We used 5-fold cross-validation to train the model. The model was trained for

30 epochs in each fold with a batch size of 32. The learning rate was set to 0.001. The model
was trained using binary cross-entropy loss. A Monte Carlo experiment was conducted
5 times to obtain an accurate performance estimate. The Adam optimizer [57] was used
to train the model, an algorithm for first-order gradient-based optimization of stochastic
objective functions. Adam optimizer is advantageous compared to other optimizers due to
the adaptive learning rates, which means that it is computationally efficient and requires
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less memory than other algorithms. In each experiment, 70% of samples were randomly
selected for training and the other 30% for testing. All experiments were executed on an
NVIDIA A100 GPU equipped with 80 GB of GPU memory.

3. Results

The model’s performance is compared with the vanilla U-Net model, a commonly
used baseline architecture for semantic segmentation tasks. The vanilla U-Net model was
applied in [41] to map a salt marsh along coastal South Carolina. The comparative analysis
is presented in Table 1, which compares the model’s performance using different metrics.

Table 1. This table shows the comparison of performance metrics among different variants of the
ADU-Net model.

Metrics

Model ADU-Net (No
Attention and
Dense Layers)

or Vanilla U-Net

ADU-Net (No
Dense Layer)

ADU-Net (No
Attention Layer) ADU-Net

F1 Score 0.947 ± 0.064 0.962 ± 0.004 0.967 ± 0.001 0.980 ± 0.001

Dice Score 0.947 ± 0.023 0.960 ± 0.005 0.967 ± 0.001 0.980 ± 0.001

User Accuracy 0.955 ± 0.063 0.956 ± 0.003 0.967 ± 0.001 0.983 ± 0.000

Producer Accuracy 0.940 ± 0.059 0.950 ± 0.004 0.968 ± 0.001 0.977 ± 0.003

Kappa Coefficient 0.931 ± 0.031 0.996 ± 0.001 0.997 ± 0.000 0.999 ± 0.000

From the results, we can conclude that ADU-Net shows exceptional results. ADU-Net
has a kernel size of 5 and an F1 score and a dice score of 0.980 and 0.980, respectively,
showcasing its effectiveness in capturing relevant features for classification tasks. Similarly,
the model has a user and producer accuracy of 0.983 and 0.977, showing the model’s
effectiveness in accurately identifying and categorizing important data attributes.

We have shown the results of ADU-net on test samples in Figure 5. To evaluate the
results, we computed and reported the dice coefficient of these figures. Figure 5a and
Figure 5b, characterized by lower densities of Sesarma crabs, achieve high dice coefficients
of 0.99 and 0.92, respectively. Similarly, Figure 5c, Figure 5d, and Figure 5e attain dice
coefficients of 0.96, 0.89, and 0.90, respectively. The high dice coefficients indicate the
strong segmentation performance of the ADU-Net model. It is efficient in delineating creek
features amidst varying densities of Sesarma crabs.

Figures 6 and 7 show a region of creeks with extensive grazing and mudflat formation.
We can observe that in Figure 8, the model is able to identify most parts of the creeks. Espe-
cially in the blue region, the model has effectively captured all the creek pixels. However,
in the red-bounding box, not all the creek pixels are identified. Figure 9 shows a Juncus-
dominated marsh adjacent to the mainland. This region is primarily impacted by human
development as there is extensive canal ditching throughout. In the lower left region,
the model recognizes certain man-made structures as creek pixels, highlighting a challenge
for future model improvements to handle uncertainties and unseen image scenarios more
effectively. These images illustrate large spatial creeks, which would be time-consuming to
label manually. Therefore, we provide visual interpretations of the segmentation results.
Our study highlights that ADU-Net excels in accurately identifying and mapping creek
features. It performs well, especially in challenging environments. However, there is room
for improvement in handling more complex situations. This suggests opportunities for
refining and enhancing the model to better tackle diverse environmental scenarios.
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(a)

(b)

(c)

(d)

(e)
Figure 5. (a–e) shows the different levels of creekhead grazing by Sesarma reticulatum crabs. Creek
images from test data are shown (left), the ground truth is marked on the original images (middle),
and the predictions from ADU-Net are marked on the original images (right).
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(a) (b)

Figure 6. (a) Larger spatial creek area with extensive grazing and mudflat formations. (b) Prediction
results from ADU-Net.

(a) (b)

Figure 7. (a) Larger spatial creek area with extensive grazing. (b) Prediction results from ADU-Net.

(a) (b)

Figure 8. (a) Larger spatial creek area dominated by Spartina alterniflora. with extensive grazing.
The figure shows both creeks with extensive grazing and mudflat formation. (b) Prediction results
from ADU-Net. In the red bounding box, we can see that not all creek pixels are identified. However,
all the intricate pixels are effectively identified by ADU-Net in the blue bounding box.
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(a) (b)

Figure 9. (a) Marsh area connected to the mainland containing fresher marshes and man-made
drainage ditches. These locations are dominated by Juncus-dominated marsh. (b) Prediction results
from ADU-Net.

3.1. Sensitivity Analysis

Kernel Size-Attention: We conducted a sensitivity analysis on the validation set to
explore the impact of different kernel sizes on the performance of the attention module and
determine the optimal configuration for the attention mechanism, as illustrated in Table 2.
A larger kernel takes into account a larger receptive field to determine a pixel’s relevance.
A larger kernel also increases the number of neural network parameters. On the other hand,
a smaller kernel does not have enough spatial neighborhood information to determine its
relevance in the entire spatial feature map. However, a smaller kernel keeps the number
of parameters low. Therefore, an optimal kernel size is required, which is most suitable
for the network. This analysis allowed us to assess how variations in kernel size affect the
attention mechanism’s ability to capture relevant features and enhance the model’s overall
performance.

The results are summarized in Table 2 and in Figure 10; four metrics (F-1 score, dice
coefficient, user accuracy, and producer accuracy) are plotted for different kernel sizes.
These results show that 5 × 5 is optimal for this task. Based on the results from the table
and plots, we can conclude that the ADU-Net model achieves optimal performance with a
kernel size of 5 × 5. This configuration strikes a balance between capturing relevant spatial
context without becoming overly sensitive to fine details and maintaining computational
efficiency, enhancing the model’s effectiveness.

Table 2. Sensitivity analysis of different kernel size (k) to the performance of the model.

Kernel Size, k =

Metrics

Model
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

F1 Score 0.965 ± 0.003 0.982 ± 0.001 0.971 ± 0.001 0.970 ± 0.000 0.955 ± 0.030 0.974 ± 0.001 0.965 ± 0.009

Dice Score 0.965 ± 0.003 0.982 ± 0.001 0.971 ± 0.001 0.970 ± 0.000 0.955 ± 0.030 0.974 ± 0.001 0.967 ± 0.005

User Accuarcy 0.967 ± 0.005 0.984 ± 0.000 0.964 ± 0.063 0.968 ± 0.003 0.954 ± 0.025 0.967 ± 0.002 0.952 ± 0.001

Producer Accuracy 0.964 ± 0.005 0.979 ± 0.003 0.950 ± 0.059 0.972 ± 0.003 0.934 ± 0.030 0.967 ± 0.002 0.950 ± 0.003

Kappa Coefficient 0.999 ± 0.001 0.999 ± 0.000 0.945 ± 0.001 0.999 ± 0.000 0.998 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
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Figure 10. Performance metrics (a) F-1 score, (b) dice score, (c) user accuracy, and (d) producer
accuracy plotted against different kernel sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)
for the ADU-Net model.

3.2. Ablation Study

We performed an ablation study to observe the performance of four different variants
of the U-Net model: the ADU-Net model (with no attention and dense layers) or vanilla
U-Net, the ADU-Net model (with no attention layers), the ADU-Net model (with no dense
layers), and ADU-Net. The findings are illustrated in Table 1. The ablation study reveals a
consistent trend in the performance metrics as we progress from the ADU-Net model (with
no attention and dense layers) to the ADU-Net model (with no attention), the ADU-Net
model (with no dense layers), and finally, to the ADU-Net model. The results are evaluated
using metrics such as F1 score, dice score, user accuracy, producer accuracy, and kappa
coefficient. All the metrics indicate that ADU-Net performs best among all these U-Net
model variants. For instance, comparing the F1 score, we observe an increase from 0.947
for vanilla U-Net to 0.980 for ADU-Net. Similarly, the dice score shows a similar trend,
with values increasing from 0.947 for vanilla U-Net to 0.980 for ADU-Net. This consistent
improvement across multiple metrics indicates that the enhancements introduced in each
successive model iteration contribute positively to overall performance. Similarly, there
is an enhancement in both user and producer accuracy, indicating the model’s ability to
identify and classify critical features in the dataset accurately.

These findings highlight how the synergistic combination of attention and dense layers
helps accurately predict creek pixels. They demonstrate the effectiveness of spatial attention
in capturing and leveraging crucial spatial information for segmentation tasks while also
showcasing the efficacy of DenseNet in enhancing model performance.

4. Discussion

Our findings demonstrate that the ADU-Net model exhibits optimal performance
across various metrics, including F1 score, dice score, user accuracy, producer accuracy,
and kappa coefficient. This enhancement is attributed to the synergistic combination of
attention mechanisms and dense layers, significantly improving the model’s ability to cap-
ture and leverage essential spatial information for segmentation tasks, thereby accurately
delineating creek features from aerial imagery.

Our methodology’s primary advantage is its ability to capture features at high resolu-
tion. Lower resolution datasets, such as those from the Sentinel mission at 10 m × 10 m
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pixels, may fail to capture creek features that often exist on scales of tens of centimeters to a
few meters. This increased fidelity of extracted data allows for identifying detailed patterns
that were previously too time-intensive to digitize manually. Spatial patterns at these scales
may influence the ecological–geomorphic interactions and vice versa. The inclusion of
these data with high fidelity has the potential to understand the inter-dynamics of these
systems better and produce a sufficient sample size for statistical analysis. For example,
with crab and mussel-dominated creek systems, there can be high variation in geomor-
phic structure (e.g., sinuosity, bifurcation angle, creek–marsh area ratios), and it can be
difficult to discern which are driving factors of these patterns. However, given a large
sample size (this dataset within), it has the potential to capture wide variability and could
reveal potential drivers and mechanisms of these geospatial patterns. Our model surpasses
traditional manual methods, limited by the human capacity to digitize extensive creek
networks. The ADU-Net model’s ability to efficiently extract large networks, potentially
encompassing thousands of creeks, represents a significant advancement. Furthermore,
the high accuracy of our model’s results reduces the need for manual post-processing, thus
enabling the dataset to be readily available for subsequent analyses.

Figure 5 shows the different levels of creekhead grazing by Sesarma reticulatum crabs.
Sesarma crabs are widespread throughout most marshes, although some areas, such as in
Figure 5a,b in the image, show lower densities. These crabs play a dual role in shaping the
creeks, particularly the creekheads [12,58]. They accomplish this by consuming vegetation
and creating extensive burrows in the ground. This combined activity increases the soil’s
erodibility, leading to the formation of distinct creeks like Figure 5c–e. The gray areas
represent mud flats where vegetation has been stripped away, resulting in weak soil that
can cause sinking when stepped on. In [12], the impact of crab grazing on marsh evolution
is investigated. According to their finding, the marshes in the region are evolving the most,
where there are the highest densities of Sesarma. The ADU-Net model can precisely extract
the creek networks, potentially encompassing thousands of creeks. Our ongoing research
aims to extract and analyze tens of thousands of creeks from the marshland, facilitating
statistical investigations into creek evolution and structure.

Despite the model’s success, Figure 9 shows misclassification issues in a Juncus-
dominated marsh adjacent to the mainland. This region is primarily impacted by human
development as there is extensive canal ditching throughout. The model misclassified
particular man-made objects as creeks. Therefore, in our future work, we must address this
problem by training the model to detect these outliers effectively.

In future work, we also aim to extend the applicability of the ADU-Net model to
datasets from multiple years without necessitating model retraining. This presents chal-
lenges because the dataset from year 2014 shows a drought year with widespread vegetation
die-back and noticeable mudflats, unlike the 2017 dataset, where mudflats were less com-
mon. This difference in environmental conditions across years poses a significant challenge
for using the same model across different datasets. Using a model trained on data from
one year to analyze subsequent years presents challenges due to the varying distribution of
denuded and mudflat areas within interior marsh regions. Additionally, seasonal changes
can cause significant shifts in the landscape’s spectral characteristics, making it difficult to
ensure consistent model performance over time. To address these challenges effectively, we
will focus on developing adaptive strategies that enable the ADU-Net model to generalize
across diverse temporal conditions.

5. Conclusions

Tidal creek segmentation is crucial for distinguishing creeks and channels at higher
resolutions and larger spatial scales, enabling the extraction of vital insights into the rate
of change in coastal wetlands. We evaluated a new deep neural network model, ADU-
Net, for creek segmentation on data having a 0.5 m spatial resolution and 4-band spectral
resolution (red, green, blue, and near-infrared). The DenseNet architecture plays a crucial
role in retaining both low-level and high-level features (feature reuse), preventing the
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need for a large number of filters in the network. By incorporating DenseNet modules, we
mitigate issues like vanishing gradients from earlier layers. At the same time, the integrated
attention mechanism extracts salient spatial regions and propagates this information to the
decoder. ADU-Net can achieve a high F1 score of 98.00% compared to vanilla U-Net, which
has an F1 score of 94.70%. Additionally, when compared across other metrics, ADU-Net
demonstrates improvements: the dice coefficient increases by 3.47%, producer accuracy
by 2.98%, user accuracy by 3.11%, and kappa coefficient by 7.41%. Accurate prediction of
the multi-scale water features can expand the sample size for geospatial analyses, enabling
the mapping of the entire coastal region in hours with limited user intervention. Future
work will improve this model to avoid uncertainties in unseen test data, such as man-made
structures, and incorporate imagery from different years. This will allow multi-temporal
change analyses to identify patterns of marsh evolution. We also plan to include SAR
imagery in addition to the current dataset for segmenting targets on intertidal flats.
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