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Canopy Heterogeneity and Environmental Variability Drive
Annual Budgets of Net Ecosystem Carbon Exchange in a
Tidal Marsh

P. A. Hawman' ), D. L. Cotten® [, and D. R. Mishra'

'Department of Geography, University of Georgia, Athens, GA, USA, "0ak Ridge National Laboratory, Oak Ridge,
TN, USA

Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net
carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget
(NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO; derived from eddy
covariance (EC) for a Sparting alterniflora salt marsh. We found interannual NEE could vary up to 3-fold and
range from —58.5 + 11.3t0 —=2229 £ 12.4 g C m~? year™! in 2016 and 2020, respectively. Further, we found
that atmospheric CO; fluxes were spatially dependent and varied across short distances. High biomass regions
along tidal creek and estuary edges had up to 2-fold higher annual NEE than lower biomass marsh interiors. In
addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded
to environmental drivers differently. Low elevation edges (with taller canopies) had a higher comelation with
river discharge (R* = 0.61), the main freshwater input into the system, while marsh interiors (with short
canopies) were better commelated with in situ precipitation (R® = 0.53). Lastly, we extrapolated interannual NEE
to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering
spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and
spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing
climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter
ecosystem productivity.

Plain Language Summary Salt marshes are dynamic coastal wetlands where frequent tidal
flooding in conjunction with elevation gradients create plant zonation. In tidal marshes found in the
southeastern United States, the species of marsh grass Sparting alterniflora dominates much of the marsh
area. This species’ canopy height, density, and biomass vary along an elevation gradient and because of this,
their productivity is spatially dependent. In this paper, we used measurements of carbon dioxide exchange
between the marsh surface and the atmosphere to estimate the interannual ecosystem carbon budgets. We
found that across years, ecosystem carbon fluxes could vary up to 3-fold. This variability year-to-year could
be explained by drought conditions, specifically temperature, precipitation, and river discharge. We also
found that the magnitude of carbon fluxes and its response to environmental drivers were spatially dependent.
Taller canopies with higher biomass found along tidal creeks had higher rates of carbon uptake and were more
sensitive to river discharge. While shorter canopies with low biomass found in the marsh interiors were more
sensitive to precipitation. Our findings suggest the atmospheric carbon dynamics in salt marshes are spatially
dependent and scaling these estimates to larger areas requires careful consideration of habitat zones and local
environmental drivers.

1. Introduction

Tidal marshes are highly productive ecosystems that are important in the carbon (C) cycle because of their high
burial rates of soil organic carbon (Hinson et al., 2019), known as blue carbon (Mcleod et al., 2011). However,
their geographic position at the interface between marine and terrestrial ecosysterns makes them vulnerable to
human induced forcings such as rapid sea level rise (Holmquist et al., 2021), direct human impacts from un-
controlled land conversion and urbanization (Murray et al., 2022), and a changing climate where rainfall patterns
and storm intensity alters freshwater input and sediment supplies (Cherry & Battaglia, 2019). It is, therefore, vital
to understand the drivers and variance in tidal marsh carbon dynamics across space and time to better understand,
monitor, and assess their esiliency and vulnerability to climate change.
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Table 1

Interannual Net Ecosystem Exchange (NEE) Budgets for the Full

Climatalogy, the Creek Sector, and the Marsh Sector

north sector had no melationship (R = 0.007; p-value = 0.8) and the full
climatology had a small but nonsignificant one (R* = 0.21; p-value = 0.1).

year Full climatology South sector North sector 3A. Environmental Drivers
2014 —tlen S ~1581287 " The environmental conditions at the GCE-LTER site from 2014 to 2022
2015 =197 £ 99 ~1605+ 8.1 =1325+£ 123 showed considerable variability in terms of precipitation measured using river
016 -585+£113 -00.9 + 208 ~107.5+£9.7 discharge and in situ precipitation, number of days each year air temperatures
017 —1864 + 13 =160 + 13.1 22+ 283  exceeded 34°C, and droughtiness using PDSI. The growing season mean
2018 _ _ _ Altamaha River discharge ranged from 153 to 384 m ™" with the lowest
2019 _1416+ 102 18624 92 _13554+ 116 discharg? mmuﬁngin?ﬂlgandlhelﬁghesl_iHMED(Figm!: Si_’ainSul‘:rptm'lring
Information 51). 2019 was also the year with the lowest in situ precipitation
2020 B -0l 18 16962115 797 mm) while 2020 and 2017 were the wettest, 1158 and 1042 mm,
2021 -2032+ 111 -207.7 £ 15 =135.9+ 174 regpectively. The hottest years were 2016 and 2019, when air temperature
2022 —168.7 + 21.1 ~2448 + 25 —1284 £ 213  exceeded 34°C for 14 days (Figure 57c in Supporting Information S1). In

Note. Annual budgets are in gCm ™"y ™" with 95% confidence intervals.

MEE gCm %y~

terms of droughtiness using the PDSI, over the entire study period, PDSI

ranged from —1.24 (2016) to 1.96 (2020} (Figure 57d in Supporting
Information 51).

For the annual growing season (April-September) mean river discharge, the south sector showed a significant
cormrelation (R = 0.61; p-value <0.01), while the north sector did not show a melationship (R* = 0.05; P
value =0.60) and the full climatology was somewhat cormelated (R =0.43; p-value = 0.08) (Figures 3a and 5h).
Growing season total precipitation was only significantly corelated with north sector interannual NEE
(R* = 0.53; p-value <0.01) (Figures 5d-5f). We found that years with more days that reached maximum air
temperatures >34°C were well correlated with full climatology annual NEE (R® = 0.63; p-value <0.01) but not
NEE from the south sector (R = 0.36; p-value = 0.12) or the north sector (R* = 0.36; p-value = 0.12)
(Figures 5z-5i). Lastly, annual mean PDSI explained the highest proportion of the variation in full climatology
interannual NEE (Rz = 0.8%; p-value <0.001) and the south sector {Rz =0.78; p-value <0.01), but no trend for the
north sector (R? = 0.28; p-value = 0.18) (Figures 5£-51).

3.5, Marsh-Wide NEE

We compared scaling annual NEE to the wider Kenan Field marsh (area = 1.763,600 m®) using the full
climatology NEE versus a habitat-corrected scaling approach using the south and north sector annual estimates to
account for proportional differences in marsh habitat zones. Maps of annual NEE based on a habitat map (Hladik
& Alber, 2014) and IDW interpolation show the spatial distribution of NEE across Kenan Field marsh (Figure 6b;
Figure S8 in Supporting Information 51).

b
D. pa. 0. 3
E
(4]
100+ S -100
i}
=
z
200 £ oo
; 2 2004
w E
G
£
ag0{ @ full climatology _— £ 300
W& south sector —
north sacior
2014 2015 2016 2017 2018 2019 2020 2021 2022 2014 2015 2016 2017 20168 2019 2020 2021 2022 2023

Fipure 4. (a) Interannual net ecosystemn exchange (NEE) from the GCE flux tower for years 20014-2022 for the full climatology (gray), the south sector (dark green), and
the north sector (light green). Ermor bars indicate 95% confidence intervals. (b) Cumulative annual NEE for the full footprint, the south sector, and the north sector.
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Figure 6. (a) Total carbon uptake for Kenan Field marsh based on the flux tower climatology NEE budgets (dark gray) and habitat-comecied estimates (orange). Ermor
bars show the 95% confidence intervals. (b) Map showing spatially explicit annual NEE for Kenan Field marsh for 2021. Darker greens show marsh areas where carbon

uptake was higher.

The south sector had a higher proportion of tall (high) biomass canopies found along the tidal creek marsh edge.
These taller canopies have up to 3-fold higher LAI compared to the shorter canopies found in interior zones in the
north sector (Hawman et al., 2023). Tall canopies of 8. alterniflora have also shown higher rates of photosynthesis
compared to shorter canopies, up to 45% (Giurgevich & Dunn, 1979). Therefore, differences in canopy LAI,
biomass, and productivity rates around the flux tower altered the importance of features in the gap-filling models
for the south and north sectors and the combined full climatology (Figure 3; Figure 55 in Supporting
Information S1).

Differences in canopy density also impacted NEE across sectors. The south sector NEE was more sensitive to the
proportion of diffuse and direct radiation captured through the cloudiness index. During cloudy days with more
diffuse radiation, light use efficiency (the ratio of productivity to incoming radiation) increases because more of
the canopy interior is illuminated due to increased scattering (Hawman et al., 2021). Shorter canopies with lower
LAI found in the interiors and the north sector may not have benefited from the increased diffuse radiation.
Wariation in canopy leaf area may have also have impacted responses to tidal flooding. Though the taller canopies
experience more tidal flooding because of the proximity to tidal creeks and their lower position within the tidal
frame (Hladik & Alber, 2014), tidal flooding did not have as high a feature importance as the north sector models.
This could be because of the differences in vertical distribution of leaf area within the canopy profiles. The taller

Table 2
Total Carbon Uptake (gCm™y~") for Kenan Field Marsh (1,763,600 m®) With 95% Confidence Intervals

year Flux tower based total C [MEC}'"} Habitat-comected total C [MEC}'"}

014
0135
016
017
018
019
2020
021
022

255,70 £ 17.01
21102 £+ 1742
103.15 + 19.88
I2BTI+ 2204
M071 £ 1796
393.09 + 21.59
35828 £ 195
29756 £ 37.19

29207 + 16.25
26436 + 17.06
17138 £ 2927
3034 +£3323
0454 £ 1779
45307 £2393
417.09 + 28.13
303 £41.57

Note. Values labeled as “full climatology™ were based on the flux tower full climatology annual budgets. Values labeled
“habitat-comected” used the south and north sector budgets mapped to marsh habitat zones and inverse distance weight-
ing (IDW).
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